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Abstract In this study, an adaptive neuro-fuzzy inference
system (ANFIS) was developed to predict potato production
in Iran. Data related to potato yield from 2010 to 2011 was
collected from 50 potato producers in Hamedan, Iran. The
resulting ANFIS network has an input layer with eight neu-
rons and an output layer with a single neuron (potato yield).
The energy inputs were manual labor, diesel, chemical fertil-
izers, and manure from farm animals, chemicals, machinery,
water, and seed. The most significant and influential inputs
were selected from the eight initial inputs and the ANFIS
network was used to choose the parameters that have the most
influence on potato yield. A new ANFIS model was created
after the three most influential parameters were selected. The
new ANFIS model was then utilized to estimate yield using
the three energy inputs. Next, the ANFIS model results were
compared with the results from the support vector regression
(SVR) technique. The end results revealed that ANFIS pro-
vided more accurate predictions and had the capacity to gen-
eralize. The Pearson correlation coefficient (r) for ANFIS

potato yield prediction was 0.9999 in the training and testing
phases, while the SVR model had a correlation coefficient of
0.8484 in training and 0.9984 in testing.

Resumen En este estudio se desarrolló un sistema de
inferencia adaptativa de lógica difusa (ANFIS) para
predecir la producción de papa en Irán. Se colectaron datos
relacionados con el rendimiento de papa de 2010 a 2011 de
50 productores en Hamedan, Irán. La red ANFIS resultante
tiene una capa de insumos con ocho neuronas y una capa de
salidas con una única neurona (rendimiento de papa). Los
insumos de energía fueron mano de obra, diésel,
fertilizantes químicos y estiércol de animales de granja,
químicos, maquinaria, agua y semilla. Se seleccionaron
los insumos más significativos y de influencia de los ocho
insumos iniciales, y se usó la red ANFIS para escoger los
parámetros que tienen la mayor influencia en el
rendimiento de papa. Se creó un nuevo modelo ANFIS
después que se seleccionaron los tres parámetros de mayor
influencia. Entonces se utilizó el nuevo modelo ANFIS
para estimar rendimiento usando los tres insumos de
energía. Después, los resultados del modelo ANFIS se
compararon con los resultados de la técnica de regresión
de vector de respaldo (SVR). Los resultados finales
revelaron que ANFIS suministró predicciones más precisas
y tuvo la capacidad de generalizar. El coeficiente de
correlación de Pearson (r) para la predicción del
rendimiento de papa por ANFIS fue 0.9999 en las fases
de formación y de prueba, e el modelo SVR tuvo un
coeficiente de correlación de 0.8484 en formación y
0.9984 en prueba.
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Introduction

The potato (Solanum tuberosum L.) is an important source of
several nutrients including vitamins, such as Vitamin C and
B6, andminerals, such as iron and potassium. It is a significant
crop in Iran, grown in almost every province. The provinces
that produce the largest potato crops are Hamedan, Tabriz and
Mashad. In Iran, potatoes were grown on approximately 185,
000 hectares in 2012 (Anonymous 2012).

In any form of agriculture, energy plays a fundamental role.
All phases of agriculture, from tillage to transporting the harvest
to the market, require energy (Rykaczewska 2015; Larkin and
Halloran 2010). The types of energy consumption in agriculture
can be defined as direct or indirect. Direct energy consumption
occurs when energy is used to operate machinery, control the
temperature in farm buildings, and provide artificial light.
Examples of indirect energy consumption include the energy
used to fabricate fertilizers, pesticides, herbicides, and farm ma-
chinery, and to produce seeds (Ozkan et al. 2004). Population
growth, the decreasing availability of arable land, and the rising
standard of living have all increased the demand for energy by
agriculture (Esengun et al. 2007). Discovering the relationship
between energy inputs and output affords the data required to
create policies that would optimize resources, encourage renew-
able energy use, and expand sustainable farming (Brown et al.
2014). The relationship between energy input and output in the
production of several crops including cucumbers (Bolandnazar
et al. 2014), basil (Pahlavan et al. 2012), chickpeas (Salami and
Ahmadi 2010), grapes (Rajabi-Hamedani et al. 2011), canola
(Taherri-Garavand et al. 2010), barley (Mobtaker et al. 2010),
and garlic (Samavatean et al. 2011) has been investigated in
several studies. Energy input and output prediction benefits
farmers, governments, and related agricultural industries.

