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Abstract
This study aimed at investigating the diversity of endophytic fungi from Coptis chinensis and their activity against methicillin-
resistant Staphylococcus aureus (MRSA). Seventy-nine fungal isolates obtained from C. chinensis were identified to belong 
to 27 species based on morphological features and internal transcript spacer (ITS) gene sequencing analysis. Comparing 
relative frequency values, the most frequent genera were Colletotrichum and Fusarium, while most frequent species were 
C. gloeosporioides and F. avenaceum. Analysis of diversity indices indicated that C. chinensis harbored abundant fungal 
resources. Methanol extracts of fungal endophyte cultures were evaluated for antibacterial activity against S. aureus ATCC 
25923 and two other MRSA clinical strains. Nine of 27 endophytic fungi exhibited inhibitory activities against S. aureus 
ATCC 25923. Among them, Paraboeremia litseae HL-17, Fusarium sp. HL-23, and Fusarium sp. HL-27 exhibited obvi-
ous inhibition against the three S. aureus strains. Our findings suggest that the endophytic fungi in C. chinensis have a high 
diversity and an obvious tissue specificity, and could be of potential interest in screening anti-MRSA agents. To the best 
of our knowledge, this is the first report on the diversity and anti-MRSA activity of fungal endophytes from C. chinensis.
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Introduction

Coptis chinensis Franchet (Ranunculaceae), which is known 
as Weilian (one of three kinds of Huanglian) in China, is 
an important and well-known traditional Chinese medicinal 
plant. Its rhizomes, which contain alkaloids as the main bio-
active components and some other types of natural products 
including organic acids, phenylpropanoids, lignans, flavones, 
volatile oils, saccharides, and steroids (Rui et al. 2020), have 
been frequently utilized for the treatment of various diseases 
including bacillary dysentery, typhoid, tuberculosis, epi-
demic cerebrospinal meningitis, empyrosis, pertussis, and 
other illnesses (Meng et al. 2018; Wang et al. 2019). Recent 
studies have indicated that the rhizome of C. chinensis has 
wide pharmacological activities, including antibacterial, 
antiviral, antifungal, anti-atherosclerosis, antimyocardial 

ischemia/reperfusion injury, anti-hyperlipidemia, antihyper-
tension, anti-obesity, anticancer, anti-Alzheimer’s disease, 
anti-inflammation, antioxidation, and aging-related diseases 
(Xu et al. 2017; Ran et al. 2019; Wang et al. 2019, 2020a). 
Due to its age-old use in traditional medicine and peren-
nial dug, the resource of wild C. chinensis is extremely rare. 
Furthermore, the cultivated C. chinensis requires long-term 
cultivation and a strict growth environment to maintain its 
quality. Therefore, we studied the endophytic fungi as a pos-
sible alternative to C. chinensis.

Endophytic fungi refer to groups of fungi that inter and/
or intracellularly colonize healthy tissues of host plants dur-
ing all or part of their lifecycle without causing obvious 
pathogenic symptoms (Aly et al. 2010; Xiao et al. 2021). 
There is a very complex relationship between endophytic 
fungi and their host plants (Du et al. 2020). Endophytic 
fungi have the ability to produce hormones and/or promote 
the biosynthesis of host plant secondary metabolites (Ming 
et al. 2013), enabling host plants to grow quickly and resist 
external biotic and abiotic stresses(Yan et al. 2019), and pro-
duce many products with various biological activities (Gupta 
et al. 2020). These bioactive compounds, which belong to 
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various structural groups including alkaloids, peptides, ster-
oids, terpenoids, phenols, quinones, phenols, and flavonoids, 
possess a variety of biological properties that include anti-
bacterial, antiviral, antifungal, antiprotozoal, antiparasitic, 
antioxidant, immunosuppressant, and anticancer functions 
(Manganyi and Ateba 2020).

