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Abstract
There are increasing efforts to identify biocontrol-active microbial metabolites in order to improve strategies for biocontrol of
phytopathogens. In this work, Fusarium oxysporum f. sp. conglutinans was confronted with three different biocontrol agents:
Trichoderma harzianum, Bacillus amyloliquefaciens, and Pseudomonas aeruginosa in dual culture bioassays. Metabolites
produced during the microbial interactions were screened by a matrix-assisted laser desorption/ionization mass spectrometry
(MALDI-MS). T. harzianum exhibited the strongest inhibition of growth of F. oxysporum resulting in overlay of the pathogen
colony with its mycelium. Recorded metabolite profiles suggested a direct attack of F. oxysporummycelium by T. harzianum and
B. amyloliquefaciens by means of membrane-attacking peptaibols and a set of antimicrobial lipopeptides and siderophores,
respectively. The direct mode of the biocontrol activity of T. harzianum and B. amyloliquefaciens corresponded to their ability
to suppress F. oxysporum production of mycotoxin beauvericin suggesting that this ability is not specific only for Trichoderma
species. In the case of P. aeruginosa, siderophores pyoverdine E/D and two rhamnolipids were produced as major bacterial
metabolites; the rhamnolipid production was blocked by F. oxysporum. The results showed that this type of biocontrol activity
was the least effective against F. oxysporum. The effective application of MALDI-MS profiling to the screening of nonvolatile
microbial metabolites produced during the interaction of the phytopathogen and the biocontrol microorganisms was
demonstrated.

Introduction

The biological control of fungal phytopathogens by microbes
is a widely studied strategy. However, the mechanisms
through which antagonistic microorganisms affect pathogens
are often not clear. Members of Fusarium oxysporum species
complex are typically ubiquitous soil-borne pathogens that
cause vascular wilt and root rot in a wide range of plants and
are considered among top 10 fungal pathogens in molecular
plant pathology based on the scientific and economic impor-
tance (Dean et al. 2012; Aoki et al. 2014). F. oxysporum f. sp.
conglutinans (Foc) causes fusarium wilt of cabbage that is

responsible for significant economic losses (Li et al. 2015a;
Liu et al. 2017).

Bacterial lipopeptides, fungal sesquiterpenoids, and
volatile terpenes have been recognized to play important
roles in microbial interactions and biological control
(Romero et al. 2007; Malmierca et al. 2016; Schmidt
et al. 2016). Pyrrolnitrin and pyoverdine were demonstrat-
ed to participate in pseudomonas biocontrol activities
(Pau l i t z and Loper 1991 ; L igon e t a l . 2000) .
B. amyloliquefaciens produced surfactin, iturin, and
fengycin in the interaction zone with the pathogen
Macrophomina phaseolina (Torres et al. 2016). In
Trichoderma species, a variety of biocontrol-active me-
tabolites was described (Liu et al. 2016; Mutawila et al.
2016; Pascale et al. 2017), including an active production
of siderophores (Angel et al. 2016).

Modern metabolomic analyses offer better means for
identification of broad profiles of metabolites compared
to previous approaches. They have been used to decipher
the host resistance mechanisms against fungal pathogens
(e.g., Gunnaiah and Kushalappa 2014; Dhokane et al.
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2016; Li et al. 2017). This work focused on profiling
microbial metabolites produced during growth of the fun-
gal pathogen F. oxysporum f. sp. conglutinans race 2 with
three biocontrol agents (BCAs), P. aeruginosa ,
B. amyloliquefaciens, and T. harzianum, in dual cultures
on the agar medium using matrix-assisted laser
desorption/ionization mass spectrometry (MALDI-MS).
The Foc race 2 strain was used because of its much higher
pathogenicity compared to race 1 (Li et al. 2015b). The
microbes were grown in dual cultures on agar media and
metabolites present in the Foc-BCA interaction zones
were analyzed.

