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Abstract Haemophilus parasuis (H. parasuis) is associated
with meningitis, polyserositis, polyarthritis and bacterial
pneumonia. At present, its prevention and control is difficult
because of the lack of suitable subunit vaccines. Nowadays,
high-throughput methods, immunoproteomics, are available to
screen for more vaccine candidates. A protein extraction meth-
od for H. parasuis and two-dimensional electrophoresis (2-
DE) were optimized to provide high-resolution profiles cover-
ing pH 3 to 10. Twenty immunoreactive spots were excised
from gels after strict comparison between 2-DE Western blot
membranes and the relevant gels. Matrix-assisted laser
desorption/ionization-time of flight-mass spectrometry
(MALDI-TOF-MS) and MALDI-TOF–TOF-MS successfully
identified 16 different proteins. Fifteen of them were reported
as immunoreactive proteins inH. parasuis for the first time. In
addition, recombinant HP5-7 (ABC transporter, periplasmic-
binding protein) showed immunoreactivity both with hyper-
immune rabbit serum and convalescent swine serum. Four
recombinants of the 14 successfully expressed genes showed
immunoreactivity with hyperimmune rabbit serum.

Introduction

H. parasuis is a Gram-negative bacterium that belongs to the
Pasteurellaceae family. Its clinical infection signs are termed
Glässer disease (Riley et al. 1977). There are 15 distinct
serotypes, while 15–41 % of the isolates were reported as
non-typable. Serotypes 1, 5, 10, 12, 13 and 14 are the most
virulent (Angen et al. 2004; Oliveira et al. 2003). The most
prevalent serotypes in China are 4 and 5 (Cai 2006; Zhou et al.
2010).

Abuse of antimicrobials in farmed animals is a hazard to
humans, so vaccination is the preferred method. However,
pigs immunized with monovalent vaccines are protected
against challenge with the homologous serotype strains but
not with other heterologous ones (Takahashi et al. 2001).
Three ABC-type transporters (OppA, YfeA, and PlpA) and
one curli protein assembly (CsgG) showed cross-reactivity
when tested with sera raised against serovars 4 and 5 of
H. parasuis (Hong et al. 2011). The purified recombinants
of outer membrane protein (OMP) P2 and OmpP5 (also
known as OmpA, PalA, P2, D15, HPS-06257) provided
partial protection against H. parasuis infection in mice (Ahn
et al. 2012; Sturgill et al. 2013; Tang et al. 2010; Zhou et al.
2009). However, some reports indicated that recombinant
OmpP5 could not provide satisfactory protection in mice after
bacterial challenge (Zhou et al. 2009). Recently, it was report-
ed that recombinant virulence-associated trimeric
autotransporters (VtaA) could provide partial protection
against H. parasuis infection in colostrum-deprived piglets
(Olvera et al. 2011). Thus, in contrast to other diseases of
similar importance, there are few effective subunit vaccines.

The whole H. parasuis genome sequences SH0165 (sero-
type 5) (Yue et al. 2009) and 29755 (serotype 5) (Mullins et al.
2011) have been completed. In the post-genomics era,
immunoproteomics has emerged as a high-throughput method
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for screening novel vaccine candidates. All of these develop-
ments lay a solid foundation for our research.

In this paper, we used an immunoproteomic approach to
identify immunogenic antigens according to the immune re-
sponse in H. parasuis serotype 5-immunized rabbits.

Materials and methods

Bacterial strains and culture conditions

H. parasuis strain GD10 (serotype 5) was isolated from a
diseased pig in Guangdong Province in China. It was kindly
provided by Dr. Guiping Wang (Guangdong Modern
Agriculture Research Institute) and cultured in tryptic soy
broth (TSB; Sigma-Aldrich Co. LLC., MO, USA) with 5 %
newborn calf serum (Tian Jin Hao Yang Biological
Manufacture Co., Ltd., Tian Jin, China) and 20 μg/mL
NAD (Sinopharm Chemical Reagent Co., Ltd., China).
Cultures were incubated at 37 °C in a rotary incubator
(180 rpm) until the late stage of the exponential phase (Cai
2006).

Hyperimmune sera preparation

Polyclonal antibodies were raised in rabbits immunized with
formaldehyde-inactivated GD10 bacteria after the rabbits
were determined to be negative for GD10 antibodies by
whole-cell enzyme-linked immunosorbent assay (ELISA).
Three doses of 1.0×108 cells per rabbit were administered
by subcutaneous injections at 2-week intervals (Cai 2006).

