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Abstract As one of the most clinically relevant human hab-
itats, the human mouth is colonized by a set of microorgan-
isms, including bacteria, archaea, fungi, and viruses. Increas-
ing evidence has supported that these microbiota contribute to
the two commonest oral diseases of man (dental caries and
periodontal diseases), presenting significant risk factors to
human health conditions, such as tumor, diabetes mellitus,
cardiovascular diseases, bacteremia, preterm birth, and low
birth weight in infants. It is widely accepted that oral micro-
organisms cause diseases mainly by a synergistic or coopera-
tive way, and the interspecies interactions within the oral
community play a crucial role in determining whether oral
microbiota elicit diseases or not. Since a comprehensive un-
derstanding of the complex interspecies interactions within a
community needs the knowledge of its endogenous residents,
a plenty of research have been carried out to explore the oral
microbial diversity. In this review, we focus on the recent
progress in this field, including the oral microbiome compo-
sition and its association with human diseases.

Introduction

Only about 10 % of cells in our bodies are truly from the
human host, and the rest are from human microbiota (Savage
1977; Wilson 2008). These commensal microorganisms help

us resist pathogens, educate immune system, and provide
some traits humans do not originally evolve with the body
(Dethlefsen et al. 2007; Gill et al. 2006; Turnbaugh et al.
2007). For instance, the plant polysaccharides commonly
consumed in the diet are rich in xylan-, pectin-, and
arabinose-containing carbohydrate structures. Although the
human genome lacks most of the enzymes required for
degrading these compounds, the distal gut microbiota pro-
vides us with this capacity (Gill et al. 2006). In fact, the human
genetic landscape is a blend of the human genome and the
metagenome of microorganisms colonizing in/on the human
bodies (Turnbaugh et al. 2007). Therefore, the genetic diver-
sity of humans resides not only in the allele frequencies of
shared Homo sapiens genes but also in the genes within our
microbial communities (Bäckhed et al. 2005; Li et al. 2008).
To fully understand the human genetic and physiological
variations, the composition and structure of human microbiota
in major parts (e.g., mouth, skin, and gut) of the body and their
influencing factors must be characterized (Gill et al. 2006;
Heijtz et al. 2011).

As one of the most clinically relevant microbial habitats,
the oral cavity is colonized by a personalized set of microor-
ganisms, including bacteria, archaea, fungi, and viruses. If the
term “human microbiome” is used to describe the sum of
microbes that live in symbiosis or commensalism with us
and elicit various human diseases under certain conditions
(Lederberg and McCray 2001), the “oral microbiome” is
suitable to refer specifically to the microorganisms inhabiting
the human mouth (Dewhirst et al. 2010). The oral microbiome
not only greatly contributes to the two commonest human oral
diseases (i.e., dental caries and periodontal diseases) but also
has been proven to present a significant risk factor to human
health, such as tumor (Farrell et al. 2011), diabetes mellitus
(Löe 1993), cardiovascular diseases (Figuero et al. 2011),
bacteremia (Bahrani-Mougeot et al. 2008), and preterm birth
and low birth weight in infants (Mitchell-Lewis et al. 2001;
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Offenbacher et al. 2006). It is widely accepted that oral mi-
croorganisms cause diseases mainly by a synergistic or coop-
erative fashion (Darveau 2010; Griffen et al. 2012;
Hajishengallis and Lamont 2012), which means, in addition
to the host immune response, it is the dynamic balance of both
synergistic and antagonistic interspecies interactions rather
than the presence/absence of specific bacteria within the com-
munity that plays a crucial role in determining whether dis-
eases occur or not (Kleinberg 2002; Marsh 2005; Medzhitov
2007; Socransky et al. 1998). Since a comprehensive under-
standing of the microbial interspecies interactions of a given
community requires the full knowledge of its endogenous
residents, a slew of investigations have been carried out to
explore the microbial diversity, composition, and structure of
oral microbial communities. For a long time, this research
field has been impeded by the intrinsic limitation of the
conventional culture-dependent methods. However, more
than 50 % of the oral microorganisms are unable to be culti-
vated (Paster et al. 2006); culture-independent methods, such
as reverse-capture checkerboard hybridization (Mager et al.
2003), fluorescence in situ hybridization (Gersdorf et al.
1993), terminal restriction fragment length polymorphism
(Takeshita et al. 2008), denaturing/thermal gradient gel elec-
trophoresis (Alves et al. 2009), microarrays (Lif Holgerson
et al. 2011), and 16S rRNA clone library analysis (Aas et al.
2005), have be used to refine and redefine the knowledge of
the microbial diversity in the different oral sites, substantially
expanding the list of candidate pathogens associated with oral
diseases. More importantly, in this decade, high-throughput
DNA sequencing technologies, such as 454 pyrosequencing
(RocheApplied Science, Basel, Switzerland), Illumina/Solexa
Genome Analyzer (Illumina, San Diego, CA, USA), and
SOLiD (Applied Biosystems, Foster City, CA, USA), have
been used, dramatically increasing the resolution at which
microbial communities can be analyzed. Here, we describe
the recent progress in the field of oral microbiome. Since the
majority of the research is concentrated on the domain Bacte-
ria, we first discuss the bacterial diversity in different oral
niches under health and disease conditions and the evidence
confirming relationships between oral bacterial community
shifts and some systemic diseases and health risk conditions,
and then, a brief introduction of oral viruses, fungi, and
archaea and their relationships with human health and diseases
is presented.

