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Abstract
The purpose was to investigate a simultaneous biodegradation of the recalcitrant monoazo dye Reactive Orange 16 (RO16) in a
mixed culture consisting of a biofilm of Pleurotus ostreatus–colonizing polyamide carrier and a suspension of the yeast Candida
zeylanoides to see their biological interactions and possible synergistic action during degradation. Decolorization in the mixed
culture was more effective than in the fungal monoculture, the respective decolorizations reaching 87.5% and 70% on day 11.
The proliferation of yeast was reduced compared with the C. zeylanoides monoculture but enabled the yeast to participate in
decolorization. The interaction of P. ostreatus with the yeast resulted in a gradual decrease of fungal manganese-dependent
peroxidase (MnP) and laccase activities. Gas chromatography-mass spectrometry (GC-MS) analysis of the degradation products
brought evidence that P. ostreatus split the dye molecule asymmetrically to provide 4-(ethenylsulfonyl) benzene whose concen-
tration was much decreased in the mixed culture suggesting its increased metabolization in the presence of the yeast. In contrast,
C. zeylanoides split the azo bond symmetrically producing the metabolites 4-(ethenylsulfonyl) aniline and α-
hydroxybenzenepropanoic acid. Those metabolites were rapidly degraded in the mixed culture. A novel aspect is represented
by the evidence of a mutual cooperative action of the fungal and yeast microorganisms in the mixed culture resulting in rapid
decolorization and degradation of the dye.

Introduction

Microbial consortia and mixed cultures of different micro-
organisms are able to degrade organic pollutants, including
recalcitrant synthetic dyes, and often exhibit better perfor-
mance than single strains. Microbial interactions in such
co-cultures consist of concomittant mechanisms ranging
from positive to negative effects, but our knowledge of
these mechanisms, that may include mutual microbial

cooperation, is rather poor (Mikesková et al. 2012; Wang
et al. 2014; Wang et al. 2019).

Broad biodegradation potential of ligninolytic fungi (LF)
has been established with Pleurotus ostreatus serving as one
of model organisms, and its biochemical and physiological
behavior under various conditions was well documented
(Gadd 2008; Svobodová et al. 2016; Ceci et al. 2019). In this
group of microorganisms, extracellular lignin-modifying en-
zymes are implicated in oxidative degradation of
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organopollutants such as industrial dyes (Knapp et al. 2008).
Yeasts are another large group of microorganisms that exhibit
important biodegradation capacities, e.g., those able to decol-
orize recalcitrant azo dyes (Yang et al. 2005; Tan et al. 2016).
Various reductases, such as azoreductase or NADH-
dichlorophenolindophenol reductase, are implicated in reduc-
tive cleavage of the azo bond of the dye-producing metabo-
lites that are further degraded to aliphatic amines by the action
of oxidative enzymes (Ramalho et al. 2002, 2005; Jadhav
et al. 2007; Saratale et al. 2009).

Biodegradation potential of defined consortia of fungi with
other microorganisms has been documented, e.g., a fungal-
bacterial consortium comprising Penicillium sp. QQ strain in
azo dye degradation (Gou et al. 2009); consortium consisting
of Aspergillus ochraceus and Pseudomonas sp. in degradation
of textile dyes (Kadam et al. 2011); co-cultures of P. ostreatus
with bacteria Pseudomonas fluorescens or Bacillus
licheniformis degrading anthraquinone dye Remazol
Brilliant Blue R (Válková et al. 2017); or fungal consortia of
Aspergillus lentulus, A. terreus and Rhizopus oryzae, or
Dichotomomyces cejpii and Phoma tropica used for decolor-
ization of various azo dyes (Mishra and Malik 2014;
Krishnamoorthy et al. 2018). Both positive and negative ef-
fects of the other organisms on biodegradation by fungal cul-
tures have been reported, the factors generally involving pH,
extracellular enzymes, and competition for nutrients (Libra
et al. 2003; Spina et al. 2014; Li et al. 2015).

