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Abstract
We prove that there exists a gradient expanding Ricci soliton asymptotic to any given
coneover the product of a round sphere and aRicci flatmanifold. In particularweobtain
asymptotically conical expanding Ricci solitons with positive scalar curvature onR3×
S1. More generally we construct continuous families of gradient expanding Ricci
solitons on trivial vector bundles over products of Einstein manifolds with arbitrary
Einstein constants.
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1 Introduction

Perelman successfully introduced Ricci flow with surgery to prove the Poincaré con-
jecture in dimension three and more generally Thurston’s geometrization conjecture,
[1, 2]. In particular, Perelman could perform a careful singularity analysis and continue
the Ricci flow past singularities.

Workof Feldman–Ilmanen–Knopf [3] andMáximo [4] shows that in dimension four
and higher, Ricci flows on compact manifolds may also develop conical singularities.
Moreover, the examples of Feldman-Ilmanen-Knopf [3] and Angenent–Knopf [5]
indicate that asymptotically conical expanding Ricci solitons may be used to continue
the flow past the singular time. This is also supported by a result of Gianniotis–Schulze
[6] who constructed Ricci flows on compact manifolds with conical singularities by
gluing in asymptotically conical expanding gradient Ricci solitons.
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Based on these examples, Bamler–Chen [7, Question 1.1] asked if for a given 4-
dimensional Riemannian cone with nonnegative scalar curvature there is a gradient
expanding Ricci soliton with nonnegative scalar curvature which is asymptotic to the
given cone. Bamler-Chen moreover solved the question affirmatively if the link of the
cone is diffeomorphic to the 3-sphere.

In this paper we provide examples of expanding gradient Ricci solitons asymptotic
to any cone whose link is isometric to S2 × S1 where the metrics on the spheres are
round with arbitrary radii.

More generally, we prove the following Theorem.

Theorem A Let d1 ≥ 1 and let (Mi , gi ) be Einstein manifolds with Ric(gi ) = μi gi
for i = 2, . . . , r .

(a) There exists an r-parameter family of complete gradient expanding Ricci solitons
and an (r −1)-parameter family of complete Einstein metrics with negative scalar
curvature on R

d1+1 × M2 × . . . × Mr .
(b) If μi ≥ 0 for all i , then the expanding Ricci solitons are asymptotically conical.
(c) If d1 ≥ 2 and μi = 0 for all i �= 1, then all cones with link of the form

(
Sd1 × M2 × . . . × Mr , σ−2

1 g1 + . . . + σ−2
r gr

)
, σi > 0

occur as asymptotic cones, where g1 denotes the round metric on Sd1 .

By Bamler–Chen [7], the expanding Ricci solitons have positive scalar curvature
if the asymptotic cone has positive scalar curvature, see also Proposition 5.5.

Note that Theorem A(a) does not make any assumptions on the Einstein constants.
This generalizes work of Böhm [8] on Einstein manifolds with negative scalar curva-
ture and Dancer-Wang [9] on expanding Ricci solitons who all considered Einstein
manifolds (Mi , gi ) with positive scalar curvature and d1 ≥ 2. The corresponding
results for d1 = 1 were established by Buzano-Dancer-Gallaugher-Wang in [10]. All
examples are also of warped product type.

Theorem A(b) confirms the expectation of Dancer–Wang [9, Remark 3.16] that
their Ricci solitons are indeed asymptotically conical. The case of doubly warped
products was first considered by Gastel–Kronz [11] who constructed asymptotically
conical expanding Ricci solitons on Rd1+1 × M with d1 ≥ 2 and M positive Einstein.
Angenent–Knopf [5] gave an independent construction of expanders on R

p+1 × Sq

for p, q ≥ 2 and p+q ≤ 8 and moreover proved that in this setting there are multiple
expanding Ricci solitons asymptotic to the same cone.

ExpandingRicci solitonswith nonnegative respectively positive curvature operators
coming out of coneswith linkswhich are (homeomorphic to) spheres were constructed
by Schulze–Simon [12] and Deruelle [13]. In particular, Deruelle provided a classifi-
cation of asymptotically conical gradient expanding Ricci solitons with nonnegative
curvature operators. In contrast, the examples in Theorem A(c) always have negative
Ricci curvatures at the singular orbit in the directions tangent to the Ricci flat factors.