Oral bacterial microbiome

Over 700 bacterial species have been identified by culture-
independent approaches in the human mouth, and more than
250 have been isolated, cultivated, and named (Paster et al.
2006). Undoubtedly, more novel species are expected to be
identified (Belda-Ferre et al. 2012; Bik et al. 2010; Griffen

et al. 2012; Keijser et al. 2008). Two types of surfaces are
available in the human mouth for microbial colonization,
including shedding (mucosa), and solid surfaces (teeth). In
addition, microflora attaching to surfaces continuously shed
into the saliva, making salivarymicrobiota the “fingerprint” of
the oral microbiome inhabiting in the oral surface (Fábián
et al. 2008). Since it has been well established that microor-
ganisms colonizing the oral cavity display significant tropism
for different inhabiting environments (Mager et al. 2003), we
discuss the microbial composition of saliva, biofilms formed
on the tooth surface, and mucosa separately.

Saliva

Each milliliter of saliva contains an average of 1.4×108 CFU
bacteria, most of which belong to one of seven major phyla:
Actinobacteria, Bacteroides, Firmicutes, Fusobacteria,
Proteobacteria, Spirochaetes, and TM7 (The Human
Microbiome Consortium 2012; Zaura et al. 2009). Although
members of the population shared similar salivary organisms
(The HumanMicrobiome Consortium 2012), there is an inter-
individual difference in the salivary composition, although it
is stable within a certain period for a given individual within a
certain time frame (Lazarevic et al. 2010). However, salivary
microbes do not show obvious geographical distribution char-
acteristics, that is, the microbial composition does not indicate
any strong influence of geography (Nasidze et al. 2009). The
salivary microbiota may be used as biomarkers of disease
diagnosis. For example, patients with dental caries (Yang
et al. 2011a), periodontitis (Sakamoto et al. 2000), oral squa-
mous cell carcinoma (Pushalkar et al. 2011), and pancreatic
cancer (Farrell et al. 2011) show a different salivary bacterial
composition and/or distribution from healthy populations.

Dental plaque

Dental plaque is a kind of biofilm building on the tooth
surfaces (Yang et al. 2011b). It could be classified into two
categories according to the location: supragingival dental
plaque above the gingival margin and subgingival plaque
below the gingival margin (Filoche et al. 2010). The
supragingival plaque of healthy populations contains a rich
variety of bacteria. Approximately 6,888 bacterial taxa in the
supragingival ecology of 98 healthy adult subjects were iden-
tified with Firmicutes and Actinobacteria as the dominant
groups (Keijser et al. 2008). The composition of supragingival
plaque on the dental surfaces varies with the balance between
health and disease conditions. Taking the development of
dental caries as an example, the microbial composition of
plaque on the surface of healthy enamel, white spot, and caries
cavity was significantly different, and as caries progressed, the
microbial diversity gradually decreased and dominant bacteria
changed (Aas et al. 2008; Gross et al. 2010). Similar results
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were obtained from studies on root surfaces (Preza et al.
2008). The subgingival plaque is closely associated with the
periodontal destruction. Microbiological studies of this niche
mainly focus on changes during the development of periodon-
tal diseases, which are described in the section “Periodontal
diseases” of this review.

Oral mucosa

Compared with other oral niches, the microbes colonizing the
oral mucosa are relatively limited. The tongue has attracted
great attention due to its colonization by microbes associated
with halitosis (i.e., unpleasant odor exhaled in breathing). The
tongue dorsum of healthy populations is colonized by large
amounts of Streptococcus salivarius, Rothia mucilaginosa,
and an uncharacterized cultivable species of Eubacterium
strain FTB41 (Kazor et al. 2003).

Oral bacteria related to oral diseases

Dental caries

Dental caries is one of the most prevalent oral diseases, and
humans are susceptible to it during the whole life (Selwitz
et al. 2007). Dental caries not only leads to tooth destruction
but also causes pulp and periapical infection (Balakrishnan
et al. 2000). When investigating the microbial diversity of
dental caries, specimens are usually collected from
supragingival plaque, saliva, and infected dentin of children
with severe early childhood caries (S-ECC), caries-active
adult patients, and elders suffering from root caries.