Convalescent sera screening

The sera of apparently healthy swine that had not been immu-
nized with any H. parasuis vaccine were screened by ELISA
using recombinant (OMP) P2, whose sequence is conserved
among H. parasuis but specific to other bacteria, especially
Pasteurel la mul tocida (PM) and Act inobaci l lus
pleuropneumoniae (APP). A swine that tested positive was
considered to have been infected by H. parasuis and to have
recovered.

Protein sample extraction

Proteins were extracted according to the approach of Zhang
et al. with slight modifications (Zhai et al. 2012).
Trichloroacetic acid (TCA, Sinopharm Chuan Kang
Pharmaceutical Co., Ltd. China) was added to the sample
preparation solution extract at a final concentration of 5 %.

Isoelectric focusing (IEF)

IEF was performed according to the approach of Zhang et al.
with slight modifications (Zhai et al. 2012) and was carried
out at 20 °C for 10.5 h (max. voltage 8,000 V; max. current
50 μA per IPG strip; total 28,000 V/h).

Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and Western blot analysis

After SDS-PAGE, one gel was stained with Coomassie
Brilliant Blue (CBB-G250), while the duplicate gel was sub-
jected to Western blot analysis. After blocked, the membrane
was incubated with anti-GD10 sera from immunized rabbits
(1:2,000 dilution) at 37 °C for 2 h. Three replicates were run
for each sample.

Image processing

Imagemaster 7.0 (GE Healthcare) was used to analyze
the images scanned from the PVDF membrane and the
corresponding two-dimensional electrophoresis (2-DE)
gels.

MALDI-TOF-MS and database searches

Spots that identified as immunoreactive were excised
and analyzed by MALDI-TOF-MS/MALDI-TOF–TOF-
MS (NanJing Steed BioTechnologies Co. Ltd.,
Nanjing, China). The MASCOT server (http://www.
matrixscience.com) was used to analyze the peptide
mass fingerprinting (PMF) data.

Bioinformatic analysis

The compute pI/Mw server (http://expasy.org/tools/pi_tool.
html) was used to calculate isoelectric point (pI) and molar
mass (MW). The TMHMM Server v.2.0 (http://www.cbs.dtu.
dk/services/TMHMM/) was used to predict transmembrane
helices. The PSORT server (http://www.psort.org/) was used
to predict the subcellular location and the SignalP 3.0 server
(http://www.cbs.dtu.dk/servicess/SignalIP) identified
potential signal peptides.

Characterization of recombinant immunoreactive proteins

Primer Premier 5.0 and Oligo 6.24 were used to design PCR
primers (Table 1). Gene sequences of the 16 identified
proteins were cloned into the pET-32a vector and
expressed in Escherichia coli BL21 (DE3). Whole-cell
extracts were subjected to SDS-PAGE with CBB-R250
staining and Western blotting using the anti-GD10
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hyperimmune rabbit sera, swine convalescent sera and
their corresponding negative sera.

Results

2-DE profiles of H. parasuis bacterial proteins and Western
blot analysis

IEF separated over a pH range of 3–10 and 13-cm length in
the first direction and a separation using SDS-PAGE in the
vertical dimension identified 375 spots. Most proteins had a
molar mass between 10 and 150 kDa (Fig. 1a). The repeat gels
showed the corresponding immunoreactive spots (Fig. 1b).

Identification of immunoreactive spots

Twenty immunoreactive spots (HP5-1 to HP5-20) were ex-
cised from repeated 2-DE gels and analyzed byMALDI-TOF-
MS/MALDI-TOF–TOF-MS followed by PMF searches.
Finally, the 20 protein spots were identified as belonging to
16 different proteins (Table 2).

Bioinformatics analysis

The prediction results of subcellular locations, transmembrane
helices and signal peptide cleavage sites of all identified
proteins are listed in Table 3.

Characterization of recombinant immunoreactive proteins
gene

Without HP5-3 and HP5-14/HP5-15, 4 out of the 14 success-
fully expressed proteins could react with hyperimmune rabbit
sera raised against GD10 (Fig. 2). The four proteins were a

Table 1 Specific primers for sequences encoding the identified proteins

Spot no. Specific primers (5′–3′) Tm (°C)

