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Abstract
In a recent paper, Li–Ni–Zhu study the nefness and ampleness of the canonical line
bundle of a compact Kähler manifold with Rick � 0 and provide a direct alternate
proof to a recent result of Chu–Lee–Tam. In this paper, we generalize the method of
Li–Ni–Zhu to a more general setting which concerning the connection between the
mixed curvature condition and the positivity of the canonical bundle. The key point is
to do some a priori estimates to the solution of a Mong-Ampère type equation.
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1 Introduction

There has been great interest in studying the connection between the curvature and
properties of the manifold. In early 1970s, a conjecture of Yau asserts that the holo-
morphic sectional curvature determines the Ricci curvature in the following sense.

Conjecture 1.1 (Yau) Let M be a projective manifold with a Kähler metric of negative
holomorphic sectional curvature. Then its canonical line bundle KM is ample.

From the viewpoint of algebraic geometry, the abundance conjecture predicts that the
canonical bundle is semiample if it is nef. From the viewpoint of hyperbolic geometry,
there is also a conjceture due to Kobayashi [11].

B Chang Li
chang_li@ruc.edu.cn

Litao Han
hanlitao@ruc.edu.cn

Yangxiang Lu
2023000744@ruc.edu.cn

1 School of Mathematics, Renmin University of China, Beijing 100872, People’s Republic of China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-024-01789-1&domain=pdf


  340 Page 2 of 15 L. Han et al.

Conjecture 1.2 (Kobayashi) If a compact complex manifold M is hyperbolic (in the
sense of Kobayashi), then its canonical line bundle KM is ample.

Here a compact complex manifold M is hyperbolic (in the sense of Kobayashi) if
and only if every holomorphic mapping f : C → M is constant. Note that any
compact Kähler manifold with holomorphic sectional curvature bounded from above
by a negative constant is always Kobayashi hyperbolic.

In [25], Wong give an affirmative answer to Yau’s conjecture (Conjecture 1.1) for
Kähler surfaces. For higher dimension, Heier et al. [8] give an affirmative answer
by assuming the validity of the abundance conjecture (which is known to hold for
n � 3). For projective manifolds with Picard number 1, Wong et al. [26] generalize
the result which only assume holomorphic sectional curvature to be non-positive on
M and negative at some points. In this case, we say that the holomorphic sectional
curvature is quasi-negative.

For moere general case, the conjecture was proved completely by Wu and Yau in
[27]. Later on, Tosatti and Yang [23] extend Wu-Yau’s result to all Kähler manifolds,
not necessarily projective. Thus, the results of Wu-Yau and Tosatti-Yang can also be
seen as a weak confirmation of the Kobayashi’s conjecture (Conjecture 1.2) for Kähler
manifolds. Diverio and Trapani [7] and Wu and Yau [28] further generalize the result
to quasi-negative case. In the strictly negative case, Nomura [19] also give an alter-
native proof by means of the Kähler-Ricci flow. Recently, Zhang and Zhang-Zheng
also consider more general cases and introduce a notion of almost non-positive (or
quasi-negative) holomorphic sectional curvature. In [31], Zhang prove that a compact
Kähler manifold of almost non-positive holomorphic sectional curvature has a nef
canonical line bundle, contains no rational curves and satisfies some Miyaoka-Yau
type inequalities. In [32], Zhang-Zheng extend Diverio-Trapani &Wu-Yau’s result on
quasi-negative case to compact Kähler manifolds of almost quasi-negative holomor-
phic sectional curvature.

On the other hand, it is also natural to ask what one can say in the positive case.
When the holomorphic sectional curvature is positive there is also a conjecture by Yau
in his Problem section.

Conjecture 1.3 (Yau, Problem47, Problem section) If M has aKählermetric with pos-
itive holomorphic sectional curvature, then M is a projective and rationally connected
manifold.

A projective manifold X is called rationally connected if any two points of X can be
connected by some rational curve. Heier and Wong [9] confirm Yau’s conjecture 1.3
in the special case when X is projective. In [29], Yang give an affirmative answer to
this conjecture for all Kähler manifolds, not necessarily projective.

