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Abstract S. oplocense Hawkes, a wild relative of the potato
S. tuberosum L. and source of resistance against the Colorado
potato beetle Leptinotarsa decemlineata (Say) (CPB), was
intercrossed with S. tuberosum. Backcross clones carried vary-
ing levels of resistance. Differences in foliar metabolites be-
tween resistant and susceptible clones were analyzed using liq-
uid chromatography-mass spectrometry (LC-MS). Supervised
machine learning classification methods uncorrelated shrunken
centroids (USC), k-nearest neighbor (KNN) and support vector
machines (SVM) were applied to develop algorithms that can
classify resistant and susceptible plants using the metabolite
data. Five metabolites were found to have a low error rate of
prediction of CPB resistance. The five metabolites included two
glycoalkaloids previously associated with resistance and suscep-
tibility to CPB, dehydrocommersonine and solanine, respective-
ly. Resistance was associated with a change in composition of
glycoalkaloids to higher ratios of dehydrocommersonine over
solanine.

Resumen S. oplocense Hawkes, un pariente silvestre de la
papa S. tuberosum L., y fuente de resistencia contra el
escarabajo de Colorado Leptinotarsa decemlineata (Say)
(CPB), se intercruzó con S. tuberosum. Los clones de la

retrocruza conservaron diversos niveles de resistencia. Se
analizaron las diferencias en los metabolitos foliares entre
los clones resistentes y susceptibles usando espectrometría
de cromatografía líquida de masas (LC-MS). Métodos
supervisados de clasificación de aprendizaje de máquina no
correlacionados con centroides encogidos (USC), k-cercanía
de vecinos (KNN) ymáquinas de respaldo de vector (SVM) se
aplicaron para desarrollar algoritmos que pueden clasificar
plantas resistentes y susceptibles usando los datos de los
metabolitos. Se encontró que cinco metabolitos tenían un
nivel bajo de error de predicción de la resistencia al CPB.
Los cinco metabolitos incluyeron dos glicoalcaloides asociados
previamente con resistencia y susceptibilidad al CPB, la
deshidrocommersonina y la solanina, respectivamente. La
resistencia se asoció con un cambio en la composición de los
glicoalcaloides a altas proporciones de deshidrocommersonina
sobre la solanina.

Keywords Colorado potato beetle resistance . Untargeted
metaboliteprofiling .Potato .Solanumoplocense .Supervised
machine learning classification

Introduction

Leptinotarsa decemlineata (Say) (CPB) causes potato yield
losses of 30–50 % (McLeod and Tolman 1987; Stemeroff
and George 1983) and is controlled through use of
neonicotinoid insecticides. CPB populations with resistance
to insecticides have emerged (Alyokhin et al. 2008; Szendrei
et al. 2012) increasing the need to develop alternative strate-
gies including breeding for resistant potato germplasm. The
domesticated potato, S. tuberosum Hawkes, has a narrow ge-
netic base and most commercial potato varieties are suscepti-
ble hosts for CPB. Wild Solanum species that can be
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intercrossed with S. tuberosum are valuable sources of genetic
diversity. There are a number with resistance to CPB, includ-
ing some that can be introgressed with S. tuberosum (Flanders
et al. 1992; Jansky et al. 2009; Pelletier 2007; Pelletier et al.
2011; Pelletier and Tai 2001). Metabolites produced in the
foliage of wild species can function as anti-feedants and se-
miochemicals that affect host plant selection by mobile CPB
adults and successful establishment of larvae on foliage
(Pelletier et al. 2011; Pelletier and King 1987). The glandular
trichome-containing wild species S. berthaultii Hawkes, has
been shown to use chemical defense. It was crossed with
S. tuberosum to produce germplasm with increased CPB re-
sistance (Yencho and Tingey 1994). Glandular trichomes from
S. berthaultiiwere shown to produce exudates containing ses-
quiterpenes (Carter et al. 1989) and sucrose fatty acid esters
(King et al. 1986) that were associated with CPB resistance in
the potato (Pelletier and Smilowitz 1990). S. chacoense
Hawkes is another wild species that is high in leptine
glycoalkaloids. Introgression of this species has also resulted
in increased CPB resistance (Sanford et al. 1998; Tingey and
Yencho 1994). Analysis of plant foliar metabolites of six wild
Solanum species with CPB resistance demonstrated that in-
creased tetraose over triose glycoalkaloids was associated
with CPB resis tance in addi t ion to increases in
phenylpropanoid metabolites (Tai et al. 2014).

Metabolite-based markers can be applied to selection and
breeding in plants (Zabotina 2013). Selection for CPB resis-
tance currently involves field and/or laboratory screening as-
says for CPB feeding. Metabolite marker screening would
provide an alternative lower cost screening compared to
CPB feeding assays. Selection for foliar leptines has been
demonstrated to be an effective screen for CPB resistance.
Leptine levels in the F2 of S. tuberosum (4×)×S. chacoense
(4×) potato progenies were highly regressed with leaf disk
consumption and field defoliation (Yencho et al. 2000).
There are a number of technologies available for the discovery
of metabolite markers (Fernie and Schauer 2009). Targeted
metabolite profiling is optimized for analysis of selected com-
pounds, whereas in untargeted metabolite profiling the entire
range of compounds is analyzed (Vinayavekhin and
Saghatelian 2010). Untargeted metabolite profiling results in
highly complex profiles of peaks and requires use of computer
algorithms to analyze mass spectra to identify compounds.We
have successfully applied untargeted profiling using LC-MS
to identify metabolites associated with CPB resistance in six
wild Solanum species (Tai et al. 2014). One of the wild spe-
cies, S. oplocense, has been cross-hybridized with
S. tuberosum. We describe here application of untargeted me-
tabolite profiling and supervised machine learning classifica-
tion for identification of metabolite markers for CPB resis-
tance using clones from backcross generation 1 (BC1) and 2
(BC2) carrying S. oplocense genetic material. Supervised ma-
chine learning classification involves using a set of data

(training data) from individuals that have been pre-classified
into groups to train an algorithm to classify other individuals.
The data used for classification in this study were varying
levels of metabolites analyzed by LC-MS. This study used
USC, KNN and SVM machine learning classification
methods. The metabolites identified for use in classification
have application as markers for genetic mapping and selection
and breeding of S. oplocense derived germplasm with CPB
resistance.