Materials and methods

Microorganisms

Fusarium oxysporum f. sp. conglutinans race 2 strain
(Foc) was obtained from the Isolate Collection of
Naktuinbouw (Roelofarendsveen, The Netherlands) and
Trichoderma harzianum CCF2714 from the Culture
Collection of Fungi (Charles University, Prague,
Czech Republic). Fungal strains were maintained on po-
tato dextrose agar (PDA, Oxoid Ltd., UK–potato extract
4 g/L, dextrose 20 g/L, agar 15 g/L, pH 5.6) and stored at
4 °C. Bacillus amyloliquefaciens DSM23117 was obtain-
ed from DSMZ–German Collection of Microorganisms
and Cell Cultures (Germany) and Pseudomonas
aeruginosa ATCC 15692 from American Type Culture
Collection (USA). Bacteria were stored in a Luria-
Bertani medium (LB; consisting of tryptone 10 g/L, yeast
extract 5 g/L, NaCl 10 g/L, pH 7.0) containing 30% glyc-
erol at − 80 °C.

Instruments and chemicals

MALDI-MS experiments were performed on a 12T SolariX
FTICR (Fourier transform ion cyclotron resonance) mass
spectrometer (Bruker Daltonics, Billerica, MA, USA). Full-
scanMS data were acquired in a mass range 40–3000m/zwith
an external calibration on a mixture of peptides (Pepmix II,
Bruker Daltonics, Germany) and clusters of matrices with a
mass accuracy better than 5 ppm. Samples (2 μL) were spot-
ted on MALDI plate, dried, and covered with either α-cyano-
4-hydroxycinnamic acid (CHCA) [2 μL of CHCA, 10 mg/mL
in 50% acetonitrile (ACN)─0.1% trifluoroacetic acid] or 2,5-
dihydroxybenzoic acid (2 μL of DHB, 10 mg/mL in 50%
ACN─0.1% trifluoroacetic acid) matrix. Instrument parame-
ters were optimized and desorption of the samples was per-
formed with SmartBeam II laser (laser power 30%, 200 scans,
2 kHz). MALDI matrices were obtained from Bruker
Daltonics (Germany). The high-purity solvents used for

MALDI-MS analysis were obtained from Sigma-Aldrich
(USA) and Merck (Germany).

Dual culture assays

Fungal strains were inoculated with a mycelial plug (7 mm in
diameter) cut from a stock culture and the bacteria with an
amount of 3 × 107 bacterial cells (volume 10 μL) grown over-
night in the liquid LB medium at 30 °C and 160 rpm. All
cultures were incubated at 28 °C for 10 days. The experiments
were conducted in triplicates.

Metabolic profiling

For metabolomic studies, the dual cultures and individual
strains were grown on the Bushnel-Haas agar medium
(BH; consisting of magnesium sulfate 0.2 g/L, calcium
chloride 0.02 g/L, potassium hydrogenphosphate 1 g/L,
potassium dihydrogenphosphate 1 g/L, ammonium nitrate
1 g/L, ferric chloride 0.05 g/L, glucose 5 g/L, and agar
20 g/L, pH 7.0). Fe3+ ions were thus a component of all
metabolomic studies. The metabolites produced by the mi-
croorganisms were determined after a 5-day cultivation,
and the samples were taken from control cultures of the
individual microbes and from the interaction zones of dual
cultures. To determine the metabolites, samples of 1 g of
BH agar from the individual strain cultures and the inter-
action zones of dual cultures were cut and homogenized by
pressing through a syringe. The homogenized agar was
centrifuged at 16000g for 10 min. The supernatants were
transferred into clean tubes and stored at − 80 °C.