There are also some other curvature notions related to the positivity of the canon-
ical bundle. In 2018, Ni [16] introduced the notion of Rick in the study of the
k-hyperbolicity of compact Kähler manifolds. A compact Kähler manifold M is
defined to be k-hyperbolic if and only if any holomorphic map f : Ck → M must be
degenerate somewhere. The curvature notion Rick is defined as the Ricci curvature of
the k-dimensional holomorphic subspaces of the holomorphic tangent bundle T (1,0)M .
One can regard Rick as an interpolation between holomorphic sectional curvature H
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and the Ricci curvature Ric of M . We will discuss these curvature notions for more
details in the next section. In [16], Ni establish the k-hyperbolicity on Kähler mani-
folds with Rick < 0. Ni then ask if a Kähler manifold with negative Rick is projective?
In the positive case, it was also proved by Ni [17] that a compact Kähler manifold
with Rick > 0 for some 1 � k � n must be projective and rationally connected. This
generalizes the result of Yang (for k = 1) and the result of Campana [5] and Kollár et
al. [12] (for k = n). Ni-Zheng also assert in [18] that any compact Kähler manifold with
the second scalar curvature S2 > 0 (the average of Ric2) must be projective. Li [14]
establish a vanishing theorem for uniformly RC k-positive Hermitian holomorphic
vector bundles, and show that the holomorphic tangent bundle of a compact complex
manifold equipped with a positive k-Ricci curvature Kähler metric (or more generally
a positive k-Ricci curvature Kähler-like Hermitian metric) is uniformly RC k-positive.

Recently, Chu et al. [6] give an affirmative answer to Ni’s question in [16] concern-
ing the projectivity of a compact Kähler manifold M with Rick < 0 for some integer
k with 1 < k < n. The result can be stated as follows.

Theorem 1.4 Assume that (Mn, ω) is a compact Kähler manifold (n = dimC(M))

with Rick � −(k + 1)σ for some σ � 0 and some integer 1 � k � n. Then KM is nef
and is ample if σ > 0.

The above result generalizes the earlier work ofWu and Yau [27] and Tosatti and Yang
[23]. The proof ofChu et al. in [6] is via the study of a twistedKähler-Ricci flow. In [13],
Li-Ni-Zhu provide an alternate proof by studying the a priori estimates of the Aubin-
Yau solution [1, 30] to a complex Monge-Ampère type equation. In [21], Tang prove
that a compact Kähler manifold of almost nonpositive k-Ricci curvature must have
nef canonical line bundle. In [3], Broder-Tang introduced the concept of weighted
orthogonal Ricci curvature and investigated its implications on the projectivity of
Kähler manifolds, demonstrating several vanishing theorems in the process. In [15],
Li also investigate the curvature operator of the second kind on Kähler manifolds.
For the quasi-negativity case, Broder and Tang [4] consider the notion of (ε, δ)-quasi-
negativity and obtain gap-type theorems for

∫
X c1(KX )n > 0 in terms of the real

bisectional curvature and weighted orthogonal Ricci curvature.
As indicated in [13], their method may also prove effective in a broader context as

discussed in [6] where the approach involves studying a twisted Kähler-Ricci flow. In
this paper, we try to confirm this fact and give a complete proof in details. Borrowing
the idea in [13] and modifying the techniques therein, we give a direct proof to the
following result by using the a priori estimates to a Monge-Ampère type equation.

Theorem 1.5 Let (M, ω) be a compact Kähler manifold. Suppose that

α|X |2Ric(X , X) + βR(X , X , X , X) � −γ |X |4,∀X of (1, 0)-type, (1.1)

for some constants α, β > 0 and γ � 0. Then the canonical bundle KM of M is nef.
Moreover, KM is ample if γ > 0.

We shall call (1.1) themixed curvature condition. Note that the assumption in Theorem
1.4 is stronger than the mixed curvature condition (1.1) in Theorem 1.5 (see [6]).
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The rest of the paper is organized as follows: In Sect. 2, we will collect some basic
notations and results in Kähler geometry to be used later. In Sect. 3, as an application of
the a priori estimates for the solution of a Monge-Ampère type equation we will prove
the nefness and ampleness of the canonical line bundle under the mixed curvature
conditon.

