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ABSTRACT.  This review surveys whatever little is known on the influence of different environmental fac-
tors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, 
biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, 
animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, 
-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and 
on the role of vegetative cells in tolerating environmental stress is also incorporated. 
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1 INTRODUCTION 

Algal spores are cells that can independently reproduce an individual of the given species. They may 
either be asexual (zoospores, akinetes, cysts, etc.) or sexual (zygospores, oospores, zygotic cysts, etc.). SG is 
initiated either by (i) lack of motility of motile spores, (ii) rejuvenation, (iii) change in color, or (iv) cracking 
of the thick cell wall of the dormant spore, and is completed with the emergence of a germling from the spore. 
SG is supposed to be influenced by a range of environmental factors, but much less is known on the GRM of 
algal spores than on bacterial or fungal spores. The goal of this review paper is to incorporate all the avail-
able and relevant information on the influence of different environmental factors such as light, temperature, 
inorganic nutrients, chemicals (plants hormones, vitamins, etc.), pH of the medium, biotic factors (algal extra-
cellular products, algal density, bacterial extracellular substances, animal grazing and extracelluar products), 
pH of the medium, water movement, water stress, antibiotics, UV light, X-rays, -rays and pollution on the 
SG. This review also deals with the dormancy of algal spores, and the role of vegetative cells of algae in the 
tolerance to environmental stress. By knowing the influence of different environmental factors on the SG, 
one can better understand the life cycle and ecology of algae. The spores and/or germlings represent critical 
stages in the life cycles and mass-development of algae. The SG (and not the growth) appeared to be the 
eco-physiological bottleneck for initiating mass-development of algae. 

2 LIGHT 

Most of algal spores need light to germinate, but some spores can germinate even in darkness 
(Table I; p. 284), but SG percentage was always higher in light than in darkness). In Anabaena cylindrica 
and A. variabilis, akinete GRM was impaired when photosynthetic electron transport was blocked by DCMU 
(Yamamoto 1976; Braune 1979). Blue-green algal akinetes usually contain a high amount of phycocyanin 
and glycogen (Sutherland et al. 1979) serving respectively as N- and C-source during akinete GRM (Suther-
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land et al. 1985). Akinetes of Nostoc punctiforme (Harder 1917a,b) and Anabaena circinalis (Van Dok and 
Hart 1997) can germinate in the dark in the presence of suitable organic carbon acting as a source of energy. 
Akinetes of Pithophora oedogonia stored in the dark (than in the light) for 1½ year exhibited a complete 
failure of GRM (Chaudhary and Singh 1987). Spores of Enteromorpha flexuosa incubated in the dark dis-
played a linear decrease in the GRM rate coupled with a linear increase in the effective period of GRM (Kol-
walkar et al. 2007). GRM of resting spores of Aulacoseira skvortzowii occurred when they were placed in 
the new medium, with stored reserves sufficient to complete 2–3 divisions even in the dark (Jewson et al. 
2008). The largest recruitment of Ceratium hirundinella cysts occurred in profundal zone of water body 
(Rengefors and Anderson 1998; Rengefors et al. 2004). 

In most of the members of Nostocaceae a definite relationship exists between the time period that 
elapses before akinete GRM start and the quantity of light that was available (Harder 1917a,b). A minimum 
light intensity of 0.5 mol m–2 s–1 was required to initiate akinete GRM in Nodularia spumigena (Hüber 
1985), 6 mol m–2 s–1 for akinete GRM in Anabaena iyengarii, Westiellopsis prolifica, and Nostochopsis lo-
batus (Agrawal and Singh 2000), and 12 mol m–2 s–1 for SG in Aulacoseira skvortzowii (Jewson et al. 
2008). An increase in light intensity shortens the lag period of SG and increases the percentage GRM of 
spores, e.g., akinete GRM in Anabaena cylindrica was favored by an increase in light intensity of  2–60 mol 
m–2 s–1 (Yamamoto 1976), that in Stigeoclonium pascheri by 5–70 mol m–2 s–1 (Agrawal 1984), that in 
Pithophora oedogonia by 10–30 mol m–2 s–1 (Agrawal 1986a), and zygospore GRM in Spirogyra hyalina 
by 60–80 mol m–2 s–1 (Agrawal and Chaudhary 1994). 

The presence of silt and sediments in the water reduces light penetration and prevents SG and colo-
nization of Himanthalia elongata (Moss et al. 1973). Kelp canopies typically reduced the light level reach-
ing the substratum by ≈95–99 % and decreased the SG (Reed and Foster 1984). GRM of spores in Macro-
cystis and other kelps was greatest after the canopy had been thinned (Dayton et al. 1984). 

Roelofs and Oglesby (1970) concluded that light was probably the triggering factor for recruitment 
of blue-green alga Gloeotrichia echinulata, while temperature influenced the metabolic activity and thus the 
length of the lag phase between triggering and GRM. GRM of Anabaena sp. akinetes occurred in water co-
lumn, presumably after certain minimum light intensity and/or temperature requirements had been satisfied 
(Reynolds 1972). Laboratory incubation of akinetes under continuous illumination at 40 mol m–2 s–1 light 
intensity and at 18 °C induced GRM (Livingstone and Jaworski 1980). GRM of akinetes of Anabaena 
circinalis and A. flos-aquae occurred more likely in shallow lagoons than in the main river, principally 
because of frequent resuspension of sediments containing akinetes to the euphotic zone or because of direct 
penetration of light to the sediment (Baker 1999). Light availability in shallow sediments (of <3 m depth) 
appears to be important for recruitment of Gloeotrichia echinulata (Karlsson-Elfgren 2003). 

In algae, white light was found to be most favorable for SG, but in some algae it was red light 
(Table I). The red light promoted or induced akinete GRM in Anabaena fertilissima, Anabaenopsis arnoldii 
(Reddy et al. 1975) and Nostoc ellipsosporum (Ahluwalia and Kumar 1980); zygospore GRM in Spirogyra 
hyalina (Agrawal and Chaudhary 1994) was prevented by subsequent irradiation with far-red light and  
a further exposure to red light again induced the GRM. Thus, photoreversible phenomena mediated by pig-
ment functionally similar to phytochrome of higher plants seems to operate in algae. However, red light- 
promoted akinete GRM in Nodularia spumigena was reversed not by far-red light but by subsequent irradi-
ation with green light, and a second red exposure induced GRM again (Pandey and Talpasayi 1981). 

In Anabaena doliolum and Fischerella muscicola, akinete GRM was equally favored by green, blue, 
yellow, red, and white light (Kaushik and Kumar 1970). In green alga Pithophora, green and blue light were 
most favorable for akinete GRM, while red light had a poor effect, and no photoreversible effect occurred 
between green or blue and red light (Patel 1971; Agrawal 1986a). Akinetes of Pithophora oedogonia germi-
nated quickly and showed a higher percentage of GRM when formed under green or blue light than under 
red one (Agrawal 1986a). 