Staphylococcus aureus, the most common pathogen of 
food contaminants, is recognized for its virulence and its 
ability to produce staphylococcal enterotoxins and cause 
a variety of diseases, such as local suppurative infection, 
osteomyelitis, pneumonia, pseudomembrane, enteritis, men-
ingitis, pericarditis, and toxic shock syndrome (Odeyemi 
et al. 2018; Wang et al. 2020b; Matias et al. 2021). Antibi-
otic therapy is an important strategy for S. aureus control. 
However, as a response to the selective pressure of antimi-
crobials, the multi-drug resistant S. aureus appeared and the 
treatment options for clinicians and veterinarians have been 
narrowed (Wang et al. 2018). It reported that methicillin-
resistant S. aureus (MRSA), one kind of multi-drug resist-
ant S. aureus, spread across the world causing a variety of 
nosocomial infections, community infectious diseases and 
contaminated exceeded 50% of cases in intensive care unit 
(ICU) patients since 1999 (Matias et al. 2021). Therefore, it 
is in high demand for developing novel antibacterial agents 
for MRSA infection treatment.

As a rich source of novel natural products, the endophytic 
fungus is a treasure house for developing novel antibacterial 
agents. Moreover, C. chinensis was reported to have strong 
antibacterial properties against MRSA (Kim et al. 2020). 
Therefore, this study aimed to determine the diversity and 
anti-MRSA activity of endophytic fungi from the medicinal 
plant C. chinensis. In this research, the diversity of the endo-
phytic fungi isolated from the healthy fibrous root, rhizome, 
and leaf of C. chinensis was evaluated, and the antimicrobial 
activities against MRSA were examined. To the best of our 
knowledge, this work is the first report on the biodiversity, 
phylogeny, and assessment for the anti-MRSA activity of 
endophytic fungi harbored in C. chinensis.

Materials and methods

Collection of plant material

Healthy and symptomless 3-year-old C. chinensis plants 
were collected from Huangshui Town, Shizhu County, 
Chongqing, China. Selected plant samples were immediately 
transported to the laboratory and preserved at 4 °C. The C. 
chinensis plants were identified by Professor Peng Li from 
the College of pharmacy at the Army Medical University. 
For isolation of fungal endophytes, samples were processed 
within 24 h after harvest.

Isolation and purification of fungal endophytes

The isolation of fungal endophytes from collected plant 
parts was according to a standard procedure established 
previously (Stierle et al. 1993). The fibrous root, rhizome, 
and leaf of C. chinensis plants were used to isolate endo-
phytic fungi. These three kinds of tissue were thoroughly 
washed in running tap water for 3–6 h followed by dry-
ing with sterile filter paper. Then, the cleared tissue was 
surface-sterilized by sequential immersion in 75% ethanol 
for 30 s, 1.3 mol/L sodium hypochlorite (3–5% available 
chlorine) for 2–5 min, and 75% ethanol for 30 s. All tissues 
were then rinsed three times in sterile water to remove any 
excess surface sterilants. After sterilization, the samples 
were dried off with sterile filter paper and cut into small 
pieces (about 0.5 cm) using a sterile blade. These tissue 
pieces were placed on potato dextrose agar (PDA) plates 
with 50 mg/L penicillin at 25 °C to isolate the fungal 
endophytes. The tissue pieces were observed every day 
for mycelia growth. Once the fungal mycelia grew out of 
the tissue pieces, the hyphal tips were transferred using a 
sharp sterile sharp needle to fresh PDA plates. Morpholog-
ically distinct isolates were similarly sub-cultured several 
times to purify and obtain pure isolates. The pure isolates 
were numbered and kept in a storage tube at − 20 °C for 
further study.