2 Preliminaries

In this section, we collect some basic notations and results in Kähler geometry. One
can find more details in the literature (e.g. [10, 22, 24]). Let (M, ω) be a compact
n-dimensional Kähler manifold. Denote its Riemannian metric and Chern connection
by g and ∇ respectively. Then we can define the curvature tensor R.

Definition 1 The curvature tensor R of ∇ is defined by

R(X ,Y )Z := ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z ,

R(X ,Y , Z ,W ) := g (R(X ,Y )Z ,W ) ,

where X ,Y , Z ,W ∈ T M .

Let J be the induced almost complex structure on M . Then the curvature R satisfies
a number of symmetries.

Proposition 2.1 For any real vectors X ,Y , Z ,W ∈ T M, we have

• R(X ,Y , Z ,W ) = −R(Y , X , Z ,W ) = R(Y , X ,W , Z).
• R(X ,Y )J Z = J R(X ,Y )Z.
• R(X ,Y , J Z , JW ) = R(X ,Y , Z ,W ) = R(X ,Y , J Z , JW ).

The holomorphic sectional curvature H is defined as

Definition 2

Hp(V ) = R(V , V , V , V )

|V |4g
,

for V ∈ T (1,0)
p (M) \ {0}.

Under the local complex coordinates (z1, · · · , zn), we write

gi j = g

(
∂

∂zi
,

∂

∂z j

)

, {gi j } = {gi j }−1.

Here gi j gk j = δik . Then the Kähler form ω is given by

ω =
√−1

2
gi j dz

i ∧ dz j .
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We define the Christoffel symbols 
i
jk by

∇ ∂

∂z j

∂

∂zk
= 
i

jk
∂

∂zi
.

Then we have

∇ ∂

∂z j

∂

∂zk
= ∇ ∂

∂z j

∂

∂zk
= 0,

∇ ∂

∂z j

∂

∂zk
= 
i

jk

∂

∂zi
= 
i

jk
∂

∂zi
,

and
{


i
jk = gil

∂gkl
∂z j

}

.

We use the following notion for the curvature tensor:

Ri jkl := R

(
∂

∂zi
,

∂

∂z j
,

∂

∂zk
,

∂

∂zl

)

, etc.

Direct computations show that the curvature tensor R can be represented as

Ri jkl = − gml

∂
m
ik

∂z j

= − ∂2gkl
∂zi∂z j

+ gst
∂gsl
∂zi

∂gkt
∂z j

.

We define the Ricci curvature

Ric(ω) := √−1Rkldz
k ∧ dzl

to be the trace of R, so we get

Rkl = gi j Rkli j = − ∂2

∂zk∂zl

(
log det gi j

)
.

Therefore Ric(ω) is a closed real (1, 1)-form. Let ω̃ be another Kähler metric, then

Ric(ω) − Ric(ω̃) = √−1∂∂ log
det g̃

det g

= √−1∂∂ log
ω̃n

ωn
.

Therefore we have that
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Lemma 2.2 The cohomology class [Ric(ω)] ∈ H1,1
∂

(M,R) is independent of choice
of ω.

Then we can describe the first Chern class of a Kähler manifold M as follows.

Definition 3 We define the first Chern class of M to be

c1(M) = 1

2π
[Ric(ω)].

If we denote by KM = �n
(
T 1,0M

)∗
the canonical bundle of M , then the first Chern

class of KM satisfies

c1(KM ) = −c1(M).

We say KM is ample is equivalent to the existence of one Kähler metric with negative
Ricci curvature.

Next we define the Kähler cone of M .

Definition 4 The Kähler cone of M is defined to be

CM = {[ϑ] | there exists Kähler metric ω on M with [ω] = [ϑ]} .

A class [ζ ] ∈ CM is called nef. A class [ζ ] ∈ CM is called nef and big if

∫

M
ζ n > 0.

We have the following criteria about nef class.

Lemma 2.3 Let (M, ω) be a compact Kähler manifold. Then a class [ζ ] is nef if and
only if for any given ε > 0 there exists ϕε ∈ C∞(M,R) such that

ζ + √−1∂∂̄ϕε > −εω.

