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Abstract

The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host—pathogen
interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model
for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-
effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide
many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models,
like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In
the present review, we discuss the components of the insect’s larval immune system, which strengthens its usage as an alter-
native host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella,
Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens
due to the homology between insect and vertebrate gut.

Keywords Galleria mellonella - Helicoverpa armigera - Manduca sexta - Bombyx mori - Enteropathogen - Alternative host

Introduction

Even after almost 80 years of the successful use of the first
antibiotic (penicillin) against microbes, microbial pathogens
still pose a considerable risk to human health. A global rise
in resistance to antibiotics and infection-prone aging popula-
tion (due to chemotherapy, AIDS, indwelling medical devices,
and surgical procedures) requires a much better understanding
of the infection processes that can be achieved via in vivo
modeling (Kemp and Massey 2007). Presently, most research
comprising human pathogens uses mammalian hosts (Scully
and Bidochka 2006), which have several drawbacks. Apart
from the substantial ethical debate over mammalian suffer-
ing, they are too costly, and studies utilizing these hosts need
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a considerable investment of time (Kemp and Massey 2007,
Scully and Bidochka 2006; Wang et al. 2013). Thus, there is
an urgent requirement for simple, easy-to-handle, rapid, eco-
nomical, and ethically acceptable in vivo models for assessing
the virulence of microbial pathogens (Ahlawat et al. 2021).
From the past few years, many researchers have started to uti-
lize insects as model hosts for the study of human pathogens,
instead of mammals, because insects are not liable to regula-
tory control and ethical concerns (Scully and Bidochka 2006).
Furthermore, there are insect models that can be easily and
economically propagated and produce quick results (Kemp
and Massey 2007) (Fig. 1A).

The identification of human pathogens expressing viru-
lence factors is the main focus of disease research (Kemp
and Massey 2007). Emerging data suggest that the viru-
lence of many human pathogens is analogous in mammals
and insects, and identical virulence factors are utilized by
pathogens to infect both the hosts (Wang et al. 2013). Con-
clusively, both insect and mammalian hosts are susceptible
to pathogens and have the same mechanism for the estab-
lishment of infection by the pathogens (i.e., adhesion, inva-
sion, systemic spread, and evasion of the immune response).
Furthermore, in response to infection, they have developed
many mechanisms to safeguard themselves; out of which,
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Fig.1 A Various aspects support the use of lepidopteran insects in
in vivo experiments: ethical acceptability allows the use of more rep-
licates that increases the statistical support of the study, large size of
larva improves handling and extraction of tissues well as it allows
direct inoculation of microbes in hemocoel, larva can be reared in the
laboratory without the need of special equipment, and they can, to
some extent, replace experiments with vertebrates due to similarity in
their innate immune system, shorter life cycle (2040 days), and main-

few (as an adaptive immune system) are limited to higher-
order metazoans, but others (like physical barriers and innate
immune system) are common to both hosts and display high
functional homology (Kemp and Massey 2007). These simi-
larities validate the use of insects as model hosts for studying
the human pathogens (Scully and Bidochka 2006).

Drosophila melanogaster (Diptera: Drosophilidae) or
fruit fly has been used as a model organism by Charles W.
Woodworth to study physiology, genetics, and microbial
pathogenesis (Wang et al. 2013). He was the first to cultivate
D. melanogaster in laboratory conditions and suggest that it
could be useful in genetic research (Holden 2015). It provides
numerous advantages, such as ease of handling and breed-
ing, well-defined published genome, susceptibility to forward
and reverse genetics, and commercial availability of genetic
tools, such as transgenic cell lines and mutants (Wand et al.
2013). However, it has some disadvantages also, such as small
size and hemolymph volume (Kemp and Massey 2007), and
needs considerable handling experience and special labora-
tory equipment (such as microinjectors) (Wand et al. 2013).
Furthermore, it cannot be propagated at 37 °C; therefore,
over the years, Galleria mellonella (Lepidoptera: Pyralidae)
or honeycomb moth or greater wax moth has been developed
as a major alternative model system to study the microbial
infections (Tsai et al. 2016) (Fig. 1A). However, Manduca
sexta is usually incubated up to 26 °C, and Bombyx mori and
Helicoverpa armigera at 25-28 °C. Thus, the present review
discusses lepidopteran insects (G. mellonella, M. sexta, B.
mori, and H. armigera) as an alternative infection hosts to
study infection by the enteropathogens.
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tenance at 37 °C. B Representation of similarities between the gut of
an insect and a rodent. The insect gut carries microorganisms, have
alkaline pH, lined by short hair-like projections known as microvilli
on the apical side of columnar cells, covered by peritrophic membrane
(similar to the mucous lining of vertebrates), and have mucin-like pro-
teins, similar to rodents. These characteristics together allow the use
of lepidopteran insects as alternative infection models to study enter-
opathogens (Image: BioRender.com)