In the Kähler case, generalizing earlier work of Cao [14], Dancer–Wang [15],
Feldman–Ilmanen–Knopf [3] and Siepmann [16], Conlon–Deruelle [17] constructed
asymptotically conical expanding gradient Kähler Ricci solitons on the total space of
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the vector bundle L⊕(n+1), where L is a negative line bundle over a compact Kähler
manifold X with c1(KX ⊗ (L∗)n+1) > 0 and n ∈ N0. Further classification results,
in particular for asymptotically conical gradient expanding Kähler Ricci solitons of
complex dimension two, are established by Conlon–Deruelle–Sun in [18].

Strategy of the proof and structure of the paper Recall that an expanding gradient
Ricci soliton (M, g, u) is a Riemannian manifold (M, g) together with a smooth
function u on M such that

Ric+Hess u + ε

2
g = 0

for some constant ε > 0. The Ricci solitons constructed in this paper are multiple
warped products on (0, T )×Sd1 ×M2×. . .×Mr where the sphere smoothly collapses
to a point as t → 0.

In Sect. 2 we recall the Ricci soliton equations for multiple warped product man-
ifolds and show completeness of the metrics, i.e. Theorem A(a), by establishing that
the shape operator of the hypersurface {t} × Sd1 × M2 × . . . × Mr remains positive
definite. This suffices due to [19, Proposition 1.6]. The expanding Ricci solitons are
parametrized by ( f̄2, . . . , f̄r ,C) where f̄i > 0 rescale the metric of the singular orbit,(
M2 × . . . × Mr ,

∑r
i=2 f̄ 2i gi

)
, and C < 0 corresponds to the second derivative of

the soliton potential u at the singular orbit.
In order to consider the limit trajectory asC → −∞ in Sect. 6, we desingularize the

Ricci soliton equations in Sect. 3 using a well-known coordinate change. Sections4
and 5 establish the asymptotic behavior of the metrics. In particular, we show that
the expanding Ricci solitons are asymptotically conical in Lemma 5.4 and thus prove
Theorem A(b). This relies on several ODE comparison results, in particular Lemma
4.1. We also compute the scalar curvature at infinity of the solitons in Proposition 5.5.

Section 6 studies the aforementioned limit trajectory as C = (d1 + 1)ü(0) → −∞
which corresponds to an invariant subsystem of the Ricci solitonODE.Onemotivation
to consider this limit is that the scalar curvature satisfies R = −C−εu− u̇2−(n+1) ε

2
and thus the (non-geometric) limit corresponds (intuitively) to having infinite scalar
curvature. Moreover, if the singular orbit consists only of Ricci flat manifolds, then
the cone angle of the sphere factor must become arbitrarily small as C → −∞ to
obtain arbitrarily large scalar curvature. The asymptotic behavior of the trajectory of
the rescaled limit system quantifies this idea.

In the final Sect. 7 we use this to show that there are also regular trajectories,
i.e. trajectories corresponding to complete asymptotically conical expanding Ricci
solitons, where the sphere factor of the link is (and remains) arbitrarily small. By
considering the limit C → 0, i.e. the Einstein trajectories of Theorem A(a), we show
that similarly there are expanding Ricci solitons with spheres of arbitrarily large radii
in the link. Combining these observations we show that we can find an aysmptotically
conical expanding Ricci soliton with any given cone angle of the sphere factor in
Lemma 7.1. Theorem A(c) follows by suitably rescaling the Ricci flat factors of the
link, i.e. by choosing f̄i > 0 appropriately.
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2 Multiple Warped Product Gradient Ricci Solitons

For r ≥ 2 let (Mi , gi )i=2,...,r be Einstein manifolds with Ric(gi ) = μi gi . Let d1 ≥ 1
and set di = dim Mi for i = 2, . . . , r . On (0, T )× Sd1 × M2 × . . .× Mr consider the
metric

dt2 +
r∑

i=1

f 2i (t)gi ,

where g1 denotes the roundmetric on Sd1 of radius 1, so thatμ1 = d1−1.Note that the
shape operator and the Ricci curvature of the hypersurface {t}× Sd1 × M2 × . . .× Mr

are given by

Lt = diag

(
ḟ1
f1

idd1, . . . ,
ḟr
fr

iddr

)
and rt = diag

(
μ1

f 21
idd1, . . . ,

μr

f 2r
iddr

)
.