Levels of extracellular enzymes, namely peroxidases and
laccase that are involved in degradation of organopollutants in
LF, can be affected by interaction with other microorganisms
resulting in an increase of laccase activity as observed in
Trametes versicolor and P. ostreatus by Hiscox et al. (2010)
and Válková et al. (2017), respectively. Such an increase,
however, did not occur in the case of MnP (Válková et al.
2017). The increased enzyme activity may or may not result
in higher biodegradation rates (Baldrian 2004; Novotný et al.
2004; Hiscox et al. 2010; Válková et al. 2017).

Both positive and adverse effects of microorganisms on the
degradation process by LF have been reported, for instance,
fixed-film cultures of Phanerochaete chrysosporium exhibit-
ed a high and stable degradation efficiency in the presence of
bacteria (Gao et al. 2008) or the efficiency of decolorization of
recalcitrant Remazol Brilliant Blue R (RBBR) dye by mature
biofilms of P. ostreatus was not restrained by populations of
P. fluorescens or B. licheniformis. On the other hand, degra-
dation of polycyclic aromatic hydrocarbons by various LF in
soil and in submerged cultures was negatively affected by the
presence of bacteria (Borchert and Libra 2001; Borràs et al.
2010). Yeasts were reported to be responsible for failures of
bioremediation realized by LF as they exhibited good growth
at low pH and high growth rates in carbohydrate-based media
(Boekhout and Robert 2003; Knapp et al. 2008). However,
little is known about the behavior of yeasts in mixed cultures

with LF and how the partners influence the biodegradation
process of the other partner fungal microorganism. White rot
fungi and yeasts have been reported to use different degrada-
tion pathways when decomposing azo dyes (Erkurt et al.
2010; Jafari et al. 2014).

Our aim was to estimate the simultaneous action of the two
different biodegradation processes carried out by P. ostreatus
and C. zeylanoides during decolorization of the model recal-
citrant azo dye RO16 in their mixed culture where the yeast
suspension was added to a preformed biofilm of P. ostreatus
immobilized on a plastic carrier. In the mixed culture, the
growth of both organisms was followed, the activities of ex-
tracellular enzymes involved in degradation were monitored,
and the analysis of biodegradation products using GC-MS
was carried out to check whether both partners contributed
to decolorization.

Materials and methods

Microorganisms

P. ostreatus was obtained from the Culture Collection of
Basidiomycetes of ASCR, Prague, Czech Republic. The yeast
Candida zeylanoides was acquired from the Spanish Type
Culture Collection, University of Valencia, Spain. The fungus
was maintained on malt extract-glucose (MEG) agar (malt
extract 5 g/L, glucose 10 g/L, agar powder 20 g/L), grown at
28 °C for 7 days and stored at 4 °C. The yeast was preserved
on complex medium plates containing glucose 40 g/L,
mycopeptone 10 g/L, and agar 15 g/L (GMA). The yeast
was grown at 28 °C for 2 days and then stored at 4 °C.

Chemicals

2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS),
2,6 dimethoxyphenol (DMP), 96% 3,4-dimethoxyphenol,
malonic acid, EDTA, and Reactive Orange 16 were purchased
from Sigma-Aldrich. All chemicals were of analytical grade.

Culture conditions

The fungal inoculum was prepared by transferring ten agar
plugs of P. ostreatus grown on MEG agar into 250-mL flasks
containing 100 mL of liquid MEG medium and incubated at
28 °C for 7 days. Then the cultures were homogenized (Ultra-
Turrax T25, IKA) and used as the inoculum (10% V/V) to
inoculate 250-mL flasks containing a liquid growth medium
and polyamide mesh carrier (wire wool: fiber thickness,
2 mm; mesh size, 3 mm) to prepare immobilized fungal cul-
tures. A growth medium (glucose 20 g/L, (NH4)2SO4 2.5 g/L,
yeast extract g/L, KH2PO4 5 g/L, MgSO4·7H2O 0.5 g/L,
CaCl2·2H2O 0.13 g/L) was used for this purpose.The fungal
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cultures were then grown under static conditions for 7 days to
form biofilm on the polyamide carrier and were further used as
preformed biofilms in the mixed cultures and control fungal
cultures.

A yeast inoculum culture was prepared by growing the
microorganism overnight in MEG medium on a rotary shaker
(DOS-20L, ELMI) (80 rpm). The final concentration of the
yeast in the mixed culture and in the control yeast monocul-
ture was adjusted to achieve a final value of 106 colony
forming units (CFU) per mL.

