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Abstract Plant emergence and stand establishment are key
indicators of early crop development that are routinely
assessed in potato agronomy and crop improvement research.
The standard method for evaluating emergence is through
manual plant counts at regular intervals. In this proof-of-
concept study, unmanned aerial vehicles integrated with mul-
tispectral imaging were used for high-throughput evaluation
of crop emergence under field conditions. High-resolution ae-
rial imaging was performed at 15 m above ground level to
capture data from potato plots of two varieties (‘Alturas’ and
‘Payette Russet’) in which the seed had been treated with
different concentrations of growth regulators (including non-
treated controls). The treatments resulted in differences in
plant emergence and establishment. The images were collect-
ed at 32, 37, and 43 days after planting (DAP). Image-based
features such as plant count, SUM-NDVI, and SUM-
BINARY were computed from normalized difference vegeta-
tion index (NDVI) images for each treatment plot using
ArcGIS®. The Pearson’s correlation coefficients () were sig-
nificant (p < 0.05) between image-based plant counts
(r=10.82) and SUM-NDVI (» = 0.62-0.73) with that of manual
plant counts for both varieties, especially at early growth
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stages (32 DAP) when differences in emergence among treat-
ments were more pronounced. The treatment effects on plant
emergence and establishment were effectively resolved in the
aerial multispectral images. Selection of the pertinent polygon
threshold area to eliminate noise in delineating individual
plants during image processing was important for resolution
of treatment effects. The data shows that the technique can be
applied in potato establishment evaluation.

Resumen La emergencia y el establecimiento de plantas
son indicadores clave en el desarrollo temprano de un
cultivo, siendo variables comUnmente evaluadas en
investigaciones para mejoramiento genético del cultivo de
papa. El método normalmente utilizado para evaluar
emergencia es el conteo manual de plantas en intervalos
regulares. Para evaluar emergencia en condiciones de cam-
po, en este “estudio de prueba de concepto”, se utilizé un
sistema de alto rendimiento constado por una aeronave
remotamente piloteada con una camara multiespectral
integrada. Se tomo6 imagenes de alta resolucion a 15 m de
altura para capturar datos de parcelas de dos variedades de
papa (“Alturas” y “Payette Russet”), cuyas semillas fueron
tratadas con diferentes concentraciones de reguladores de
crecimiento (incluyendo también testigos sin tratamiento).
Los tratamientos mostraron diferencias en emergencia y
establecimiento de plantas. Se colecté imagenes a 32, 37,
y 43 dias después de la siembra (DDS). Se utilizé el
programa ArcGIS® para obtener el NDVI (indice de
vegetacion de diferencia normalizada) de cada parcela, a
partir del cual se obtuvo el nimero de plantas, SUM-NDVI
y SUM-BINARY. Se encontrd correlacion significativa (p
< 0.05) entre el conteo de plantas basado en imagenes (7 =
0.82) y en SUM-NDVI (r = 0.62-0.73), con respecto al
conteo manual para ambas variedades, especialmente en
los estadios tempranos de crecimiento (32 DDS), cuando


mailto:sindhuja.sankaran@wsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s12230-017-9604-2&domain=pdf

Am. J. Potato Res. (2017) 94:658-663

659

las diferencias en emergencia entre tratamientos eran mas
pronunciadas. Los efectos del tratamiento en emergencia y
establecimiento fueron efectivamente detectados con las
imagenes aéreas multiespectrales. Fue importante
seleccionar adecuadamente el area de los poligonos
utilizados para disminuir el ruido delimitando las zonas
cubiertas por el cultivo. Los datos muestran que la
metodologia presentada se puede aplicar en la evaluacién
del establecimiento del cultivo de papa.

Keywords Remote sensing - Unmanned aerial vehicle -
Normalized difference vegetation index - Image processing -
Plant growth

Introduction

In recent years, the availability of different types of un-
manned aerial vehicles (UAVs) and simple multispectral
cameras have spurred several new applications in agricul-
ture. Validation of remote sensing technology to assess
vegetation has been reported previously (Bouman et al.
1992; Carlson and Ripley 1997; Serrano et al. 2000; Vina
et al. 2004). Most recently, Zhou et al. (2016) evaluated the
effect of crop hail damage on potato canopy utilizing UAV-
based multispectral aerial imaging and vegetation indices,
such as normalized difference vegetation index (NDVI)
and green normalized vegetation index (GNDVI). They
demonstrated that aerial imaging within 10 days of damage
was critical to accurately capture the intensity of hail dam-
age. Similarly, Sugiura et al. (2016) evaluated late blight
symptoms to assess disease severity using RGB imaging
from an UAV in comparison to visual disease ratings. The
disease severity was estimated from images by computing
the ratio between the damaged and healthy areas.
Thresholding was performed to determine whether the im-
age pixels were healthy or diseased. A strong consensus
between ground truth (visual rating) and image data was
observed when disease severity ratings were compared.
Their study revealed good potential for using UAV-based
imaging in estimating disease severity.