Materials and Methods

S. oplocense X S. tuberosum Intercross

Pelletier et al. (2001) identified S. oplocense as a new source of
resistance to Colorado potato beetle (CPB). To incorporate this
resistance into cultivated potato, S. oplocense accession PI
473368 was crossed with three S. tuberosum breeding lines to
produce F1 hybrids. Evaluation of these hybrids under field
conditions from 1998 to 2002 demonstrated that most of the
hybrid clones were resistant to CPB (<10 % defoliation). In the
next generation, backcross hybrids (BC1) were produced by
crossing 10 elite breeding lines with five different F1 hybrid
clones (Table 1). One set of BC1 progeny were evaluated for
CPB resistance and agronomic characteristics using an acceler-
ated selection scheme. In this scheme, mini-tubers from green-
house grown seedlings were grown simultaneously at the
Potato Breeding sub-station in Benton, New Brunswick,
Canada and at the Potato Research Centre in Fredericton,
New Brunswick, Canada. A second set of BC1 hybrids were
grown in the first field season in single hill plots at Benton only.
Clones showing acceptable adaptation and tuber characteristics
were harvested and evaluated for CPB resistance (see below) at
Fredericton in subsequent field seasons. In 2005 and 2006,
superior BC1 clones with CPB resistance were crossed again
with adapted S. tuberosum germplasm to improve maturity and
other agronomic traits in the BC2 generation. Pedigrees and
other descriptive information are given in Table 1 for the
BC1and BC2 clones used in this study.

Field Defoliation Scoring for CPB Resistance

Defoliation of potato vines was used as an indicator of CPB
activity and resistance. The percentage of defoliation for 33
BC1 and BC2 clones were evaluated in the field at the Potato
Research Centre in years 2007 and 2008. In 2007 two duplicate
plots were set up in different fields and planted around 2 weeks
apart for a total of four replicate plots. In 2008 four replicate
plots were planted on the same date. Three to five seed pieces
from the same clone were planted in each of the plot and were
randomized within each plot. Approximately 10% of the plants
in each plot consisted of the variety Russet Burbank (control)
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and were evenly distributed within each plot to assess the uni-
form distribution of the Colorado potato beetle. A plastic lined
trench (Boiteau et al. 1994) was installed around each plot to
prevent adult CPB to colonize the field by walking and have a
uniform distribution within plot. The percentage of defoliation
relative to Russet Burbank was visually estimated at the end of
July, when around 90% of the larvae moved to in the ground to
pupate and before adult emergence.

The data on defoliation of potato vines in the field was used
to classify the clones as resistant and susceptible. The level of
CPB infestation varied year to year and this affected the defo-
liation scores in addition to the variation between clones.
Defoliation scores were subjected to statistical analysis by

mixed models using GenStat 17 (VSN International) to obtain
the best linear unbiased predictor (BLUP), an estimate of the
CPB resistance breeding value (Henderson 1984). The mixed
model incorporated effects of year of defoliation scoring and
clonal variation to derive the BLUP. Let Yij be the defoliation
score of jth clone scored in the ith sample. The mixed model
used for the observed defoliation data of the clones is

Yi j ¼ Xβþ Zμ þ ei j

Where a total of n=194 records from a p x 1 vector of fixed
effects β due to years (p=2) and a q x 1 vector of random
effects (q=33 clones) μ for the Bbreeding values^ for clones