S-ECC is a kind of rampant caries involving multiple
primary teeth, especially the maxillary anterior teeth (Drury
et al. 1999). Streptococcus mutans has been studied intensive-
ly for its cariogenic properties and has even been regarded as a
specific pathogen of caries. However, other bacteria, including
species of Streptococcus, Veillonella, Actinomyces,
Granulicatella, Leptotrichia, Thiomonas, Bifidobacterium,
and Prevotella were also detected at higher frequencies in
the plaque of children with S-ECC than that of caries-free
children, and these bacteria are believed to be S-ECC associ-
ated (Becker et al. 2002; Kanasi et al. 2010; Ling et al. 2010;
Tanner et al. 2011). Follow-up observation of S-ECC patients
who underwent systemic treatments showed that children
affected with S-ECC again had higher abundance of
Prevotella nigrescens and Capnocytophaga in pre-treatment
plaque compared with relapse-free patients (Tanner et al.
2011). In addition, if S-ECC is effectively controlled, the
percentage of S. mutans in supragingival dental plaque would
be reduced (Tanner et al. 2011).

The genera Streptococcus, Lactobacillus, Actinomycetes,
Propionibacterium, and Veillonella were also detected with a
high relative abundance in the plaque of caries-active adults
(Belda-Ferre et al. 2012). In addition, Prevotella species in-
cluding Prevotella sp., Prevotella histicola, and Prevotella
shahii were not similarly distributed between healthy and
caries-active hosts (Yang et al. 2011a). More significantly,
genes related to acid production, DNA uptake, and stress
responses were highly expressed in the plaque of caries-
active patients (Belda-Ferre et al. 2012).

Root caries (RC) often occurs in elders with gingival
r e c e s s i on . The gene r a Atopob ium , Olsene l l a ,
Pseudoramibacter, Propionibacterium, and Selenomonas
were found to be involved in the occurrence and development
of root caries (Preza et al. 2008). A large number of
Lactobacillus were detected in the biofilms formed on the
healthy root surface of RC patients; however, no
Lactobacillus were found in plaques formed on the root
surface of caries-free populations (Preza et al. 2008, 2009).

From the clinical perspective, dental caries can be mani-
fested as white spot with intact tooth structure and cavity.
During the development of dental caries, microbial composi-
tion undergoes dynamic changes: the microbial diversity grad-
ually decreases in the order of plaque from healthy enamel
surfaces, white spot, plaque from cavity surfaces, and infected
dentin (Gross et al. 2010). The predominant bacteria also
changes during the progression, gradually transitioning from
non-S. mutans, Streptococci, and Actinomycetes to S. mutans,
Lactobacillus, and Bifidobacterium (Takahashi and Nyvad
2011). Interestingly, even at the same caries developmental
stages, predominant bacteria vary between primary and per-
manent dentition. For example, the dominant bacteria in the
white spot of both primary and permanent teeth are
S. salivarius and Streptococcus parasanguis, whereas the
bacteria most frequently detected from cavity surfaces are
S. salivarius, S. parasanguis, Corynebacterium, and Actino-
myces gerencseriae in primary dentition and S. salivarius,
S. parasanguis, Campylobacter, and Selenomonas in perma-
nent dentition. Furthermore, infected dentin contains a large
number of acid-producing bacteria, such as S. mutans,
Lactobacillus, and Propionibacterium (Aas et al. 2008).

Periapical infection

Periapical periodontitis is an infectious disease occurring on
the tooth periapical tissue and it is the result of the interaction
between the microbial community and the host immune re-
sponse (José 2002; Siqueira and Rôças 2009a, b).

As demonstrated above, microbial colonization in the root
canal system is the major pathogenic factor of periapical
periodontitis (Siqueira 2011). A long ago, researchers found
that root periapical infection was a multi-bacterial infection,
by using culture-dependent technologies (Byström et al. 1987;
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Fabricious et al. 1982), which has been confirmed by studies
with culture-independent molecular methods (Siqueira and
Rôças 2009a, b). The most represented, abundant, and prev-
alent phyla in infected root canal were Proteobacteria,
Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria
at the phylum level (Siqueira 2011) and Olsenella uli,
Prevotella baroniae, Porphyromonas endodontalis,
Fusobacterium nucleatum, and Tannerella forsythia at the
species level (Rôças et al. 2010). There are inter-individual
variations in the microbial spectrum of infected root canals,
that is, the microbial communities in infected root canals of
different individuals are not exactly the same (Machado de
Oliveira et al. 2007; Santos et al. 2011; Siqueira et al. 2008;
Siqueira 2011). The microbial communities associated with
root canal infection also differ according to the location of the
affected tooth (Alves et al. 2009; Rôças et al. 2010). Even
within a single infected root canal, the microbial composition
in the apical and coronal regions differs: the former typically
has a higher level of microbial diversity than the latter (Özok
et al. 2012), and the dominant microbes are different (the
apical area mainly contains obligate anaerobes) (Siqueira
and Rôças 2005).

Although most of the periapical periodontitis can be con-
trolled with root canal therapy, in some cases, the infection
could be persistent or the filled canal could be re-infected. By
using PCR-DGGE, Chugal et al. (2011) compared the micro-
biota residing at the apical portion of primary infected canals
and root canals with failed treatments and found that the apical
bacterial communities in primary infections were significantly
more diverse, and different roots of the same teeth with
primary infections contained almost identical bacterial com-
position while an equivalent sample collected from unsuccess-
fully treated tooth displayed low similarity.