HP5-1 CGCGGATCCCGCCTTGCGAATGGAATG
CCGCTCGAGAATGGCCTGCTGATAGAA

53.3

HP5-2 CGCGGATCCGAAGGTACGGTGCTTGCAGAG
CCGCTCGAGACCTTTCACGAATGGCTTAAC

53.6

HP5-3 CGCGGATCCGAAGGTACGGTGCTTGCAGAG
CCGCTCGAGACCTTTCACGAATGGCTTAAC

53.7

HP5-4 CGCGGATCCCAATTTAATCGTGGCGATAAA
CCGCTCGAGACCTTCACGGATAGCGAAACG

54.2

HP5-5 CGCGGATCCGTTAGCCGTTCACCAACAGGT
CCGCTCGAGAACCGCTTTGTGTAACAACGC

54.8

HP5-6 CGCGGATCCATCGTAAAATCCGCTAACTCT
CCGCTCGAGTACCGCTTTCGCTTCTGGAGA

53.4

HP5-7 CGCGGATCCCATTTTGAACACAATGAATCT
CCGCTCGAGTACACCAATGAATGACATACC

52.0

HP5-9 CGCGGATCCACGAGTTAACACAAGCGGATA
CCGCTCGAGGTGCTTAACCAAGCTGGATTA

54.0

HP5-11 CGCGGATCCTTCTAATTTTAATGCATCGGT
CCGCTCGAGTTAAAAGACTTTGAAAAACAA

51.1

HP5-12 CGCGGATCCGTGATGTCGCACGTGCGCCTG
CCGCTCGAGCACCTGGTCCACAAAAGCCTT

62.6

HP5-13 CGCGGATCCAATTTGCACGCTGATGAATTA
CCGCTCGAGAAAGCCTTTTGGCGTACATCG

54.4

HP5-14 CGCGGATCCTTTTTGTAACACTTCAGAGGT
CCGCTCGAGAGTGCATTAGCAAATGACACT

50.3

HP5-16 CGCGGATCCAAACTCCTTGAATTTTTTGTG
CCGCTCGAGACACCATTTTCTCAACGTTTT

51.6

HP5-17 CGCGGATCCGCGGATCGCATTGGTGTGACA
CCGCTCGAGATCTACGCCAACATAAGGAAT

52.3

HP5-18 CGCGGATCCATGACTCCACATATTAACGCA
CCGCTCGAGTTAACCTTGCTGATCACCAAT

52.9

HP5-19 CGCGGATCCATTCAATCTCACGTCGTGTAT
CCGCTCGAGAATTTTTACCGCTTGATAATG

52.0
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Fig. 1 The numbers on the left (M) indicate the molar mass of standards
(kDa). The numbers in the figure represent different independent spots.
Arrows indicate the corresponding proteins. 2-DE andWestern blotting of
whole-cell proteins fromGD10. aCBB-G250-stained 2-DE gel of whole-
cell proteins from GD10 (pH 3–10, 13 cm). b Western blot of corre-
sponding gels of whole-cell proteins from GD10 using immunized anti-
GD10 hyperimmune sera
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Table 2 Analysis of protein spots identified by MALDI-TOF-MS/MALDI-TOF–TOF-MS

Spot no.a Top score of Mascot
search results (%)b

Protein Theoretical (pI/MW)c Experimental (pI/MW)

HP5-1 292 (43) dsDNA-mimic protein 5.93/109,942.20 6.0/100,000

HP5-2 206 (33) Holliday junction DNA helicase B 6.51/61,005.96 6.5/60,000

HP5-3 139 (32) Oligopeptide permease ABC transporter membrane protein 6.71/60,948.95 6.4/61,000

HP5-4 156 (42) Elongation factor-Tu 5.23/43,414.46 6.2/60,000

HP5-5 102 (31) Heme-binding protein A 7.06/59,316.97 6.7/57,000

HP5-6 208 (39) Periplasmic-binding protein/LacI transcriptional regulator 6.44/32,976.60 6.8/57,000

HP5-7 98 (37) ABC transporter, periplasmic-binding protein 8.23/57,887.17 8.0/57,000

HP5-8 254 (54) ABC transporter, periplasmic-binding protein 8.23/57,887.17 8.2/58,000

HP5-9 171 (46) DNA-directed RNA polymerase subunit omega 5.09/23,056.13 8.8/59,000

HP5-10 216 (46) ABC transporter, periplasmic-binding protein 8.23/57,887.17 8.3/57,500

HP5-11 135 (55) FbpA 8.80/37,665.04 8.8/37,000

HP5-12 200 (64) Indolepyruvate ferredoxin oxidoreductase alpha/beta subunit 8.81/27,474.14 8.9/34,000