MALDI-MS and MS/MS spectra were acquired in
positive-ion mode in the range of 150–3000 Da. The spec-
trum of fusaric acid was acquired in the range of 40–
1500 Da. Samples were mixed with matrix (CHCA or
DHB) in 1:1 ratio, the mixture was spotted on a MALDI
plate, and the mass spectra were collected. The mass spec-
tra were searched using CycloBranch software (Novák
et al. 2015, 2017) against in-house metabolite databases
designed for all studied BCAs. The isolated ions were fur-
ther subjected to analysis by tandem mass spectrometry
(MS/MS) and the resulting spectra were compared to the
spectra in a public GNPS Library [http://gnps.ucsd.edu/,
spectra no. CCMSLIB00000846455 (fusaric acid),
C C M S L I B 0 0 0 0 3 7 3 9 9 9 7 ( b a c i l l i b a c t i n ) ,
CCMSLIB00000006851 (3-O-(α-L-rhamnopyranosyl-(1–
2)-α -L-rhamnopyranosyl) -3-hydroxydecanoyl-3-
hydroxydecanoic acid) , CCMSLIB00003142432
(beauvericin)] or compared to Bin silico^ generated MS/
MS spectra of the corresponding metaboli tes by
CycloBranch. The minimum threshold of relative intensity
and m/z error tolerance were 1% and 5 ppm, respectively.
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Results and discussion

Dual culture assays on PDA medium

In dual cultures with Foc T. harzianum was able to inhibit the
growth of Foc starting from day 2 of cultivation on PDA
medium (Fig. 1). In later stages, T. harzianum overlaid the
Foc colony with its mycelium and a red metabolite appeared
beneath the colony (Fig. 1b). Production of red and purple
polyketide and naphthoquinonic pigments by soil-borne phy-
topathogenic strain of F. oxysporum have been described, the
former having antifungal properties (Limon et al. 2010;
Lebeau et al. 2018). Both bacterial strains exhibited a partial
inhibition of Foc growth with a clear inhibition zone of 2–
5 mm formed between Foc and B. amyloliquefaciens (Fig. 1).

The differences in Foc inhibition by individual BCA could
be attributed to different biocontrol mechanisms. Trichoderma
species are known to influence mycelial growth of Fusarium

species in dual culture bioassays on PDA medium (Blaszczyk
et al. 2017; Sharma et al. 2017). T. harzianum T-soybean has
been recently shown to inhibit growth of Foc by parasitic
function (Zhang et al. 2017).B. amyloliquefaciens is supposed
to inhibit pathogenic fungi due to fungicidal effects of its
lipopeptides as demonstrated in dual cultures with
Macrophomina phaseolina (Torres et al. 2016), while in the
case of pseudomonads, the biocontrol activity towards Foc
was connected with the production of siderophore
pseudobactin B10 (Kloepper et al. 1980).

Metabolic profiling

In order to analyze microbial metabolites, the cultures were
grown on mineral BH medium to avoid the interference of
complex media constituents with the analyses. In this experi-
ment, the inhibition measured in dual cultures was similar to
that recorded on PDA (data not shown), except that no red
colored metabolite was visible in Foc-T. harzianum co-cul-
tures. The metabolites identified in the control cultures of
individual microbes are shown in Table 1. MS/MS spectra
of the individual compounds are reported in Online
Resource (Figs. S2-S11).

In single Foc cultures, a limited number of metabolites
were detected. Unlike F. oxysporum strain FGSC9935 that
has recently been reported to produce three different
ferrichrome siderophores (Lopez-Berges et al. 2012),
ferricrocin was the only detected siderophore in Foc cultures
in this work. Ferricrocin was also the only siderophore mea-
sured in T. harzianum control cultures although up to 15
siderophores were reported to be produced by this fungus
(Lehner et al. 2013). Those observations can probably be ex-
plained by the presence of Fe3+ ions in the medium during
metabolomic studies. Further, the mycotoxin beauvericin was
detected in MALDI-MS spectra of Foc cultures. As no
enniatins were found, the Foc strain probably belongs to
Fusarium species with a beauvericin-producing profile
(Liuzzi et al. 2017). Production of fusaric acid was also re-
corded in Foc cultures (Table 1). This toxin is responsible for
phytotoxic effects of Foc on tomato plants (Singh et al. 2017)
and may help the fungus compete with other microbes in soil
(Martin-Rodriguez et al. 2014; Quecine et al. 2016).