In a small proportion of cases, bacteria colonized in the root
canals could also develop communities on root surfaces out-
side the apical foramen and cause extraradicular infections,
which is associated with refractory periapical periodontitis.
Bacterial taxa detected in extraradicular infections belong to
six phyla (Siqueira and Rôças 2009b). Species reported in-
clude Propionibacterium propionicum, Porphyromonas
gingivalis, Prevotella intermedia, Prevotella oralis,
Parvimonas micra, P. endodontalis, F. nucleatum, and
T. forsythia (Noguchi et al. 2005; Siqueira and Rôças 2009b;
Su et al. 2010).

The extensive application of molecular methods has not
only dramatically increased the amount of available informa-
tion related to root canal infection but has also, to some extent,
led to changes in our understanding of the etiology of root
canal infection (Siqueira and Rôças 2009a). For a long time,
some Gram-negative bacteria were believed to be associated
with specific symptoms of periapical periodontitis (Gomes
et al. 1994). Because these Gram-negative bacteria were de-
tected at similar frequencies in infected root canals without

symptoms (Baumgartner et al. 1999; Rôças and Siqueira
2008; Siqueira et al. 2000), the overall structure of the micro-
bial community are supposed to be closely associated with the
symptoms instead (Sakamoto et al. 2006; Siqueira et al. 2004).
For example, a much more diverse root canal microbial com-
munity was observed among periapical periodontitis patients
with acute infection symptoms than these without clinic
symptoms (Santos et al. 2011).

Periodontal diseases

Gingivitis is an inflammation limited in the gingiva. It is
believed to result from the accumulation of plaque and the
associated interactions between bacteria in dental plaque and
gingival tissues (Moore et al. 1987). With the development of
gingivitis, the dominant bacteria in subgingival plaque grad-
ually shift from Streptococcus to Actinomycetes ,
Capnocytophaga, Campylobacter, Eikenella, Fusobacterium,
and Prevotella (Zaura et al. 2009). Besides, the saliva
microbiome of people with and without gingivitis showed
significant differences (Huang et al. 2011).

Periodontitis is also a chronic inflammatory disease of the
tooth-supporting tissues and the leading cause of tooth loss
worldwide (Pihlstrom et al. 2005). Compared with gingivitis,
it causes not only the progressive destruction of the gum but
also periodontal membrane and alveolar bone. In contrast to
previous results obtained using bacterial cultures, studies with
methods based on 16S rRNA gene PCR/cloning/sequencing
techniques have demonstrated that most dominant bacteria in
sites affected by periodontitis are not Gram-negative species
(Wade 2011). The reasons for the different findings might be
that staining characteristics of Gram-positive anaerobic bacte-
ria colonizing the subgingival plaque could vary and that
excessively long periods of culture could also lead to negative
gram staining (Kononen and Wade 2007). Another factor is
that the culture technique has bias, and it only detects what is
specific for the culturing conditions.

The subgingival microbial composition in patients with
periodontitis undergoes extremely complex changes. More
than 400 phenotypes have been detected from periodontal
pockets (Wade 2011). Griffen et al. (2012) found that the
relative abundances of 123 phenotypes in the subgingival
plaque microbiome were increased in periodontitis, whereas
the abundances of 53 others decreased. In addition to
P. gingivalis, Treponema denticola, and T. forsythia, bacteria
including Bacteroidetes species, Eubacterium saphenum,
P. endodontalis, Prevotella denticola, Parvimonas micra,
Peptostreptococcus species, Filifactor alocis, Desulfobulbus
species, Dialister species, and Synergistetes species are close-
ly related to periodontitis (Dahlén and Leonhardt 2006;
Kumar et al. 2003, 2005; Paster et al. 2006). Streptococcus,
Veillonella, Abiotrophia, Campylobacter, Capnocytophaga,
Gemella, and Neisseria are considered as beneficial bacteria
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(Kumar et al. 2005). Recently, a study focusing on microor-
ganisms associated with aggressive periodontitis yielded sur-
prising results: Selenomonas was the dominant microbiota in
s ubg i ng i v a l p l a qu e whe r e a s Agg rega t i b a c t e r
actinomycetemcomitans, which was formerly believed to be
closely associated with this disease (Schacher et al. 2007), was
not detected (Faveri et al. 2008). However, this finding should
be taken with caut ious : one poss ib i l i ty is tha t
A. actinomycetemcomitans is not present in aggressive peri-
odontitis samples, and another possibility is that
A. actinomycetemcomitans is below the detection of 16S
rRNA gene clones. The subgingival plaque of refractory peri-
odontitis patients contains a greater number of Parvimonas
micra, Campylobacter gracilis, Eubacterium nodatum,
Selenomonas noxia, T. forsythia, P. gingivalis, Prevotella
species, Treponema species, and Eikenella corrodens com-
pared to healthy subjects (Colombo et al. 2012, 2009).