In this case the gradient Ricci soliton equation with soliton potential u = u(t) reduces
to

d

dt
(−u̇ + tr(L)) = − tr(L2) + ε

2
,

d

dt
L = −(−u̇ + tr(L))L + r + ε

2
id .

Furthermore, the Ricci soliton satisfies Hamilton’s [20] conservation law

ü + (−u̇ tr(L))u̇ = tr(L2) + tr(r) + (n − 1)
ε

2
− (−u̇ + tr(L))2 = C + εu,

where n = ∑r
i=1 di is the dimension of the hypersurface.

By the work of Buzano [21], the metric extends smoothly to a Ricci soliton metric
onRd1+1×M2× . . .×Mr if the warping functions fi satisfy the boundary conditions

f1(0) = 0, ḟ1(0) = 1, fi (0) = f̄i > 0 and ḟi (0) = 0

for i = 2, . . . , r . Furthermore, if we fix u(0) = 0, then the smoothness condition for
the soliton potential is

u(0) = 0, u̇(0) = 0, ü(0) = C

d1 + 1
.

With this choice of initial conditions, C is the same constant as in the conservation
law.

The ambient scalar curvature of the warped product is given by

R = tr(r) − tr(L2) − tr(L)2 − 2 tr(L̇).
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For Ricci solitons we thus obtain

R = −C − εu − u̇2 − (n + 1)
ε

2

= − tr(r) − tr(L2) + tr(L)2 − 2
(
u̇ tr(L) + n

ε

2

)

and in particular R(0) = −C − (n + 1) ε
2 . It follows from Chen [22, Corollary 2.3(i)]

and the strong maximum principle, see also Zhang [23, Theorem 1.5] or Pigola–
Rimoldi–Setti [24, Theorem 3], that a complete, non-Einstein expanding Ricci soliton
satisfies R+ (n+1) ε

2 > 0. In particular, we requireC < 0 as a necessary condition to
obtain complete expandingRicci solitons. Furthermore, Buzano–Dancer–Gallaugher–
Wang [10] observed that if C < 0, then the conservation law implies that u(t) < 0,
u̇(t) < 0 and ü(t) < 0 for t > 0, see also [19, Proposition 1.2]. Furthermore, C = 0
corresponds to Einstein metrics.

Note that the components of the shape operator satisfy

d

dt

ḟi
fi

= −(−u̇ + tr(L))
ḟi
fi

+ μi

f 2i
+ ε

2

and thus (d1 + 1) f̈i (0) = μi

f̄i
+ ε

2 f̄i .

For i ≥ 2 choose f̄i > 0 such that μi

f̄ 2i
+ ε

2 > 0. Then f̈i (0) > 0 and therefore

ḟi (t) > 0 for small t > 0. Note that ḟi (t) > 0 is preserved as long as d
dt

ḟi
fi

≥
−(−u̇ + tr(L))

ḟi
fi
. For μi ≥ 0 this is immediate and for μi < 0 note that ḟi (t) > 0

also implies μi
fi (t)2

+ ε
2 >

μi

f̄ 2i
+ ε

2 > 0. Therefore the shape operator remains positive

definite and completeness of the metric follows as in [19, Proposition 1.6]. This proves
part (a) of Theorem A.

In the following we will therefore only consider trajectories with

F̄i = μi

f̄ 2i
+ ε

2
> 0 (1)

for i = 2, . . . , r . By completeness of the metric, these trajectories are defined for
t ∈ [0,∞).

Remark 2.1 Note that for F̄i = 0 the warping function fi remains constant and Mi

splits off as a product factor.