Comparison of the immune system
of mammalian and insect hosts

The conserved innate immune system in both the hosts,
i.e., mammalian and insect, perceives external invaders
in the same way and utilizes similar pathways to activate
the immune responses (Pereira et al. 2020). In both the
hosts, innate immune systems have pattern recognition
receptors (PRRs) that identify the pathogen-associated
molecular patterns (PAMPs) and elicit suitable immune
responses (Scully and Bidochka 2006). For instance, in
D. melanogaster, two protein families, i.e., Gram-negative
binding proteins (GNBPs) and peptidoglycan recognition
proteins (PGRPs), activate pathways related to immune
response. Binding of PRRs to PAMPs triggers a cascade
of serine proteases. Gram-negative bacteria stimulate the
Imd pathway in insects that is homologous to the TNF
pathway in mammals, whereas Gram-positive bacteria
and fungi stimulate the Toll pathway in insects that is
homologous to the TLR pathway in mammals (Miiller
et al. 2008). Therefore, even though insects do not have
adaptive immune response, their innate immune response
shows notable similarities with innate immune response
in vertebrates (Tsai et al. 2016). In insect, the immune
responses in the body cavity involve the function of hemo-
cytes and fat body, while in the gut, immune responses are
different from immune responses in the body cavity, which
are complicated by peritrophic membrane and resident gut
microbiota (Wu et al. 2016).
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Comparison of systemic immunity

Deprived of adaptive immune components, insects have
cellular (cell-mediated) and humoral innate immune com-
ponents. In cellular response, hemocytes (similar to human
phagocytes) in hemolymph (similar to mammalian blood)
phagocytose or nodulate the invading microbes or encapsu-
late the foreign bodies that are too large to be phagocytosed
(Miiller et al. 2008), while the humoral response includes
melanin synthesis and soluble effector molecules, such as
complement-like proteins (opsonins) and antimicrobial pep-
tides (AMPs) that are secreted from the fat body (equiva-
lent to the human liver) to immobilize or kill the pathogens
(Tsai et al. 2016; Pereira et al. 2020; Ali Mohammadie Kojour
et al. 2020). In insects, encapsulation starts with the attach-
ment of a foreign target (larger microbes) to the granular
cells that triggers the release of plasmatocyte spreading
peptides that results in a smooth capsule due to the attach-
ment of many layers of plasmatocytes around the foreign
target (Tsai et al. 2016). Encapsulation is also found in mam-
mals along with granuloma formation that is analogous to
nodule formation in invertebrates (Miiller et al. 2008).

Cell-mediated innate immunity

A broad variety of hemocytes exist in different species
of insects that differ in morphology and function. For
instance, D. melanogaster has phagocytic and nodule-
forming plasmatocytes, encapsulating lamellocytes and
granulocytes, and phenoloxidase (PO)-producing crystal
cells (Miiller et al. 2008), while lepidopteran insects have
plasmatocytes and granulocytes that are involved in cellular
defense, oenocytoids that produce enzymes of melanization
cascade, and spherulocytes whose immune function is still
not known (Feng et al. 2021). The concentration of hemo-
cytes varies in response to pathogens (Pereira et al. 2020).
On the contrary, in mammals, various cell types, such as
phagocytic cells (macrophages, neutrophils, and dendritic
cells) and granule-containing cells (basophils, eosinophils,
mast cells, and natural killer (NK) cells), support the innate
immune response against the microbial invasion. In addi-
tion, they have primitive lymphocytes (T cells and B cells).
Macrophages have a role in antigen presentation to induce an
appropriate adaptive immune system. They produce factors
of the innate immune system (chemokines and complement
factors), proinflammatory cytokines, and effector molecules,
like reactive oxygen intermediates (ROIs) and reactive
nitrogen intermediates (RNIs) (Miiller et al. 2008). Reac-
tive oxygen species (ROS) production has also been found
in hemocytes, specifically superoxide anion species (O0,°7),
and hydrogen peroxide (H,0,, dismutation product of O,*7)
has been reported in plasmatocytes of G. mellonella and D.
melanogaster (Bergin et al. 2005). Furthermore, phagocytic

cells in both insects and mammals have similar receptors,
such as calreticulin on their surface, and produce extracel-
lular traps (NETs) containing proteins and nucleic acids to
immobilize and kill pathogens (Browne et al. 2013). Thus,
insect hemocytes work in a similar way as human phagocytic
cells (Bergin et al. 2005).

Humoral innate immunity

Both insects and mammals respond to infections by strongly
synthesizing AMPs (Miiller et al. 2008). For instance, infection
of H. armigera larvae with Klebsiella pneumoniae induced the
expression of various AMP-related genes, like HaAtt (attacin);
HaCec-1, HaCec-2, and HaCec-3 (cecropin-1, cecropin-2, and
cecropin-3); HaCob (cobatoxin-like); HaGall (gallerimycin-
like); HaGlo (gloverin-like); HaGali (galiomicin-like); Halip
(immune inducible protein); HaLys (lysozyme); and HaMor
(moricin-like) (Wang et al. 2010). Similarly, in mammals, the
production of AMPs seems to be induced by Th17 cells, which
produce IL-22 that acts on non-immune cells to induce the
production of AMPs (Miiller et al. 2008).