As an important risk factor for periodontitis, smoking could
affect the subgingival microbiota composition. In the
subgingival environment, greater abundances of species be-
longing to Bacteroides, Campylobacter, Fusobacterium,
Parvimonas, and Porphyromonas, and lower abundances of
Veillonella, Neisseria, and Streptococcus have been detected
in smokers with periodontitis than in never smokers
(Shchipkova et al. 2010). Moreover, tobacco smoking also
causes changes in the symbiotic and commensalistic relation-
ships among the subgingival microbes. For example, never-
smoking patients with high levels of Streptococci exhibited
low levels Parvimonaswhile current smokers with high levels
of Streptococci demonstrated high levels of Parvimonas
(Shchipkova et al. 2010). Also, recent evidence suggests that
Streptococci play an essential role in preventing colonization
of periodontal ecology by pathogens (Stingu et al. 2008; Van
Hoogmoed et al. 2008). It is possible that the protective
function of Streptococci is impaired by tobacco, leading to a
co-colonization pattern alteration. In addition, smoking cessa-
tion results in a decrease in the prevalence of P. endodontalis
and Dialister pneumosintes and in the relative abundances of
Parvimonas micra, Filifactor alocis, and Treponema
denticola (Delima et al. 2010). An increase in the proportion
of beneficial bacteria Veillonella parvula was also observed
after quitting tobacco (Delima et al. 2010).

Halitosis

Halitosis (oral malodor) refers to unpleasant odor exhaled in
breathing; it can be classified into intra-oral halitosis and
extra-oral halitosis (Murata et al. 2002). Volatile sulfur com-
pounds and malodorous fatty acids produced from the decom-
position of sulfur-containing amino acids, peptides, and pro-
teins by oral bacteria are considered to be the direct cause of
intra-oral halitosis (Murata et al. 2002).

It has been gradually recognized that bacteria on the tongue
dorsum, especially the posterior dorsum, are the main factor
leading to intra-oral halitosis in people with complete denti-
tion and healthy periodontal tissues (Allaker et al. 2008; Porter
and Scully 2006). There are differences in the microbial
diversity of the tongue dorsum between patients with intra-
oral halitosis and healthy controls. The dominant bacteria
found in the tongue dorsum of patients with intra-oral halitosis
include Solobacterium moorei, Atopobium parvulum, and
Eubacterium sulci , whereas S. salivarius , Rothia
mucilaginosa, and an uncharacterized cultivable Eubacterium
species are abundant in healthy controls (Kazor et al. 2003). It
was also shown that Solobacterium moorei was only found in
specimens from patients with halitosis (Haraszthy et al. 2007);
these bacteria were once called the “arch-criminal of halito-
sis.” The oral distributions of S. salivarius in patients with
halitosis and in healthy populations remain controversial. For
example, Kazor et al. (2003) suggested that S. salivarius was
the most dominant species on the tongue dorsum of healthy
controls and was relatively rare or even absent on the tongue
dorsum of halitosis patients. In contrast, Riggio et al. (2008)
found that it was the dominant species in both halitosis pa-
tients and healthy persons with the same method (i.e., 16S
rRNA gene cloning). Until today, there are still researchers
who believe that S. salivarius represents as a benign commen-
sal probiotic for the reduction of oral malodor (Masdea et al.
2012).

Oral bacteria and systemic diseases

Tumor

A tumor is a mass of tissue as a result of abnormal growth or
division of cells (Cooper 1992). Microbe-induced inflamma-
tion is involved in 15–20 % of human tumors (Allavena et al.
2008). Researches in this area have focused on the correlation
between the microbiome and tumor occurrence, microbiome
shifts in cancer patients, the feasibility of identifying early
diagnostic markers from the microbiome, and the effects of
tumor treatments on the microbiome (Meurman 2010).

Oral squamous cell carcinoma (OSCC) is the most com-
mon malignant tumor in the oral cavity (Bagan et al. 2010).
Levels of Capnocytophaga gingivalis , Prevotella
melaninogenica, and Streptococcus mitis in the saliva of pa-
tients with OSCC significantly increased (Mager et al. 2005),
and the salivary microbiomes of cancer patients were more
similar to each other than the microbiomes of individuals in
healthy populations (Pushalkar et al. 2011). The OSCC sur-
face biofilm harbors increased aerobes and anaerobes, includ-
ing Veillonella, Fusobacterium, Prevotella, Porphyromonas,
Actinomyces,Clostridium,Haemophilus, Enterobacteriaceae,
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and Streptococcus species (Nagy et al. 1998). In addition,
bacteria could be detected within the OSCC tissues. Hooper
et al. (2007) found 52 different bacterial phylotypes from
tumorous tissues, and the majority of species were
saccharolytic and aciduric, including Proteobacteria,
Fusobacterium, Streptococcus, Prevotella, and Veillonella,
which is consistent with a previous study indicating the acidic
and hypoxic microenvironment within tumor tissues
(Raghunand et al. 2003).