In the control cultures of P. aeruginosa (Table 1), the
siderophores pyoverdine E/D were produced that could help
compete with the siderophore activity of fusaric acid produced
by Foc (cf. Ruiz et al. 2015). The bacterium also produced
rhamnolipids that are known to exhibit antifungal effects
(Reddy et al. 2016; DaSilva Araujo et al. 2017).

In the control cultures of B. amyloliquefaciens, fengycin A
and bacillomycin D1 and D2 were detected (Table 1). Three
molecules of fengycin A with different lengths of C chains
were found. Fengycin and iturin lipopeptides as well as
bacillomycins D1/D2 are known to have antifungal activities

Fig. 1 Growth of Fusarium oxysporum f. sp. conglutinans (Foc zb1) in
co-cultivation with biocontrol agents on PDAmedium. Figures of 10-day
old cultures: a control culture of Foc; b Foc-T. harzianum dual culture; c
Foc-B. amyloliquefaciens dual culture; d Foc-P. aeruginosa dual culture;
e Foc colony diameter after 10-day growth
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(Caldeira et al. 2011; Gu et al. 2017) and are involved in
competitive interactions with other microorganisms (e.g.,
Torres et al. 2016; Ben Ayed et al. 2017). Bacillibactin, a
trilacton-based natural siderophore, was also found in the
B. amyloliquefaciens monocultures (Table 1). Lipopeptide
and siderophore profiles of B. amyloliquefaciens detected
were in accordance with the reports of B. amyloliquefaciens
SQR9 that was shown to fine-tune its lipopeptide and
bacillibactin production to control different fungal pathogens
(Li et al. 2014) (Table 2).

In the control cultures of T. harzianum, besides the
siderophore ferricrocin mentioned above (Table 1), peptaibols

were also detected and their MALDI-MS spectrum is shown
in Online Resource (Fig. S1). The presence of 11-, 14-, and
18-residue series of these peptides (Table 3) was confirmed on
the basis of the precise mass measurement and a simulation of
the molecular formula of each isobaric group of peptides
(Mukherjee et al. 2011). Detection of these membrane-
attacking, antibiotic peptides suggested a parasitic mode of
action of T. harzianum in the antagonistic interactions and
corroborated the hypothesis that Trichoderma species attack
phytopathogens by destroying fungal cell walls by a synergis-
tic action of lytic enzymes and antibiotic metabolites (Benitez
et al. 2004).

The metabolites detected in co-cultures of Foc and
BCAs are summarized in Tables 2 and 4 to show their
changes occurring during the antagonistic interactions in
these cultures suggesting possible mechanisms involved.
Generally, the antagonist interactions involved were oper-
ating at two different levels. The first level was that of the
iron available in the environment as reflected by the
changes in the production of compounds involved in the
sequestration of iron. The co-cultivation with both bacte-
ria resulted in disappearance of the production of the in-
tracellular siderophore ferricrocin by Foc that was found
to be involved in intracellular iron storage in aspergilli
and whose deficiency resulted in a reduced virulence of
A. fumigatus and Magnaporthae grisaea (Hof et al. 2007;
Wallner et al. 2009). On the other hand, the production of
fusaric acid by Foc also exhibiting the iron sequestration
activity (Ruiz et al. 2015) was maintained in co-cultures