Similar to PRRs found in mammals, opsonins recognize
and bind microbial components, like lipopolysaccharide
(LPS) (Pereira et al. 2020). The participation of opsonins,
i.e., complement factors and antibodies, in the immunity of
vertebrates is well known, where opsonization makes the
engulfment of pathogens by phagocytes a much easier task.
The phagocytosis of invading microorganisms is carried
out by several mammalian cell types, including neutrophils,
whereas insect hemolymph contains hemocytes that have a
role similar to the neutrophils (Kemp and Massey 2007). As
discussed earlier, phagocytes, i.e., hemocytes, in insects and
neutrophils in mammals have evolved conserved intracel-
lular killing mechanism involving ROS production (Miiller
et al. 2008). For instance, as observed in neutrophils, the
hemocytes in G. mellonella produce O, via the induc-
tion of NADPH oxidase (NOX) against the phagocytosed
bacteria (Bergin et al. 2005). On the other hand, in insects,
opsonins, i.e., complement-like proteins, C-type lectins, and
C-reactive proteins, compensate for the absence of antibody-
mediated features, improve encapsulation, and activate the
pro-phenoloxidase (ProPO) system, thereby synchronizing
humoral and cellular effector systems (Miiller et al. 2008).
According to the conventional views about immunity in
insects, hemocyte-stored ProPO are released upon the rec-
ognition of foreign bodies (Whitten and Coates 2017). In
insects, the coupling of PRRs to target molecules triggers
the serine protease cascade, which results in the cleavage of
inactive zymogen ProPO to PO that catalyzes the oxidation
of phenols to reactive quinones, which polymerize to synthe-
size melanin around the invading pathogens. However, the
activation of PO is tightly regulated by protease inhibitors as
its overproduction leads to the production of cell-damaging

@ Springer



184

Folia Microbiologica (2023) 68:181-196

ROS (Ahlawat et al. 2020). Thus, melanization is the syn-
thesis and accumulation of melanin to enclose pathogens at
the wound site, accompanied by hemolymph coagulation
and opsonization (Tsai et al. 2016). Besides innate immu-
nity, melanins are synthesized in insects for many purposes,
like clot formation, cuticle sclerotization, and organogenesis.
Interestingly, PO activity and melanin production are not
limited to hemolymph or cuticle, but recent evidence points
towards the role of melanin in gut homeostasis (Whitten and
Coates 2017).

Various recent studies have demonstrated the PO activity
in the lumen of the gut of insects, like cricket (Joseph 2014),
silkworm (Shao et al. 2012), and cotton bollworm (Whitten
and Coates 2017), to protect the insect gut microbiota, to
protect the insect gut against the microbial overpopulation,
and to prevent insect toxic shock-like responses to over-
growth. Interestingly, certain gut bacteria and stress condi-
tions in the gut also trigger the melanization. For instance,
oral infection with Pseudomonas entomophila in Drosophila
and occurrence of Frischella perrara in European bee spe-
cies are linked to melanization in larval midgut/foregut junc-
tion and specifically located darkened scabs, respectively
(Vodovar et al. 2005; Emery et al. 2017). Interestingly, the
above studies suggest the regional localization of melaniza-
tion to the foregut and hindgut. The limited involvement of
the midgut is may be due to its suboptimal conditions, like
very high pH, which could inhibit the PO cascade, or it may
be due to different embryonic origins of the gut regions, as
the midgut is derived from endodermal cells and the foregut
and hindgut develop from the ectoderm. Furthermore, in
most insects, the midgut is lined by a secreted peritrophic
matrix, and the foregut and hindgut are lined with a chitin-
ous exoskeleton. Also, there is a need to protect symbionts
in the midgut that precludes the excessive PO activity in the
region (Whitten and Coates 2017).

Melanogenesis occurs mainly in the midgut epithelium,
cuticular structures, or hemolymph with a role in darkening
and hardening the cuticle and immune defense, like non-self-
recognition and encapsulation of invading pathogens. Thus,
dark or melanic morphs of insects possess high concentra-
tion of melanin, and there exists a positive correlation among
melanism, PO activity, and resistance to microbial pathogens.
In a past study, dark (melanic) morphs of G. mellonella were
studied for their heightened resistance to infection with an
entomopathogenic fungus, i.e., Beauveria bassiana, where
these morphs have thickened cuticle, higher numbers of cir-
culating hemocytes, upregulated cuticular PO activity, higher
expression of stress management genes and immunity-related
genes, and an increased ability to encapsulate the fungus. In
response to fungal infection, the net effect is decreased cutic-
ular fungal penetration, lower propensity to develop hemo-
lymph infections, and increased larval survival times. How-
ever, in the absence of infection, heavy defense investments
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result in lower biomass or lesser size, decreased longevity,
and lower fecundity. The presence of melanin in the insect
cuticle not only suppresses the growth of certain fungus (by
acting like a physical barrier) but also limits the synthesis
of cuticle-degrading enzymes, thereby impeding the cuti-
cle penetration by the entomopathogenic fungi (Dubovskiy
et al. 2013). On the other hand, to colonize an insect host,
the entomopathogenic fungi must first attach to and penetrate
the cuticle layers of integument. In a study, cuticle of the
melanic morphs of G. mellonella was shown to have melanin
accumulation, higher L-di-hydroxy-phenylalanine (DOPA)
decarboxylase activity, and fewer hydrocarbons that lead
to the decreased attachment and germination of conidia of
Metarhizium brunneum and increased expression of stress-
linked genes. The lack of conidia adherence to the cuticle
demonstrated the decreased ability of the fungus to overcome
the host preformed defenses, which negatively impacted the
host mortality (Grizanova et al. 2019). Lastly, according to
the study by Tsai and co-workers, melanization begins with
black spots on the surface of larval cuticle and larva becomes
completely melanized as the infection progresses, which cor-
relates with its death soon after (Tsai et al. 2016; Pereira
et al. 2020).