Molecular identification

Identification of fungal isolates was based on molecular 
and morphological analysis. The molecular identifica-
tion was carried out using the Internal Transcript Spacer 
regions (ITS1 and ITS2) and the intervening 5.8 S rRNA 
region sequencing. Each fungal isolate was cultured on a 
PDA plate at 25 °C for up to 10 days, and the fungal myce-
lia were collected. The genomic DNA was extracted using 
the traditional cetyltrimethylammonium bromide (CTAB) 
method (Saghai-Maroof et al. 1984). The isolated DNA 
was air-dried, dissolved in 20 μL of sterile Millipore water, 
and stored at − 20 °C for further study. Polymerase chain 
reaction (PCR) was performed to amplify the ITS region 
of the fungal isolates using the universal ITS primers, 
ITS5 (5′-GGA AGT AAA AGT CG TAAGG-3′) and ITS4 
(5′-TCC TCC GCT TAT TGA TAT GC-3′). The PCR reac-
tion mixture (25 μL) contained 1 μL template (50 ng/μL 
purified DNA sample), 15 ρmol of each primer, 12.5 μL 
2 × Taq PCR Master Mix, and 10.5 μL  ddH2O. PCR con-
ditions performed were as follows: initial denaturation at 
95 °C for 3 min, followed by 35 cycles of 94 °C for 40 s, 
52 °C for 50 s, and 72 °C for 1 min, and a final exten-
sion at 72 °C for 10 min. The amplified PCR products 
were checked on 1% agarose gel and then sent to Sangon 
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Biotech (Shanghai) Co., Ltd for sequencing. All obtained 
fungal ITS sequences have been deposited in GenBank and 
analyzed using BLAST search in the National Center of 
Biotechnology Information (NCBI) database to compare 
the sequence homology with closely related organisms. 
Then, the sequences from closely related organisms were 
downloaded to conduct the phylogenetic analysis using 
the neighbor-joining (NJ) method. Bootstrap analysis was 
carried out using 1000 replications with MEGA6.

Diversity analyses of endophytic fungi

The relative frequency (RF) was used to estimate an  
endophytic-specific taxon from the sampled plants (Yao 
et al. 2017). The colonization frequency (CF) (formula: 
CF =

Ncol

Nt
× 100% , Ncol is the number of segments colonized 

by an individual species and Nt is the total number of incu-
bated segments) reflect the extent of endophyte infection 
(Zhang et al. 2021). The diversity of fungal species from C. 
chinensis was evaluated using the species richness index (S), 
Shannon–Wiener index (H′) and Simpson’s diversity index 
(1-D). The species richness index (S) was obtained by count-
ing the number of endophytic fungal species in correspond-
ing plant tissues. The Shannon–Wiener index (H′) and Simp-
son’s diversity index (1-D) were evaluated using the Past ver. 
3 software (Fan et al. 2020). Sorensen’s index of similarity 
(QS) (formula: QS =

2a

2a+b+c
 , a is the number of common 

species in both endophytic tissues, while b and c are the 
number of species specific to the compared tissues, respec-
tively) was used to evaluate the similarity of endophytic 
fungal assemblage among different tissues (Zhang et al. 
2021).

Extraction of secondary metabolites of different 
endophytic fungi

Submerged cultivation of the fungal endophytes was car-
ried out to produce secondary metabolites. Five agar plugs 
(5 mm diameters) of grown isolates were transferred to 
250 mL of the Erlenmeyer flask containing 100 mL potato 
dextrose broth, followed by incubation for 5–7 days at 28 °C 
under constant shaking (180 rpm). The final cultivation step 
was performed by transferring the pre-inoculum into 500 mL 
of the Erlenmeyer flask containing rice solid medium sup-
plemented with 2 g peptone and incubating for 6 weeks at 
room temperature. After cultivation, the secondary metabo-
lites of each endophyte were extracted by ultrasonic with 
methanol (analytical grade). Then, the extract solution was 
concentrated under reduced pressure and dissolved in fresh 
methanol.

Bacteria and culture methods

Three S. aureus strains (ATCC 25923, clinical strains sequence 
type (ST)-5 and ST-59) were provided by professor Hao Zeng 
from the National Engineering Research Center of Immuno-
logical Products. Bacteria were grown on Mueller–Hinton 
agar (MHA) plates at 37 °C overnight, followed by picking and 
inoculating single colonies in Mueller–Hinton broth (MHB) at 
37 °C for 12 h with agitation (220 rpm). An appropriate dilu-
tion of bacteria was done with PBS, and the bacterial count was 
adjusted by determining the absorbance spectrophotometrically 
at 600 nm.