Table 1 S. oplocense X S. tuberosum backcross clones

clone ID Generationa female parent male parent 2007 %
defoliationb

2008 %
defoliationc

BLUP # plantsd

13959-19 BC1 A84420-5 13213-07e 47.0 13.3 −9.8 3

13960-22 BC1 A087277-6 13213-07 61.5 24.8 1.9 3

13962-31 BC1 F88042 13213-07 69.5 34.0 10.1 4

13963-37 BC1 Gem Russet 13213-07 4.0 5.5 −22.8 3

14040-02 BC1 F58050 13597-06e 18.5 8.0 −21.9 3

14044-05 BC1 A7816-14 13597-06 21.0 10.5 −19.6 3

14052-05 BC1 A84420-5 13597-06 49.5 13.8 −9.1 4

14055-03 BC1 A087277-6 13597-01e 37.5 9.5 −15.6 3

14058-02 BC1 A087277-6 13597-11e 59.0 13.5 −6.1 6

14067-04 BC1 Gem Russet 13597-01 50.5 25.0 −1.4 3

14067-05 BC1 Gem Russet 13597-01 3.5 6.3 −27.6 3

14073-01 BC1 Innovator 13597-07e 24.5 8.8 −19.6 6

14081-02 BC1 Norvalley 13597-11 65.5 28.0 5.1 3

15313-06 BC2 A8411-8-3 13966-34 121.7 98.0 62.1 3

15313-09 BC2 A8411-8-3 13966-34 70.7 21.5 4.6 3

15313-13 BC2 A8411-8-3 13966-34 43.5 43.5 11.6 3

15314-05 BC2 A9014-2 13957-18 54.1 38.5 4.8 3

15314-08 BC2 A9014-2 13957-18 53.2 11.5 −7.7 3

15314-16 BC2 A9014-2 13957-18 59.8 41.0 8.5 3

15315-05 BC2 A9014-2 13960-22 7.7 12.0 −28.0 3

15316-05 BC2 A9014-2 13966-34 41.2 43.5 1.3 3

15316-14 BC2 A9014-2 13966-34 79.4 105.0 46.2 3

15318-07 BC2 F88042 13966-34 43.4 31.0 −3.4 3

15320-09 BC2 Norvalley 13960-22 45.0 49.0 5.5 7

15321-11 BC2 Norvalley 13960-34 68.6 17.5 1.9 3

15321-13 BC2 Norvalley 13960-34 60.1 58.5 16.5 3

15322-09 BC2 13957-18 A84118-3 165.5 162.0 110.7 3

15323-03 BC1F1 13957-18 13959-19 15.6 3.5 −28.3 6

15327-02 BC2 13963-37 A84118-3 55.6 18.0 −10.1 3

15328-08 BC2 13963-37 A9014-2 63.5 16.0 −1.1 3

15328-22 BC2 13963-37 A9014-2 27.3 28.5 −11.7 3

15328-26 BC2 13963-37 A9014-2 15.9 5.5 −3.7 3

15332-02 BC1F1 13966-06 13957-18 63.7 9.0 −4.2 3

a BC1 is backcross generation 1, BC2 is backcross generation 2, BC1F1 is the progeny of a cross between two BC1 parents
b and c The defoliation assays were carried out on field plants grown in Frederict on
d Plants grown in the greenhouse were used for metabolite analysis and the number of plants propagated is indicated
e F1 clone
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and e is random error effects. X and Z are (n x p) and (n x q)
Bdesign matrices^ with 1’s and 0’s for the years and clonal
lines, respectively. The mixed model equations are solved to
estimate the fixed effects β and random effects μ. The values
for μ represent the BLUP of breeding values of the clones.
Residual maximum likelihood (REML) was used to solve
mixed model equations (Henderson 1984; Lynch and Walsh
1998; Tai et al. 2009).

Plant Material for Metabolite Analysis

Multiple replicates per clone from the 13 BC1 and 20 BC2

clones (Table 1) were grown from seed tubers in pots in the
greenhouse with potting mix and weekly fertilizer application
of 20-20-20. A total of 114 plants were used for analysis.
Sampling of foliage was done on fully grown plants at
12 weeks after planting. The apical leaflet from 5 leaves for
each plant was pooled in 15 ml conical tubes and flash frozen
in liquid nitrogen. Samples were stored at −80 °C prior to
extraction.

Extraction

The frozen samples were ground into a fine powder using a
mortar and pestle while immersed in liquid nitrogen. 100 mg
of frozen ground tissue was placed in a 1.5 mL polyethylene
screw-cap tubes and kept frozen in a liquid nitrogen holding
station (SPEX Sampleprep, Metuchen, NJ, USA) until all
samples were ground. The ground powder was extracted with
400 μL of extraction solution (92 % methanol, 0.1 % formic
acid LC-MS grade) (Sigma-Aldrich, Oakville, ON, Canada).
The samples were briefly vortexed and placed on ice until all
samples were prepared. Samples were then sonicated in a
Branson sonicator bath for 15 min and filtered through a
0.2 μm syringe filter into an LC-MS autosampler vial.
Samples were diluted ten-fold to ensure that peak intensities
were in the linear range and to avoid detector saturation. The
samples were allowed to equilibrate at 23 °C in the dark for
1 hour prior to analysis and were maintained conditions for the
duration of the LC-MS analysis.

LC-MS

Metabolite analysis was carried out using Acuity ultra-
performance liquid chromatography- Xevo quadropole time-
of-flight mass spectrometry (Waters, Milford, MA, USA) LC-
MS system. Using a 5 μL loop, 0.75 μL injections were made
for all samples in the study. The same volume of test mixture
(rutin hydrate, caffeic acid, benzoic acid, p-coumaric acid,
quercetin, L-phenylalanine, resveratrol, ferulic acid, L-trypto-
phan, sinapic acid, naringenin, trans-cinnamic acid, and
isorhamnetin) (Sigma Aldrich, Oakville, ON, Canada) was
injected. All components of the test mixture were present at

approximately 35 μg/mL in 60:40 Acetonitrile/Water. All
chromatographic separations were carried out on a 1 mm×
100 mm BEH C18 reverse phase column. The mobile phase
was composed of LC-MS grade water with 0.1 % formic acid
(phase A) and LC-MS grade acetonitrile with 0.1 % formic
acid (phase B). The linear gradient consisted of six segments
as follows: initial segment 95 %A, 5 % B; 13:33 min 25% A,
75% B; 13:53 min 5%A, 95% B; 18:00 min 5 %A, 95% B;
18:01 min 95%A, 5 % B; and 20:00 min 95%A, 5 % B. The
flow rate was 45.0 uL/min for all segments. The autosampler
bed was maintained at 23 °C and the column at 35 °C.
Samples were injected in a randomized fashion. Backcross
clones were run separately on a fresh column. Each sample
was injected in triplicate with the exception of the test mixture
which was injected after every six samples to evaluate the
stability of retention time and mass accuracy over the duration
of the experiment. Mass spectrometry data was collected over
the duration of the LC-ramp from 0 to 800 s. Masses between
100 and 1500 were detected by electrospray ionization in pos-
itive ionization mode. A lockmass solution of dilute leucine
enkephalin (LE) in acetonitrile-water (50:50) was introduced
via the lock-spray probe at 25 μL/min as directed by the MS
manufacturer.