HP5-13 175 (27) AraC family transcriptional regulator 6.22/33,481.01 8.4/31,000

HP5-14 184 (59) Hypothetical protein HPS_10240 5.26/38,464.01 5.2/38,000

HP5-15 92 (41) Hypothetical protein HPS_10240 5.26/38,464.01 5.5/39,000

HP5-16 178 (67) Putative solute/DNA competence effector 9.62/25,201.23 5.3/80,000

HP5-17 375 (55) Galactose ABC transporter periplasmic-binding protein/LacI
transcriptional regulator

5.72/35,436.72 5.4/33,000

HP5-18 604 (99) Purine nucleoside phosphorylase 5.30/26,012.87 5.6/28,000

HP5-19 344 (52) Pyridoxine kinase 5.92/31,338.13 6.2/32,000

HP5-20 460 (41) ABC transporter, periplasmic-binding protein 8.23/57,887.17 8.1/58,000

a Protein spots corresponding to position on gel and blot (Fig. 1)
b From PMF data, proteins scoring greater than 85 are significant (p<0.05). Data in parentheses indicate the extent of sequence coverage
c The threshold of significance was greater than 95 % for all values in this study

Table 3 Bioinformatics analysis of identified proteins

Spot no. PSORT prediction (scores) TMHMM SignalP 3.0

Outer membrane Extracellular Periplasmic Cytoplasmic membrane Cytoplasmic Prediction Prediction

HP5-1 0.06 0.11 9.76 0.06 0.00 + +

HP5-2 0.00 0.00 10.00 0.00 0.00 − +

HP5-3 0.00 0.00 10.00 0.00 0.00 − +

HP5-4 0.00 0.00 0.01 0.01 9.97 − −
HP5-5 0.01 0.00 9.99 0.00 0.00 − +

HP5-6 0.00 0.01 6.58 3.41 0.00 − +

HP5-7 0.06 0.11 9.76 0.06 0.00 + −
HP5-9 2.00 2.00 2.00 2.00 2.00 − −
HP5-11 0.00 0.00 10.00 0.00 0.00 − +

HP5-12 2.00 2.00 2.00 2.00 2.00 − −
HP5-13 0.00 0.00 0.01 0.01 9.97 − −
HP5-14 0.00 0.00 10.00 0.00 0.00 − +

HP5-16 0.01 0.26 0.26 0.51 8.96 − −
HP5-17 0.06 0.11 9.76 0.06 0.00 − +

HP5-18 0.00 0.00 0.01 0.01 9.97 − −
HP5-19 0.00 0.00 0.01 0.01 9.97 − −
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double-stranded DNA (dsDNA)-mimic protein, Holliday
junction DNA helicase B, an ABC transporter and
periplasmic-binding protein/LacI regulator. The ABC trans-
porter also reacted with the swine convalescent sera (Fig. 3).

Discussion

We obtained 2-DE profiles with better resolution, over a
broader pH range and produced clearer Western blots with
the modification of protein sample preparation, compared with
other proteomics studies in H. parasuis (Zhou et al. 2009).

The 16 identified immunoreactive proteins could be divid-
ed into three categories. The first category comprised proteins
that have already been studied as subunit vaccines in
H. parasuis. HP5-7, HP5-8, HP5-10, and HP5-20 were iden-
tified as the same protein: ABC transporter, a ubiquitous

membrane protein (Schmitt and Tampe 2002) in all species,
mediating the uptake and efflux of a diverse array of com-
pounds (Grote et al. 2009; Locher 2004), including the non-
classical secretion of signaling molecules and toxins. Three
other ABC-type transporters (OppA, YfeA, and PlpA), which
show amino acid identity of 34, 47, and 32 %, respectively,
with the protein represented by HP5-7, showed cross-
reactivity when tested with sera raised against serotypes 4
and 5 of H. parasuis (Hong et al. 2011).

The second category was proteins whose homologues in
other bacteria were reported to be immunogenic. HI1450 may
function as a dsDNA-mimic (HP5-1) to recognize, inhibit, or
regulate an as yet unidentified dsDNA-binding protein. It is an
immunoreactive protein against hyperimmune rabbit sera
when expressed in E. coli (Parsons et al. 2004, 2005).