RO16 azo dye was added to the mixed or control cultures at
a final concentration of 150 mg/L to start the decolorization
that took place at 28 °C under shaking (80 rpm) to ensure a
sufficient aeration for the dye degradation by the yeast.
Samples of the liquid medium were removed in time to deter-
mine the dye removal, extracellular enzyme activities, and,
where applicable, the yeast cell counts.

The control monocultures of the fungus and the yeast were
prepared in a similar way but without the presence of the other
microbial partner and were used for decolorization of RO16.

All experiments were carried out in triplicates.

Decolorization and enzymatic assay

Decolorization of RO16 was measured spectrophotometrical-
ly at 494 nm using a microplate method (Epoch Microplate
Spectrophotometer, Bio-Tek, USA; Program Gen5). Yeasts,
bacteria, and fungal fragments were removed by centrifuga-
tion before the measurement.

The activities of extracellular enzymes implicated in dye
degradation were measured spectrophotometrically:
manganese-dependent peroxidase (MnP) using the oxidation
of DMP (De Jong et al. 1994), lignin peroxidase (LiP) with
veratryl alcohol as the substrate (Tien and Kirk 1988), and
laccase using the oxidation of ABTS (Matsumura et al.
1986). One unit of enzyme activity (U) was defined as an
amount of the enzyme oxidizing 1 μmol of substrate per min.

Fungal biomass and yeast cell counts measurements

Fungal biomass colonizing the polyamide carrier was deter-
mined gravimetrically as dry biomass at the end of experi-
ments. The polyamide carrier covered with the colonizing
fungal biofilm was removed from the cultivation flask, gently
washed with distilled water, and dried at 105 °C until constant
weight. Then the pre-weighed mass of the carrier was
subtracted to obtain the dry biofilm mass. Yeast cell counts
were determined by plating on GMA medium.

Gas chromatography-mass spectrometry analysis

The culture medium was filtered (cellulose wadding), cen-
trifuged (2000 rpm, 5 min, laboratory temperature), and

directly extracted with dichloromethane (pesticide grade).
The acid-base liquid-liquid extraction at pH 2 and 12 was
used. When measured before extraction, all samples had
pH values of approximately 6.5. A volume of 100 mL of
each sample was extracted in separatory funnels (200 mL)
using 5 mL of dichloromethane three times. First, extrac-
tion was performed using any sample as-received (pH
neutral). Then, the same sample was serially extracted
with dichloromethane at pH 12 and, subsequently, at
pH 2. All extracts were mixed together, dried using
Na2SO4, and concentrated to a volume of 1 mL under
nitrogen. Finally, the extracts were analyzed by GC-MS
(7890N/5975C, Agilent Technologies, USA). GC-MS was
equipped with a capillary column DB-XLB (30 m ×
0.25 mm × 0.25 μm). The operating conditions for screen-
ing analysis were the injection port was maintained at
290 °C and the dichloromethane extracts were injected
in splitless mode. The program column temperature
started at 40 °C for 2 min, then increased by 5 K/min to
300 °C, and was held for 10 min at 300 °C. The ion
source of MS detector was operated at 230 °C. The scan
mode was employed, and the experimental data were
measured in the range of 50–550 amu. The mass spectra
library NIST011 was used for evaluation of the mass
spectra obtained. Only compounds with a high or moder-
ately high confidence in structure were identified, for
which an excellent (RSI > 900) or good (RSI = 800–900)
match between the mass spectrum and that of electron
ionization mass spectra library was found (Plachá et al.
2017).