Metabolite Data Processing and Analysis

Electrospray ionization was used to generate positively
charged molecular ions in the mass spectrometer and the
mass-to-charge ratio (m/z) for molecules was measured in
the instrument. The molecular ion most commonly observed
was the positively charged protonated adduct [M+H]+. The
m/z of [M+H]+ was one mass one unit higher than the theo-
retical mass due to the addition of the proton. Mass spectrom-
etry data was processed using Waters Markerlynx XS soft-
ware. The LC-MS data were detected and noise-reduced in
both the LC and MS domains such that only true analytical
peaks were further processed by the software. Each peak was
referred to as a feature that was identified using the m/z of the
positive molecular ion and chromatographic retention time
from the chromatogram (e.g., for alpha-chaconine the m/z
was 852.5 and the retention time was 482 so the feature ID
was 852.5/482). No retention time correction was used as
retention time stability was sufficient for LC. Quantification
of peak intensity was done by integrating peaks with a
mean retention time in the window of 100–800 s. The
retention time window was selected based on visual
evaluation of chromatograms to exclude column void
and washout.

The MS provided accuratem/z that could be used to search
the MetLin compound mass database (https://metlin.scripps.
edu/index.php). The additional mass of the proton was taken
into account when searching MetLin. Compounds in the
database were screened for those with a mass that was close
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to them/z of the feature. The mass difference was measured in
parts per million (ppm), where

Δppm ¼ 1:0� 106 measuredmass−theoreticalmassð Þ
theoreticalmass

Measured mass was the m/z of the feature that is corrected
for the mass of the proton. Compounds in the database with
Δppm of 20 or less were selected. For some features there was
more than one compound in the database that matched and for
others there were no matches.

Feature peak intensity data was transformed prior to anal-
ysis using supervised machine learning classification algo-
rithms as follows: zeros were removed by adding 1×10−12

to all feature peak intensities and data was log10 transformed.
Varying numbers of features were used to develop classifiers
for CPB resistant (BLUP<0) and susceptible (BLUP>0)
using three machine learning algorithms - USC (Tibshirani
et al. 2002; Yeung and Bumgarner 2003), SVM (Brown
et al. 2000) and KNN (Theilhaber et al. 2002) that were part
of MeV 4.7.9 (http://www.tm4.org/mev.html). Default
conditions were used except for USC where #folds was
increased to eight. The total number of plants used for
training and validation of the classifier was 77. The classifier
was then used to predict resistance and susceptibility in a
separate set of 37 plants. The set of 77 training and 37 test
plants included at least one plant from each clone. The
predicted classification of resistant and susceptible plants
was compared to actual classifications based on BLUP and
percentage error of the prediction was calculated.

The Student’s t-test was used to analyze of differences in
peak intensities for features assigned to glycoalkaloids using
Systat 13.1 (Systat software. San Joe, USA). The null hypoth-
esis Ho: resistant=susceptible feature peak intensity was tested.

Results

S. oplocense X S. tuberosum Hybrids CPB Resistance
Evaluation

In this study, the wild species S. oplocense, which has CPB
resistance, was intercrossed with S. tuberosum. The resulting
F1 carried CPB resistance as determined in field defoliation
assays and were backcrossed to elite breeding lines. The back-
cross clones were evaluated for CPB resistance using field
defoliation assays. Infestation of potato plants in the field
was with naturally occurring CPB that was present in the
absence of chemical treatment. Defoliation of hybrid clones
in field plots was visually scored (Table 1). The defoliation
was measured as the percentage difference in defoliation com-
pared with Russet Burbank. BLUP was used to generate a
breeding value for defoliation using the 2 years of defoliation

data. Each of the hybrid lines of potato were scored in the field
for two consecutive years for % defoliation in the presence of
CPB (Table 1). Variation in infestation rates occurred between
the 2 years, but there was correlation between relative defoli-
ation of clones in the 2 years (Fig. 1). BLUP breeding values
for CPB resistance for each clone were calculated using the %
defoliation data. A BLUP<0 corresponded to relatively low
defoliation (resistant) and BLUP>0 were clones with relative-
ly high defoliation (susceptible). Classification of resistant and
susceptible for each clone for supervised machine learning
was based on BLUP breeding values.

Untargeted Metabolite Profiling

The goal of the study was to identify metabolite markers that
can be used to select potato clones with resistance to CPB for
the purpose of selection and breeding. Selection would be
targeted for parental breeding lines and advanced selections that
are propagated in the greenhouse. Additionally, CPB resistance
screening in the greenhouse has an advantage that it can be
done at any time of the year. For these reasons, greenhouse-
grown plants were used. Previous studies had indicated that
there were foliar metabolite differences between S. oplocense
and S. tuberosum. In the current study backcross clones used in
developing germplasm were analyzed to enhance the specific-
ity of the metabolite marker to the breeding material in the
program. Untargeted metabolite profiling using LC-MS ana-
lyzed multiple metabolites simultaneously that increased the
probability of finding metabolite markers. Multiple plants were
propagated for each clone. Each plant was treated as an indi-
vidual in the metabolite analysis. The total number of plants
was 114 and the number of plants used for each clone is indi-
cated in Table 1. There was a total of 651 features identified in
the metabolite data (Supplementary Material Table S1).

Supervised Machine Learning Classification Using USC

Supervised machine learning classification classifies individ-
uals into groups based on quantitative data. The method in-
volves the use of a set of quantitative data from multiple indi-
viduals with known classifications to train an algorithm. The
algorithm is cross-validated using methods that sub-sample the
training data set multiple times to see if the same classification
result is obtained. The trained, cross-validated algorithm can
then be used to classify other individuals. The data used in this
study was the peak intensity of metabolites (features) in potato
foliage and the two classes were resistant or susceptible to CPB
(based on BLUP). Feature intensity data from the foliage of 114
plants derived from the 33 clones in Table 1 was collected.
Each of the 114 plants was classified as resistant or susceptible
to CPB based on BLUP data for defoliation. Data for 77 plants
were used for training and cross-validation of algorithms. The
training and cross-validation plants consisted of 45 plants
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classified as resistant and 32 plants classified as susceptible.
The numbers of classification errors found in the cross-
validation of training samples are reported in Table 2. The
trained and cross-validated algorithm was then used to classify
a separate set of 37 plants (22 resistant and 15 susceptible) to
test the predication accuracy of the classifiers (Table 3). The
class predictions for the 37 plants were compared with actual
defoliation scoring collected for the plants.