Remark 2.2 The above construction also applies to Ricci flat metrics and steady Ricci
solitons provided the Einstein manifolds (Mi , gi ) have positive scalar curvature. This
recovers metrics constructed by Böhm [8], Dancer–Wang [25] and Buzano–Dancer–
Wang [26]. In the above approach it is also possible to include Ricci flat manifolds
(Mi , gi ).However, as inRemark 2.1, these split off as product factors. In fact, if (M, g)
is a steady Ricci soliton with potential u and (N , h) is Ricci flat, then the Riemannian
product (M × N , g + h) is a steady Ricci soltion with soliton potential u ◦ πM .
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3 Desingularization of the Ricci Soliton ODE

Set

L = 1

−u̇ + tr(L)
,

d

ds
= L d

dt
, Xi = L ḟi

fi
and Yi = L

fi

and denote differentiation with respect to s by
′
. Then,

L′ = L
⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2

⎞
⎠ ,

X
′
i = Xi

⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2 − 1

⎞
⎠ + μi Y

2
i + ε

2
L2,

Y
′
i = Yi

⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2 − Xi

⎞
⎠

for i = 1, . . . , r . Furthermore, let

S1 =
r∑

i=1

di X
2
i +

r∑
i=1

diμi Y
2
i + (n − 1)

ε

2
L2 − 1,

S2 =
r∑

i=1

di Xi − 1

and observe that

1

2
S ′
1 =

(
r∑

i=1

di X
2
i − ε

2
L2

)
S1 + ε

2
L2S2,

S ′
2 = S1 +

(
r∑

i=1

di X
2
i − ε

2
L2 − 1

)
S2.

Note that, by the conservation law, S1 = (C + εu)L2 and S2 = u̇L. In fact,
d
ds

S1
L2 = εS2 and S1 − S2 = üL2.

Solutions to the Ricci soliton equation satisfying the smoothness conditions of Sect.
2 correspond to trajectories in the unstable manifold of the stationary point

L = 0, X1 = Y1 = 1

d1
, Xi = Yi = 0 (2)

for i = 2, . . . , r .
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In the followingwe are only going to be interested in trajectories that are induced by
solutions satisfying the initial conditions (1) andC ≤ 0.Note that, due the conservation
law, these trajectories are contained in the locus {S1 < 0} ∩ {S2 < 0} for C < 0 and
in the locus {S1 = 0} ∩ {S2 = 0} for C = 0. Furthermore they satisfy L, Xi ,Yi > 0

as well as lims→−∞ μi
Y 2
i

L2 + ε
2 = F̄i > 0.

If μi < 0, then d
ds

Yi
L = −Yi

L Xi ≤ 0 implies that −μi Y 2
i <

(
ε
2 − F̄i

)L2 and the
conservation law S1 ≤ 0 shows that L, all Yi with μi �= 0, and all Xi are bounded.
Furthermore, for all i, the ODE for Yi thus shows that Yi cannot blow up in finite time.
In particular, solutions are defined for all s ∈ R.

To obtain a formula for the scalar curvature R in the new coordinate system we set

R = RL2.

From R = − tr(r) − tr(L2) + tr(L)2 − 2
(
u̇ tr(L) + n ε

2

)
it follows that

R = 2
r∑

i=1

di Xi −
r∑

i=1

di X
2
i −

(
r∑

i=1

di Xi

)2

−
r∑

i=1

diμi Y
2
i − nεL2

= −
(
S1 + S2

2 + (n + 1)
ε

2
L2

)

and it is straightforward to compute that

1

2

d

ds
R =

(
r∑

i=1

di X
2
i − ε

2
L2

)
R +

(
S2 − S1 − ε

2
L2

)
S2.

For applications in Sect. 5 we note the following.

Proposition 3.1 Suppose that μi ≥ 0. Then the origin is a stable attractor.

Proof The linearization of the Ricci soliton ODE at the origin shows that all eigen-
values are nonpositive and there is a center manifold. As in [9, Proof of Proposition
3.11] one shows that

∑r
i=1 Y

2
i + ε

2L2 is a Lyapunov function for the flow on the center
manifold near the origin. In particular, the origin is a sink for the flow, see also [27,
Theorem 2]. ��

4 Approximate Asymptotics of theMetrics

In the case of Einstein metrics with negative scalar curvature, the condition∑r
i=1 di Xi = 1 implies 1/n ≤ ∑r

i=1 di X
2
i ≤ 1 and the ODE for L shows that L is

bounded away from zero outside any neighborhood of the initial parameter s = −∞,
say for s > s0. As L is moreover bounded and Yi/L is decreasing, all Yi are hence
bounded. Thus, the ω-limit set of the ODE is connected, compact, non-empty and
invariant under the flow, see [28, Chapter 3.2]. Furthermore, d

ds
Yi
L = −Yi

L Xi also
implies that Xi · Yi = 0 on the ω-limit set. However, the ODE for Xi shows that
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Xi = 0 is impossible on the ω-limit set since μi Y 2
i + ε

2L2 is bounded away from zero
for s > s0. For μi < 0 this follows by the choice of f̄i > 0 in (1). Therefore, Yi → 0
as s → ∞.