Results and discussion

Growth and decolorization in mixed cultures
of P. ostreatus and C. zeylanoides

In order to investigate the process of decolorization of
RO16 dye (150 mg/L) in the mixed culture of P. ostreatus
and C. zeylanoides,7-day-old cultures of the immobilized
P. ostreatus were exposed to a yeast suspension and the
decolorization compared with that of the control monocul-
tures (Fig. 1). The decolorization in the mixed culture was
more rapid than in the fungal monoculture, especially be-
tween days 5 and 11, the decolorization reaching a value of
87.5% on day 11, whereas in the fungal monoculture the
decolorization was only 70%. Similar positive effect of the
partner organism was observed on decolorization of the
anthraquinone RBBR dye in mixed cul tures of
immobilized P. ostreatus with Rhodococcus erythropolis
or activated sludge (Svobodová et al. 2016) or in mixed
cultures of Trametes sp. SQ01 and Chaetomium sp. R01
degrading triphenylmethane dyes (Yang et al. 2011).
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Evidently, preformed fungal biofilms are rather resistant to
adverse effects of other microorganisms as was also con-
firmed by works where biofilms of various white rot fungi
were exposed to other microorganisms such as Gram-
negat ive or Gram-posi t ive bacter ia or the yeast
Saccharomyces cerevisiae without influencing the fungal
degrading capacity (Gao et al. 2008; Válková et al. 2017;
Šlosarčíková et al. 2017).

The decolorization by the shaken submerged culture of
C. zeylanoides was more efficient than that of the fungal
culture and reached 100% decolorization within 5 days
(Fig. 1). However, the decolorization by the yeast was
strongly inhibited by the presence of the fungus even
though the yeast was still able to significantly contribute
to the total decolorization capacity of the mixed culture by
increasing the decolorization rate and the total percentage
of the decolorized dye, compared with the fungal mono-
culture (Fig. 1). A relative shortage of nutrients in the
mixed culture resulting from the consumption by the two
organisms could be responsible for both the lower yeast
cell counts observed (Table 1) and reduced efficiency of
decolorization by the yeast (Knapp et al. 2008).

The inoculation of the fungal culture immobilized on the
solid support with a massive suspension of C. zeylanoides
followed by further incubation of the mixed culture at 28 °C
for 11 days resulted only in a negligible decrease of the fungal
dry biomass (Table 1) which was in agreement with the ob-
servations of the effects of bacteria P. fluorescens or
B. licheniformis and of S. cerevisiae on biofilms of
P. ostreatus and I. lacteus, respectively (Válková et al. 2017;
Šlosarčíková et al. 2017).

In the control yeast monoculture, the yeast cell counts inoc-
ulated to the level of 1.106 CFU increased by two orders of
magnitude within 9 days and the yeast growth was not affected
by the presence of the dye (Table 1).When the yeast was added
to the culture of P. ostreatus, the yeast cell numbers increased
only about five times within 9 days, probably due to the com-
petition for nutrients in the culture. This behavior was similar
to that of the yeast S. cerevisiae when in coexistence with
biofilms of I. lacteus (Šlosarčíková et al. 2017) but was in
contrast to the behavior of P. fluorescens, B. licheniformis,
and activated sludge bacteria whose CFU values were decreas-
ing when added to preformed P. ostreatus biofilms
(Svobodová et al. 2016; Válková et al. 2017).
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Fig. 1 Effect ofC. zeylanoides on
decolorization of RO16 dye by
immobilized P. ostreatus at 28 °C
under shaking. Mixed culture of
P. ostreatus and C. zeylanoides
( ), monoculture of
P. ostreatus ( ),
monoculture of C. zeylanoides
( ). Starting yeast
concentration of 106 CFU/mL,
the dye was used at 150 mg/L

Table 1 Dry biomass yields of
P. ostreatus and growth of
C. zeylanoides in mixed cultures
compared with the monoculture
controls during decolorization of
RO16

Type of culture P. ostreatus biomass yield

Day 9, g

Yeast counts (CFU/mL)

Day 0 Day3 Day 6 Day 9

P. ostreatus 1.19 ± 0.00 - - - -

P. ostreatus + RO16 1.16 ± 0.04 - - - -

P. ostreatus + yeast 1.09 ± 0.00 1.0E + 06 2.4 + 06 6.6 + 06 6.4 + 06

P. ostreatus + yeast + RO16 0.97 ± 0.07 1.0E + 06 3.3 + 06 4.1 + 06 5.2 + 06

Yeast - 1.0E + 06 7.9 + 07 1.1 + 08 1.1 + 08

Yeast + RO16 - 1.0E + 06 1.0 + 08 1.1 + 08 1.1 + 08
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Manganese-dependent peroxidase and laccase
activities during decolorization of RO16