Thus, insects and mammals remove pathogens by both
similar and distinct mechanisms. The innate immune sys-
tem of both hosts shares common features like discrimi-
nation between non-self and self, identification of patho-
gens through PRRs, opsonization of pathogens, uptake of
pathogens by phagocytosis, secretion of reactive effector
molecules to kill microorganisms, and control of microor-
ganisms via granuloma or nodule formation. But other fea-
tures, like alternative splicing of PRRs have only evolved in
insects, and this may partially balance the lack of a highly
specific adaptive immune system among them. Furthermore,
insects encapsulate the pathogens that they cannot eliminate,
whereas mammals use adaptive immune system when the
innate immune system fails. Insects lack immune memory
of mammals but may utilize other approaches leading to
specific immune priming that allows for stronger phagocytic
responses upon reinfection with the same pathogen (Miiller
et al. 2008).

Comparison of gut immunity

Altogether, anatomical barriers, physiological barriers, and
phagocytic barriers are the three main components of the
innate immune system in mammals, where anatomical bar-
riers consist of the epidermis that produces a physical barrier
and secretions, such as mucus for the clearance of unattached
microbes. In insects, the cuticle acts in a protective manner
similar to the mammalian epidermis, where cells of insect’s
reproductive and digestive tract produce protective secretions
(Kemp and Massey 2007). Also, glycoconjugate receptors
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for microbe-derived toxins are found on the microvillar sur-
faces of both the insect midgut and the mammalian intestine
(Scully and Bidochka 2006). The insect gut can be divided
into the foregut, midgut, and hindgut (Marzban et al. 2013),
where the midgut with an alkaline pH is the longest part of
an insect gut with a role in almost all digestive and absorp-
tive functions (Marzban et al. 2013; Pauchet et al. 2008).
It consists of columnar cells, basal regenerative cells, and
goblet cells with an apical end of columnar cells lined by
short hair—like projections called microvilli as an absorp-
tive lining of an insect gut lumen (Marzban et al. 2013). The
epithelial arrangement of the smooth septate junctions and
columnar cells is highly analogous to the tight junctions and
controls permeability (Emery et al. 2019). Furthermore, the
insect digestive tract is covered by an invertebrate-specific
structure known as the peritrophic membrane (Zhang and
Guo 2011) that is a hollow mesh work of the chitinous fibers
cross-linked by proteins (Pauchet et al. 2008). It is crucial for
insect survival with a role in numerous physiological func-
tions, including protection from microbial infections (Zhang
and Guo 2011), prevention of oxidation of biomolecules,
and provides home for toxin binding and digestive enzymes
(Campbell et al. 2008). Therefore, it serves as the first line
of defense (Zhang and Guo 2011) and is highly similar to
the mucous lining of a vertebrate gut (Campbell et al. 2008).
Furthermore, the vertebrate mucus layer has been reported
to have associated mucins that are large glycoproteins with
high proline, serine, and threonine content. Likewise, the
peritrophic membrane of an insect has shown to possess a
mucin-like protein, i.e., HalIM86, which is similar to the ver-
tebrate mucin, having threonine and O-glycosylation (Zhang
and Guo 2011) (Fig. 1B). Moreover, the complement system,
interferon, and lysozyme form the part of physiological bar-
riers in mammals. Similarly, in insects, soluble factors, such
as AMPs, are produced (Kemp and Massey 2007).
Furthermore, the composition of the gut microbiota of
mouse has been reviewed elsewhere in detail with Actino-
bacteria, Anaerotruncus, Bacteroidetes, Candidatus arthro-
mitus, Deferribacteres, Firmicutes, Pseudoflavonifractor,
Proteobacteria, Turicibacter, Tenericutes, Mucispirillum,
Verrucomicrobia, Lactobacillus, Coprobacillus, Marvinbry-
antia, Roseburia, Bifidobacterium, Dialister, Alistipes, and
Faecalibacterium as the major dominants (Hugenholtz and
de Vos 2018; Clavel et al. 2016; Nguyen et al. 2015). Similar
to a vertebrate intestine, an insect gut also carries microor-
ganisms. The insect gut is sterile initially, and the micro-
biota it carries is determined by the food habits of insect
(Krishnan et al. 2014). For instance, B. mori are predominant
in Arcobacter and Bacillus when fed on mulberry leaves and
in Bacteroides and Acinetobacter when fed on lettuce leaves
in a bio-regenerative life support system (Liang et al. 2014).
In an earlier study, 11 bacterial isolates, i.e., Bacillus circu-
lans, Aeromonas sp., Citrobacter freundii, Enterobacter sp.,