As
∑r

j=1 d j X2
j − ε

2L2 − 1 is negative and bounded away from zero for s > s0, the
ODE

(Xk − Xl)
′ = (Xk − Xl)

⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2 − 1

⎞
⎠ + μkY

2
k − μlY

2
l

shows by comparison that Xk − Xl → 0 as s → ∞ for all k, l. Thus Xi → 1
n and

then also ε
2L2 → 1

n as s → ∞. In particular, ḟi
fi

= Xi
L →

√
n ε
2 as t → ∞.

The key convergence criterion is the following lemma, which can be proven as in
[9, Lemma 3.13].

Lemma 4.1 For i = 1, 2 let ci : R → R be smooth functions and suppose that ci (s) →
c∗
i as s → ∞ with c∗

1 > 0. Suppose that f : R → R satisfies f ′ = −c1 f + c2.

Then f converges to
c∗
2
c∗
1
as s → ∞.

Similarly, to treat the case of expanding Ricci solitons, recall that the work of
Buzano-Dancer-Gallaugher-Wang [10] shows that − u̇

t → ε
2 as t → ∞ and moreover

there is t0 > 0 such that | tr(L)| <
√
n ε
2 for t > t0. This implies thatL, Xi ,Yi → 0 as

s → ∞. As Xi ≥ 0 it follows that d
ds

Yi
L = −Yi

L Xi ≤ 0 and thus Yi
L converges. Since

μi
Y 2
i

L2 + ε
2 > 0 is bounded away from zero as before, cf. (1) in case μi < 0, Lemma

4.1 applied to

d

ds

Xi

L2 = Xi

L2

⎛
⎝−

r∑
j=1

d j X
2
j + ε

2
L2 − 1

⎞
⎠ + μi

Y 2
i

L2 + ε

2

shows convergence of Xi
L2 . One can now proceed as in [9]. In particular, it follows that

Yi
L → 0 by considering

Y ′
i

L′ and invoking L’Hôpital’s rule. This implies Xi
L2 → ε

2 as

s → ∞. Finally, with these asymptotics one can deduce that ε
2L · t → 1 and ḟi

fi
· t → 1

as t → ∞.

5 Scalar Curvature at Infinity

From now on we restrict to expanding Ricci solitons onRd1+1×M2× . . .×Mr where
d1 ≥ 2 and (Mi , gi ) are Einstein with nonnegative scalar curvature for i = 2, . . . , r .
In particular,

μ1 = d1 − 1 > 0 and μi ≥ 0 for i = 2, . . . , r .
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To distinguish between trajectories corresponding to expanding Ricci solitons and
Einstein metrics we make the following definition.

Definition 5.1 A trajectory in the unstable manifold of (2) with L > 0, Xi > 0,
Yi > 0 for i = 1, . . . , r is called regular if S1 < 0 and S2 < 0 respectively Einstein
if S1 = S2 = 0.

Recall from Sect. 3 that the loci {S1 < 0} ∩ {S2 < 0} and {S1 = 0} ∩ {S2 = 0} are
preserved by the ODE as ε > 0.

Remark 5.2 The trajectory corresponding to ( f̄2, . . . , f̄r ,C) is regular if and only if
f̄i > 0 for i = 2, . . . , r and C < 0.
Indeed, in Sect. 3 we established that trajectories induced by the smoothness con-

ditions of Sect. 2 are regular for f̄i > 0 and C < 0, or Einstein if f̄i > 0 and
C = 0.

The converse follows from the linearization at (2), cf. [9, Sect. 2]. Note that for
d1 ≥ 2 the fixed point (2) is hyperbolic and that we recover f̄i = fi (0) and C =
(d1 + 1)ü(0) via

f̄i = lim
s→−∞

Yi
L and C = lim

s→−∞
S1

L2 .