Antibacterial activity

Crude methanol extracts of each fungal endophyte were 
evaluated for their antibacterial activity against S. aureus 
ATCC 25923, ST-5, and ST-59. Five milliliter extract solu-
tion of each fungal endophyte was dried at 60 °C and re-
dissolved with 50% methanol at the concentration of 50 mg/
mL. Sterile filter paper discs with 5 mm diameters were 
soaked in the test samples and control (methanol) for 2 h 
followed by natural volatilization and ultraviolet steriliza-
tion. Subsequently, the filter papers were placed separately 
on plates inoculated with an appropriate count of different 
strains of S. aureus. The plates were incubated at 37 °C 
for 24 h. The antibacterial potential of fungal endophyte 
extracts was determined following the diameter of the zone 
of inhibition around the filter paper. Extract samples that 
showed the zone of inhibition around the filter papers were 
considered as positive, while those without the zone of 
inhibition around the filter papers were negative. Experi-
ments were replicated three times and data were presented 
as means ± SEM.

Results

Isolation and identification of culturable endophytic 
fungi from C. chinensis

In this study, different healthy tissue of C. chinensis 
(Fig. 1a), including fibrous root (Fr), rhizome (R), and leaf 
(L), were used to isolate endophytic fungi. We isolated 79 
endophytic fungal strains from those tissues of seven C. 
chinensis plants. Among these strains, nine (11.39%) were 
isolated from fibrous roots, 20 (25.32%) were isolated from 
the rhizomes, and 50 (63.29%) were isolated from leaves, 
respectively (Fig. 1b). These results indicated that the leaves 
contained the most endophytic fungi and the fibrous roots 
contained the least endophytic fungi.
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Based on the fungal morphological characteristics and 
appearance on PDA, all the endophytic fungal strains iso-
lated from C. chinensis were assigned to 27 representative 
morphotypes (Fig. 1c). Subsequently, ITS rDNA sequences 
of each morphotype were generated and were submitted to 
NCBI for BLASTn comparison. Table 1 shows the identified 
endophytic fungal isolates, including GenBank accession 
number, homolog sequences, sequence identity, and closest 
accession number. The maximum sequence identity of the 
ITS rDNA sequences of endophyte compared with those 
available in GenBank ranged from 98.26 to 100% (Table 1). 
Endophytic fungi with 100% base similarity of ITS gene 
sequence between the reference isolates in GenBank are 
considered to be identified into species. The others with 
base similarity of ITS gene sequence between the refer-
ence isolates at the range of 98 ~ 99.9% are considered to be 
identified to genera. Therefore, 10 of the 27 representative 
morphotypes were identified to genus, while the other 17 
were identified to species (Table 1; Fig. 2). Furthermore, all 
the endophytic fungal isolates were identified to belong to 
two phyla (Ascomycota and Basidiomycota), three classes 
(Agaricomycetes, Dothideomycetes, and Sordariomycetes), 
six orders, 11 families, 12 genera, and 27 species (Fig. 2).

The relative frequency (RF) analyses of endophytic 
fungi from C. chinensis

The relative frequency (RF) values of the 27 representative 
isolates are shown in Table 1. By comparing the RF values, 
the most frequent species of C. chinensis belonged to C. 
gloeosporioides and F. avenaceum with RF both of 11.39% 

(Table 1). In addition, the most frequent genera of C. chinen-
sis associated endophytic fungi belonged to Colletotrichum 
and Fusarium with RF of 49.37 and 26.58%, respectively 
(Fig. 3a). These results indicated that the dominant fungal 
species of C. chinensis were C. gloeosporioides and F. ave-
naceum, and the dominant fungal genera of C. chinensis 
were Colletotrichum and Fusarium, respectively.

On the basis of different tissues, the most frequent endophyte 
in fibrous root or rhizome belonged to F. avenaceum, and the 
most frequent endophyte in leaf belonged to C. gloeosporioides 
(Table 1). Furthermore, the most frequent genera in fibrous root 
or rhizome belonged to Fusarium with RF of 77.78 or 70.00% 
respectively, while the most frequent genera in leaf belonged to 
Colletotrichum with RF of 78.00% (Fig. 3b). These results indi-
cated that the dominant endophyte in fibrous root or rhizome 
was F. avenaceum, and that in leaf was C. gloeosporioides. In 
addition, the dominant genus in fibrous root or rhizome was 
Fusarium and that in leaf was Colletotrichum.