Escherichia coli, K. pneumoniae, Pseudomonas aeruginosa,
P. fluorescens, Proteus vulgaris, Erwinia sp., and Serratia
liquefaciens, were obtained from the gut of mulberry leaf-
fed B. mori (Anand et al. 2010). However, the gut microbiota
of H. armigera majorly consists of clostridia, enterococci,
and lactobacilli (Tang et al. 2012), and different parts of the
H. armigera gut have been reported to carry different bac-
terial and yeast genera/species; for instance, the foregut is
dominant in Bacillus licheniformis, Bacillus cereus, Bacil-
lus megaterium, Bacillus pumilus, Proteus myxofaciens,
Klebsiella sp., Saccharomyces kluyveri, and Rhodotorula
graminis; the midgut is prevalent in Bacillus alvei, Serratia
marcescens, Enterobacter aerogenes, Enterobacter cloacae,
Staphylococcus sp., and Salmonella sp., whereas the hindgut
is pre-dominated by Bacillus subtilis, Bacillus alvei, B. pumi-
lus, Bacillus firmus, B. megaterium, P. vulgaris, Enterococ-
cus faecalis, Pseudomonas stutzeri, and E. coli (Mishra and
Tandon 2003). The gut microbiome of G. mellonella labora-
tory lines is mainly composed of Firmicutes, Proteobacteria
(Barrionuevo et al. 2022), Enterococcus (Polenogova et al.
2019) (E. gallinarum/saccharolyticus (Allonsius et al. 2019),
E. faecalis, and E. mundtii (Ignasiak and Maxwell 2018)),
Enterobacter, Pseudomonas, and Bacillus (Dubovskiy et al.
2016; Lou et al. 2020). Similarly, the gut bacterial commu-
nity in M. sexta involves various Gram-positive cocci and
coryneforms, like Bacillus, Curtobacterium, Corynebacte-
rium, Microbacterium, Micrococcus, Pediococcus, Kocuria,
and Staphylococcus (Van Der Hoeven et al. 2008) (Fig. 2).
Thus, overall, Firmicutes, Actinobacteria, and Proteobacteria
are the major bacterial communities found in the insect gut
(Shinde et al. 2019). Altogether, the insect midgut microbiota
differs from species to species, and commensal and symbiotic
bacteria provide protection as in some lepidopteran insects,
the depletion of midgut microbiota enhances the susceptibil-
ity to infection, and increased immune activity enhances the
midgut microbial load (Wu et al. 2016). In a previous study,
anexic (germ-free) B. mori larvae were found to be more
susceptible to infection by baculovirus and Serratia pisca-
torum (Rajagopal 2009). Lastly, just like the vertebrate gut
microbiota, the gut microbiota of insects has a crucial role
in functions, like digestion, metabolism, pesticide degrada-
tion, detoxification of plant materials, pheromone production
(Shinde et al. 2019), defense against parasites and pathogens,
and production of nutrients to supplement poor diet (Wu et al.
2016).

The insect midgut is the initial site of contact with pathogens
and is shown to produce various key immunity proteins needed
for protection, such as immune-related Hdd 13, cyclophilin A,
cyclophilin in B. mori (Zhang et al. 2011) and GNBP (Wu et al.
2016; Pauchet et al. 2008). Depending on the bacterial target,
i.e., symbiont or pathogenic agent, insects produce various
antimicrobial compounds both in the hemocoel and intestinal
tract (Miiller et al. 2008). To support the first line of immune
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sp., and Erwinia sp.

Helicoverpa armigera
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Proteus myxofaciens, Klebsiella gallinarum/saccharolyticus, Proteobacteria, Tenericutes,
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Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes,
Enterococcus Deferribacteres, Firmicutes,
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Serratia, Acinetobacter, Anaerotruncus,
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Porphyromonas, Pseudoflavonifiractor,
Bradyrhizobium, and Candidatus arthromitus,
Aspergillus flavus Alistipes, Roseburia,

Mucispirillum,
Bifidobacterium, Dialister, and
Faecalibacterium

Fig.2 Comparison between the major gut colonizing microbiota of each of the selected insect models (Manduca sexta, Bombyx mori, Helicov-
erpa armigera, and Galleria mellonella) and a rodent (Image: BioRender.com)

defense, insects use ROS and AMPs to clean the gut pathogens
and protect the commensals. Ingested bacteria translocate from
the midgut to hemocoel. Thus, immunity responses are not lim-
ited to the midgut after oral infection; rather, both hemocoel
immunity and metabolism are also altered. Most viruses enter
the hemocoel via the gut, while most bacteria invade the hemo-
coel via wounds. In contrast, fungi penetrate the integument and
further infect the hemocoel. In response, lepidopteran insects
initiate immunity responses against the pathogenic agents by
increasing the expression of important immunity genes (Wu
et al. 2016). For instance, when silkworm larvae were fed with
food carrying E. coli and Staphylococcus aureus, transcription
of lysozyme, gloverin, and ceropin A genes was upregulated
(Wu et al. 2010). Injection of soluble peptidoglycan into B.
mori larvae increased the transcription of cecropin A and B in
the larval midgut (Yamano et al. 1994). Furthermore, increased
expression of dual oxidase (DUOX) was observed in B. mori
larval midguts when the larvae were orally fed with E. coli and
nucleopolyhedrovirus (NPV). DUOX produces ROS under the
control of the p38 pathway (He et al. 2013), whereas BmPrx5
protects the larva against the oxidative stress by degrading the
increased levels of H,O, (Zhang and Lu 2015). In G. mellonella
larvae, the activities of lysozyme, PO, and other antibacterial
proteins were induced upon feeding of the pathogenic and non-
pathogenic bacteria (Freitak et al. 2014).