Elongation factor-Tu (EF-Tu, HP5-4) plays a central role
during the selection of the correct amino acids during the
elongation phase of translation (Kavaliauskas and Knudsen
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Fig. 2 The numbers on the left (M) indicate the molar mass of standards
(kDa). The numbers in the figure represent different independent spots.
Arrows indicate the corresponding proteins. CBB-R250-stained gel and
Western blotting of the four recombinant immunoreactive proteins from
cell lysates. a CBB-R250-stained gel of the four recombinant immuno-
reactive proteins in cell lysates CBB-R250-stained gel of induced 1
recombinant HP5-1, 2 recombinant HP5-2, 3 recombinant HP5-7, 4

recombinant HP5-17, and 5 pET-32a vector. b Western blot analysis of
the four recombinant immunoreactive proteins in cell lysates. Western
blot of induced 1 recombinant HP5-1, 2 recombinant HP5-2, 3 recombi-
nant HP5-7, 4 recombinant HP5-17, and 5 pET-32a vector reacted with
anti-GD10 hyperimmune sera. Western blot of induced 6 recombinant
HP5-1, 7 recombinant HP5-2, 8 recombinant HP5-7, 9 recombinant HP5-
17, and 10 pET-32a vector reacted with negative rabbit sera
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2012). Many studies have verified the immunoreactivity of
EF-Tu (Vergauwen et al. 2010).

Heme-binding protein A (HbpA, HP5-5) was identified as
a virulence determinant in a model ofHaemophilus influenzae
invasive disease constructed by an insertional mutation of
hbpA in a type b and a non-typable H. influenzae strain
(Morton et al. 2005, 2009). HbpA of APP grown under iron-
restricted conditions generated immunoreactivity in an
immunoproteomic analysis (Chung et al. 2012).

The acquisition of iron from transferrin by Gram-negative
bacterial pathogens is dependent on a periplasmic ferric-ion-
binding protein, FbpA (HP5-11). It was highly antigenic in
mice and showed intraspecies and interspecies antigenic
homogenicity and specific anti-FbpA antibodies are fully
cross-reactive (Ferreiros et al. 1999).

The third category included proteins with no previous
report of immunogenicity. The smallest subunit of E. coli
RNA polymerase is termed omega (HP5-9) (Gentry and
Burgess 1986). A deletion mutation in this gene of
Mycobacterium smegmatis (M. smegmatis) caused reduced
sliding motility and defective biofilm formation. This resulted
from a deficiency in generation of the extracellular matrix and
the mutant bacterium failed to synthesize the short-chain
mycolic acids that are characteristic of biofilm growth in
M. smegmatis (Mathew et al. 2006).

Indolepyruvate ferredoxin oxidoreductase (IOR, HP5-12)
from hyperthermophilic archaeon Pyrococcus kodakaraensis
KOD1 catalyzes the oxidative decarboxylation of
arylpyruvates by forming a heterooligomeric complex
(alpha2beta2) (Siddiqui et al. 1998).

Most of the AraC family (HP5-13) are thought to be
transcriptional activators that regulate genes related to carbon
metabolism, stress responses, or pathogenesis (Egan 2002;
Zeng and Spiro 2013). The Mycobacterium tuberculosis mu-
tant strain disrupted in the AraC homologue Rv1931c exhib-
ited reduced survival both in macrophages and in a mouse
infection model (Frota et al. 2004).

Purine nucleoside phosphorylase (PNP, HP5-18) is a key
enzyme to transfer glycosyl residues to acceptor bases. It has
potential applications in the synthesis of nucleoside analogs
used in the treatment of antiviral infections and in anticancer
chemotherapy (Martins et al. 2011).

Pyridoxine kinase (HP5-19), which also phosphorylates
pyridoxal (PL) and pyridoxamine (PM) in vitro, functions
solely in the vitamin B6 salvage pathway. InE. coli, it contains
an additional PL kinase associated with biosynthesis of pyri-
doxal 5′-phosphate (Yang and Winkler 1996).

The crystal structure of the Holliday junctionDNA helicase
B (HP5-2) bound to a single E. coli RuvA tetramer at 3.1-Å
resolution has been solved.

Periplasmic-binding proteins (PBPs, HP5-6) are essential
components of bacterial transport systems and are necessary
for bacterial growth and survival (Shi et al. 2009).

The LacI regulator (HP5-17) is involved in the adaptive
response of Streptococcus pneumoniae via its control of com-
petence, adherence, and virulence (Chapuy-Regaud et al. 2003).

No details of oligopeptide permease ABC transporter
membrane protein (HP5-3), hypothetical protein HPS_10240
(HP5-14/HP5-15), or putative solute/DNA competence effec-
tor (HP5-16) are available.

In conclusion, we obtained clear 2-DE and Western blot
profiles of immunogenic proteins from H. parasuis. We iden-
tified 16 immunoreactive proteins, 15 of which are novel in
H. parasuis. These data represent the basis for developing
promising subunit vaccines.
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