USC has an integrated classification and feature selection
algorithm. The classification algorithm used m-fold cross-val-
idation, where data from the training plants were randomly
divided into m subsets of roughly equal size. Each of the m
subsets was left out in turn in the cross-validation, and the
other (m-1) subsets were used to train the classification algo-
rithm. The result of the training phase was a list of various
classifiers with different numbers of features and the corre-
sponding of the average number of classification errors in
cross-validation. The user then selects a desired classifier from
the list using the feature selection option. The classifier with
all 651 features was selected and was used to classify the
separate set of 37 test plants. There were seven misclassifica-
tions of susceptible and two for resistant (Table 3). The error
rate on the test plants was higher than for the cross-validation
of training plants (Tables 2 and 3).

Metabolites produced at high levels were preferable for use
as markers in the final end-user assay. Additional selection
was applied to the data to reduce the features to those with
peak intensity where log10>4 in at least one sample. Thirty-
five features fulfilled the criteria. Table 4 lists them/z of the 35
features and the results of the search for compounds in the
MetLin database with theoretical masses that were a Δppm
of 20 or less compared to the feature m/z. The molecular
formula for the compounds found in the MetLin database
was also presented. Many of the features present at high in-
tensity were glycoalkaloids including chaconine, solanine,

dehydrocommersonine and demissine. The average feature
peak intensities for plants categorized as resistant or suscepti-
ble are listed in Table 4.

USC classification was done using the 35 high intensity
features and the classifier with all 35 features was selected.
The results showed that the error rate for classification of the
37 separate test samples with the 35 high intensity feature
classifier was similar to the classifier using all 651 features
(Tables 2 and 3). The feature selection option for USC inMeV
was used to select another classifier with a smaller number of
features among the 35 high intensity ones. The second select-
ed classifier was based on five features with an average of 2.8
mistakes in the cross-validation was selected (Table 2). The
five features were 188.1/285, 475.3/314, 574.4/411, 868.5/
442, and 1046.6/464 (Table 4). The error rate for classification
of the test samples was the same at 27 %, however, there were
more plants misclassified as resistant rather than susceptible
(Table 3). These results show that classifiers with smaller
numbers of features can have similar error rates as those with
large number of features. A smaller number of features would
be advantageous in development of targeted quantitative
screening assays. The USC selection of five features included
188.1/285. The feature 188.1/285 was relatively unchanged
between resistant and susceptible plants on average compared
with other metabolites (Table 4). Feature 475.3/314 was also
among the five USC selected features and was also relatively
unchanged. It was matched with five compounds withΔppm
of 6 (Table 4). There were no m/z matches in MetLin with
574.4/411 (Table 4) which was on average higher in resistant
over susceptible plants.

Glycoalkaloids

Two features from the USC five-feature classifier, 868.5/
442, and 1046.6/464, were a match with the glykoalkaloids,
alpha-solanine and dehydrocommersonine, respectively
(Table 4). The average peak intensity of 868.5/442 was
3.650 for resistant plants and 4.005 for susceptible plants,

Fig. 1 Correlation analysis between relative defoliation scores between
years 2007 and 2008

Table 2 Cross-
validation of 77 training
plants

# Features # Errors

USC 651 2.5

USC 35 2.5

USC 5 2.8

KNN 651 13

KNN 35 16

KNN 5 17

SVM 651 19

SVM 35 16

SVM 5 21
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and for 1046.6/464 it was 5.114 and 4.400 for resistant and
susceptible plants, respectively. The glycoalkaloid peaks had
the highest intensity in the total ion chromatogram (Fig. 2).
The base peak (peak with highest intensity) for both CPB
resistant and susceptible plants was 852.5/482, which was
assigned to alpha-chaconine. Feature 852.5/482 had an av-
erage peak intensity of 6.046 and 5.962 for resistant and
susceptible plants, respectively, showing similar levels be-
tween classes (Table 4). Alpha-solanine eluted from the
UPLC column over a longer period of time compared to
alpha-chaconine as demonstrated by its assignment to four
features 868.5/494, 868.5/477, 868.5/457, and 868.5/442
with MarkerLynx (Table 4). In comparison, alpha-
chaconine was assigned to a single feature, 852.5/482. The
dehydrocommersonine feature 1046.6/464 was also assigned
to a single feature with a lower retention time compared to
alpha-chaconine and alpha-solanine. The alpha-solanine fea-
tures, 868.5/494 and 868.5/477, had retention times that
were under a broad peak that included 852.5/482 in the total
ion chromatogram (Fig. 2a and b), indicating co-elution of
alpha-solanine and alpha-chaconine. The features 868.5/442
and 868.5/457 had a retention times that did not overlap
with the alpha-chaconine 852.2/482 peak. However, it
was noted that 868.5/457 co-eluted with 1046.6/464
(Fig. 2b), indicating that 868.5/442 was the only fea-
tured assigned to alpha-solanine that did not co-elute
with another glycoalkaloid. 868.5/442 also had the
highest difference in average peak intensity between re-
sistant and susceptible plants. Interestingly, 868.5/442
was the only alpha-solanine feature that was included
in the USC five-feature classifier.