3 TEMPERATURE 

It is one of the significant environmental factors regulating survival and reproduction of algae and 
producing a shift in algal number and composition in a period of time. Every alga has its own temperature 
optima (and temperature tolerance limit) for vegetative survival, spore formation and SG. Depending upon 
its temperature tolerance, an alga may survive either a certain time period of the year or all the year. The opti-
mum temperature for SG of different algae is given in Table II (p. 286). 

Timing of SG has been suggested to play an important role in seasonal succession of different algae. 
Water temperature is one of the main factors controlling initiation of blue-green algal bloom. Most blue-
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green algae are known to grow poorly at low water temperature (Fogg 1963) and their growth is favored by 
high water temperature. Akinetes of Aphanizomenon flos-aquae, Anabaena circinalis and Gloeotrichia echi-
nulata undergo a wintering phase and their apparent GRM occurred in spring or in early summer (Jones 1979; 
Baker 1999; Karlsson-Elfgren 2003). Species-specific differences in optimum GRM temperature corres-
ponding to differences in optimum growth temperature have been found in Anabaena species (Baker and 
Bellifemine 2000). Anabaena solitaria akinetes germinated immediately when exposed to 17 °C, light, and 
sediment mixing (Rengefors et al. 2004). Akinetes in most of blue-green algae germinate at an optimum at 
≥22 °C (Table II). GRM of Cylindrospermopsis raciborskii akinetes occurred more or less synchronously in 
response to water temperature rising to 22–24 °C in temperate regions (Gorzo 1987; Padisak 2003; Hong et 
al. 2006). In Baltic ocean, the GRM of Nodularia akinetes was inhibited in 1998 due to low water tempera-
ture (Kanoshina et al. 2003). The formation of Aphanizomenon flos-aquae and Nodularia spumigena blooms 
was favored by warm and calm weather (Kanoshina et al. 2003). Blue-green algae dominate the phytoplank-
ton community at its greatest when high water temperature is combined with high nutrient load (Elliott et al. 
2006). 

In green algae, most of the spores germinated optimally at ≈20 °C or more, but microzoospores of 
Ulothrix sp. germinated best at ≈10 °C or less (Klebs 1896) and akinetes of Cladophora sp. at 11.5–13.8 °C 
(Mason 1965). Oospores of Chara zeylanica germinated better at 28 than at 24 °C, while those of C. con-
traria yielded higher GRM percentage at 18 °C than at 24 or 28 °C (Proctor 1967). Probably the oospores 
collected from the warmer regions germinated at higher temperature than those collected from colder regions 
(temperate regions). Temperature extremes (of  ≥35 °C or ≤10 °C) decreased or altogether inhibited akinete 
and zoospore GRM in Stigeoclonium pascheri and akinete GRM in Pithophora oedogonia (Agrawal 1984, 
1985a, 1986a). 

Pithophora oedogonia survived annual diurnal water temperature variations of 10–28 °C. The alga 
formed akinetes at 10–24 °C and most of the akinetes germinated at 19–24 °C (Gupta and Agrawal 2007). 
Rhizoclonium hieroglyphicum survived throughout the year in the water. The alga exhibited zoosporangial 
stages when water temperature was 20–25 °C, and no zoosporangial stage at 30–31 °C (Gupta and Agrawal 
2004). Vaucheria geminata is a seasonal terrestrial alga; its vegetative patches appeared on the soil surface 
when atmospheric diurnal temperature was 9–16 °C in January. The alga started sexual reproduction when 
temperature increased to 20–23 °C in April, and died thereafter with further increase of temperature (Gupta 
and Agrawal 2007). In culture, oospores of Vaucheria sessilis germinated optimum at 15 °C but not at 21–
27 °C (League and Greulach 1955). 

In dinoflagellates, GRM rate of Peridinium cinctum cysts remained maximal at 20 °C (Pfiester 
1975), that of Scrippsiella trochoidea cysts at 22–25 °C (Binder and Anderson 1987), and of Ceratium hirun-
dinella cysts at 17 °C (Rengefors and Anderson 1998). The dramatic reduction in GRM rate of Scrippsiella 
cysts at low temperature permits them to serve as over-wintering cells, and once the dormancy period of 25 d 
was completed the cysts germinated optimally in nutrient-replete medium at 22–25 °C (Binder and Ander-
son 1987). 

In Chesapeake Bay, the climax of reproductive capacity for most of the seaweeds is in summer and 
early autumn. During that period, Chlorophyta produced swarmers, the Phaeophyte Punctaria plantaginea 
had plurilocular reproductive organs, and all Florideophyceae developed either carposporangia or spermat-
angia or both. Most Florideophyceae pass the winter in tetrasporophytic stage (Zaneveld and Barnes 1965). 
Zygotes and zoospores of some brown algae germinated in a wide range of temperatures, e.g., zygotes of 
Halidrys siliquosa germinated equally well both at 3 and 10 °C (Moss and Sheader 1973), of Ascophyllum 
nodosum at 4–23 °C (Sheader and Moss 1975), and of Spermatochnus paradoxus equally well both at 9 and 
20 °C (Müller 1981), and zoospores of Ecklonia stolonifera within 10–30 °C (Notoya and Asuke 1983) and 
of Pilayella littoralis at 5 °C (Lotze et al. 1999). Brown alga Macrocystis integrifolia sporophyte growth 
responded better at the lowest temperature tested (8 °C), but the population showed higher spore release and 
GRM at 15 and 18 °C, respectively (Buschmann et al. 2004). 

4 INORGANIC  NUTRIENTS  IN  THE  CULTURE  MEDIUM 

Lack of nitrogen or phosphorus or both decreased spore and/or cyst GRM in some algae (Table III; 
p. 287) indicating the synthesis of fresh nucleic acids and proteins during GRM. Need of magnesium during 
zygospore GRM in Blastocladiella emersonii (Soll and Sonneborn 1972) and akinete GRM in Stigeoclonium 
pascheri and Westiellopsis prolifica (Agrawal and Sarma 1982a; Agrawal and Sharma 1994a) indicates that 
fresh chlorophylls are synthesized during their GRM. Stored nitrogen and glycogen have been found to de-
crease during akinete GRM of Aphanizomenon flos-aquae (Wildman et al. 1975). Akinetes of Anabaena cylin-
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drica had phaeophytin in place of chlorophyll (Fay 1969a). The GRM of non-photosynthetic akinetes of Ana-
baena doliolum commenced in the light with new protein synthesis followed by simultaneous development 
of oxygenic photosynthesis and nitrate reductase activity (Rai et al. 1988). 