Lepidopteran insects as host
for enteropathogens
From the past two decades, G. mellonella has gathered huge

attention as a “model host” among scientific researchers
due to an increase in the number of reports utilizing it as an
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alternative host (Junqueira et al. 2021) to study virulence
factors and pathogenesis of numerous human pathogens
(Cook and McArthur 2013). In addition, recently, its entire
genome was sequenced, further raising the understandings
and prospects for the future investigations (Junqueira et al.
2021). Most importantly, in contrast to other invertebrate
models, like Caenorhabditis elegans, using G. mellonella,
analysis can be accomplished at 37 °C, i.e., the optimal
temperature for most of human pathogens. Furthermore,
injection of bacteria into larval hemolymph provides an
advantage by allowing the application of a defined dose
of bacteria (Bender et al. 2013). G. mellonella larvae
may be easily and precisely inoculated by force-feeding
or by rolling of a layer of spores or via intra-hemocoel
injection, and various parameters including mortal-
ity, change in microbial load, hemocyte density and/or
population composition, movement, formation of pupa,
alteration in gene expression, extent of melanization, and
variations in proteome may be applied to analyze their
response to infections (Piatek et al. 2020). In addition to
G. mellonella, B. mori has an extensive history in the area
of host—pathogen interaction. In last few years, silkworms
have gained attention as a model for studying the innate
immunity, and genome-wide transcriptional responses
of silkworm to various pathogens have been examined
based on the International Silkworm Genome Consor-
tium (containing 14,623 protein-coding gene dataset and
a 22,987 oligo-nucleotide probe microarray) (Cheng et al.
2016). With the establishment of its genomic and protein
database, B. mori has emerged as a valuable model in the
scientific research (Meng et al. 2017).

A recent label-free proteomic study suggested the uti-
lization of H. armigera as an in vivo model to study the
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enteropathogenic infection by the pathogenic Yersinia enter-
ocolitica strain 8081 biovar 1B. On performing proteomics,
a two-component system, secretory systems (such as T3SS
and T6SS), and putative hemolysin appeared as major patho-
genic proteins. In turn, Yersinia-added diet-fed insect larvae
manifested altered cytoskeleton due to increased melanization
and ROS production. Overall, this study suggested that the
mechanism of Y. enterocolitica infection and host (H. armig-
era) response mimics Yersinia-mammalian gut interactions
(Ahlawat et al. 2021). T3SS is a central element of virulence
of various enteropathogens, like enteropathogenic E. coli
(EPEC), enterohemorrhagic E. coli (EHEC), Shigella spp.
(Kang et al. 2018), and Yersinia spp. (Ahlawat et al. 2021),
where T3SS effector proteins manipulate the host defenses
and cellular processes, which support the bacteria to colo-
nize, multiply, and cause disease (Kang et al. 2018). Besides,
AggR, a transcriptional regulator of enteroaggregative E. coli
(EAEC), regulates the expression of various putative viru-
lence factors, like dispersin, dispersin translocator Aat, Aai
T6SS, and aggregative adherence fimbriae (AAF) (Morin
etal. 2013). In a study, Salmonella Typhimurium strain NCTC
12023 virulence determinants, i.e., PhoPQ two-component
signal transduction system and LPS O-antigen (OAg), were
identified as key factors for the colonization of G. mellonella
(Bender et al. 2013), where LPS composed of lipid A, oli-
gosaccharide core, and OAg is crucial for the virulence of
Salmonella Typhimurium as a recognized defense against
the host complement system, in mammals also (Murray et al.
2005). Besides, H. armigera and Y. enterocolitica are orally
toxic to M. sexta (Bresolin et al. 2006). Thus, numerous origi-
nal studies focusing on the pathogenic mechanisms of dif-
ferent human enteropathogens, like E. coli, Campylobacter
Jjejuni, Shigella sp., Vibrio sp., Salmonella sp., and Yersinia
sp., as well as their interaction with the lepidopteran insect’s
immune system are presented in Table 1.