Selection for glycoalkaloids in breeding can be problematic
as high glycoalkaloid levels are toxic to humans. Therefore
additional analysis of glycoalkaloids was done as the five
feature classifier included two features that matched with
alpha-solanine and dehydrocommersonine in the MetLin da-
tabase. A t-test was done to test for differences in peak inten-
sities between resistant and susceptible plants for features that
were assigned to glycoalkaloids in Table 4. The results show
that most of the glycoalkaloids are significantly increased in
resistant plants (Table 5). An exception was the alpha-solanine
feature 868.5/442 which showed a significant decrease in re-
sistant plants. The other glycoalkaloid in the five feature clas-
sifier, dehydrocommersonine 1046.6/464, was increased in
resistant plants. These results indicate resistant plants have a
high ratio of 1046.6/464 to 868.5/442. A t-test of the ratio of
1046.4/464:868.5/442 demonstrated that the ratio was signif-
icantly different in resistant and susceptible plants (Table 5).
These results suggest that a selection strategy for CPB resis-
tance can use a high ratio of dehydrocommersonine to alpha-
solanine. In addition to 868.5/442, there were three other fea-
tures that were assigned to alpha-solanine. The ratio of the
peak intensity for 1046.6/464 to the total peak intensity
for all four alpha-solanine features was compared between
resistant and susceptible plants using the t-test and sig-
nificant differences were also found (Table 5). These
results indicate that selection for resistance can target a
change in the composition of glycoalkaloids to increase
dehydrocommersonine over alpha-solanine rather than
increases in any one glycoalkaloid. This selection strat-
egy would off-set selection of clones with high levels of
glycoalkaloids.

Table 3 Metabolite-based
classification of 37 test plants # Featuresb Classificationc Errorsd % Error

resistant susceptible resistant susceptible

Actuala 22 15

USC 651 16 21 2 8 27.0

USC 35 20 17 4 6 27.0

USC 5 28 9 9 2 27.0

KNN 651 25 12 4 1 13.5

KNN 35 23 14 1 0 2.7

KNN 5 21 16 1 1 5.4

SVM 651 12 25 1 11 32.4

SVM 35 1 36 0 21 56.8

SVM 5 20 17 4 6 27.0

a 37 plants from Table 1 were selected as test plants. The test plants included at least one plant from each clone.
The BLUP score was used to assign the actual classes shown in the first row. BLUP<0 was resistant and BLUP>
0 was resistant
b 651 features is the total number and 35 is the number with log10>4. Five is the number of features selected by
the USC classifier. This was the smallest number of features that could be used for classification
c Classification of the test plants using USC, KNN and SVM
dThe number clones classified incorrectly as resistant or susceptible
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Table 4 Features with high peak intensity (log10 peak intensity>4 in at least one sample)

Average BLUPb

−13.825 19.250

feature ID [M+H]+m/z putative compound theoretical mass Δppm formula resistantc susceptibled

188.1/285a 188.0704 Deethylatrazine 187.0625 3 C6H10ClN5 4.434 4.488

3-amino-2-naphthoic acid 187.0633 1 C11H9NO2

Indoleacrylic acid 187.0633 1 C11H9NO2

398.3/477 398.3457 Verazine 397.3344 9 C27H43NO 5.388 5.257

Solanidine 397.3345 9 C27H43NO

398.3/464 398.3464 Verazine 397.3344 11 C27H43NO 5.240 4.665

Solanidine 397.3345 11 C27H43NO

399.4/474 399.3507 tetracosanedioic acid 398.3396 9 C24H46O4 4.873 4.737

lauroyl peroxide 398.3396 9 C24H46O4

axillarenic acid 398.3396 9 C24H46O4

445.7/477 445.7483 4.789 4.748

474.3/314 474.2608 4.399 4.114

475.3/314a 475.2658 gitoxigenin diacetate 474.2618 6 C27H38O7 3.865 3.574

diterpenoid EF-D 474.2618 6 C27H38O7

lucidenic acid L 474.2618 6 C27H38O7

lucidenic acid I 474.2618 6 C27H38O7

lucidenic acid B 474.2618 6 C27H38O7

3alpha,7alpha,
12alpha-trihydroxy-
5alpha-cholan-24-yl sulfate

474.2651 13 C24H42O7S

519.8/473 519.7647 3.318 2.860

534.8/465 534.7727 5.265 4.820

535.3/465 535.2742 pyropheophorbide a 534.2631 7 C33H34N4O3 5.034 4.601

GV 150013X 534.2631 7 C33H34N4O3

pyrophaeophorbide a 534.2631 7 C33H34N4O3

7,8-dihydrovomifoliol
9-[rhamnosyl-(1->6)-glucoside]

534.2676 1 C25H42O12

3-hydroxy-beta-ionol
3-[glucosyl-(1->6)-glucoside]

534.2676 1 C25H42O12

560.4/479 560.4002 gamma-chaconine 559.3873 9 C33H53NO6 5.329 5.242

560.4/465 560.4003 gamma-chaconine 559.3873 10 C33H53NO6 5.329 5.242

561.4/465 561.4056 5.313 4.897

574.4/411a 574.3774 3.269 2.457

706.5/478 706.4612 4.849 4.729

722.5/477 722.4535 gamma2-solamarine 721.4401 8 C39H63NO11 4.375 4.221

beta-solanine 721.4401 8 C39H63NO11

852.5/482 852.5217 alpha-chaconine 851.5031 13 C45H73NO14 6.046 5.962

853.0/481 853.0197 4.651 4.527

853.5/482 853.5263 5.751 5.659

854.5/482 854.5310 5.239 5.138

866.5/420 866.4962 4.110 3.494

867.5/420 867.4996 3.806 3.196

868.5/494 868.5111 solamargine 867.4980 6 C45H73NO15 4.941 4.843

alpha-solanine 867.4980 6 C45H73NO15

beta-solamarine 867.4980 6 C45H73NO15

868.5/457 868.5127 solamargine 867.4980 8 C45H73NO15 3.713 3.619

alpha-solanine 867.4980 8 C45H73NO15
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Supervised Machine Learning Classification Using KNN
and SVM

KNN was also used to classify plants using all 651 features.
Leave-one-out cross-validation was used for training the KNN

algorithm meaning that in each round of cross-validation one
sample is left out to do the classificiation. The numbers of errors
in cross-validation of the training samples were higher than for
the USC cross-validation for the 651 features (Table 2).
However, the results from the separate set of 37 test plant using