The SG was decreased not only by the lack of nitrogen, phosphorus or magnesium but also when 
their (and of calcium) concentration exceed certain levels; e.g., nitrate or phosphate at ≥5-fold level, or mag-
nesium at 10-fold level of that present in the basal medium inhibited akinete GRM in Westiellopsis prolifica 
(Agrawal and Sharma 1994a). Magnesium at ≥5-fold level or calcium at ≥2-fold level also inhibited akinete 
GRM in Stigeoclonium pascheri (Agrawal and Sarma 1982a). This indicates that SG in algae is sensitive to 
high levels of inorganic nutrients. Omission of microelements (ZnSO4, MnCl2, MoO3, CuSO4, Co(NO3)2, 
H3BO3) from the basal medium increased SG in Stigeoclonium pascheri, and by increasing their concentrat-
ion to ≥2-fold levels, the condition was reversed (Agrawal and Sarma 1982a). The presence of microele-
ments in the basal medium therefore serves as a check in reaching maximum level of SG under control con-
ditions. More study is needed to clear the role of micro- and macronutrients in SG. 

5 CHEMICALS  STIMULATORY  TO  SPORE  GERMINATION 

Plant hormones such as indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), naphthalene-2-ace-
tic acid (NAA), gibberellic acid (GA3), kinetin, and tryptophan (a precusor of IAA) at certain levels (either 
individually or in combination) stimulated SG in some algae (Table IV; p. 288). They probably promote cell 
enlargement, cell division or have some other cellular and molecular effects. IAA at 0.4 ppm, and kinetin at 
0.8 ppm promoted the growth of Porphyra conchocelis stage (Lin and Stekoll 2007). 

Moewus (1940) described a type of soil solution prepared without heat (containing some natural 
substance) inducing zygospore GRM of Chlamydomonas eugametos. In Botrytis cinerea, the GRM ability was 
lost in old spores, but it was restored by the addition of glucose, maltose or malt extract (Bernard 1973), which 
probably act as energy source. 

Vitamins are required to stimulate growth in many algae (Machlis 1962; Ellis and Machlis 1968; Saito 
1972; Dawson and Denny 1983). Ascorbic acid (vitamin C) and serine at certain levels increased akinete GRM 
in Stigeoclonium pascheri (Agrawal 1988a). Akinetes of Pithophora oedogonia formed in the presence of 
vitamin B2 (2 ‰) and vitamin C (10 ‰) showed quicker and higher GRM (Agrawal 1988b). A wide range 
of intracellular amino acids, characteristic of proteins, was utilized to sustain the new protein synthesis in 
Cyanospira spp. (Sili et al. 1994). In Stigeoclonium pascheri, pretreatment of akinetes with caffeine (500–
1000 ppm) or with the dyes crystal violet (2–5 ppm) or methylene blue (20–50 ppm) for certain time periods 
induced quick and abundant GRM (Agrawal 1985c; 1992a). Dyes produced changes in membrane permeabi-
lity and active transport processes (Spikes 1968). 

6 THE  pH  OF  THE  MEDIUM 

Akinetes of Cladophora sp., Anabaena spp., Anabaenopsis arnoldii, Stigeoclonium pascheri, Pitho-
phora oedogonia, Westiellopsis prolifica and Nostochopsis lobatus, zoospores of S. pascheri, Cladophora glo-
merata and Rhizoclonium hieroglyphicum, and zygospores of Spirogyra hyalina, all, germinated optimally at 
neutral or slightly alkaline pH (Table V; p. 288). Not only zoospores of S. pascheri germinated optimally at 
pH 8, but zoospore germlings also grew optimally at the same pH (Agrawal 1985a). It seems that SG usually 
occurred at the same pH at which the alga grew. Although the percentage akinete GRM in Pithophora oedo-
gonia was optimal at pH 7 and 8, akinetes started to germinate earlier at acidic pH and this was probably due 
to dissolution of thick akinete cell wall at acidic pH (Agrawal 1986a). High pH tolerance of Nodularia spu-
migena in natural environments might be important in the competition with other phytoplankton species 
(Mogelhoj et al. 2006). 

7 BIOTIC  FACTORS 

SG is sensitive to (i) algal extracellular products and algal density, (ii) bacterial extracellular pro-
ducts, and (iii) animal grazing and extracellular products. 

 (i) Algal extracellular products and algal density. Algae secrete many organic substances, such as saccha-
rides, lipids, amino acids, peptides, proteins, organic acids, phenolic substances, enzymes, vitamins, etc. 
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in the culture medium, and their quality and quantity increase with culture age (Fogg 1971; Nalewajko 
and Marin 1969; Jones 1988; Agrawal 1994; Agrawal and Sharma 1994b, 1996). The culture filtrate of 
an alga, depending upon its age (or on the concentration of the extracellular products it had) may be 
ineffective or inhibitory at different levels to SG of the same or other alga. The akinetes, zygospores, 
oospores, or cysts are formed usually in old-age cultures, which already have accumulated a lot of algal 
extracellular products that proved to be inhibitory to their GRM; thus they require fresh culture media 
to germinate (Table VI; p. 289). However, zoospores of most  algae are formed usually in young-age 
cultures, which have released little of any extracellular products that are not inhibitory to their GRM; 
thus zoospores germinate in the same medium in which they are formed. 

In nature, diatoms attached to substratum prevent spores of Monostroma from reaching the substra-
tum and GRM (Segi and Kida 1961). Some brown algal crusts inhibited the ability of the spores of red 
algae to settle and germinate (Fletcher 1975). Benthic diatoms inhibited the growth of zygotes and germ-
lings of Fucus spiralis (Schonbeck and Norton 1979). In the Baltic ocean, a mixture of algal species and 
their slime prevents Fucus zygotes from settling and attaching (Kangas et al. 1982). The main barrier to 
colonization by Sargassum is the presence of an algal cover (Deysher and Norton 1982). Reed (1990) de-
monstrated intra-specific interactions between spores, gametophytes and young sporophytes in kelps. The 
per capita sporophyte production was negatively density-dependent at spore concentration ≥10/mm2. 

 (ii) Bacterial extracellular products. Bacteria Pseudoalteromonas, Alteromonas or Pseudomonas form bio-
films in various marine eco-niches. They produce an array of low and high-molar-mass compounds 
including toxic proteins, poly-anionic polymers, substituted alkaloids, cyclic peptides, and a range of bro-
mine-substituted compounds. These compounds have anti-fouling and various pharmaceutically rele-
vant activities. They showed excellent inhibitory activity on the settlement and GRM of various algal 
spores including Ulva lactuca and Polysiphonia species (Holmström et al. 1998; Egan et al. 2000, 2001; 
Burgess et al. 2003; Browman 2007; Silva-Aciares and Riquelme 2008). 