Another pathogen, Helicobacter pylori, colonizes the
human digestive tract and causes various conditions from
peptic ulcers to gastric carcinomas. In a study, 25 mg/kg
niclosamide protected G. mellonella larvae by improving
the larval survival rates (up to 70%) after 5 days (Piatek
et al. 2020). Another study reported the susceptibility of
G. mellonella larvae to infection by the enterohepatic spe-
cies of the genus Helicobacter (EHH), which are emerg-
ing pathogens linked to hepatobiliary and gastrointestinal
(GI) diseases in humans (Ochoa et al. 2021). Moreover, in
a recent study by Consentino and co-workers (2021), the
expression of B. cereus genes involved in iron homeostasis,
virulence, and oxidative stress in the gut of germ-free G.
mellonella was analyzed, where B. cereus is a Gram-positive
opportunistic pathogen involved in intestinal infections and
iron is crucial for the growth and virulence of the patho-
gens during infection. To perform the analyses, a technique,
i.e., laser-capture microdissection (LCM), was utilized for

specific in situ gene expression analysis of bacteria in G.
mellonella. The results demonstrated that iron homeostasis
has a crucial role in colonization of the G. mellonella intes-
tine by B. cereus (Consentino et al. 2021). Furthermore, a
study by Scalfaro and co-workers evaluated the protective
activity of probiotic bacteria against GI bacterial patho-
gens using G. mellonella larvae as an in vivo model. Before
challenging with the pathogens (Listeria monocytogenes,
EPEC, or Salmonella enterica Typhimurium), the insect lar-
vae were pre-inoculated with either Clostridium butyricum
Miyairi 588 or Lactobacillus rhamnosus GG. The survival
rates and hemocyte density increased in the probiotic pre-
treated larvae in comparison to control larvae inoculated
with pathogenic bacteria only. Overall, the results suggest
G. mellonella larvae as a potentially useful in vivo model for
pre-screening of the candidate probiotic bacteria (Scalfaro
et al. 2017). In another study, the treatment of G. mellonella
larvae with bovine herpes simplex virus-1 (BHSV-1) has
stimulated eicosanoid-mediated nodulation response and
PO activation. The viral challenge has provoked nodulation
in a manner that increased with increasing viral load and
incubation time. However, nodulation was severely impaired
in a dose-dependent way in larvae that were treated with an
eicosanoid biosynthesis inhibitor, i.e., indomethacin, before
inducing the viral infection, thereby suggesting that hemo-
cytic nodule formation in G. mellonella larvae in response to
viral infection and antiviral nodulation reaction is mediated
by eicosanoids (Biiyiikgiizel et al. 2007).

G. mellonella has also been used as a model system
to test the efficacy of antifungal, antibiotic (Tsai et al.
2016; Pereira et al. 2020), or phage treatments (Scalfaro
et al. 2017; Abbasifar et al. 2014). K. pneumonia, among
the routinely found pathogens in the nosocomial infec-
tions, has developed resistance to the last resource anti-
biotics. Thus, the multi-drug-resistant (MDR) K. pneu-
moniae producing OXA-48-like or KPC carbapenemases
have been perceived as a major health threat globally. In
a recent study, the virulence potential of OXA-48(+) and
KPC(+) isolates was tested using the G. mellonella model.
On average, KPC(+) was reported to be more virulent
than OXA-48(+). Furthermore, a synthetic polycationic
oligomer, i.e., L-OEI-h, exerted significant bactericidal
activity; thus, it was suggested as a promising therapeutic
approach for treating the MDR K. pneumoniae infections
(Mil-Homens et al. 2021). Earlier, G. mellonella was used
as a host to conceptually approximate the K. pneumoniae-
triggered pneumonia. G. mellonella distinguished between
the pathogenic and non-pathogenic strains of Klebsiella.
Virulence factors needed in the mouse model were also
indicated in the G. mellonella model; in turn, K. pneu-
moniae infection of G. mellonella larvae showed some of
the known features of the Klebsiella-induced pneumonia
(Insua et al. 2013).
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Table 1 (continued)

&

(Ahlawat et al. 2021)

Secretory systems (T3SS, 1 melanin synthesis, iron

27+1°C

Orally (added in artificial

Y. enterocolitica strain

Helicoverpa armigera (cotton bollworm) (Lepidoptera: Noctuidae)

Springer

uptake proteins and anti-
pathogenic response

T6SS), two-component

diet)

8081 (1B/O: 8)

system, and hemolysin

proteins of lipocalin

family; | body weight
and 1 oxidative stress

(Xiong et al. 2015)

Immunity-related genes

28+1°C

Injected

Enterobacter cloacae

were activated in

strain (strain no.
1.2022)

bacterium-challenged
larvae (1 expression of

recognition and modu-

lator genes in fat body
and signal pathway

genes in hemocytes)