Table 4 (continued)

Average BLUPb

−13.825 19.250

beta-solamarine 867.4980 8 C45H73NO15

868.5/442a 868.5128 solamargine 867.4980 8 C45H73NO15 3.650 4.005

alpha-solanine 867.4980 8 C45H73NO15

beta-solamarine 867.4980 8 C45H73NO15

868.5/477 868.5172 solamargine 867.4980 13 C45H73NO15 5.614 5.487

alpha-solanine 867.4980 13 C45H73NO15

beta-solamarine 867.4980 13 C45H73NO15

869.5/494 869.5162 koryoginsenoside R1 868.5184 10 C46H76O15 4.569 4.467

869.5/477 869.5213 koryoginsenoside R1 868.5184 10 C46H76O15 5.316 5.189

870.5/476 870.5258 4.770 4.640

1016.6/471 1016.5588 delta5-demissine 1015.5352 16 C50H81NO20 3.072 2.539

1017.6/470 1017.5630 2.662 2.098

1018.6/469 1018.5694 demissine 1017.5508 11 C50H83NO20 2.195 1.672

1046.6/464a 1046.5711 dehydrocommersonine 1045.5458 17 C51H83NO21 5.114 4.400

1047.6/465 1047.5730 4.912 4.368

1048.6/464 1048.5792 4.465 3.956

a Selected by the USC algorithm for five-feature classifier
b There were 66 plants in the study that were classified as resistant (BLUP<0) and 48 classified as susceptible (BLUP >0). The average BLUP was
calculated for resistant and susceptible plants
c The average log10 peak intensity for the feature over the 66 resistant plants
d The average log10 peak intensity for the feature over the 48 susceptible plants

Fig. 2 Total ion chromatograms
for two plants a) 15322-09-1-
0041 (base peak intensity
577566) with susceptbility to
CPB and b) 15232-03-2-0014
(base peak intensity 1176298)
with resistance to CPB. The base
peak feature is 852.2/482 (alpha-
chaconine) for both a) and b).
100 % peak intensity for each was
set at the intensity of the base
peak intensity
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KNN for classification showed low error rates compared with
the other two algorithms (Table 3). The 35 high peak intensity
features were also used for classification using KNN.When the
37 test plants were classified using the 35-feature KNN classi-
fier, only a single error in classification was found resulting in
an error rate of 2.7 % (Table 3). The five-feature classifier
selected by the USC algorithm was also used for classification
using KNN. There was also a low rate of classification error for
the 37 test plants of 5.4 % (Table 3). The error rate in the cross-
validation of training plants was higher than the classification
error round in the separate set of 37 test plants for KNN.
Moreover, the error rate with KNN classificationwas the lowest
among the three algorithms tested.

Classification using SVM with 651 features with leave-
one-out cross-validation was done. Error rates were the
highest for SVM (Tables 2 and 3). The 37 test plants were
classified using SVM and there was a 32.4 % error rate with
11 misclassification of susceptible and 1 of resistant (Table 3).

Classification using the 35 high peak intensity features was
also done. Cross-validation error of the training plants was
similar to KNN, but the classification of the 37 test plants
had the highest error rate of 56.8 % with 21 plants
misclassified as susceptible (Table 3). The five-feature classi-
fier selected by the USC algorithm was also used for SVM
classification. There were high error rates for cross-validation
of the 77 training plants with 21 mistakes in assignments
(Table 2). The 37 test plants were classified using the five-
feature SVM classifier and it had an error of 27 % (Table 3).

Discussion

The goal this work was two-fold: first, to develop new germ-
plasm resources for CPB resistance and second, to develop a
more cost effective way to phenotype CPB resistance. Wild
Solanum species are a resource for many different resistance

Table 5 T-test of differences in glycoalkaloid between CPB resistant and susceptible plants

Feature ID glycoalkaloid CPB resistance Avg peak intensitya t-statisticb p-valuec

560.4/479 gamma-chaconine resistant 5.329 1.835 0.070
susceptible 5.242

560.4/465 gamma-chaconine resistant 5.339 3.976 0.000**
susceptible 5.140

722.5/477 beta-solanine resistant 4.381 2.510 0.014*
susceptible 4.227

852.5/482 alpha-chaconine resistant 6.046 2.092 0.039*
susceptible 5.962

868.5/494 alpha-solanine resistant 4.941 1.986 0.050*
susceptible 4.843

868.5/457 alpha-solanine resistant 3.713 0.877 0.382
susceptible 3.619

868.5/442 alpha-solanine resistant 3.650 −2.624 0.010**
susceptible 4.005

868.5/477 alpha-solanine resistant 5.614 2.182 0.031*
susceptible 5.487

1016.6/471 delta5-demissine resistant 3.072 3.149 0.002**
susceptible 2.539

1018.6/469 demissine resistant 2.195 2.940 0.004**
susceptible 1.672

1046.6/464 dehydrocommersonine resistant 5.114 3.927 0.000**
susceptible 4.400

1046.6/464:868.5/442d resistant 65.118 4.392 4.392 0.000**
susceptible 22.301

1046.6/464:total alpha-solaninee resistant 0.307 4.318 4.318 0.000**
susceptible 0.161