Diversity of endophytic fungi from C. chinensis

As shown in Table 2, the indices of colonization frequency, 
species richness (S), Shannon–Wiener (H′), and Simpson’s 
diversity index (1-D) are listed to characterize the endophytic 
community from the three kinds of plant tissue. The coloniza-
tion frequency of the endophytic fungi in whole plant of C. 
chinensis was 37.86%. Among the different tissue, coloniza-
tion frequencies of the endophytic fungi were found in the 
following order: leaf (53.57%) > fibrous root (28.57%) > rhi-
zome (26.79%). The colonization frequency of the endophytic 
fungi in leaf was significantly higher than that in fibrous root 

Fig. 1  C. chinensis and its different tissue a; isolation rate of endophytic fungi from different tissue of C. chinensis b; endophytic fungi isolated 
from C. chinensis c 
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or rhizome. The difference in the colonization frequency 
between fibrous roots and rhizomes was not significant.

The species richness (S) of endophytic fungi from C. chin-
ensis was 27. Among the different tissue, species richness (S) 
of the endophytic fungi was found in the following order: leaf 
(15) > rhizome (9) > fibrous root (6). The Shannon–Wiener 
Index (H′) of endophytic fungi from C. chinensis was 2.992. 
Among the different tissue, the Shannon–Wiener Index (H′) 
of the endophytic fungi was found in the following order: leaf 
(2.447) > rhizome (2.013) > fibrous root (1.581). The Simp-
son’s diversity index (1-D) of the endophytic fungi from C. 
chinensis was 0.9373. Among the different tissue, Simpson’s 
diversity index (1-D) of the endophytic fungi was found in 
the following order: leaf (0.8968) > rhizome (0.8450) > fibrous 
root (0.7407). These results indicated that C. chinensis har-
bored abundant fungal resources, and the diversity of endo-
phytic fungi from leaves was more abundant than that in the 
other two tissues.

Tissue specificity of endophytic fungi from C. 
chinensis

The Sorenson similarity analysis for the endophytes among 
the three kinds of tissue indicated the various species of 
endophytic fungi from C. chinensis with obvious tissue 
specificity. The Sorenson similarities for the endophytes 
between fibrous root and rhizome, between fibrous root and 
leaf, and between rhizome and leaf were 0.40, 0.00, and 
0.00, respectively (Table 3). It indicated that the endophytic 
community in the leaf was quite distinct from that in the 
rhizome or fibrous root. Similar results were observed in 
Fig. 2. At the order classification level, endophytic fungi of 
Sordariales, Glomerellales, and Pleosporales in C. chinensis 
were almost distributed in the leaf except for Paraboeremia 
litseae HL-17 (Pleosporales). Furthermore, endophytic fungi 
of Hypocreales and Cantharellales were only distributed in 
rhizome or fibrous root. At the genus classification level, 

Table 1  The ITS sequence identification and the relative frequency of the endophytic fungal strains from C. chinensis 

Fungal strain code GenBank accession 
number

Homolog sequences Sequence 
identity, %

Closest accession 
number

RF(%)