Table 2 Metabolites identified in dual cultures of Foc with the
individual BCAs

Metabolite Ion type Measured m/z

Foc/Pseudomonas aeruginosa

Beauvericin [M +Na]+ 806.398

[M +K]+ 822.372

Fusaric acid [M +H]+ 180.102

Pyoverdine D [M +H]+ 1334.597

[M +K]+ 1372.553

Pyoverdine E [M +H]+ 1333.613

[M +K]+ 1371.568

Foc/Bacillus amyloliquefaciens

Bacillibactin [M +H]+ 883.263

[M +Na]+ 905.244

[M +K]+ 921.219

Bacillomycin D1 [M +H]+ 1031.541

[M +Na]+ 1053.523

[M +K]+ 1069.497

Bacillomycin D2 [M +H]+ 1045.556

[M +Na]+ 1067.538

[M +K]+ 1083.512

Fengycin A (C15-OH) [M +H]+ 1449.788

[M +Na]+ 1471.774

[M +K]+ 1487.745

Fengycin A (C16-OH) [M +H]+ 1463.801

[M +Na]+ 1485.785

[M +K]+ 1501.759

Fengycin A (C17-OH) [M +H]+ 1477.822

[M +Na]+ 1499.803

[M +K]+ 1515.780

Fusaric acid [M +H]+ 180.102

Foc/Trichoderma harzianum

Ferricrocin [M +H]+ 718.336

[M +Na]+ 740.318

[M +K]+ 756.292

Fusaric acid [M +H]+ 180.102

Peptaibols see Table 3

Table 3 Peptaibols detected in the extract from T. harzianum
monoculture

Number of residues Molecular formula Ion type Measured m/z

11 C58H102N12O13 [M +Na]+ 1197.758

[M +K]+ 1213.732

C59H104N12O13 [M +Na]+ 1211.774

[M +K]+ 1227.748

C60H106N12O13 [M +Na]+ 1225.790

[M +K]+ 1241.764

14 C70H121N15O17 [M +Na]+ 1466.896

[M +K]+ 1482.870

C71H123N15O17 [M +Na]+ 1480.912

[M +K]+ 1496.886

C72H125N15O17 [M +Na]+ 1494.928

[M +K]+ 1510.902

18 C81H142N20O22 [M +Na]+ 1770.051

[M +K]+ 1786.025

C82H144N20O22 [M +Na]+ 1784.067

[M +K]+ 1800.041

C83H146N20O22 [M +Na]+ 1798.082

[M +K]+ 1814.056
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with both bacteria as well as the productions of
siderophores pyoverdine E/D by P. aeruginosa and
bacillibactin by B. amyloliquefaciens (Table 4) and these
compounds could thus be involved in mutual competi-
tions. The effect of the iron sequestration in the antago-
nistic interaction of T. harzianum and Foc was difficult to
evaluate as the siderophore ferricrocin was produced by
both fungi and, in addition, Foc maintained the produc-
tion of fusaric acid (Tables 2 and 4).

The other level of the antagonist interactions included
the production of specific compounds with antifungal and
antibacterial activities. Here, a clear difference between
the two bacteria was observed. B. amyloliquefaciens was
able to maintain the production of bacillomycins and
fengycin A, compounds shown to exhibit antifungal ac-
tivities, in the presence of Foc and, at the same time,
blocked the production of beauvericin by Foc, a com-
pound having an antibacterial effect. It suggested that this
bacterium was effective in the mycotoxin suppression
similar to Trichoderma species (Blaszszyk et al. 2017).
In contrast, in the case of P. aeruginosa, the production
of bacterial rhamnolipids having an antifungal effect was
blocked in the presence of Foc and the synthesis of

beauvericin by Foc was maintained (Table 2). Such inhi-
bition of rhamnolipid production in P. aeruginosa was
reported to be mediated by microbial quorum quenching
compounds (Rajesh and Rai 2016). The difference be-
tween the two bacteria may explain a higher inhibition
of Foc growth by B. amyloliquefaciens (Fig. 1). In the
co-culture with Foc, T. harzianum maintained the produc-
tion of peptaibols exhibiting an antifungal and fungicidal
activity and blocked the production of beauvericin by
Foc, which resulted in a strong inhibition of Foc growth
(Table 2, Fig. 1) The production of fusaric acid by Foc
was present in all co-cultures with both the bacteria and
T. harzianum suggesting that this compound with the an-
tibacterial and antifungal activities (Son et al. 2008) was
involved in the antagonistic interactions observed.