a The average log10 peak intensity for the feature over the 66 resistant and 48 susceptible plants. In the lower part of the table the average of the ratio of the
peak intensities is listed
b The null hypothesis tested Ho: resistant=susceptible feature peak intensities. The degrees of freedom was 112
c Significance at p≤0.05 was indicated by * and p≤0.01 by **
d The ratio of the two features was calculated for resistant and susceptible plants and tested for significant differences
e The feature peak intensities for all the features assigned to alpha-solanine were added. The ratio of the peak intensity for 1046.6/464 over the total of the
alpha-solanine peak intensities was calculated for resistant and susceptible plants and tested for significant differences
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traits for potato including CPB resistance. In this study, the
wild species S. oplocense was intercrossed with S. tuberosum.
F1 generated were evaluated in field defoliation assays and
were found to carry CPB resistance and further backcross
clones also carried resistance. A challenge in potato breeding
is phenotyping the CPB resistance trait. Quantifying insect
feeding through scoring for defoliation in the field as a result
of natural infestation is typically used. Alternatively, laborato-
ry feeding assays can be done. Both methods are time con-
suming and laborious. In this study we investigate the feasi-
bility of using metabolite markers to provide a prediction for
CPB resistance. Several lines of evidence indicate that CPB
resistance is dependent on foliar metabolite composition
(Pelletier and King 1987; Rangarajan et al. 2000; Tai et al.
2014; Tingey 1984; Yencho and Tingey 1994). Discovery of
metabolites conferring CPB resistance would enable selection
of resistance using metabolite markers. Approaches to finding
metabolite markers have included application of untargeted
metabolomics (Fernie and Schauer 2009; Zabotina 2013).
The advantage of the untargeted metabolomics approach is
the large number of metabolites that can be screened at the
same time. Strategies to find diagnostic metabolite markers
include application of supervised machine learning methods.
These techniques discover and identify patterns and relation-
ships between hundreds of metabolites in a dataset from indi-
viduals that are classified into distinct groups (Kourou et al.
2015). The outcome is a prediction of the group an unknown
individual belongs to using metabolite markers. These
methods involve using a set a training data where each indi-
vidual has a set of untargeted metabolite profiling data and a
classification. Supervised machine learning classification al-
gorithms were used successfully with untargeted metabolo-
mics to develop classifiers of organic and conventional pro-
duction for wheat (Kessler et al. 2015). In this study we ap-
plied supervised machine learning methods to classify
S. oplocense-containing germplasm as resistant or susceptible
to CPB based on foliar metabolites. The method developed
used field defoliation by CPB as the criteria for classification
as resistant or susceptible. However, foliage from greenhouse-
grown plants as opposed to plants grown in the field were used
for analysis, since environmental variability in glycoalkaloid
production in field-grown plants was previously reported
(Valcarcel et al. 2014). Additionally, there were practical ad-
vantages to screening plants propagated indoors for the breed-
ing program. Plants grown indoors could be screened at any
time during the year and germplasm propagated using in vitro
tissue culture could be transferred to pots for indoor growth
directly, whereas field growth required tuber production.

Three supervised machine learning classification methods
were compared –USC, KNN and SVM. All three were able to
classify plants as CPB resistant or susceptible, but with vary-
ing error. Overall, the KNN algorithm performed better than
USC and SVM in that order. Another finding was that a

smaller subset of metabolites can be as effective as or better
than the entire LC-MSmetabolite profile in classification. The
five-feature classifier selected by the USC algorithm had error
rates that were similar to or lower than a classifier based on the
entire metabolite profile. The design of targeted assays for
screening large numbers of clones is feasible with a small
number of metabolites so it is desirable to identify metabolite
profiles with few metabolites.

The five-feature classifier contained two glycoalkaloids pre-
viously associated with CPB resistance and susceptibility,
dehydrocommersonine and alpha-solanine, respectively (Tai
et al. 2014). This result was supportive of the biological rele-
vance of the five-feature classifier. The other features include
188.1/285 which could be matched to deethylatrazine, 3-
amino-2-napthoic acid or indoleacrylic acid. However,
deethylatrazine is an environmental degradation product of
the synthetic herbicide atrazine (Shipitalo and Owens 2003)
and 3-amino-2-napthoic acid is also a synthetic compound
(Allen and Bell 1942) indicating that they were not likely pro-
duced as a natural metabolite in foliage. Indoleacrylic acid, on
the other hand, is a known plant growth regulator that functions
similarly to auxin (Marklová 1999) and 188.1/285 was
assigned to this compound. Another of the five features was
475.3/314 which could be matched with gitoxigenin diacetate,
a synthetic acetate of a naturally occurring cardenolide
(Hashimoto et al. 1986); diterpenoid EF-D, a plant isoterpenoid
(Baxter et al. 1999) or three lucidenic acids, derived from the
mushroom, Ganoderma lucidum, (Weng et al. 2007). The
fungal-derived lucidenic acids were less likely to bemetabolites
of Solanum foliage and gitoxigenin diacetate was a synthetic
product, indicating that diterpenoid EF-D, also known as 12-
deoxy-phorbol-13-alpha-methylbutyrate-20-acetate, was the
most likely identity of 475.3/314. Diterpenoids have been
found by others to be effective anti-feedants against CPB
(Bozov et al. 2014), which provides support for the assignment
of diterpenoid EF-D to 475.3/314. There was little change in
the average levels of 188.1/285 and 475.3/314 between resis-
tant and susceptible plants. However, removal of these features
from the classifier increased the error rates of prediction (data
not shown). There were nom/zmatches with 574.4/411, which
was higher is resistant compared to susceptible plants.

The toxicity of glycoalkaloids to humans are a concern,
therefore, selection to avoid high levels of glycoalkaloids is
desirable. The five feature classifier included two features that
were a match with glycoalkaloids dehydrocommersonine
(1046.6/464) and alpha-solanine (868.5/442). However, the
selection strategy for resistance will be for a change in the
composition of glycoalkaloids to a higher ratio of 1046.6/
464:868.5/442. This selection strategywill be compatible with
selection of low overall levels of glycoalkaloids.

The study has demonstrated that the S. oplocense germ-
plasm generated has CPB resistance. Additionally, five me-
tabolites were found that can serve as markers for selection of
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CPB resistance, which has advanced development of lower
cost screening tools for CPB resistance in S. oplocense-carry-
ing potato germplasm.
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