Fr R L Total

HL-1 OK047753 Fusarium solani 100 MN013858 1.27 3.80 5.07
HL-2 OK047754 Colletotrichum godetiae 100 MT138699 7.59 7.59
HL-3 OK090938 Colletotrichum gloeosporioides 100 MT568599 11.39 11.39
HL-4 OK090939 Botryosphaeria dothidea 100 MH329650 2.53 2.53
HL-5 OK090940 Calophoma aquilegiicola 100 MH855149 6.33 6.33
HL-6 OK090944 Fusarium avenaceum 100 MT482504 5.06 6.33 11.39
HL-7 OK090947 Fusarium avenaceum 99.58 MT482504 1.27 2.53 3.8
HL-8 OK104019 Fusarium oxysporum 100 MN452540 1.27 1.27
HL-9 OK104020 Colletotrichum cliviicola 100 MT123031 3.8 3.8
HL-10 OK090952 Colletotrichum liriopes 100 MT645674 6.33 6.33
HL-11 OK090953 Cladorrhinum flexuosum 98.76 NR154757 1.27 1.27
HL-12 OK090954 Didymella glomerata 100 HQ328050 1.27 1.27
HL-13 OK090995 Colletotrichum fioriniae 100 MT607651 5.06 5.06
HL-14 OK090996 Trichoderma hunanense 99.81 KY687950 1.27 1.27
HL-15 OK090997 Diaporthe passiflorae 99.59 MH595928 1.27 1.27
HL-16 OK090998 Fusarium solani 99.16 MH290450 1.27 1.27
HL-17 OK090999 Paraboeremia litseae 100 MN341236 1.27 1.27
HL-18 OK103605 Colletotrichum anthrisci 100 MN203635 1.27 1.27
HL-19 OK103606 Leptosphaeria microscopica 100 MK304183 2.53 2.53
HL-20 OK103612 Colletotrichum destructivum 100 MT735253 8.86 8.86
HL-21 OK103615 Colletotrichum higginsianum 100 MT908620 2.53 2.53
HL-22 OK103616 Clonostachys rosea 100 MK715157 1.27 1.27
HL-23 OK103617 Fusarium solani 99.79 KJ573076 2.53 2.53
HL-24 OK103620 Colletotrichum higginsianum 99.80 MH638225 1.27 1.27
HL-25 OK103841 Colletotrichum fructicola 99.79 MT355821 1.27 1.27
HL-26 OK103842 Ceratobasidium sp. 98.26 MN524229 5.06 5.06
HL-27 OK103843 Fusarium solani 99.59 KJ573076 1.27 1.27
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endophytic fungi of Colletotrichum, Calophoma, Botry-
osphaeria, Leptosphaeria, Cladorrhinum, and Didymella 
were only distributed in leaf of C. chinensis. Furthermore, 
endophytic fungi of Clonostachys and Diaporthe were only 
distributed in rhizome, while that of Paraboeremia, and 
Trichoderma were only distributed in fibrous root. Other-
wise, endophytic fungi of Fusarium were distributed in both 
fibrous root and rhizome. All these results indicated that the 
endophytic fungi from C. chinensis had an obvious tissue 
specificity.

Anti‑MRSA activity screening of the methanol 
extracts from endophytic fungal cultures

To estimate the anti-MRSA activities of culturable endo-
phytic fungi from C. chinensis, antimicrobial activities of 
methanol extracts of 27 representative isolates grown on rice 

solid fermentation media were evaluated by the measure-
ment of the diameter of the zone of inhibition against the 
three S. aureus strains (ATCC 25923, clinical strains ST-5  
and ST-59). S. aureus ATCC 25923, which is no methicillin- 
resistant, is used as a standard laboratory testing control 
strain. S. aureus ST5 is a hypertransmissible, strong biofilm-
forming, methicillin-resistant, and virulent genotype that is 
frequently encountered in today’s operating room environ-
ments (Loftus et al. 2018). S. aureus ST 59 is an epidemic 
lineage of community-associated methicillin-resistant S. 
aureus in Asia (Feng et al. 2017).

As shown in Table 4, nine endophytic fungal methanol 
extracts exhibited inhibitory activities against at least one 
S. aureus strain and the other 18 extracts did not show 
antimicrobial activities (data not shown). These nine 
strains belonged to genera of Fusarium (4), Colletotrichum 
(3), Calophoma (1), and Paraboeremia (1). The zone of 
inhibition of Colletotrichum fungi (HL-10, HL-13, and 

Fig. 2  Neighbor-joining phylogenetic tree of 27 representative iso-
lates from C. chinensis. The phylogenetic tree is based on ITS gene 
sequences. The values at each node represent the bootstrap values 
from 1000 replicates, and the scale bar represents 0.02 substitutions 

per nucleotide. Penicillium verruculosum (JQ889708) was used as an 
outgroup. (diamond, the maximum identity ITS rDNA sequences of 
the endophyte available in GenBank.)
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HL-25), Calophoma fungus (HL-5), and Paraboeremia 
fungus (HL-17) against S. aureus ATCC 25923 were sig-
nificantly larger than that of Fusarium fungi (HL-1, HL-7, 
HL-23, and HL-27). Furthermore, no significant difference 
in the diameters of the zone of inhibition found among 
the Colletotrichum fungi (HL-10, HL-13, and HL-25), 
Calophoma fungus (HL-5), and Paraboeremia fungus 
(HL-17). Among the nine strains, three (P. litseae HL-17, 
Fusarium sp. HL-23, Fusarium sp. HL-27) exhibited obvi-
ous inhibition against all the three strains of S. aureus 
(ATCC 25923, ST 5, and ST 59) (Fig. 4) and the other 6 
just exhibited obvious inhibition against S. aureus ATCC 
25923 (Table 4). It is interesting to note that only two 
strains (HL-23 and HL-27) of the four Fusarium fungi 
exhibited significant inhibition against all the three strains 
of S. aureus and the inhibition of HL-17 against all the 
three strains of S. aureus was much stronger than that of 
HL-23 or HL-27.