(iii) Animal grazing and extracellular products. Paucity or absence of visible green algae on many shores 
can often be reversed with the removal of herbivores; this suggests that early stages of algal life cycle 
were prevented from settling or else quickly grazed (Lubchenco 1980; Hawkins 1981, 1983). Grazing 
by animals was one of several factors thought to cause high mortality of Cystoseira and Halidrys zygo-
tes (Gunnill 1986). Zygotes of Ascophyllum attached to pottery chips and out-planted into and around 
adult beds containing high Littorina density exhibited high mortality relative to controls (Vadas et al. 
1982; Miller and Vadas 1984). One of the postulated negative effects of mussels on Postelsia recruit-
ment was deposition of silt on spores (Dayton 1973). Mixing spores and silts together resulted in low 
survival. Experimental removal of sea urchins resulted in rapid algal recruitment (Sousa et al. 1981). 
Water-borne exudates of reef anthozoan Condylactis gigantea inhibited SG of green, red and brown 
algae (Bak and Borsboom 1984). GRM of settled spores and growth of germlings of Pilayella littoralis 
and Enteromorpha spp. was reduced by the presence of grazers Idotea chelipes and Gammarus locusta 
(Lotze et al. 1999). Siphonaria pectinata graze superficial, soft algae including spores and emerging 
germlings (Ocana and Fa 2003). 

8 WATER  MOVEMENT 

Water movement increases the uptake of nutrients and exchange of gases in algae (Whitford and 
Schumacher 1961). Water movement has been suspected of influencing settlement, attachment, survival, and 
GRM of spores; they usually need adherence to a substratum before GRM, while they also germinate when 
suspended in water like spores in Macrocystis and Pterygophora (Reed et al. 1992). Christie et al. (1970) 
found that Enteromorpha zoospores adhere to a substratum within minutes of contact by means of a muco-
polysaccharide. Types of substratum also influenced SG, e.g., -spores of Porphyra schizophylla required  
2 d to germinate on glass, but ≤12 h on cotton thread (Boney 1978). About 70 % aplanospores of Prasiola 
were attached and germinated in culture (Bingham and Schiff 1979). Water movement prevented spore 
settlement and smothered the gametophytes of Macrocystis pyrifera (Devinny and Volse 1978). With Asco-
phyllum, one low-energy wave (of 200–500 mm in height) dislodged 90 % of the zygotes (settled for 15 min) 
on smooth pottery plates (Vadas et al. 1992). A higher reproductive vitality (zoospore release, spore attach-
ment, and GRM) was observed in Lessonia trabeculata living in an environment with an active water move-
ment than plants growing in a sheltered environment (Edding et al. 1993). Macrocystis populations showed 
higher spore release and GRM at the wave-protected southern Chile coast (Buschmann et al. 2004). Water 
movement keeps spores suspended in water or brings a mass of settled spores from deep sediments to the 
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upper layer of water where they germinate in the presence of light. More work is needed in this line of 
research. 

9 WATER  STRESS 

Akinetes, zygospores, oospores or cysts can torelate dryness of different extent and period (Proctor 
1967; Lippert 1967; Yamamoto 1975; Tanoue and Aruga 1975; Livingstone and Jaworski 1980; Sili et al. 
1994; Agrawal and Singh 1999a,b) but they all need water to germinate. Spores of some algae need drying 
or alternate drying and soaking prior to GRM (Table VII; p. 289). Water stress of both physical and physio-
logical nature decreased or altogether inhibited SG. Akinete GRM in Pithophora oedogonia was more sensi-
tive to water stress than zoospore GRM in Cladophora glomerata and Rhizoclonium hieroglyphicum; it was 
probably due to larger size, more dense contents, or thicker cell wall of akinetes than zoospores (Agrawal 
and Singh 1999a). Akinetes of P. oedogonia, A. iyengarii, W. prolifica and N. lobatus formed under water 
stress or no water stress were equally viable; but zoosporangia of C. glomerata and R. hieroglyphicum formed 
under water stress were not viable (not releasing any zoospore) while those formed under normal conditions 
were viable (Agrawal and Singh 1999a,b, 2000). Sediment drying in reservoirs is considered to be a useful 
measure to reduce periods and scales of Anabaena blooms, and its effect will be enhanced by performance 
during the warmer seasons (Shigeo 2004). Desiccation stress can be extremely damaging to cells, causing 
protein denaturation, DNA strand breaks and membrane leakage upon rehydration (Potts 1994; Shirkey et al. 
2003). 

10 ANTIBIOTICS 

All antibiotics used decrease or totally suppress SG (Table VIII; p. 290). Even pretreatment of 
spores with different antibiotics proved inhibitory for SG; this indicates that fresh protein synthesis is neces-
sary for GRM of spores. The blocking of protein synthesis in chloroplasts and mitochondria may secondarily 
lead to interference with several other essential reactions inside the cell. Agrawal and Sarma (1980) obser-
ved that penicillin increased akinete GRM in Stigeoclonium pascheri up to 2 ‰. Any probable biochemical 
and/or physiological reason behind the above observation is not known. Penicillin has been found to inhibit 
the growth of bacteria by accumulating the immediate precursors in the terminal reaction of cell wall synthe-
sis (Strominger 1969). Nothing is known about its mode of action on the cell wall of eukaryotic organisms. 

Preservation of algal spores of Ulva fasciata and U. pertusa was enhanced by the addition of anti-
biotic ampicillin to the culture medium at 4 °C. Addition of ampicillin (100 ppm) to the culture medium, in-
creased the viability of Ulva spores for several days. Spore preservation was heavily dependent on the bac-
terial contamination and subsequent degradation in stock solutions (Bhattarai et al. 2007). 

11 UV  LIGHT,  X-RAYS,  -RAYS 

Spores subjected to UV-B or UV-C irradiation of any dose showed a delay and decrease in GRM 
(Table IX; p. 290). UV light causes dimerization of DNA bases, particularly the formation of cyclobutane 
pyrimidine dimers (Setlow and Setlow 1962; Setlow and Carrier 1963; Karentz et al. 1991; Karentz 1999; 
Wiencke et al. 2000; Roleda et al. 2004–2006b). The dimers prevent DNA replication, thus arresting the cell 
cycle in DNA synthesis phase. UV light also causes damage to essential enzymes or proteins involved in 
membrane transport processes (Holm-Hansen et al. 1993) and destruction of phycobiliproteins and a loss of 
linker polypeptides (Sinha et al. 2005). In this study, the GRM gradually declined with an increase in UV 
dose, indicating that dimerization was dose-dependent. In seaweeds, spores and gametes were more vul-
nerable to environmental stress than juvenile and adult macrothalli (Coelho et al. 2000). Spores of Porphyra 
schizophylla germinated but developed abnormally when exposed to direct sunlight (Boney 1978). Spores of 
Alaria marginata were unable to survive at 10 °C in the presence of high levels of UV radiations (Hoffman 
et al. 2003). UV light reversed pheromone-induced sexual reproduction in Volvox carteri (Kochert and Crump 
2005). Tolerance to UV may be an important determinant of kelp zonation on rocky coasts (Swanson and 
Druehl 2000; Oiencke et al. 2000). 