MnP and laccase activities have been shown to be involved in
degradation of synthetic dyes by white rot fungi (Knapp et al.
2008). In the mixed culture of P. ostreatus and C. zeylanoides
containing RO16, the initial level of laccase of about 30 U/L
was maintained for 4 days and then the enzyme activity grad-
ually decreased to attain a level of about 10 U/L at the end of
the decolorization experiment (Fig. 2). A similar behavior was
observed also in the absence of RO16 dye in the mixed cul-
ture. In comparison, the levels of laccase in P. ostreatusmono-
cultures were increasing during the experiment, two-fold in
the monoculture with RO16 and four-fold in the monoculture
without RO16 (Fig. 2). This result clearly demonstrated a
negative effect of the presence of the yeast on the fungal
laccase activity in the mixed culture. This is in contrast to
the observations of other studies that often reported an in-
crease in the level of laccase as a result of the interaction with
other microorganisms (Hiscox et al. 2010; Svobodová et al.
2016; Válková et al. 2017). The fact that the effect appeared in
later phases of the experiment might suggest that lack of nu-
trients caused by a higher demand of the two organisms in the
mixed culture could be responsible for this behavior (Knapp
et al. 1997; Zhang et al. 1999). The results also demonstrated a
negative effect of RO16 on the synthesis of laccase by
P. ostreatus (Fig. 2).

MnP activity in the P. ostreatus monocultures was steadily
increasing or fluctuating in the range of 1–14 U/L, whereas in
the presence of the yeast in the mixed cultures, the initial level
of MnP was slowly decreasing to reach a negligible activity
after day 7 (Fig. 3). Comparable results from other studies

obtained with LF when confronted with other microorganisms
are varied, ranging from a decrease of MnP (Rhodococcus
erythropolis, Svobodová et al. 2016), no significant effect
(activated sludge, Svobodová et al. 2016; P. fluorescens,
B. licheniformis, Válková et al. 2017; S. cerevisiae,
Š losarč íková et al . 2017) to a five-fold increase
(Chaetomium sp., Yang et al. 2011). The effect was depending
on the culture medium (Svobodová et al. 2016) or the physical
properties of the carrier material (Gao et al. 2008) where
nonsterile conditions resulted either in an increase (polyure-
thane foam) or decrease (reticulated material) of the MnP lev-
el. An increase in MnP activity was also observed in majority
of interactions of T. versicolorwith other basidiomycetes on a
solid medium (Hiscox et al. 2010). Similar to laccase, a neg-
ative effect of RO16 on the synthesis of MnP by P. ostreatus
was demonstrated (Fig. 3).

TheC. zeylanoidesmonoculture growing in the presence of
RO16 was checked for the production of LiP, MnP, and
laccase, but no activities were detected. No LiP activity was
found in P. ostreatus cultures either. In spite of the decrease of
the MnP and laccase activities during decolorization in the
mixed culture, our results showed that both laccase and MnP
activities were present during a significant part of the decol-
orization experiment with the mixed culture of P. ostreatus
and C. zeylanoides, suggesting that they could take part in
the degradation process.

GC-MS analysis of RO16 degradation products

The degradation of the dye RO16 by the fungus P. ostreatus
and the yeast C. zeylanoides were followed by the analysis of
degradation products by GC-MS. The characteristics of the
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Fig. 2 Laccase activities in the mixed culture of P. ostreatus and
C. zeylanoides and in the P. ostreatus monoculture during RO16
decolorization compared with the corresponding control cultures
without the dye. Mixed culture of P. ostreatus and C. zeylanoides with

RO16, ; mixed culture of P. ostreatus and C zeylanoides without
RO16, ; P. ostreatusmonoculture with RO16, ; P. ostreatus
monoculture without RO16
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products are listed in Table 2. In the monoculture of the fun-
gus, the dye molecule was split into two parts. Three degra-
dation products were found, namely 4-(ethenylsulfonyl) ben-
zene, (methylsulfonyl) benzene, and 2-(phenylsulfonyl) etha-
nol. Additional data are given in Electronic Supplementary
Material (Online Resource 1). The asymmetric cleavage of
RO16 molecule and subsequent removal of hydrazine in the