Food production is extremely important to governments
due to the role it plays in national security. Internal prognos-
ticators allow governments to create polices that can benefit
agriculture in terms of technical and market assistance
(Geoffrey 1994). Adaptive neuro-fuzzy inference systems
(ANFIS) are often used by researchers. For example,
Akbarzadeh et al. (2009) used ANFIS to develop a soil ero-
sion model. Krueger et al. (2011) also used ANFIS to model
root distribution patterns, while Khoshnevisan et al. (2014)
assessed the ability of ANFIS models to predict wheat yield
based on energy inputs. There is a need for a system that can
help analyze energy input and output in predicting potato
production.

In this study, ANFIS is used to examine energy input and
output for predicting potato yield. The inputs of human labor,
diesel, fertilizers (manmade and manure from farm animals),
chemical additives, machinery, water and seeds are analyzed
separately. There are currently no studies in which the relation-
ship between energy input, output and potato yield is modeled
with support vector regression (SVR). Thus, one of the primary

goals of this study is to determine whether ANFIS or SVR is
more effective for predicting yield based on energy inputs.

Initially, an ANFIS network was used to find the parameter
with the strongest influence on yield. This process is known as
“variable selection” and serves to find subsets of the full set of
variables that are potentially good predictors (Castellano and
Fanelli 2000; Dieterle et al. 2003; Cibas et al. 1996;
Andersson et al. 2000). One variable selection method is to
use previous knowledge to eliminate variables that are not
relevant. Another, more advanced technique is to view vari-
able selection as an optimization procedure where genetic al-
gorithms can be exploited (Sofge 2002). In these cases, the
goal is to select input variables that can reduce the error be-
tween the predicted output variables. ANFIS, among the most
powerful neural network systems (Gocić et al. 2015a; Kwong
et al. 2009), is employed for variable selection in this study.

ANFIS was used to monitor the variables and identify the
significant energy inputs with respect to potato production. The
three most significant variables were selected and applied to
develop an ANFIS model. ANFIS is a robust tool favored by
researchers for modeling (Al-Ghandoor and Samhouri 2009;
Petković et al. 2012a, b; Petković and Ćojbašić 2012), making
predictions (Hosoz et al. 2011; Gocić et al. 2015b; Sivakumar
and Balu 2010) and control in engineering systems (Kurnaz et al.
2010; Ravi et al. 2011; Khoshnevisan et al. 2015; Petković et al.
2012a, b; Tian and Collins 2005). ANFIS facilitates a fuzzy
modeling procedure to gather data (Aldair and Wang 2011) and
it can also be used to organize fuzzy inference systems using
input/output data pairs. The next step in our study was to com-
pare ANFIS and SVR results (Sivapragasam et al. 2001). SVR
algorithms work well for regression problems but do not account
for error approximation in the data or the generalized model.
These algorithms rely on a structural risk minimization principle
and statistical learning theory (Yang et al. 2009; Zhang et al.
2013). Three kernel functions were used in this work in addition
to the SVR scheme. The radial basis (SVR_rbf), polynomial
(SVR_poly), and linear (SVR_linear) functions were used to
develop a function that can estimate potato production.

Materials and Methods

Data Collection

Fifty potato producers from the province of Hamedan partic-
ipated in this study. Hamedan is located at 36° 40′ latitude and
48° 31′ longitude. It receives average rainfall of 317.7 mm and
has mean average temperature of 11.3 °C.

The 50 farmers were randomly selected to take part in a
face-to-face questionnaire, in which questions related to pota-
to cultivation from 2010 to 2011 were asked. Sample size was
determined with the Neyman technique (Zangeneh et al.
2011). The farmers were asked about their practices in terms
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of manual labor, diesel, fertilizers, chemicals, water, machin-
ery, and manure from farm animals (energy inputs) to produce
a potato crop (energy output). The energy input was quantified
per hectare, and this value was multiplied by the coefficient of
the energy equivalent. The energy equivalent for both the
inputs and output was changed into energy per unit area
(Table 1). For example, the energy equivalent for machinery
was found using the following equation:

ME ¼ E
G

T

where ME indicates energy used by machines (MJh−1), E de-
notes the equivalent energy used in the machinery production
(MJkg−1), G is the machine weight in kg, and T signifies the
economic life of the machine (h). In this study, the energy
input was 92225.11 MJha−1 and the output was
103009.2 MJha−1 . Renewable energy comprised
34561.59 MJha−1 compared to 57663.52 MJha−1 of non-
renewable energy. Table 2 summarizes the energy inputs.