Nutrient medium irradiated with UV light decreased akinete GRM. Stone et al. (1947) stated that 
either or both of the following physical or chemical changes occurred during irradiation of a culture me-
dium: (i) some mechanism involving a shift to a higher energy level by the absorption of a quantum of 
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energy and subsequent effect of this energy transfer, and (ii) the production of different chemical compounds 
under the influence of irradiation. The UV radiation was found to produce H2O2 in mol/L level but at such 
level it was not likely to contribute to growth control (Bin Alam et al. 2001). Moharikar et al. (2006) obser-
ved that spent medium recovered from UV-C exposed Chlamydomonas reinhardtii cells exhibited a protec-
tive effect against cell killing of fresh cultures of C. reinhardtii cells by UV irradiation, probably an adaptive 
response. 

Various photoprotective strategies have evolved to tolerate UV exposure, such as chemical sun-
screens and repair of essential biomolecules. Extracellularly (cell wall) and intracellularly formed UV-absor-
bing compounds act as a sunscreen. Important UV screening compounds are mycosporine-like amino acids 
(MAAs) and scytonemin (Franklin et al. 2003). They are proposed to function as passive shielding solutes 
by dissipating the absorbed short wavelength radiation energy in the harmless form of heat without genera-
ting photochemical reaction. The accumulation of MAAs is induced by both UV radiation and by blue light 
(Korbee et al. 2006). In brown algae, exudation of phlorotannins and phloroglucinal into water can also re-
duce the impact of UV-B radiation on UV-sensitive spores (Schoenwaelder 2002; Wiencke et al. 2004; Ro-
leda et al. 2006a). Biofilters containing zoospore suspensions act as a buffer and showed variable UV-pro-
tection properties on the GRM of its conspecies. At higher zoospore concentration (≈4 × 106/mL), zoospores 
were observed to screen UV radiation, maintaining viability among shielded spores in Saccorhiza, Alaria 
and Laminaria (Roleda et al. 2006a). Within a plume of zoospores, each cell can buffer each other and 
protect the lower layer of spores from excessive radiation (Roleda et al. 2006a). The light dependent repair, 
probably photoreactivation, compensated for a large fraction of sunlight-induced DNA damage by UV radi-
ation through photoenzymatic repair using the enzyme photolyase, in the presence of photorepair radiation, 
UV-A, and visible light (Grad et al. 2001). 

X-Rays (0.64–2.6 C/kg) and -rays (0.64–1.9 C/kg) increased the percentage GRM of akinetes  
in Stigeoclonium pascheri. The maximum stimulatory effect was observed at 2.6 C/kg of X-rays and at 
1.3 C/kg of -rays. The GRM of akinetes decreased with an increase in the dose rate – 1.9–7.7 C/kg of -rays 
(Agrawal 1986b,c, 1987). Increase in GRM percentage at lower dose of -rays may be due to structural 
changes in the membrane of akinetes as it was in slime mold spores (Hashimoto and Yanagisawa 1970), or it 
may be due to a rise in oxygen consumption rate as it was in Bacillus megaterium spores (Levinson and 
Hyatt 1960), or to some changes in the tertiary structure of proteins which might expose previously masked 
reactive sites which are important for GRM, as, e.g., in B. cereus spores (Gould and Ordal 1968). However, 
no exact mechanism of activation of akinetes following X-rays and -rays at low level has as yet been esta-
blished. Decline in the percentage of GRM at higher doses of  radiation may be due to -induced injury 
to cell DNA. 

12 POLLUTION 

Pollutants, such as heavy metals (Hg, Cu, Cr, Co, Zn, Pb, etc.), pesticides or insecticides (carbo-
furan, 2,4-D, dithane, phorate, bavistin, parathion, etc.), sewage effluent, crude oil, acetylene, ethylene, ammo-
nium, etc. at various levels decreased spore liberation, motility, settlement, and GRM in different algae 
(Table X; p. 291). Similarly, the vegetative survival in blue-green algae Lyngbya birgei, L. major, Phor-
midium bohneri, P. foveolarum, Microcoleus chthonoplastes, Scytonema millei, Myxosarcina burmensis, 
Aphanothece pallida, Gloeocapsa atrata, and green algae Scenedemus quadricauda, Cosmarium granatum, 
Hormidium flaccidum, Rhizoclonium crassipellitum, and Oedogonium sp. was greatly affected by agents 
such as sewage water, fertilizer factory effluent, brassica oil, phenol, toluene and benzene. These agents 
exhibited an important effect on the reproductive features of the algae, influencing thus their growth proper-
ties (Agrawal and Gupta 2009).  

Anoxic conditions (low oxygen concentration) in water and sediment also disturb GRM in dinofla-
gellate cysts. Akinete GRM in Anabaena cylindrica was stimulated by the presence of oxygen (Yamamoto 
1976). Cu, Fe, Zn, Hg, Ni, Co and organic substances captan, DDT, 2,4-D, and thiourea decreased the speed 
and motility period of zoospores in Rhizoclonium hieroglyphicum (Gupta and Agrawal 2004). When pH was 
decreased from 8.0 to 5.5, more Cu and Zn were required to inhibit the growth rate of Chlorella sp. (Wilde 
et al. 2006). Growth inhibition after exposure to heavy metals has been attributed to inhibition of the funct-
ion of photosynthetic pigments, to enzyme inhibition, uptake of nutrients or damage to cell membrane (Sto-
kes 1983; De Filippis and Pallaghy 1994). Pesticides are considered to alter cell membrane permeability, 
inhibit the activity of some enzymes and interfere with photosynthesis and with the synthesis of nucleic 
acids and proteins (Stratton 1987). 
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13 DORMANCY  OF  SPORES 

(i) Zoospores. Of different kinds of spores, zoospores in all algae, e.g. Stigeoclonium pascheri, Clado-
phora glomerata, and Rhizoclonium hieroglyphicum (Agrawal 1985a; Agrawal and Singh 1999a) had 
no cell wall or very thin cell wall and germinated immediate by after formation without any dormancy. 