For a function u ∈ C∞(M), ∂∂u is given in local coordinates by

∂∂u = ∂2u

∂zi∂z j
dzi ∧ dz j .

We define the canonical Laplacian of u respect to the Chern connection by

�u :=
√−1
2 ∂∂u ∧ ωn−1

ωn
= gi j

∂2u

∂zi∂z j
.

The k-Ricci curvature Rick is defined as the Ricci curvature of the k-dimensional
holomorphic subspaces of the holomorphic tangent bundle T (1,0)(M).
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Definition 5 (k-Ricci curvature) For a point p ∈ M , let U be a k-dimensional sub-
space of T (1,0)

p (M) and R|U be the curvature tensor restricted to U . Then the k-Ricci
curvature Rick,U on U is defined as

Rick,U (X ,Y ) = trg|UR|U(X ,Y , ·, ·).

for X ,Y ∈ U .

When k = 1, the k-Ricci curvature is the holomorphic sectional curvature (i.e. Ric1 =
H). When k = n, the k-Ricci curvature is the Ricci curvature (i.e. Ricn = Ric).
Therefore, one can regard Rick as an interpolation between H and Ric of M .

Definition 6 We say that Rick � τ if for any X and any k-dimensional subspace U
containing X , we have

Rick,U (X , X) � τ |X |2g.

Note that Rick is independent for different k. Thus, unlike its Riemannian analogue
q-Ricci of Bishop and Wu [2], Rick � 0 can not imply Ric j � 0 for j 
= k.

In [6], Chu-Lee-Tam derive the following curvature estimate by using a Royden’s
trick [20]. One can also provide another proof using the averaging technique (cf.
Appendix of [16]) by modifying the techniques in [13].

Lemma 2.4 Suppose (M, ω) is a compact Kählermanifold satisfying (1.1). Ifω′ = ωg′
is another Kähler metric on M. Then the following estimate holds

2g′i j̄ g′kl̄Ri j̄ kl̄ � −λ

β

(
(trω′ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

β

(
trω′ω · (g′i j̄Rici j̄ ) + gpq̄ g

′i q̄ g′p j̄Rici j̄
)

.

(2.1)

3 Proof of Theorem 1.5

In this section, we prove Theorem 1.5 using the a priori estimates for the solution of
a Monge-Ampère type equation.

Proof We first prove the canonical line bundle KM of (M, ω) is nef by contradiction.
Suppose that KM is not nef. Then we can find δ > 0 such that δ[ω]− c1(M) is nef but
not Kähler. Then by lemma 2.3, for any ε > 0 we have (ε + δ)[ω] − c1(M) is Kähler.
Thus, ∀ε > 0 we can find a smooth function ϕε such that

ωε := (δ + ε)ω − Ric(ω) + √−1∂∂̄ϕε > 0. (3.1)
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Then we can apply the Aubin and Yau theorem [1, 30]. For any ε > 0 we can solve
the following complex Monge-Ampère equation for uε.

⎧
⎨

⎩

(
ωε + √−1∂∂̄uε

)n = exp

(

(1 + α

2β
)(ϕε + uε)

)

ωn (3.2)

ω′ := ωε + √−1∂∂̄uε > 0. (3.3)

We need only prove
sup
M

(trω′ ω) � C, (3.4)

for some C > 0 independent of ε. In fact, this implies that

ω′ � Cω (3.5)

for someC > 0 independent of ε. Taking ε → 0 we will see that this is a contradiction
to that δ[ω] − c1(M) is not Kähler. This completes the proof of the nefness of the
canonical line bundle KM of (M, ω).

We apply the maximum principle to the following test function:

F := log(trω′ω) − α

2β
(ϕε + uε).