The application of UAV-based technology in potato pro-
duction is emergent and further studies are required to pheno-
type different crop traits to advance the use of sensor technol-
ogy for research, breeding, and precision agriculture
(Midmore 1984; Maris 1988). In particular, the estimation of
plant emergence and establishment in potato with these de-
vices has not been documented. Numerous factors can affect
the emergence response of potato including variety, seed-tuber
physiological age, soil temperature, disease, and various seed
treatments that affect apical dominance (stem numbers) and
dormancy break (e.g. plant growth regulators) (Eshel and
Teper-Bamnolker 2012; Knowles and Knowles 2016). The

standard method for assessing effects of management and va-
riety on emergence of potato is to visually count the number of
plants emerged at frequent intervals during the establishment
phase of development (Knowles and Knowles 2006; Blauer
et al. 2013; Herman et al. 2016). A high-throughput sensing
technique can greatly enhance the efficiency in emergence
evaluation. Therefore, the overall objective of this study was
to compare the utility and accuracy of UAVs and multispectral
imaging with manual plant counts for assessing potato crop
emergence.

Materials and Methods
Field Plots and Emergence Assessment

Seed tubers of ‘Alturas’ and ‘Payette Russet’ were cut and
treated with five combinations and concentrations of plant
growth regulators designed to accelerate or delay plant emer-
gence relative to the non-treated seed. These treatments are
part of a larger unrelated multi-year project, which will be
described in a future publication. The 2015 plots from this
ongoing project served for validation of the efficacy of remote
sensing of emergence in the study reported herein. The iden-
tity of the growth regulator treatments are not relevant to the
objectives of the present study and are therefore not divulged
to avoid conclusions about their potential efficacy based on
1 year of data. The treatments are hereafter designated as 1-6
(Treatment 1 was control, without any seed treatment).

The treated seed tubers were planted in field plots in a
randomized complete block design (5 replicates of 24 seed
pieces per treatment) at the Washington State University
Research Unit, Othello, WA (46° 47.277' N. Lat., 119°
2.680" W. Long.) on April 13, 2015, as described by
Herman et al. (2016). Rows were spaced 86 cm apart.
Individual treatment rows were flanked by non-treated guard
rows. The seed pieces were planted 25 cm apart within one
treatment row. Plant emergence was recorded at 32, 37, and
43 days after planting by counting the number of plants
emerged in each plot. These plant counts constituted the
ground-reference emergence data, which was subsequently
compared with data from the UAV flights.

UAV Data Acquisition

Aerial images were acquired using an octocopter ARF
OktoXL 6S12 (HiSystems GmbH, Moormerland, Germany)
powered by a lithium-ion polymer battery with a potential
2.5 kg payload and equipped with the following sensors: gy-
roscope, accelerometer, compass, global positioning system
receiver, and pressure sensor. Way-point Global Positioning
System (GPS) navigation was applied to capture the images
using a radio transmitter (MX20 Hott, Graupner, Stuttgart,
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Germany) with a 4 km range. The waypoint GPS navigation
facilitates operating the UAV in an automated fashion by load-
ing and configuring pre-planned points within the region of
interest (area that covers all the treatment plots). Factors such
as imaging altitude, image capture frequency, speed of flight,
and hovering time at each pre-planned point were defined for
each flight. The UAV platform carried a gimbal with a mod-
ified multispectral digital camera, Canon Powershot ELPH
340 HS (LDC LLC, Carlstadt, NJ), which has channels for
red (R), green (G), and near infrared (NIR) bands. The system
was programmed to automatically capture 8-bit JPG images
(16 megapixels; 4608 x 3456) every 5 s. Reference boards and
flags between treatment plots were incorporated for ease in
block and plot segmentation on the images, respectively.
This was important as the treatment plots in adjacent rows
did not start and end at the same position (Fig. 1a). The images
were captured at 32, 37, and 43 days after planting (DAP) at
15 m above ground level under sunny conditions. A reference
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(b) Image feature extraction steps