(ii) Akinetes. Akinetes of all algae have slightly thicker cell wall than vegetative cells and are slightly more 
resistant to different environmental stresses than vegetative cells (Table XI; p. 292). They are not dor-
mant and can germinate after formation immediate by or after a short or longer time period. Akinetes of 
green algae Stigeoclonium pascheri and Pithophora oedogonia (Agrawal 1984; Agrawal and Singh 
1999a, 2000) and of blue-green algae Anabaena iyengarii, Nostochopsis lobatus and Westiellopsis proli-
fica (Agrawal and Singh 2000) germinated immediate by after formation when transferred to fresh culture 
media under suitable culture conditions. They can also be stored in the laboratory for several months 
either wet or dry or in the presence or absence of light. The viability of stored akinetes decreased with 
storage time, but more drastically at lower temperatures of 12 and 0 °C than at 20 °C; thus they can 
tolerate desiccation but not frost (Agrawal and Singh 2000). Reynolds (1972) reported mass GRM of aki-
netes of Anabaena after over-wintering in the sediments of Crose-Mere, but this was not always con-
sistent (Reynolds 1975). Wildman et al. (1975) found akinetes of Aphanizomenon in the sediment in win-
ter and noted that akinete GRM did not take place until spring. Lembi and Spencer (1981) proposed that 
akinetes of Pithophora oedogonia ensured survival during periods of desiccation caused by fluctuating 
water level. Although, not heat-resistant like endospores of G+ bacteria, the desiccated akinetes of Ana-
baena cylindrica (Yamamoto 1975) and Cyanospira spp. (Sili et al. 1994) retained GRM ability after sto-
rage in darkness for 5 and 7 years, respectively. Akinetes of Nostoc sp. have been reported to tolerate 
months of cold (4 °C) and dark conditions (Sutherland et al. 1979). Rother and Fay (1977) observed that 
the bulk of akinetes of Anabaena and Aphanizomenon germinated shortly after sporulation and that the 
over-wintering population was as vegetative filaments. Akinetes of blue-green algae may not only have  
a temporary or over-wintering function but also ensure long-term survival. Livingstone and Jaworski 
(1980) recovered Anabaena akinetes from a 1-m sediment core from Rostherne Mere at depths of up to 
270 mm below the mud surface and deposited up to 64 years previously. Laboratory incubation of these 
akinetes under continuous illumination (40 mol m–2 s–1) at 18 °C induced GRM within 20–30 d. Little is 
known about the molecular basis for such resistance to environmental extremes. Coleman (1983) reported 
a system of osmotic control for survival of thick-walled akinetes. Viable akinetes of Nodularia spumigena 
were found in the sediments of the Peel–Harvey estuary (Australia) even at 350 mm depth. They have the 
potential to germinate to form new filaments given appropriate conditions (Hüber 1984). Akinetes of Cy-
lindrospermopsis raciborskii may persist in sediments as spores for long periods (Moore et al. 2003, 
2005). The GRM of akinetes occured more or less synchronously in response to water temperature rising 
to 22–24 °C in temperate regions (Padisak 2003; Hong et al. 2006). 

(iii) Oospores, zygospores, cysts. Oospores and zygospores of green algae, e.g., of Oedogonium, Chlamydo-
monas, Closterium, Cosmarium, Pandorina, Spirogyra, Chara, etc., cysts of Acetabularia and of various 
dinoflagellates, and resting spores of diatoms usually did not germinate immediate by after formation 
and required a period of dormancy or an endogenous clock (of a few days to many months or years) 
before GRM in suitable conditions (Table XII; p. 293). It seems probable that in nature they may re-
main viable for long periods (may easily endure drought and other environmental rigors which destroy 
the vegetative cells). Nipkow (1927) found Ceratium hirundinella cysts in 5–6 years old carves in lake. 
Oospores of Chara spp. may easily endure drought of several years duration when buried in pond or 
lake bottom deposits. Oospores deposited in bird droppings may survive for several years, while being 
carried down the slopes of the watershed to a permanent body of water (Proctor 1967). On storage of 
Chara spp. oospores dry at 3 °C, some (2–70 %) remain viable for periods of at least 4 years and pro-
bably much longer (Proctor 1967). Desiccated cysts of fresh-water members of Prasinophyceae remain 
viable after exposure to 100 °C for 1 h (Belcher 1970). The dried cysts of Platymonas sp. stored in a re-
frigerator at 5 °C and in a growth chamber at 20 °C in darkness for 10 months germinated well when they 
were transferred to the culture medium under favorable conditions in the presence of light (Tanoue and 
Aruga 1975). The zygospores of Pandorina sp. are the preferable form of storage of the alga and re-
main viable for at least 15 years (Colemen 1975). Lembi et al. (1988) stated that Spirogyra zygospores 
over-winter in benthos and germinate thereafter. 

The zygotes and other spores (e.g., monospores, carpospores, tetraspores, etc.) of the majority of 
seaweeds investigated had no resistant wall and had high metabolic rates and germinated soon after format-
ion (with no obvious resting stages apparent). However, Nemalion helminthoides formed thick-walled, over-
wintering carpospores (Martin 1969), while Acetabularia sp., formed thick-walled cysts (Tanner 1981). 

Marine dinoflagellates formed dormant hypnozygotes (Dale 1983), and marine centric diatoms rest-
ing spores (Hargraves and French 1983). Cysts of dinoflagellates Diplopsalis sp., Gymnodinium nolleri, Oblea 
rotunda and Protoceratium reticulatum were viable down to 150 mm depth or for a period of 37 years in 
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sediments in Koljo Fjord on the west coast of Sweden (Mcquoid et al. 2002). Spores and resting cells of the 
diatoms Chaetoceros spp., Detonula confervacea and Skeletonema costatum were viable to >400 mm depth 
and may have been buried for many decades (Mcquoid et al. 2002). The oxygen-deficient sediments in Koljo 
Fjord appeared to be a natural preservatives of cells viability. Spores and cysts were able to repopulate water 
if suspended and exposed to suitable light, temperature and nutrients (Mcquoid et al. 2002). 