form of N2 probably provided 4-(ethenylsulfonyl) benzene
(cf. Svobodová et al. 2007). The asymmetrical cleavage of
azo bonds in azo dyes by fungal peroxidase and laccase was
described in 1990’s (Spadaro and Renganathan 1994;
Chivukula and Renganathan 1995). (Methylsulfonyl) benzene
and 2-(phenylsulfonyl) ethanol were probably formed by de-
methylation and hydrolysis of the ethenyl double bond in
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Fig. 3 Manganese-dependent peroxidase activities in the mixed culture
of P. ostreatus and C. zeylanoides and in the P. ostreatus monoculture
during RO16 decolorization compared with the corresponding control
cultures without the dye. Mixed culture of P. ostreatus and

C. zeylanoides with RO16, ; mixed culture of P. ostreatus and
C. zeylanoides without RO16, ; P. ostreatus monoculture with
RO16, ; P. ostreatus monoculture without RO16

Table 2 Major metabolites detected by GC-MS in the mixed culture of P. ostreatus and C. zeylanoides during degradation of RO16

Compound m/z CAS no. Metabolite characteristic Reference

Degradation of RO16 dye by Pleurotus ostreatus

4-(Ethenylsulfonyl)benzene 168, 125, 77, 51 005535-48-8 Dye cleavage product by
P. ostreatus

Spadaro and Renganathan
1994

2-(phenylsulfonyl)ethanol 77, 78, 51 20611-21-6 Dye cleavage product by
P. ostreatus

Spadaro and Renganathan
1994

Degradation of RO16 dye by Candida zeylanoides

4-(Ethenylsulfonyl)aniline 183, 156, 140, 92 25781-90-2 Dye cleavage product by
C. zeylanoides

Jafari et al. 2014

α-Hydroxybenzenepropanoic acid 166, 148, 91 20312-36-1 Dye cleavage product by
C. zeylanoides

Jafari et al. 2014

Other metabolites

Phenylethyl alcohol 122,91,92 000060-12-8 Yeast volatile product Mo et al. 2003

1H-indol-3-ethanol 161,13 000100-51-6 Plant auxin hormone precursor
produced in yeasts

Mo et al. 2003

4,6-Dimethoxy phthalide 194,165,137, 122 058545-97-4 Fungal antibiotic Leon et al. 2017; Sazanova
et al. 2018

3-Methyl-2(5H)-furanone 98,69,109,124 22122-36-7 Yeast signal molecules; antifungal
antibiotic

Colin Slaughter 1999; Li et al.
2019

4-Methoxybenzaldehyde 135,136,77 000123-11-5 Fungal flavor compound Berger and Zorn 2004

Benzaldehyde 105,106,77 000100-52-7 Fungal flavor compound Lapadatescu et al. 1997;
Lomascolo et al. 2001
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4-(ethenylsulfonyl) benzene, respectively (Fig. 5). Demethylase
activities were found in various fungi having function in toler-
ance to toxic plant phytoalexins (Delserone et al. 1999;
Coleman et al. 2011). 2-(phenylsulfonyl) ethanol was detected
as a product of degradation of the azo dye Remazol Orange 3R
by plant consortium of Aster amellius and Glandularia
pulchella using laccase, peroxidase, and oxidase activities
(Kabra et al. 2011). The other part of the RO16 molecule in-
cluding two condensed aromatic rings (cf. Spadaro and
Renganathan 1994) was probably rapidly oxidized to small
molecules as no relevant degradation product was detected
(Table 2). In the monoculture of C. zeylanoides, two com-
pounds resulting from dye decolorization were detected. The
azo bond was symmetrically split as also observed in studies
using Galactomyces geotrichum and other yeasts (Jadhav et al.
2008; Jafari et al. 2014), and 4-(ethenylsulfonyl) aniline and α-
hydroxybenzenepropanoic acid were detected as degradation
products in the samples removed on days 3, 6, and 9.