We denote by g and g′ the Riemann metric respect to ω and ω′. Let p be the maximum
point of F . We choose a local coordinate system (V ; z1, z2, . . . , zn) centered at p
such that

gi j̄ (p) = δi j , g′
i j̄

(p) = θiδi j , ∂kg
′
i j̄

(p) = 0 (3.6)

Since

trω′ω = g′i j̄ gi j̄ ,

at p we have

�′ (trω′ ω) = g′kl̄ ∂2

∂zk∂ z̄l

(
g′i j̄ gi j̄

)

= g′kl̄ gi j̄
∂2

∂zk∂ z̄l
g′i j̄ + g′kl̄ g′i j̄ ∂2

∂zk∂ z̄l
gi j̄

= − g′kl̄ g′i q̄ g′p j̄ gi j̄
∂2

∂zk∂ z̄l
g′
pq̄ + g′kl̄ g′i j̄ ∂2

∂zk∂ z̄l
gi j̄

= − g′kl̄ g′i q̄ g′p j̄ gi j̄
∂2

∂zk∂ z̄l
g′
pq̄ + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

+ g′kl̄ g′i j̄
(

∂2

∂zk∂ z̄l
gi j̄ − ∂kgiq̄∂l̄ gp j̄ g

pq̄
)

(3.7)
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On the other hand, we notice that

Rkl̄i j̄ = − ∂k∂l̄ gi j̄ + ∂kgiq̄∂l̄ gp j̄ g
pq̄

R′
kl̄i j̄

= − ∂k∂l̄ g
′
i j̄

+ ∂kg
′
i q̄∂l̄ g

′
p j̄
g′pq̄ = −∂k∂l̄ g

′
i j̄

(3.8)

here Rkl̄i j̄ = g

(

∇ ∂
∂zk

∇ ∂
∂ z̄l

∂
∂zi

− ∇ ∂
∂ z̄l

∇ ∂
∂zk

∂
∂zi

, ∂
∂ z̄ j

)

. Then

�′ (trω′ ω) = g′kl̄ g′i q̄ g′p j̄ gi j̄ R
′
kl̄ pq̄

− g′kl̄ g′i j̄ Rkl̄i j̄ + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

= Ric′
pq̄ g

′i q̄ g′p j̄ gi j̄ − g′kl̄ g′i j̄ Rkl̄i j̄ + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

(3.9)

We deal with the first term involved 4-th order derivative in (3.9) by using the
Monge-Ampère equation (3.2). Differentiate (3.2) twice we get

Ric′ = Ric(ω) − √−1

(

1 + α

2β

)

∂∂̄(ϕε + uε)

= − ω′ + (ε + δ)ω − √−1
α

2β
∂∂̄(ϕε + uε).

(3.10)

Then

�′ (trω′ ω) =
(

−g′
pq̄ + (ε + δ)gpq̄ − α

2β
(ϕεpq̄ + uεpq̄ )

)

g′i q̄ g′p j̄ gi j̄

− g′kl̄ g′i j̄ Rkl̄i j̄ + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

(3.11)

Next we deal with the second term involved the Riemannian curvature of ω in (3.11)
by the mixed curvature condition. By Lemma 2.4 we have

g′i j̄ g′kl̄Ri j̄ kl̄ � −λ

2β

(
(trω′ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

2β

(
trω′ω · (g′i j̄Rici j̄ ) + gpq̄ g

′i q̄ g′p j̄Rici j̄
)

= −λ

2β

(
(trω′ ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

β
(trω′ ω)(g′i j̄Rici j̄ )

+ α

2β

(
g′i ī g′kk̄Rickk̄ − Rickk̄ g

′kk̄ g′kk̄)

= −λ

2β

(
(trω′ ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

β
(trω′ ω)(g′i j̄Rici j̄ )

+ α

2β

(
∑

k

Rickk̄ g
′kk̄

(
∑

i

g′i ī − g′kk̄
))

� −λ

2β

(
(trω′ ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

β
(trω′ ω)(g′i j̄Rici j̄ )
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+ α

2β

(
∑

k

(
(ε + δ) + (

ϕεkk̄
+ uεkk̄

))
g′kk̄

(
∑

i

g′i ī − g′kk̄
))

= −λ

2β

(
(trω′ ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

β
(trω′ ω)(g′i j̄Rici j̄ )

+ α

2β

(
(ε + δ)(trω′ ω)2 − (ε + δ)gpq̄ g

′i q̄ g′p j̄ gi j̄
)

+ α

2β

(
(trω′ ω) · �′(ϕε + uε) − (ϕεpq̄ + uεpq̄ )g

′i q̄ g′p j̄ gi j̄
)

.