14 BREAKAGE  OF  DORMANCY 

The environmental and physiological factors governing the GRM of dormant oospores, zygospores 
or cysts have been examined in a few forms. In many of them, a change in temperature to some lower or higher 
level from the existing level within the temperature tolerance limit of the spores was found to break the 
dormancy and induce GRM (Table XIII; p. 293). Oospores of Oedogonium sp. germinated easily when sub-
jected to frost (Mainx 1931). The zygospores of Chlamydomonas chlamydogama required an incubation of  
2 d at 37 °C to germinate (Starr 1949). The zygospores of Cosmarium could be made to germinate effec-
tively by immersing them in a fresh medium after a prior freezing and drying (Starr 1955, 1959). The oospo-
res of Chara spp. were induced to germinate rapidly after cold treatment or storage at 5–7 °C (Imahori and 
Iwasa 1965; Shen 1966a,b). The cold-conditioned hypnocysts of Gonyaulax tamarensis excysted when ex-
posed to high temperature and vice-versa (Anderson 1980). The hypnozygotes of Gyrodinium uncatenum 
collected in late winter germinated when exposed to >15 °C (Coats et al. 1984). Dinoflagellates cysts are 
known to be viable in sediments (under certain conditions at low oxygen and low temperature) for at least  
6 years (Matsuoka and Fukuyo 2000). Temperature change, exposure to light, and floating up by water 
turbulence are thought as triggering factors for induction of GRM but an internal mechanism, i.e., biological 
clock, also controls the GRM (Matsuoka and Fukuyo 2000). 

Zygospores or cysts in some algae need a change in light conditions to break dormancy and induce 
GRM. Zygospores of Chlamydomonas sp. (Lewin 1949), Gonium pectorale (Stein 1958) and Chlamydo-
monas eugametos (Gowans 1960) can be regularly induced to germinate by providing alternate conditions of 
illumination and darkness (Table I). Lewin (1949) stated that starvation of zygotes of Chlamydomonas 
moewusii during their formation might reduce the amount of stored material and shorten the period of dor-
mancy. The zygotes of C. reinhardtii need a period of rest in darkness and in nitrogen-free medium to ger-
minate (Van Winkle-Swift 1977). 

Drying of zygospores in some algae shortens the dormancy and induces GRM. The alternate soak-
ing and drying of spores of Furcilla stigmatophora breaks the dormancy and induces GRM (Belcher 1967). 
Drying of zygospores of Closterium spp. was prerequisite to induce their GRM (Lippert 1967; Table VII). 

Gussewa (1931) opined that bacteria in natural water cooperate in GRM of oospores of Oedo-
gonium by digesting their cell wall. Cook (1962) observed that oospores in Bulbochaete hiloensis germinate 
when placed in tightly closed containers for several weeks and subjected to relatively warm temperature 
(bacterial and fungal decomposition was also observed under these conditions); Kremp et al. (2003) found 
that deposit-feeder gut passage may enhance GRM of dinoflagellate cysts. 

Oospores of Sphaeroplea annulina of various age groups failed to germinate when subjected to any 
of different physical or chemical changes of temperature, light, drying-flooding, UV light, pH, or hormones 
(Chaudhary 1979). Probably, oospores required some natural conditions and/or substances or other unknown 
treatments to germinate or their GRM was not at all inducible before the natural dormancy period expired. 
The mandatory dormancy period of Scrippsiella cysts was ca. 60 d and was not affected by cold and dark 
storage of the cysts (Olli and Anderson 2001). Matrai et al. (2005) have shown that excystment of Alexan-
drium populations from the eastern Gulf of Maine exhibited a circannual endogenous rhythm with an ave-
rage period of 11 months. This indicates self-regulation and internal-feedback mechanisms whether they 
include levels of reserves or time lapses in relation to a specific-sensed variable. The minimum dormancy 
period of Gymnodinium catenatum cysts (with an average value of 13.3 ± 5.5 d) was not affected by any of 
the nutritional conditions (Figueroa et al. 2006). 

15 ROLE  OF  VEGETATIVE  CELLS  IN  TOLERANCE TO  ENVIRONMENTAL  STRESS 

Bristol-Roach (1919) reported that some herbarium specimens of blue-green algae Schizothrix cal-
cicola, Nostoc ellipsosporum, and Microcoleus sp. were preserved for 70 years. Fritsch (1922) pointed out 
that the striking characteristic feature of terrestrial algae is the capacity of the ordinary vegetative cell to 
withstand prolonged drought without any marked change or special thickening of the cell wall. Further, the 
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change from the resting to active condition is accomplished in a very short time, apparently because the 
terrestrial algae require only small amounts of moisture to reactivate them (Stokes 1940). Hedlund (1913) 
showed that small organisms are in a better position to withstand desiccation. Lund (1945) opined that with 
the reduction in cell size, the forms are in a better position to lie apposed to the soil particles from which 
they can absorb moisture. Tolerance of Chlorella vulgaris vegetative cells to dryness for >1 month might be 
due to their small cell size or due to chemical composition of the cell wall containing sporopollenin (Agra-
wal and Singh 2001; Agrawal and Manisha 2007). In nature, during slow desiccation at the onset of summer, 
some soil algae were able to change the nature of their cells, without any apparent morphological change, so 
that they could resist desiccation (Petersen 1935). Cameron and Blank (1966) showed that desert algal crust, 
air-dried for 4 years, became active and new growth started within 1 d of wetting. But it was not clear 
whether the survival of dried algae was due to the presence of spores in stored materials (Davis 1972). 

Many species of Nostocales over-winter as vegetative filaments rather than akinetes (Reynolds 
1972; Kappers 1976; Barbiero and Welch 1992). Aphanizomenon flos-aquae over-wintered in Kinnego Bay 
as vegetative filaments and the production of akinetes was not necessary for perennation of the species 
(Jones 1979). Under natural conditions, Pithophora oedogonia over-winters as vegetative filaments and aki-
netes, and is still photosynthetically competent (Spencer et al. 1981). 

Filaments of Stigeoclonium pascheri died without any akinete formation at ≥45 °C (Agrawal and 
Sarma 1982b). No vegetative cells of Pithophora oedogonia, Anabaena iyengarii, Westiellopsis prolifica 
and Nostochopsis lobatus filaments survived and formed akinetes, and no akinete germinated, at 41 °C 
(Agrawal and Singh 2000). Since akinetes are not formed at high temperature, the akinete-forming blue-green 
algae are generally absent from the hot spring flora (Anagnostidis 1961). Spore-forming blue-green algae are 
generally absent from desert floras (Cameron and Blank 1966). A unicellular red alga Cyanidium caldarium 
grows in acid hot-springs throughout the world. It has the ability to grow in water of pH as low as 2 (Asci-
one et al. 1965) and has a temperature optimum for 14C incorporation of 45 °C (Doemel and Brock 1970). 