Fig. 1 Data processing method for extraction of the image features for
individual treatment plots. a Sample treatment plot showing markers for
treatment and block segmentation (dark areas in the furrows between
hilled rows are pits made by the dammer diker), and b Image feature
extraction steps utilized to extract image-based data (number of plants,
SUM-NDVI, and SUM-BINARY)
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panel (25 x 25 cm, Spectralon Reflectance Target, CSTM-
SRT-99-100, Spectra Vista Cooperation, NY) was placed in
the field to correct for changing light conditions.

Image Analysis

Images were processed using the raster calculator and zonal
statistics tools of ArcGIS (10.2, ESRI, Redlands, CA). Raster
refers to a matrix/grid of pixels in a grid, which is represented
by a data value. The multispectral imaging generates a digital
number (DN = 0 to 255, 8-bit, 0 representing no reflectance
and 255 representing maximum reflectance) representing re-
flectance in the R, G, and NIR region. Radiometric correction
was then performed using the Spectralon reference panel.
After radiometric corrections of images, the steps followed
were as described and illustrated in Fig. 1b.

During image processing, the first step was to extract the
treatment plots in the original raster. With the segmented im-
ages representing each plot, normalized difference vegetation
index (NDVI, Rouse et al. 1974) image was generated using
Eq. 1:

Ryir—Rr

NDVI Rum T Re (1)
where Ry and Ry refers to reflectance (DN) at NIR and R
spectral bands. From the NDVI image, summation of all the
pixels (SUM-NDVI) for each plot was computed. These data
represent the sum of canopy NDVI (includes all new and old
leaves, and small and large plants) in a treatment plot. A
threshold (82% of the maximum value of the NDVI for a
given day and variety) was then applied to convert the
NDVI image into a binary image. In this case, the new and
old leaves were converted into a single value. The total num-
ber of binary pixels was defined as SUM-BINARY. This data
represents the canopy coverage area for each treatment plot.
Finally, the binary image was converted into a vector file of
polygons (objects), where each polygon over a size threshold
(100 cm?) was defined as one plant. The total plant count
using images was then estimated.

Statistical Analysis

The image-based data (plant count, SUM-NDVI, SUM-
BINARY) were correlated with the ground reference plant
count data at each time and for each variety. Pearson correla-
tion coefficients () and the probability values (p) were calcu-
lated. The correlation was performed on plant count data
(manual and image-based) acquired from each replicate of
each treatment (6 treatments x 5 replicates = 30 plots).
Statistical analysis was performed using SAS® (ver. 9.2,
SAS Institute, Cary, NC, USA).
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Results and Discussion

The three image-based emergence features, plant count,
SUM-NDVI, and SUM-BINARY, were correlated with man-
ual plant counts (30 data points). Correlation coefficients and
p-levels are reported in Table 1. In general, all correlation
coefficients, except for manual and image-based plant counts
at 37 DAP for ‘Alturas’, were significant. The low correlation
(r = 0.24) between image-based and manual count data for
‘Alturas’ was due to its shorter dormancy (Novy et al. 2003,
2016), which resulted in higher emergence relative to ‘Payette
Russet’ by 37 DAP (as seen in Fig. 2). In contrast to ‘Alturas’,
all correlations for emergence of ‘Payette Russet’ were high
and significant at both 32 and 37 DAP (Table 1). The com-
bined data of the two varieties also gave good results with
correlation coefficients of 0.83 (p < 0.0001) for the image-
based versus manual count data at 32 and 37 DAP (Table 1,
Fig. 2). It was not possible to compute the number of plants
using remotely sensed images at 43 DAP, as both varieties had
achieved full emergence and within-row canopy closure by
this time. These results underscore one of the limitations of
the remote sensing technique for assessment of plant emer-
gence and establishment. In the latter stages of plant establish-
ment when plant canopies begin to overlap, the resolution of
individual plants by remote sensing decreases. Nevertheless,
visualization through remotely sensed images offers an alter-
native method for assessing early plant emergence and stand
establishment that circumvents the challenges and difficulties
of navigating the hills, furrows, and dammer diker pits of
research plots and/or large-scale commercial fields to manu-
ally acquire plant count data.