Neuro-Fuzzy Computing

Soft computing is an innovative approach to constructing com-
putationally intelligent systems that possess humanlike expertise
within a specific domain. These systems are supposed to adapt in
changing environments, learn to do better and explain their
decision-making process. It is usually more beneficial to employ
several computing methods in a synergistic way rather than
building a system based exclusively on one technique. This is
useful in confronting real-world computing problems. The result
of such synergistic use of computing techniques is the

development of complementary hybrid intelligent systems. The
epitome of designing and constructing intelligent systems of this
kind is neuro-fuzzy computing: first, neural networks recognize
patterns and adapt to cope with evolving environments; second,
fuzzy inference systems include human knowledge to implement
decision-making and differentiation. Combining and integrating
these two complementary methodologies produces a novel dis-
cipline called neuro-fuzzy computing.

Adaptive Neuro-Fuzzy Inference Systems

ANFIS (adaptive neuro-fuzzy inference systems) is a class of
adaptive networks functionally equivalent to fuzzy inference
systems. In this study, the fuzzy inference system utilized has
three inputs, x, y and z, and one output, f. The first-order
Sugeno fuzzy model with two fuzzy if-then rules was applied
as follows:

Rule 1 : if x is A and y is C and z is E then f 1 ¼ p1xþ q1yþ r1zþ s

Rule 2 : if x is B and y is D and z is E then f 2 ¼ p2xþ q2yþ r2zþ s

ð1Þ

The ANFIS architecture for three inputs (x, y and z) is
shown in Fig. 1. Nodes in the same layer have similar func-
tions. The output of the ith node in layer l is denoted as Ol,i.

The first layer consists of input variable membership func-
tions (MFs) and it supplies the input values to the next layer.
Every node i is an adaptive node with a node function.

Ol;i ¼ μAi xð Þ;
Ol;i ¼ μCi−2 yð Þ;
Ol;i ¼ μEi−4 zð Þ;

f or i−1; 2; or
f or i−3; 4; or
f or i ¼ 5; 6

ð2Þ

Table 1 Energy equivalent of
inputs and output in agricultural
production

Inputs and output Unit Energy equivalent
(MJh−1)

References

Inputs

1. Human labor h 1.96

2. Machinery h 13.06 Ozkan et al. 2004

3. Diesel fuel L 47.8

4. Chemical fertilizers kg

Nitrogen 78.1

Phosphorus 17.4

Potassium 13.7

5. Farmyard manure ton 303.1

6. Chamicals kg

Insecticides 120

Herbicides 120

7. Water m3 1.02

8. Seed (potato) kg 3.6 Esengun et al. 2007

Outputs

Potato kg 3.6 Esengun K, et al., 2007
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where x or y or z is the input to node i and Ai or Bi-2 or Ei-4 is an
associated linguistic label (such as ‘small’ or ‘large’). In other
words,Ol,i is the membership grade of a fuzzy set A,C and E=
A1,A2,C1,C2,E1,E2, which stipulates the extent to which the
specified input x or y or z satisfies the quantifier A, C or E. In
this instance, the membership function can be any suitable
parameterized membership function. Membership functions
are represented by μAi(x),μCi−2(y),μEi−4(z). The generalized
bell function is used here, as it is best able to generalize non-
linear parameters:

μAi xð Þ ¼ 1

1þ x−Ci
ai

� �2bt ð3Þ

where {ai, bi, ci} is the variable set. The bell-shaped function
varies accordingly as the values of the variables change, there-
fore manifesting different types of membership functions for
fuzzy set A. Variables in the first layer are called premise
variables.

The second layer (membership layer) multiplies incoming
signals from the first layer and sends the product out. Each
node in the 2nd layer is a fixed node and its output is the
resultant of all incoming signals:

O2;i ¼ wi ¼ μAi xð ÞμCi−2 yð ÞμEi−4 zð Þ; i ¼ 1; 2 ð4Þ

The third layer (i.e., rule layer) is non-adaptive, where
every node i calculates the ratio of the rule’s firing
strength to the sum of all rules’ firing strengths as:

O3;i ¼ w*
i ¼

wi

w1 þ w2
; i ¼ 1; 2: ð5Þ

The outputs of this layer are called normalized firing
strenghts or normalized weights.