No new compounds were detected in the monocultures of
the microorganisms used (compared to studies in the
literature; Pathma et al. 2011); similarly, any new product
was not found in the dual cultures studied. However, by com-
paring the antagonistic interactions of Foc with various pro-
karyotic and eukaryotic microorganisms, the study enabled us
to observe a general pattern of response of Foc at the
metabolomic level to the exposure to antagonists.

Table 4 Metabolites involved in biocontrol interactions of Foc with bacterial and fungal antagonists

Dual cultures Metabolites involved in
the interaction

Impact of the interaction Mechanism of biocontrol

Foc/Pseudomonas aeruginosa Beauvericin Production (by Foc) present Antibacterial activity (Meca et al. 2010)

Ferricrocin Production (by Foc) disappeared Sequestration of iron (Lopez-Berges et al. 2012)

Fusaric acid Production (by Foc) present Antibacterial activity, sequestration of iron,
increase of pyoverdine secretion by the
bacterium, quorum sensing inhibitor
(Ruiz et al. 2015; Tung et al. 2017)

Pyoverdine E/D Production (by bacterium) present Sequestration of iron (Cezard et al. 2015)

Rhamnolipids Production (by bacterium) disappeared Antifungal activity (Haba et al. 2003)

Foc/Bacillus amyloliquefaciens Bacillomycins D-1/D-2 Production (by bacterium) present Antifungal/fungicidal activity (Gu et al. 2017)

Bacillibactin Production (by bacterium) present Sequestration of iron (Li et al. 2014)

Beauvericin Production (by Foc) disappeared Antibacterial effect (Meca et al. 2010)

Fengycin A (C15-C17) Production (by bacterium) present Antifungal activity (Caldeira et al. 2011)

Ferricrocin Production (by Foc) disappeared Sequestration of iron (Lopez-Berges et al. 2012)

Fusaric acid Production (by Foc) present Antibacterial activity, sequestration of iron,
quorum sensing inhibitor (Ruiz et al. 2015;
Tung et al. 2017)

Foc/Trichoderma harzianum Beauvericin Production (by Foc) disappeared Potentiator of antifungal activities of other
antibiotic compounds (Wang and Xu 2012)

Ferricrocin Production (by Foc and
Trichoderma) present

Sequestration of iron (Lopez-Berges et al. 2012)

Fusaric acid Production (by Foc) present Antifungal activity, sequestration of iron
(Ruiz et al. 2015; Son et al. 2008)

Peptaibols (cf. Table 3) Production (by Trichoderma) present Antifungal/fungicidal activity
(Benitez et al. 2004; Shi et al. 2012)

Folia Microbiol (2019) 64:779–787784



Conclusions

Fungal pathogenF. oxysporum f. sp. conglutinans race 2 (Foc)
was confronted with three biological control agents of differ-
ent efficiency. The observed inhibitory effect on Foc growth
was in the order T. harzianum > B. amyloliquefaciens >
P. aeruginosa. Two types of biocontrol effects were observed
in bacterial and fungal antagonisms, a competition for iron
mediated by siderophores and direct antibiotic effect(s) medi-
ated by various antagonist metabolites. The efficient biocon-
trol activities of T. harzianum and B. amyloliquefaciens result-
ed from the membrane-attacking effects of peptaibols in the
case of T. harzianum and the antifungal activity of the combi-
nation of bacillomycins and fengycin in the case of
B. amyloliquefaciens. Simultaneously, both antagonists were
also able to suppress the production of antibacterial antibiotic
beauvericin by Foc. The results demonstrate that Fusarium
wilt agent can be efficiently suppressed by biocontrol organ-
isms offering thus a bioalternative to the treatment of crops by
chemical pesticides.
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