(3.12)

Here we used Lemma 2.4 in the first inequality and (3.3) in the second inequality.
Plugging this into (3.11) we get

�′ (trω′ ω) �
(

−g′
pq̄ + (ε + δ)gpq̄ − α

2β
(ϕεpq̄ + uεpq̄ )

)

g′i q̄ g′p j̄ gi j̄

+ λ

2β

(
(trω′ ω)2 + gpq̄ g

′i q̄ g′p j̄ gi j̄
)

+ α

β
(trω′ ω)(g′i j̄Rici j̄ )

− α

2β

(
(ε + δ)(trω′ ω)2 − (ε + δ)gpq̄ g

′i q̄ g′p j̄ gi j̄
)

− α

2β

(
(trω′ ω) · �′(ϕε + uε) − (ϕεpq̄ + uεpq̄ )g

′i q̄ g′p j̄ gi j̄
)

+ g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

=
(
−g′

pq̄ + (ε + δ)gpq̄
)
g′i q̄ g′p j̄ gi j̄ + α

β
(trω′ ω)(g′i j̄Rici j̄ )

+ λ − α(ε + δ)

2β
(trω′ ω)2 + λ + α(ε + δ)

2β
(gpq̄ g

′i q̄ g′p j̄ gi j̄ )

− α

2β
(trω′ ω) · �′(ϕε + uε) + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

= − trω′ ω + (ε + δ)

(
∑

i

1

θ2i

)

+ α

β
(trω′ ω)(g′i j̄Rici j̄ )

+ λ − α(ε + δ)

2β
(trω′ ω)2 + λ + α(ε + δ)

2β

(
∑

i

1

θ2i

)

− α

2β
(trω′ ω) · �′(ϕε + uε) + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄

� − trω′ ω + α

β
(trω′ ω)(g′i j̄Rici j̄ ) + λ − α(ε + δ)

2β
(trω′ ω)2

− α

2β
(trω′ ω) · �′(ϕε + uε) + g′kl̄ g′i j̄ g pq̄∂kgiq̄∂l̄ gp j̄ (3.13)

Now we deal with the third order term in (3.13). Using the condition (3.6), we have
trω′ ω(p) = ∑n

i=1
1
θi
and
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�′ log(trω′ ω)

= �′(trω′ ω)

trω′ ω
− |∇′(trω′ ω)|2

(trω′ ω)2

� �′(trω′ ω)

trω′ ω
− g′i j̄∂kgi j̄∂l̄ gpq̄ g′pq̄ g′kl̄

(trω′ ω)2

= �′(trω′ ω)

trω′ ω
−

1
θ j

1
θk

1
θp

∂kg j j̄∂k̄ gp p̄

(trω′ ω)2

(3.14)

Plugging (3.13) into (3.14) we have

�′ log(trω′ ω)

� − 1 + α

β
(g′i j̄Rici j̄ ) + λ − α(ε + δ)

2β
(trω′ ω) − α

2β
�′(ϕε + uε)

+
1
θk

1
θ j

∂kg j p̄∂k̄ gp j̄

trω′ ω
−

1
θ j

1
θk

1
θp

∂kg j j̄∂k̄ gp p̄

(trω′ ω)2

(3.15)

We notice that

1
θk

1
θ j

∂kg j p̄∂k̄ gp j̄

trω′ ω
−

1
θ j

1
θk

1
θp

∂kg j j̄∂k̄ gp p̄

(trω′ ω)2

�
1
θk

1
θ j

∂kg j j̄∂k̄ g j j̄

trω′ ω
−

1
θ j

1
λk

1
θp

∂kg j j̄∂k̄ gp p̄

(trω′ ω)2

�
1
θk

1
θ j

(∂kg j j̄ )
2

trω′ ω
−

1
θk

(∑n
j=1

∂k g j j̄
θ j

)2

(trω′ ω)2

=
1
θk

{(∑n
j=1

1
θ j

) (∑n
j=1

1
θ j

(∂kg j j̄ )
2
)

−
(∑n

j=1
∂k g j j̄

θ j

)2}

(trω′ ω)2

� 0.