Figure 4 showed that gradual decolorization of RO16 in the
P. ostreatus monoculture between days 1–11 (Fig. 1) resulted
in a transient accumulation of the degradation product
4-(ethenylsulfonyl) benzene that was further metabolized by
the fungus using, for instance, hydrolytic or demethylation
reactions (cf. Fig. 5).This behavior pointed to a more rapid
early reactions producing 4-(ethenylsulfonyl) benzene, com-
pared with those that further oxidized it in the degradation
pathway, when working under the conditions of a relative
abundance of the dye at the beginning of the decolorization
process. Similar transient accumulation was also observed for
4-(ethenylsulfonyl) aniline, the product of degradation of the
dye byC. zeylanoides. On day 6, when the dye was practically
no more present in the medium, as evidenced by

spectrophotometry (Fig. 1), the concentration of
4-(ethenylsulfonyl) aniline reached its maximum and was fur-
ther transformed by the yeast metabolism between days 6–9,
as documented by a decreased level of 4-(ethenylsulfonyl)
aniline on day 11 (Fig. 4). Figure 4 thus documented that both
degradation products were not end-products of degradation of
RO16 by the fungal and yeast metabolism.

In the mixed culture of P. ostreatus and C. zeylanoides,
on ly t r aces o f 4 - ( e theny l su l fony l ) an i l i ne and
4 - ( e t h e n y l s u l f o n y l ) b e n z e n e a n d n o α -
hydroxybenzenepropanoic acid were determined in the sam-
ples removed on days 3, 6, and 9, which suggested a more
rapid metabolization of the fungal and yeast degradation prod-
ucts in the presence of the two microorganisms, compared
with the two individual monocultures. Probably, the respec-
tive degradation activities of the partner microorganisms in the
mixed culture contributed to a faster disappearance of the
above-mentioned fungal and yeast products by working in a
mutual cooperative mode. Generally, a fast degradation of
RO16 by both microorganisms resulted in the detection of
only a few metabolites resulting from the cleavage of the
dye molecule. Possible pathways of RO16 biodegradation
by the yeast C. zeylanoides and the fungus P. ostreatus were
suggested (Fig. 5).

There were other organic compounds identified by GC-MS
after the extraction of the culture liquid samples from the
fungal and yeast cultures, i.e., benzenacetaldehyde, 4-
methoxybenzaldehyde, benzaldehyde, 3-methyl-2(5H)-
furanone, phenylethyl alcohol, 4,6-dimethoxy phthalide, and
1H-indol-3-ethanol. As they were detected also in the cultures
where the dye was absent, they represented metabolites pro-
duced by the microorganisms in the growth medium used.

Fig. 4 Respective accumulation
kinetics of 4-
(ethenylsulfonyl)benzene
and 4-(ethenylsulfonyl) aniline

in P. ostreatus and
C. zeylanoides monocultures
during decolorization of RO16
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Phenylethyl alcohol and 1H-indol-3-ethanol were described
as volatile products in Pichia spp. (Mo et al. 2003), 4,6-
dimethoxy phthalide was detected in the agaricomycete
Lignomyces vetlinianus (Sazanova et al. 2018), fungal
furanones are known to have antibiotic effects (Huff et al.
1994; Li et al. 2019), and benzeneacetaldehyde and 4-
methoxybenzaldehyde are metabolites found in Pleurotus cul-
tures (Kabbaj et al. 1997; Berger and Zorn 2004).

Conclusion

The mixed culture of the immobilized ligninolytic fungus
P. ostreatus and the yeast C. zeylanoides exhibited a higher
efficiency of decolorization of the recalcitrant RO16
monoazo dye in comparison with a monoculture of
P. ostreatus. This finding, together with the products de-
tected by GC-MS, showed that two parallel degradation
processes were operating simultaneously, one realized by

the fungus and the other by the yeast. A more rapid disap-
pearance of the metabolites in the mixed culture, compared
with the monocultures, documented a cooperative action
of the two microorganisms probably resulting from their
different enzyme activities involved in the dye degrada-
tion. The evidence of the cooperative action between the
fungus and the yeast represents a novel finding as reports
on such mixed cultures are rather rare. The compatibility
of the two different biodegradation processes and resil-
ience and stability of the mixed fungal-yeast culture sup-
port the concept of combining the activities of various
microorganisms in biodegradation technology. The ob-
served reduction of the yeast biodegradation capacity in
the mixed culture however accentuated the importance of
optimizing the conditions in the mixed culture for all mi-
croorganism partners.
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