The oral microbiome is also involved in or affected by
tumors of distant organs (Ahn et al. 2012; Farrell et al.
2011). For example, the proportions of S. mitis and Neisseria
elongata in the salivary microbiome were significantly lower
in patients with pancreatic cancer than in healthy people
(Farrell et al. 2011). As the authors discussed, the cross-
sectional nature of this study has not enabled us to understand
the mechanisms or the association, and whether these two
types of bacteria can be called markers for early diagnosis of
pancreatic cancer has yet to be investigated.

Surgery, radiotherapy, and chemotherapy are three primary
approaches to cancer treatments. The changes of oral
microbiome undergoing chemoradiotherapy have been con-
firmed by many approaches, including high-throughput se-
quencing (Hu et al. 2013; Meurman 2010; Napeñas et al.
2010; Shao et al. 2011; Xu et al. 2014). These studies sug-
gested a shift to a more complex oral bacterial profile in
patients undergoing cancer chemotherapy by a host-specific
manner.

Diabetes mellitus

Diabetes mellitus (DM) is a clinical syndrome characterized
by hyperglycemia due to a deficiency in the secretion of
insulin and/or reduced insulin action (Alberti and Zimmet
1998). There are two main types: type 1 DM resulting from
the body’s failure to produce insulin and type 2 DM resulting
from insulin resistance. Both type 1 and type 2 DM show a
three- to four-fold increased risk of periodontitis which is
regarded as the sixth complication of DM (Löe 1993).

Some studies have explored the composition of
subgingival dental plaque in diabetics compared with non-
diabetics; however, no agreement has been reached regarding
the effect of DM on periodontal subgingival microbiota.
Hintao et al. (2007) found increased frequency of Treponema
denticola, Streptococcus sanguinis, Prevotella nigrescens,
Staphylococcus intermedius, and Streptococcus oralis in the
supragingival plaque of type 2 diabetics compared with non-
diabetics while no significant differences were found in
subgingival plaque samples. Similar subgingival infection
patterns were also observed between type 1 diabetics and
non-diabetics after controlling of the periodontal severity
(Lalla et al. 2006). In contrast, Ebersole et al. (2008) demon-
strated that the periodontitis sites in type 1 DM patients

s howed a h i gh e r f r e qu en cy o f P. g i ng i v a l i s ,
A. actinomycetemcomitans, and Campylobacter spp. A higher
prevalence of P. gingivalis, Candida spp. (mainly Candida
albicans and Candida dubliniensis), as well as a lower fre-
quency of T. forsythia was also demonstrated in type 2 dia-
betics (Campus et al. 2005; Sardi et al. 2011). In a much more
recent study using 16S rRNA gene sequencing, significant
differences were observed in subgingival microbiota between
type-2 DM and non-diabetic subjects: diabetic subjects pre-
sented higher abundance of total clones of TM7,
Aggregatibacter, Neisseria, Actinomyces, Capnocytophaga,
Gemella, Eikenella, Selenomonas, Fusobacterium,
Veillonella, and Streptococcus and lower percentages of
Synergistetes, Tannerella, Porphyromonas, Filifactor,
Eubacterium, and Treponemas; moreover, some species, such
as F. nucleatum, V. parvula, Veillonella dispar, and
E. corrodens were detected significantly more often in dia-
betics (Casarin et al. 2013). Considering the elevated glucose
content in subgingival microenvironment and altered or im-
peded immune responses of hosts (Ohlrich et al. 2010), there
may indeed be differences in the subgingival microbiome in
diabetic patients compared with non-diabetics.

Cardiovascular disease

Cardiovascular diseases are a set of diseases that include
congestive heart failure, cardiac arrhythmias, valvular heart
disease, and stroke and coronary artery disease (including
atherosclerosis and myocardial infarction) (Ross 1999).

Atherosclerosis, a major component of cardiovascular dis-
eases, is a condition caused by abnormal lipid metabolism and
neurovascular dysfunction, in which yellow substances con-
taining cholesterol and fat appear in the intima of large and
medium arteries, often leading to thrombosis and ischemia
(Ross 1999). Oral microbiota, including Streptococcus,
Veillonella, P. gingivalis, F. nucleatum, T. forsythia, and
Neisseriawere detected from atherosclerotic plaques (Figuero
et al. 2011; Ford et al. 2005; Koren et al. 2011; Pucar et al.
2007). The levels of Fusobacterium, Streptococcus, and
Neisseria were found to be related to the risk factors for the
disease, such as the plasma cholesterol level (Koren et al.
2011). These findings also indirectly support one of the path-
ogenic models of cardiovascular disease, namely, the infection
model (the bacteria invade the bloodstream and subsequently
get into the endothelium, resulting in endothelial dysfunction,
inflammation, and atherosclerosis) (Seymour et al. 2007).