In addition to the use of G. mellonella as “mini-hosts”
for the study of microbial pathogenicity and virulence fac-
tors, they are also used for the screening of xenobiotics
or toxins. In a study, it was used to determine the relative
toxicity of 0.50-7.5 ug/larvae or 2-30 mg/kg indometha-
cin (a non-steroidal anti-inflammatory drug (NSAID)) in
insect larvae via two inoculation methods (gavage or force-
feeding and intrahemocoelic injection). Upon indomethacin
treatment, tissue damage (such as epithelial sloughing and
cell necrosis) and raised gut leakiness were observed. The
degeneration of the midgut was followed by a significant
rise in the detoxification-linked activities (like glutathione-
S-transferase and superoxide dismutase (SOD)), thereby
showing the vast symptoms of the gastric damage analo-
gous to their vertebrate counterparts (Emery et al. 2019).
In a study by Coates and co-workers (2019), G. mellonella
larvae injected with okadaic acid (a polyether toxin that
causes diarrheic shellfish poisoning) at a concentration
of > 75 ng/larva or > 242 pg/kg were monitored to evaluate
the potential adverse effects of the okadaic acid. Upon treat-
ment, larvae showed broad symptoms of immune cytotoxic-
ity and oxidative damage, such as decreased larval survival
(> 65%) and circulating hemocytes (> 50%), reduced hemo-
cyte viability and increased PO activity in hemolymph, and
increased malondialdehyde level and SOD activity in the
midgut. Interestingly, little difference was seen in lethality
between either route of administration, i.e., injection and
force-feeding in contrast to threefold more requirement of
okadaic acid to induce lethality in rodents when force-fed,
compared to intraperitoneal injection (Coates et al. 2019).
Another study performed to evaluate the effect of okadaic
acid (80 pg/kg) intoxication on E. coli-led infection in G.
mellonella larvae showed reduction in larval survival levels
(to 47%) in a dose-dependent manner in comparison to bac-
terial (73%) or toxin (90%) challenge alone, displayed tissue
disruptions, like nuclear aberrations linked with cell death,
gross epithelial displacement into lumen, and loss of organ
architecture, and represented a shift in resident bacterial
population with decline in richness (Chao-1) and diversity
(Shannon) indices. Thus, okadaic acid—induced disintegra-
tion of insect alimentary canal mimics the changes caused
by okadaic acid in the human GI tract (Emery et al. 2021a).

Moreover, an entomopathogenic bacterium, i.e., Bacillus
thuringiensis (Bt), produces a variety of insecticidal pro-
teins, including Cry toxins that have been used as insecti-
cides. After ingestion of toxins, they get activated by cleav-
age of N and C termini by midgut proteases. Thereafter, they
pass through the peritrophic membrane, and according to a
pore-formation model, mature toxins interact with cadherin-
like receptors on the columnar cells, which results in the
formation of oligomers that bind to aminopeptidase N and
get inserted into the membrane. Upon insertion, pores are
created in the cells, which causes cell death. However, it has
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been reported that Bt resistance is due to reduction in active
mature toxins because of mutant midgut proteases, increase
in attachment of toxins on the peritrophic membrane due to
reduction in permeability of mutant peritrophic membrane,
or lowered toxins binding to epithelial cells due to mutant
receptors on these cells (Mitsuhashi and Miyamoto 2020).
In view to this, an earlier work on resistant and suscepti-
ble lines of G. mellonella suggests that the resistant line
exploits multi-factorial adaptations for resistance to Bt, like
the occurrence of the more intact midgut in the resistant line.
Furthermore, the resistant line secretes antimicrobial factors,
which mitigate Bt activity and affect the survival of other
resident gut bacteria (Dubovskiy et al. 2016). Furthermore,
in an earlier transcriptomic study, RNA sequence expression
profiling was done to determine the host (i.e., B. mori lar-
vae) response to hemocoel injection of Bt. Among differen-
tially expressed genes (DEGs), genes involved in insecticide
resistance or detoxification, pattern recognition, immune
melanization, AMPs, cytoskeleton reorganization, and other
immune effectors were identified (Wu and Yi 2018).
Besides the success of G. mellonella larva as an alterna-
tive host, its propagation conditions and diet vary between
groups with a critical need for implementation of the stand-
ardization procedures, such as availability of reference pop-
ulation and propagation and maintenance of strains under
controlled and standardized environmental and experimental
conditions (Cook and McArthur 2013). Additionally, several
studies found that B. mori was highly sensitive to human
pathogens, antibiotics, and pesticides; thus, their use as a
model organism for studying the human tumor and meta-
bolic and degenerative diseases has become a research focus
(Meng et al. 2017). In a recent study, recombinant laccase
(from Y. enterocolitica) feeding to larva of H. armigera
induced the significant damage in the midgut and decrease
in body weight, thereby suggesting the use of H. armigera
larva to study the effect of microbial metabolites on the host
anatomy, physiology, and survival (Ahlawat et al. 2020).
Altogether, due to a great level of similarity between physi-
cal, physiological, and functional structure of the gut and
innate immune system of insects and mammals, insects can
be utilized as an alternative host for the enteric pathogens.

Conclusion

In conclusion, the great similarity of the innate immune
system between lepidopteran insects and vertebrates, and
relatively short life cycle, easy handling, no ethical con-
straint, cost-effective maintenance, large body size, and no
need for special equipment and hands-on training for insects,
makes them an ideal alternative host for the study of viru-
lence by enteropathogens. Furthermore, it also minimizes
the mammalian suffering and produces fast results. Thus,

this review highlighted the usage of the lepidopteran insects
(G. mellonella, M. sexta, H. armigera, and B. mori) as the
alternative hosts for the study of infection by many enter-
opathogens that include E. coli, Shigella sp., Salmonella sp.,
Yersinia sp., C. jejuni, and Vibrio sp. However, there is an
urgent need for further standardization of environmental and
experimental conditions for maintenance and propagation of
insect population to ensure experimental comparability and
reproducibility, globally. In addition to it, more knowledge
about the innate immune system and genetic background of
the insects is needed for their success as alternate infection
hosts.
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