(3.16)

Here we use Cauchy-Schwartz inequality in the last inequality. Finally, we derive that

�′ log(trω′ ω)

� − 1 + α

β
(g′i j̄Rici j̄ ) + λ − α(ε + δ)

2β
(trω′ ω) − α

2β
�′(ϕε + uε)

(3.17)

For the zero order term in the test function F we observe that

�′(ϕε + uε)

= g′i j̄ (ϕεi j̄
+ uεi j̄

)
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= g′i j̄ (g′
i j̄

+ Rici j̄ − (ε + δ)gi j̄

)

= n + g′i j̄Rici j̄ − (ε + δ) trω′ ω. (3.18)

Combing (3.17) and (3.18), we see that

�′F = �′
(

log(trω′ ω) − α

2β
(ϕε + uε)

)

� λ + (ε + δ)α

2β
trω′ ω − C(α, β, n)

� λ + δα

2β
trω′ ω − C(α, β, n).

(3.19)

Applying the maximum principle to F we get, at p,

(trω′ ω)(p) � C, (3.20)

for C independent of ε. Then we can estimate, using the Monge-Ampère equation
(3.2),

sup
M

F = F(p)

= log(trω′ω) − α

2β
(ϕε + uε)

= log(trω′ω) − α

2β + α
log

ω′n

ωn

= log(trω′ω) + α

2β + α
log

1
∏

i θi
.

(3.21)

By the inequality of arithmetic and geometric means, we have

n

√
∏

i

1

θi
�

∑
i
1
θi

n
= trω′ ω

n
.

Plugging this into (3.21), then we get

sup
M

F � log(trω′ω) + αn

2β + α
log

trω′ ω

n

� C,

(3.22)

for C independent of ε.
Now we need to estimate the upper bound for (ϕε + uε). Let q be the maximum

point of (ϕε + uε). Using the maximum principle, at q, we obtain

√−1∂∂̄(ϕε + uε) � 0.
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This implies
((δ + ε)ω − Ric(ω))(q)

� (δ + ε)ω − Ric(ω) + √−1∂∂̄(ϕε + uε)

= ω′ � 0.

(3.23)

Then by the Monge-Ampère equation (3.2), we have

(

1 + α

2β

)

sup
M

(ϕε + uε)

=
(

1 + α

2β

)

(ϕε + uε)(q)

= log
ω′n

ωn

= log
((δ + ε)ω − Ric(ω) + √−1∂∂̄(ϕε + uε))

n

ωn

� log
((ε + δ)ω − Ric(ω))n

ωn

� C,

(3.24)

for some C independent of ε. Thus we obtain the upper bound for (ϕε + uε).
Combingning (3.22) and (3.24), we obtain

sup
M

log(trω′ ω) = sup
M

(

F + α

2β
(ϕε + uε)

)

� C, (3.25)

for some C independent of ε. Hence

sup
M

(trω′ ω) � C, (3.26)

for some C independent of ε. This completes the proof of nefness of KM .
Next we prove the canonical line bundle KM is ample if γ > 0. Using the fact that

KM is nef, we can take δ = 0 and repeat a similar arguments as above. We solve the
similar Mong-Ampère equation and do the similar estimates. Note that we still can
have the uniform estimates for trω′ ω since γ > 0 guarantees that the coefficient of
trω′ ω in (3.19) is still strictly positive when ε → 0.

Then we have

trω ω′ � 1

(n − 1)! (trω′ ω)n−1ω′n

ωn
� C .

Hence
C−1ω � ω′ � Cω, (3.27)

for some C > 0 independent of ε. Higher order estimates follow from Evans-Krylov
theory and Schauder estimate.
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Then one can apply the Arzela-Ascoli Theorem to get a convergent subsequence
out of (ϕε + uε) as ε → 0. Taking limit on both side of the Monge-Ampère equation
(3.2), we can find a function u0 and a Kähler form ω0 satisfies

Ric(ω0) = −ω0 − α

2β

√−1∂∂̄u0.

This shows that the canonical line bundle KM of (M, ω) is ample under the assumption
that γ > 0 in (1.1). �
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