SUM-NDVI data represents the total canopy NDVI that
includes all plant pixels, with low and high vigor plants de-
fined as having low and high NDVI values, respectively.
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Fig. 2 Correlation between manual and image-based plant count data
(both varieties combined) at a 32 days after planting (DAP) and b 37
DAP

Table 1 Correlation analysis

results between the manual plant Days after planting (DAP) Image-based plant count SUM-NDVI SUM-BINARY
count measure with respect to
remote sensing data (plant count, r P r p r P
SUM-NDVI, and SUM-
BINARY) ‘Alturas’
32 0.82 <0.0001 0.73 <0.0001 0.71 <0.0001
37 0.24* 0.2115 0.57 0.0010 0.17%* 0.3660
43 - - 0.38 0.0364 0.45 0.0119
‘Payette Russet’
32 0.82 <0.0001 0.62 0.0003 0.58 0.0008
37 0.87 <0.0001 0.72 <0.0001 0.66 <0.0001
43 - - 0.53 0.0029 0.21%* 0.2624
Combining both varieties
32 0.83 <0.0001 0.68 <0.0001 0.65 <0.0001
37 0.83 <0.0001 0.61 <0.0001 0.18%* 0.1640
43 - - 0.42 0.0009 0.22% 0.0849

7 correlation coefficient, p probability, *Not significant at o« = 0.05
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SUM-BINARY normalized the plants as 0 or 1 and computed
the total number of all plant pixels independent of vigor.
Interestingly, SUM-NDVI showed better correlations than
SUM-BINARY values.

In addition to a good correlation, the image-based features
resolved the treatment effects on plant emergence as observed
from Fig. 3. On average, the image-based counts were lower
than the manually obtained plant counts, which could be due
to a conservative selection of polygon threshold. When the
threshold was modified, the count increased by 1-2 plants
and did not change the correlations significantly. It is therefore
important that an optimum polygon threshold be selected for
counting the number of plants. A broader threshold will in-
crease the chances of two plants being counted as one, leading
to lower image-based plant counts. At the other extreme, a
polygon threshold too narrow can count noise in the images
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Fig. 3 Seed piece treatment effects on emergence, estimated as average
number of plants emerged per treatment (n = 5), image-based count, and
SUM-NDVI at a 32 DAP and b 37 DAP in ‘Payette Russet’. Letters
indicate HSD (P < 0.05) for comparison within a count type and sampling
time
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as a plant, thereby increasing the plant count greater than
ground-truth values. Nevertheless, given the plant growth dif-
ferences with emergence of new plants and establishment of
emerged plants, the image-based features captured the treat-
ment effects on emergence.

Previous literature has discussed the applications of remote
sensing-based crop emergence evaluation in field crops
(Yuping et al. 2008; Kipp et al. 2014; Sankaran et al. 2015)
by looking at canopy cover, similar to the method reported in
Patrignani and Oschsner (2015). However, the application of
remote sensing in estimating the emergence of row crops such
as potato has not been described. Given the complexity of
potato production systems, remote sensing for phenotyping
crop emergence can be of great value to agronomists and
breeders. The results are encouraging for implementing the
method for crop emergence evaluation under field conditions.
Future studies should focus on imaging at a lower altitude
with UAVs or from field based platforms, and implementation
of reference markers or geo-referencing for automated plot
segmentation.

Summary and Conclusion

This study presents a new application for high resolution mul-
tispectral imaging in estimating crop emergence in potatoes.
Seed of two potato varieties that differed in length of dorman-
cy and thus time to emergence was treated with plant growth
regulators to create differences in plant emergence and estab-
lishment for evaluating the method. The multispectral images
were captured at 32, 37, and 43 days after planting and fea-
tures such as plant count, SUM-NDVI, and SUM-BINARY
were extracted from the images. Image-based data were com-
pared with manual plant counts. In general, there were signif-
icant correlations between image-based counts and SUM-
NDVI with manual plant counts. The image-based features
characterized the general treatment effects on potato emer-
gence but underestimated the actual counts, partly due to con-
servative selection of the polygon threshold area used for re-
solving individual plants. However, the results demonstrated
that high resolution aerial imaging is an effective high-
throughput method for estimating crop emergence in potatoes
and potentially other row crops.
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