The atherosclerotic plaque rupture participating in throm-
bus formation and chronic inflammation may cause plaque
instability (Libby et al. 2002). Chiu (1999) found P. gingivalis
and S. sanguinis in unstable atherosclerotic plaques, and Ohki
et al. (2012) detectedA. actinomycetemcomitans,P. gingivalis,
and Treponema denticola in thrombi of patients with acute
myocardial infarction by PCR. These studies not only
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confirmed the presence of oral bacteria but also suggested that
oral microbiota might have a role in plaque inflammation and
instability.

Bacteremia

Bacteremia is an invasion of the bloodstream by bacteria.
Invasive dental manipulation (tooth extraction for instance),
as well as daily oral hygiene activities (brushing the teeth for
example), can produce bacteremia (Poveda-Roda et al. 2008).
According to the study of Bahrani-Mougeot et al. (2008), the
most predominant species in the blood of following dental
procedures were Streptococcus spp., followed by
Peptostreptococcus micros, Veillonella dispar or V. parvula,
and D. pneumosintes. Another research also confirmed that
the most predominant Streptococcus species were S. mitis,
S. oralis, and S. sanguinis (Forner et al. 2006). Although
majority of such bacteremia is transient, it might also be a risk
factor of distant site infections. For example, oral strepto-
cocci’s ability to aggregate platelets is a potential pathogenic
factor in the development of endocarditis and formation of
thrombi (Herzberg and Meyer 1996). A relationship has been
reported between bacteremia caused by tooth brushing and the
risk of cardiovascular diseases (Roberts 1999).

Other systemic diseases

The application of molecular biological methods continues to
expand our understanding of the relationship between oral
microorganisms and systemic diseases. For example,
Docktor et al. (2012) utilized the human oral microbiome chip
to reveal that tonguemicrobial diversity was lower in pediatric
patients with Crohn’s disease than in healthy children and to
show that changes in Fusobacteria and Firmicutes were
among the most significant. Han et al. (2010) identified
F. nucleatum with an oral origin in the uteri of miscarried
women and preterm birth and low birth weight has been
associated with high levels of T. forsythia, Campylobacter
rectus, Prevotella intermedia, Prevotella nigrescens, and
P. gingivalis (Mitchell-Lewis et al. 2001; Offenbacher et al.
2006). Goodson et al. (2009) even proposed that oral micro-
organisms might be involved in obesity.

Oral fungal, viral, and archaeal microbiome

Oral fungal microbiome

Fungi comprise a minor component of the oral microbiome,
and they are collectively named oral fungal microbiome or
mycobiome (Ghannoum et al. 2010). In a recent study aiming
to obtain a comprehensive profile of the oral mycobiome,

researchers identified 74 cultivable and 11 uncultivable fungal
genera from oral rinse of 20 healthy individuals with pyrose-
quencing (Ghannoum et al. 2010). It was also found that each
individual carried 9~23 fungal species, and the detection rate
of Candida in the subjects was the highest, followed by
Cladosporium, Aureobasidium, Saccharomyces, Aspergillus,
Fusarium, and Cryptococcus (Ghannoum et al. 2010). The
composition of fungal microbiome is, to some extent, associ-
ated with gender and race; it differs between white males and
Asian males, but it is similar between white females and Asian
females (Ghannoum et al. 2010).

Candida are the most frequently detected oral fungi
(Ghannoum et al. 2010). The most common Candida species
is C. albicans and less common species include Candida
glabrata, Candida parapsilosis, Candida tropicalis, Candida
krusei , Candida stellatoidea , Candida kefyr, and
C. dubliniensis (Krishnan 2012). The frequency, intensity,
species, and strains of oral Candida varied with age
(Kleinegger et al. 1996), and the frequency of C. albicans
decreased with increasing age (Qi et al. 2005). More interest-
ingly, elders with high Candida load harbored a lower diverse
salivary microbiome and had a distinct microbial composition
toward dominance by Streptococci (Kraneveld et al. 2012).
Candidiasis is the commonest infection caused by Candida
(Cannon et al. 1995). In addition, this genus is considered to
be involved in some other oral diseases. Recent evidence
implies that the occurrence of caries in children was positively
correlated with the frequency of oral candidal carriage (Raja
et al. 2010; Yang et al. 2012), and that C. albicans is able to
cause occlusal caries in rats at a high rate (Klinke et al. 2011),
indicating the role of Candida in the cariogenic development.
Actually, in vitro studies have proven that S. mutans could
enhance the adherence of C. albicans and excrete lactate as a
carbon source for yeast growth while the growth of yeast
reduces oxygen tension to levels preferred by streptococci
and provide growth stimulatory factors for the bacteria
(Brogden and Guthmiller 2008; Metwalli et al. 2013). More-
over, Candida was also detected in periodontal pockets and
C. albicans was observed to be highly associated with the
severity of chronic periodontitis (Canabarro et al. 2013). Al-
though still in its infancy, the research thus far strongly war-
rants that investigations on the microbiology of periodontitis
should include yeasts.