The fourth layer (i.e., defuzzification layer) provides the
output values resulting from the inference of rules, where ev-
ery node i is an adaptive node with the node function:

O4;i ¼ w*
i ⋅ f i ¼ w*

i pixþ qiyþ rið Þ ð6Þ

where {pi, qi, ri,} are the consequent parameters.
The fifth layer sums up all inputs from the fourth layer and

converts the fuzzy classification results into a crisp output.
The node in the fifth layer is not adaptive and computes the
overall output of all incoming signals:

O5;i ¼
X

i

w*
i ⋅ f i ¼

X
i

wi⋅ f iX
i

wi

ð7Þ

The parameters in the ANFIS architecture were identified
by applying the hybrid learning algorithm. In the forward pass
of this algorithm, functional signals go forward until Layer 4.
Consequent parameters are identified by the least squares es-
timate. In the backward pass, the error rates propagate back-
wards and premise parameters are updated by gradient
descent.

Supervised Vector Machines (SVM)

An SVM is a learning technique from the linear classifier
family. The formula includes structural risk minimization
(SRM) logic, which is very different from the empirical risk
minimization (ERM) method used in statistical learning tech-
niques. For instance, SRM eases the maximum bound on a
generalization error but ERM creates the lowest error in the
training data. SVMs are more likely to be generalized and

Table 2 The input energy values and their percentage of the total
energy input

Input (unit) Total energy
equivalent (MJha−1)

Percentage
(%)

1. Human labor (h) 571.91 62

2. Chemical fertilizer(kg)

a. Nitrigen 32881.46 35.65

b. Phosphorus 2451.71 2.65

c. Potassium 392.25 0.42

3. Farmyard manure (ton) 6612 7.16

4. Chemicals (kg)

a. Insecticide 264.6 0.28

b. Herbicide 102.3 0.11

5. Machinery (h) 2256.57 2.44

6. Water for irrigation (m3) 13550.07 14.69

7. Diesel fuel (L) 19314.63 20.94

8. Seed (potato) 13827.61 14.99

Total energy input (MJha−1) 92225.11 100

Total output energy (MJha−1) 103009.2

Renewable energy(MJha−1) 34561.59 37.47

Non-renewable energy(MJha−1) 57663.52 62.52

Fig. 1 ANFIS Structure
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their global optimum is assured (Chen et al. 2010; Yang et al.
2014; Raghavendra and Deka 2014).

A Radial Basis Function as a Kernel

SVM uses kernel functions to chart data to a higher dimen-
sional feature space – a characteristic that accounts for the
SVM flexibility (Wang et al. 2010; Ayat et al. 2005). In higher
dimensional feature spaces, linear solutions are comparable to
non-linear solutions in the initial, lower dimensional input
space. This attribute makes SVM an appropriate choice for
examining issues related to hydrology that are non-linear in
nature. A few methods use non-linear kernels for working
with regression problems while using SVMs. The radial basis
function (RBF) is a compressed supported kernel, appropriate
for restricting the computation training process, thus allowing
SVM to be compared with other probable kernel features. In
this study, RBF with a σ parameter was used.

Support Vector Regression (SVR)

SVR was designed to discover which function has the highest
number of ε deviations from the actual destination vector for
flat training data (Yousefi et al. 2015; Ju and Hong 2013).
Non-linear support vector regression is discovered by the ker-
nel function. SVR requires the user to define the kernel-
specific parameters. SVR also requires for the size error in ε
and the best values of the legalization argument C to be
established. SVR has the advantage of an algorithm that in-
corporates the outcome of the quadratic programming func-
tion, resulting in unique, superior, and complete solutions.

y ¼ wTφ xð Þ þ b ð8Þ
where w represents the weight vector and b signifies the
bias. A non-linear mapping function is ϕ (.) The map-
ping function takes the original input data and places it
in a high-dimensional space that moves non-linear sepa-
rable problems into linearly separable space. The non-
linear function that maps data to a higher dimensional
feature space is ϕ (.) = ℜp → ℜh. Equations 9 and 10
describe the optimization problem and equality con-
straints:

min j w; eð Þ ¼ 1

2
wTwþ γ

1

2

XN
i¼1

e2i ð9Þ

subject to

yi ¼ wTϕ xið Þ þ bþ ei; i ¼ 1;…;N ð10Þ

L w; b; e;αð Þ ¼ J w; eð Þ−
XN
i¼1

αi wTϕ xið Þ þ bþ ei−yi
� � ð11Þ

The answer to Eq. 9 can be obtained by making partial
differentiation considering w, b, e; α, as demonstrated below:

∂L
∂w

¼ 0→w ¼
XN
i¼1

αiϕ xið Þ ð12Þ

∂L
∂b

¼ 0→b ¼
XN
i¼1

αi ¼ 0 ð13Þ

∂L
∂ei

¼ 0→αi ¼ y ei; i ¼ 1;…;N ð14Þ

∂L
∂xi

¼ 0→wTϕ xið Þ þ ei−yi ¼ 0; i ¼ 1;…;N ð15Þ

Fig. 2 Every input parameter’s influence on production yield

Table 3 ANFIS regression errors for the potato production prediction

Training error Checking error

Input 6 3672.5187 5807.7052

Input4/Input6 1758.0953 6651.6758

Input3/Inpu5/Input6 2.7419 148672.4173

430 Am. J. Potato Res. (2015) 92:426–434

In these equations, et represents the random error and yϵℜ+

signifies the regularization parameter for optimizing the com-
promise between minimizing training errors and the model’s
complexity. The purpose of seeking optimal parameters is to
decrease the regression model’s prediction errors. The optimal
model was selected by decreasing the cost function where et is
minimized. This formula relates to the regression high-
dimensional feature space. The possibly infinite nature of this
space means there is no easy solution to this problem. To
address this issue, the Lagrange function is expressed as fol-
lows:

The training data is expressed as {xi,yi}i = 1
N , where

xiϵℜ
p identifies the ρ-dimensional input vector and yiϵℜ

denotes a scalar measured output that indicates the sys-
tem’s output. The purpose here is to establish a function
that indicates the degree of dependency of yi on the input
xi. This function can be stated as y= f (x) and the linear
function y can be described as:



The assumed values for b and αi (b
a, αi

a) can be found by
answering the linear system. The resulting model is described
as:

y ¼ f xð Þ ¼
XN
i¼1

αa
i K x; xið Þ þ ba ð16Þ

where K(x, xi) defines the kernel function. In this study, the
non-linear RBF kernel is written as:

K x; xið Þ ¼ exp −
1

σ2
x−xik k2

� �
ð17Þ

In Eq. 16, σ indicates the kernel function parameter of the
RBF kernel.

The regularization parameter is important to the model and
it establishes a compromise between minimizing the fitting
error and the smoothness of the estimated function. While
running the calibration model, the kernel function value de-
creased. Using SVR was proposed in this work to create a
model for predicting potato production. To develop the pro-
posed SVR model, care was taken to establish the SVR pa-
rameters. Rather than decreasing observable training errors,
SVR minimizes generalization errors, which is bound to im-
prove the generalized performance.

Results and Discussion

Energy Use Patterns

The energy use patterns and final potato yield amounts are
summarized in Table 2. The average values for manual labor,
diesel, chemical fertilizers and manure from farm animals,
chemicals and water were 571.91, 19314.63, 35725.38,
6612, 366.92 and 13550.06 MJha−1, respectively. The energy
use pattern shows that nitrogen fertilizer (35.62 %), diesel

(20.94 %) and water (14.69 %) comprised most of the energy
for potato production in this area. The high fertilizer use is
attributed to the mistaken belief held by many farmers that
crop yield will increase in proportion to the amount of fertil-
izer used. Additionally, the high diesel and water consumption
can be attributed to using the wrong type or inefficient ma-
chinery relative to farm size.

The total energy input needed for potato production in this
study reached 92225.11 MJha−1 and the output was
103009.2 MJha−1. The energy input applied in the current
study can be classified as either renewable or non-renewable.
The non-renewable energy inputs include diesel, chemicals,
chemical fertilizers, and machinery, which account for
62.52 % of the total energy input. The renewable energy input
accounted for only 37.48 % of the total energy input. These
results are in agreement with the outcome of previous, similar
studies. For example, Khoshnevisan et al. (2014) found that
85 % of the energy consumed in wheat production is from
non-renewable resources. Additionally, Samavatean et al.
(2011) discovered that 63.26 % of the energy input for garlic
production was from non-renewable resources.

In this study, the available inputs were scrutinized to deter-
mine the optimal combination of energy inputs with the most
influence on output. To accomplish this, ANFIS was employed
with functions to build a model for each combination of input
functions with a training period of one epoch, after which the
performance results were reported (Fig. 2). Input 6 (Machinery)
had the most influence on potato yield. Figure 2 also shows that
the least error was the most relevant with respect to output.