Discussion

As an important and well-known traditional Chinese 
medicinal plant, C. chinensis has been used to treat various 
inflammatory disorders and related diseases for a thousand 
years. As far as we know, there is no report about the endo-
phytic fungal diversity of C. chinensis. In our study, 79 
endophytic fungi isolated from C. chinensis fibrous root, 
rhizome, and leaf were divided into 27 species, 12 genera, 
11 families, six orders, three classes, and two phyla. Two 
phyla of all endophytic fungi are Ascomycetes and Basidi-
omycetes. Ascomycetes (74 isolates) are the most common 
representatives of endophytic fungal communities, while 
Basidiomycetes constitutes the rest five isolates. This result 
is consistent with the reports of endophytic fungal contents 
of most plants (Du et al. 2020). Among the 12 genera, 
Colletotrichum and Fusarium were the dominant ones. 
Thus, the host has a strong affinity towards establishing 
symbiotic associations with the fungi belonging to the gen-
era Colletotrichum and Fusarium. Among the 27 species, C. 
gloeosporioides and F. avenaceum were the dominant ones. 
However, F. avenaceum has been previously reported as a 

Fig. 3  Relative frequency (RF) of endophytic fungi from C. chinensis at the level of genus a and in different tissue (Fr, fibrous roots; R, rhi-
zomes; L, leaves) of C. chinensis at the level of genus b 

Table 2  Colonization frequency and diversity indices of endophytic 
fungi isolated from different tissues of C. chinensis 

Parameter C. chinensis

Fibrous root Rhizome Leaf Total

Colonization frequency 
(%)

28.57 26.79 53.57 37.86

Species richness(S) 6 9 15 27
Shannon–Wiener (H′) 1.581 2.013 2.447 2.992
Simpson′s diversity index 

(1-D)
0.7407 0.845 0.8968 0.9373

Table 3  Sorenson’s similarity for endophytic fungi from different tis-
sues of C. chinensis

Tissues Fibrous root Rhizome Leaf

Fibrous root 1.00 0.40 0.00
Rhizome 1.00 0.00
Leaf 1.00
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pathogen confirmed by re-inoculated back on C. chinensis 
(Mei et al. 2020). Several studies indicate that the endo-
phytes isolated from asymptomatic plant tissues express 
either mutualistic, commensal, or parasitic lifestyles when 
re-inoculated back on the original host species (Rodriguez 
and Redman 2008). Therefore, there is a balance between 
the fungi and the host plants. When the fungus was inocu-
lated to the host plant, it would be an endophytic fungus if 
a balanced antagonism is established. Otherwise, it would 
be a pathogen resulting in disease.

In our study, the analysis of colonization frequency, 
species richness (S), Shannon–Wiener (H′), and Simp-
son’s diversity index (1-D) indices indicated that C. chin-
ensis harbored abundant fungal resources. The diversity 
of endophytic fungi in the above-ground tissues (leaf) 
of C. chinensis was more than that in the under-ground 
parts (rhizome and/or fibrous root). The result is simi-
lar to fungal endophytes from Glycyrrhiza glabra (Arora 
et al. 2019). In the research of Dillenia indica, the percent 
frequency of endophytic fungi was also highest in leaves 
(Kumar and Prasher 2022b). Furthermore, obvious tis-
sue specificity of endophytic fungi from C. chinensis was 
observed through the Sorenson similarity analysis. The 
endophytic fungal community structure of leaf was utterly 
distant from that of rhizome or fibrous root. The difference 
of micro-environments in the different tissue would be 
responsible for the different microbiota.