Oral virome

The virome is the collective of viruses that populate an organ-
ism or ecosystem at any given time (Haynes and Rohwer
2011). The oral virome contains a range of viruses, the vast
majority of which present homology with bacteriophages and
their presence may be closely related to oral microbial diver-
sity (Pride et al. 2012; Robles-Sikisaka et al. 2013). Compar-
isons of the salivary virome with respiratory and gut virome
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revealed that the habitat is an important selection factor for the
human virome composition (Pride et al. 2012). The living
environment of hosts has a role in shaping oral viral ecology,
as demonstrated by Robles-Sikisaka et al. (2013) that a sig-
nificantly greater fraction of shared viral homologous reads
were observed among subjects from the same family than
those from separate households.

Oral virome is primarily disease-associated, such as herpes
simplex virus (pathogen of herpetic gingiva-stomatitis and
herpes labialis), varicella zoster virus (pathogen of herpes
zoster), and human papilloma virus (pathogen of papillomas)
(Kumaraswamy and Vidhya 2011; Whitley and Roizman
2001). Herpes virus, including human cytomegalovirus
(HCMV), Epstein–Barr virus (EBV) type 1–2, herpes simplex
virus (HSV) type 1, and human herpes virus types 6–8, could
also be detected in periodontal pockets of patients with chron-
ic periodontitis (Imbronito et al. 2008), localized and general-
ized juvenile periodontitis (Imbronito et al. 2008), Papillon–
Lefèvre syndrome periodontitis (Velazco et al. 1999), Down’s
syndrome periodontitis (Hanookai et al. 2000), HIV-
associated periodontitis (Contreras et al. 2001), and acute
necrotizing ulcerative gingivitis (Contreras et al. 1997). More-
over, EBV-1 and HCMV are positively associated with the
subgingival presence of some periodontal pathogens
(Contreras et al. 1999) and the severity of periodontitis (Ling
et al. 2004; Saygun et al. 2002). So, some oral microbiologists
postulate that virus might play an important role in the path-
ogenesis of human periodontitis (Kubar et al. 2005; Saygun
et al. 2002; Slots 2010) and herpesviruses may promote the
process of periodontitis through releasing tissue-destructive
cytokines, initiating cytotoxic or immunopathogenic event
and boosting pathogenic periodontal bacteria growth (Slots
and Contreras 2000). However, the role of oral virus in the
periodontal pathogenesis is under debate. For instance, al-
though an obvious association of the viruses with clinical
samples was observed, Sunde et al. (2008) still believed that
their presence might reflect that clinical samples contain more
saliva or blood compared to healthy controls or an accumula-
tion of lymphoid cells harboring virus in the inflamed tissue.

Oral archaeal microbiome

The Archaea are non-bacterial prokaryotes, and they are re-
stricted to a small number of species/phylotypes. Human
Archaea are mainly found in the gut and the oral cavity,
majority of which are methanogens with few exceptions
(Dridi et al. 2011). The diversity of oral Archaea is limited
compared to bacteria domain and the reported oral Archaea
include the genera Thermoplasmatales, Methanobrevibacter,
Methanobacterium, Methanosarcina, and Methanosphaera
(Dridi et al. 2011; Eckburg et al. 2003; Lepp et al. 2004;
Nguyen-Hieu et al. 2013).

Studies have primarily focused on the role of oral Archaea
in periodontal disease (Lepp et al. 2004; Li et al. 2009;
Matarazzo et al. 2012; Vianna et al. 2008) and endodontic
infections (Jiang et al. 2009; Vianna et al. 2006, 2009;
Vickerman et al. 2007). These reports demonstrated a higher
detection frequency of Archaea was observed in the infected
population. The relative abundance of Archaea in subgingival
plaque increased as the severity of chronic periodontitis in-
creased (Lepp et al. 2004), and treated periodontitis sites
showed a decrease in Archaeawhen the treatment was follow-
ed by improvement of lesions (Lepp et al. 2004; Lira et al.
2013). Although methanogenic archaea could promote peri-
odontal tissue destruction, the archaea are not involved in the
initiation of periodontal infection (Farrell et al. 2011). Further-
more, the presence of Archaea in infected root canal might be
associated with clinical symptoms (Jiang et al. 2009). Re-
search on Archaea has begun to extend to other oral infectious
diseases, such as peri-implantitis (Faveri et al. 2011) and peri-
coronitis (Mansfield et al. 2012). However, the role of
Archaea in oral pathologies remains controversial and further
studies are required to explore the potential mechanisms of
these microorganisms (Nguyen-Hieu et al. 2013).

Conclusions

Although we can only partially annotate a portion of the
completely sequenced oral microbiome, the vast amounts of
data present an encrypted book available to researchers inter-
ested in the oral microbiome. Interpretation of the coded
information within this encrypted book is sure to encourage
and facilitate the investigation of microbial pathogenic mech-
anisms, drug development, and the identification of new di-
agnostic markers.
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