The graph and results in Fig. 2 indicate that input variable 6
is the most influential parameter on predicting potato
production.

Similar training and checking error indicate there was
no over-fitting, meaning that the ANFIS model can be
built using more than one input parameter. To verify this
claim, a search was performed to look for the optimal
combinations of 2 and 3 input parameters as shown in

Fig. 3 ANFIS selection and
detection of potato production
yield
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Table 3. According to Table 3, input combinations 4 & 6
and 3, 5 & 6 were the optimal combinations for potato
production. Simple models with simple structures are al-
ways preferable, thus avoiding using more than two in-
puts in the model. Chemicals, manual labor, and machin-
ery served as input parameters for the original training
and checking datasets.

An ANFIS model was developed for potato yield predic-
tion after choosing the three most optimal parameters. The
scheme used by the algorithm for selection and estimation is
shown in Fig. 3. The ANFIS selection and estimation are also
illustrated in Fig. 3.

The ANFIS decision surfaces for estimating production
with the three optimal parameters are represented in Fig. 4.

Finally, a SIMULINK block diagram was generated to il-
lustrate the ANFIS estimation of potato yield (Fig. 5).

Model Performance Evaluation

In this study, ANFIS and SVRmodels were compared. Linear,
polynomial, and radial basis kernel functions were used with
the SVR model. To compare the ANFIS, SVR_rbf,
SVR_poly, and SVR_linear models, the statistical indicators
shown below were employed:

1) root-mean-square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Pi−Oið Þ2

n

vuuuut
; ð18Þ

2) Pearson correlation coefficient (r)

r ¼
n
Xn
i¼1

Oi⋅Pi

 !
−
Xn

i¼1

Oi

 !
⋅
Xn
i¼1

Pi

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn

i¼1

O2
i −

Xn
i¼1

Oi

 !2
0
@

1
A⋅ n

Xn
i¼1

P2i
Xn
i¼1

Pi

 !2
0
@

1
A

vuuut
ð19Þ

where Pi represents the experimental function andOi signifies
the forecast values. The amount of test data is denoted by n.

Fig. 4 ANFIS decision surfaces for potato production yield estimation:
input1: Chemicals, input2: Human labor and input3: Machinery

Fig. 5 SIMULINK block diagram for ANFIS prediction of potato yield

Table 4 User-defined parameters for SVR

Drought estimation

SVR_rbf SVR_poly SVR_linear

C t e C t e γ d C t e

1000 0.001 0.01 1000 0.001 0.01 2 1.1 1000 0.001 0.01
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The SVR kernel functions used to predict potato produc-
tion are RBF, a polynomial function and a linear function. The
parameters associated with these kernels are C, e, γ, d and t.
The accuracy of the SVM model relies on model parameter
selection. The user-defined parameters (C, e, γ, d and t) were
selected after several trials using different combinations of
polynomial kernels (C and d) and radial basis function kernels
(C and t). The optimal user-defined parameter values are sum-
marized in Table 4.

Performance Analysis

The expected and actual values for each SVR kernel func-
tion and ANFIS were compared using root-mean squared er-
ror (RMSE) and the Pearson correlation coefficient. The per-
formance indices for different techniques used to estimate
potato production are shown in Table 5. According to this
table, ANFIS is the most effective in estimating potato yield.

Conclusion

This study revealed that an ANFIS network can be used to
model the energy inputs used for potato production in Iran.
The Pearson correlation coefficient (r) for ANFIS-predicted
potato yield was 0.9999 in the training and testing phases.
The SVR model had a correlation coefficient of 0.8484 in
training and 0.9984 in testing. The conclusions drawn from
the results can be summarized as follows.

& An analysis of the effect of input parameters on the output
revealed that manual labor, chemicals, and machinery
have the greatest impact on output.

& The results indicate that ANFIS is a valuable tool for
predicting potato production using certain input energies.

& The RMSE and Pearson correlation coefficient indicated
that the ANFIS predictions were more accurate than the
SVR predictions.

& A sensitivity analysis of the effect of input parameters on
output showed that chemical fertilizers and manure from
farm animals, diesel, and chemicals have a significant

effect on potato production, while electricity, manual labor
and transportation have significantly less effect on output.

The soft computing methods utilized in this study have
superior learning and prediction abilities. This study also
revealed that the proposed predictionmodel has the capac-
ity to overcome the lack of artificial neural networks with-
out defining network structure, thus avoiding trapping in
the local optimum.
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