Evans (1958) had shown that survival of desiccation by pond algae has no relation to the production 
of spores. Fogg (1969) has rightly pointed out that the formation of akinetes is a relatively unimportant 
means of survival under adverse conditions by most algae. This is also supported by the observations on 
sub-aerial blue-green algae. The large majority of them are not spore forming and survive environmental stress 
due to the high by reducing state of cytoplasm coupled with the presence of a thick sheath (Tripathi and 
Talpasayi 1980). Extensive extracellular polysaccharide sheaths produced by some blue-green algae help to 
stabilize the cell membrane during desiccation and enhance water retention and water absorption (Caiola et 
al. 1993, 1996; Tamaru et al. 2005). Many blue-green algae have been shown to be tolerant to cellular water 
loss and counteract damage through the production of polyhydroxy saccharides (Potts 1994). These saccha-
rides most likely replace the water shell around cellular macromolecules, e.g., proteins, DNA, and lipids and 
prevent their denaturation (Potts 1994, 1999). The vegetative cells of blue-green algae Scytonema millei and 
Lyngbya major (both growing on wall and bark surfaces) and L. mesotricha and Phormidium bohneri (both 
growing on soil surface) survived atmospheric temperature of 48 °C (Gupta and Agrawal 2006, 2008). Soil 
blue-green algae resume physiological activity soon after rewetting with atmospheric water (Lange et al. 
1992). Trainor and Gladych (1995) found that even after soils had air-dried for 35 years, green algae (which 
had survived in an unknown form) could be cultured from them. A non-sporeforming Microcoleus occur-
ing within the crust sample collected in desert can tolerate extremes of temperature, light and diurnal desic-
cation cycle. The alga was able to rapidly activate photosynthesis when rehydrated (Harel et al. 2004). The 
ability of Lyngbya mats to tolerate desiccation and take advantage of hydration periods enables these mats to 
predominate in the intertidal environment (Fleming et al. 2007). The surface of Lyngbya mat is a dark-brown 
color due to a high scytonemin content in the extracellular polysaccharide sheaths, which is an extracellular 
UV radiation screening compound (Garcia-Pichel and Castenholz 1991). Green algae isolated from desert ha-
bitats were Scenedesmus rotundus, Cylindrocystis sp., Myrmecia sp. and Chlorosarcinopsis sp. (Cardon et al. 
2008). The vegetative cells of these algae can tolerate rapid dehydration, and the cellular functions such as 
photosynthesis can recover upon rehydration very quickly within 1 h (Gray et al. 2007). Desiccation reco-
very can be an energetically expensive process involving protein and lipid biosynthesis as well as various 
cellular repair mechanisms (Angeloni and Potts 1986; Taranto et al. 1993). 

16 CONCLUSIONS 

Very little is known on the effects of different factors on the SG. This is because that (i) many algae 
did not reproduce and form any spore in culture, (ii) the life cycle of many algae is not monitored in nature, 
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and (iii) many algae survive in nature most of the time as vegetative cells without forming any spore. But in 
spite of that it is possible to draw certain conclusions from the data in this line of research. 

(a) GRM takes place more in light than in darkness. In darkness, GRM occurs in the presence of suitable 
organic carbon in the medium serving as energy source, or it may be due to storage reserve compounds 
of spores. Storage of algal spores usually decreases their viability (because of respiratory utilization of 
reserve substances during storage). Certain minimum light intensity level is required to trigger algal SG 
and percentage SG increases with an increase in light intensity level. The presence of silt and sediments 
in water column reduces light penetration and prevents algal SG. White light is most favored for SG, 
but it is red light in some algae. Photo-reversible phenomena mediated by pigment functionally similar 
to the phytochrome of higher plants are reported to occur in some algae. 

(b) Temperature is one of the important factors controlling SG. In blue-green algae, akinete GRM was 
found to be optimal at 22–27 °C (GRM usually occurred in spring or in early summer). In green algae, 
SG was optimal at ≈20 °C (spores collected from warmer regions germinated at somewhat higher tem-
perature than those collected from colder regions). In Vaucheria sp., zoospores and oospores germinated 
optimal at 12 and 15 °C, respectively. Dinoflagellate cysts germinated optimally at ≥17 °C. Zoospores 
and zygotes of brown algae were reported to germinate within a wide range of temperature (3–30 °C), 
depending upon the type and place of occurrence of alga. 

(c) Lack of N, P or Mg decreased SG (indicating the synthesis of proteins, nucleic acids and chlorophylls 
during SG). The presence of microelements (such as Zn, Mn, Mo, Cu, Co, B) in the culture media 
decreased SG. High level of N, P or Mg also decreased SG, indicating that it was sensitive to nutrient 
concentrations. 

(d) The presence of plant hormones (IAA, IBA, NAA, GA3), kinetin, tryptophan (a precursor of IAA), 
vitamins B2, C, serine (at certain level), pretreatment (of spores) with caffeine, crystal violet or methyl-
ene blue induced SG. Dyes produced changes in membrane permeability and active transport proces-
ses. 

(e) In some green and blue-green algae, spores germinated optimally at pH 7 or 8 (at which the algae also 
grew optimally). 

(f) Biotic factors (including algal and bacterial extracellular products, animal grazing and extracellular 
products), water stress (except for the need of prior drying for some algal spores), antibiotics (except 
penicillin at some low level), UV light, and pollution (including heavy metals, pesticides, insecticides, 
sewage effluents, crude oil, acetylene, ethylene, ammonia or anoxic conditions) at various levels de-
creased or totally suppressed SG. 

(g) X-Rays and -rays at low doses stimulated akinete GRM in green alga Stigeoclonium pascheri. The 
exact mechanism of activation of akinetes at low levels of X-rays and -rays is not known. 

(h) Water movements help to release zoospores in some brown algae but prevent spore settlement and 
GRM. Water movement keeps spores suspended in water and brings settled spores to the upper layer of 
water where they can germinate in the presence of light. 

(i) Zoospores (having very thin or no cell wall) had no dormancy and germinated immediate by after for-
mation; akinetes (with thicker cell wall and more resistant to environmental stresses than vegetative cells) 
germinated either immediately or after a shorter or longer time period following  formation (both in the 
laboratory and in natural conditions); zygospores, oospores and cysts (of terrestrial and freshwater 
algae having much thicker cell wall than vegetative cells) did not germinate immediately after format-
ion and required a period of dormancy (when they easily endure drought and other environmental 
rigors before GRM). Dormancy in some of them (but not in all) can be broken by a change in tem-
perature, light, or other factors. More work is needed to know which external or internal factors govern 
the dormancy of spores and how it can be broken. 

(j) Seaweed zygotes (with no resistant cell wall and high metabolic rate) had no resting period and germi-
nated soon after formation. However, marine diatoms and dinoflagellates may have thick-wall resting 
spores and cysts, respectively. 

(k) Desert algae, hot-water spring algae, and many terrestrial algae did not form any spore-like structure, 
and their vegetative cells (usually covered with extracellular polysaccharide sheath or having a reduced 
state of cytoplasm) survived environmental stresses similarly to or more than any dormant spores of other 
algae. These dry vegetative cells resume physiological activity soon after rewetting with atmospheric 
water. 
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