MASA has been considered as the prototype of mul-
tiresistant nosocomial pathogens. Methicillin belongs to 
the β-lactam class of compounds that are hydrolyzed by 
β-lactamase. β-Lactams are the most widely used broad-
spectrum antibiotics, and resistance to β-lactams is a seri-
ous threat for infectious disease management, surgery, and 
organ transplantation. The emergence of MRSA indicates 
an urgent need for the control of the use of antibiotics and 
the development of novel therapeutic agents. The main 
active constituents of C. chinensis are protoberberine alka-
loids, which can affect the accumulation of amyloid fibers 
in MRSA biofilm phenol-soluble modulins (PSMs), thus 
inhibiting the formation of MRSA biofilm and increasing 
the bactericidal activity of antibiotics. However, the low 
bioavailability and weak effect of berberine limit its clini-
cal application. Therefore, structural modification and new 
isomers of berberine are required. Endophytic fungi are a 
rich source for developing novel host-like biomolecules. 
Some endophytic fungi isolated from the antimicrobial 
medicinal plants had shown significant antimicrobial activ-
ity (Al Mousa et al. 2021; Deshmukh et al. 2022; Kumar and 
Prasher 2022a). In our research, methanol extracts of nine 
endophytic fungi (33% of total screened) showed inhibitory 
activities against S. aureus ATCC 25923. Furthermore, three 
(P. litseae HL-17, F. sp. HL-23, F. sp. HL-27) of the nine 
endophytic fungi exhibited obvious inhibition against the 
two methicillin-resistant S. aureus strains (ST-5 and ST-59). 
Genus of Fusarium was previously reported to show anti-
bacterial activity against S. aureus (Ratnaweera et al. 2015; 
Wen et al. 2015). However, new antibacterial compounds 
were constantly being discovered from the fungus of Fusar-
ium (Uz Zaman et al. 2021). Moreover, there is no report 
about P. litseae producing antimicrobial compounds. Thus, 
three endophytic fungi obtained in this study with antimi-
crobial activity against the three S. aureus strains have the 
potential to produce natural products of novel structures. 

Table 4  Anti- MRSA activities of endophytic fungi obtained from C. 
chinensis 

Fungal isolate code The diameter of the zone of inhibition 
(mm)

ATCC 25923 ST-5 ST-59

Fusarium solani HL-1 8.7 ± 1.2 — —
Calophoma aquilegiicola 

HL-5
19.7 ± 2.1 — —

Fusarium sp. HL-7 13.3 ± 0.6 — —
Colletotrichum liriopes 

HL-10
21.0 ± 1.0 — —

Colletotrichum fioriniae 
HL-13

19.3 ± 1.2 — —

Paraboeremia litseae HL-17 20.3 ± 0.6 19.0 ± 1.0 14.3 ± 0.6
Fusarium sp. HL-23 13.7 ± 0.6 12.3 ± 0.6 11.7 ± 1.2
Colletotrichum sp. HL-25 23.7 ± 3.1 — —
Fusarium sp. HL-27 15.3 ± 06 16.0 ± 1.0 14.3 ± 0.6

Fig. 4  Anti-MRSA activities of endophytic fungi Paraboeremia litseae 
HL-17, Fusarium sp. HL-23, and Fusarium sp. HL-27 were obtained 
from C. chinensis. The white sterile filter paper discs soaked in metha-
nol for 2 h followed by natural volatilization and ultraviolet sterilization 
were regarded as negative controls
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Furthermore, three new polyketides and three new pyrrole 
alkaloids, which had potential anti-inflammatory activity, 
were isolated from three endophytic fungi of C. chinensis 
(Wei et al. 2022; Yin et al. 2022a, b) and one endophytic 
fungus isolated from C. chinensis was reported to produce 
berberine (Zhang et al. 2016). Therefore, it is noteworthy 
to further investigate the secondary metabolites of the three 
endophytic fungi (P. litseae HL-17, Fusarium sp. HL-23, 
and Fusarium sp. HL-27) from C. chinensis.

In this study, we report for the first time the diversity and 
anti-MRSA activity of fungal endophytes from C. chinensis. 
This research extended our knowledge on the distribution 
of endophytic fungi in C. chinensis and endophytic fungi 
from C. chinensis could be considered as a potential source 
for anti-MRSA agent in future biotechnology applications.
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