To study the precise asymptotic behavior of the trajectories, we set

Definition 5.3 For i = 1, . . . , r define σi by

σ−1
i = lim

t→∞ ḟi = lim
s→∞

Xi

Yi
,

where by convention we set σi = 0 if the limit diverges to infinity.

Along Einstein trajectories we have σi = 0 according to Sect. 4. We now prove
that the σi are also well-defined along regular trajectories.

Lemma 5.4 Along any regular trajectory, σi exist and σi ∈ (0,∞) for i = 1, . . . , r .
Moreover, we have the refined asymptotics

Xi − ε
2L2

L4 → (
ε

2
)2

(
μiσ

2
i + 1

)

for i = 1, . . . , r as s → ∞.

Proof Recall from Sect. 4 that regular trajectories satisfy

L, Xi ,Yi → 0,
Xi

L2 → ε

2
and

Yi
L → 0

for i = 1, . . . , r as s → ∞.
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It is straightforward to compute that

d

ds

Xi − ε
2L2

L4 = Xi − ε
2L2

L4

⎛
⎝−3

r∑
j=1

d j X
2
j + 3

ε

2
L2 − 1

⎞
⎠ + μi

(
Yi
L2

)2

+
(ε

2

) ⎛
⎝ε

2
−

r∑
j=1

d j

(
X j

L
)2

⎞
⎠ .

Along regular trajectories we have Xi
L2 → ε

2 as s → ∞. Thus Xi
L → 0 as s → ∞

and since μi ≥ 0 it follows that Xi > ε
2L2 for large times. In fact, if σi converges,

then Yi
L2 = Xi

L2
Yi
Xi

→ ε
2σi as s → ∞ and Lemma 4.1 implies that

Xi− ε
2L2

L4 →
( ε
2 )

2
(
μiσ

2
i + 1

)
as s → ∞.

To show that σi exist and σi ∈ (0,∞) it suffices to establish convergence of Yi
L2 in

(0,∞). Note that

d

ds

Yi
L2 = Yi

L2

⎛
⎝−

r∑
j=1

d j X
2
j + ε

2
L2 − Xi

⎞
⎠ < 0

for large times as eventually we have Xi > ε
2L2 for i = 1, . . . , r .

It remains to show that the σi are positive. Pick some fixed time T > 0. By the
previously established asymptotic estimates, there are constants ci such that

∣∣∣∣∣∣
−

r∑
j=1

d j X
2
j + ε

2
L2 − Xi

∣∣∣∣∣∣
≤ ciL4

for t ≥ T .
Using d

ds = L d
dt as well as

ε
2L · t → 1 for t → ∞, we obtain

∣∣∣∣
d

dt

Yi
L2

∣∣∣∣ ≤ c̃i
Yi
L2

1

t3
(3)

for t ≥ T and some constants c̃i > 0.
The corresponding differential equation

dg

dt
= −c̃

g

t3
, g(T ) = g0 > 0

has the explicit solution g(t) = g0 exp
(
c̃
2

(
1
t2

− 1
T 2

))
. In particular, g(t) converges

to a positive constant as t → ∞. By comparison, Yi
L2 remains bounded away from

zero for t ≥ T and we obtain positivity of σi . ��
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Proposition 5.5 Along any regular trajectory the scalar curvature satisfies

R

L2 →
(ε

2

)2 (
r∑

i=1

diμiσ
2
i − n(n − 1)

)

as s → ∞.

In particular, the induced gradient expanding Ricci soliton has positive scalar
curvature if its asymptotic cone

(
(0,∞) × Sd × M2 × . . . × Mr , dt2 + (σ−1

1 t)2gSd +
r∑

i=2

(σ−1
i t)2gMi

)

has positive scalar curvature.

Proof The formula for the scalar curvature R = RL2 from Sect. 3 shows that

R
L4 = 2

r∑
i=1

di
Xi − ε

2L2

L4 −
r∑

i=r

di

(
Xi

L2

)2

−
(

r∑
i=1

di
Xi

L2

)2

−
r∑

i=1

diμi

(
Yi
L2

)2

→
(ε

2

)2 (
2

r∑
i=1

di (μiσ
2
i + 1) − n − n2 −

r∑
i=1

diμiσ
2
i

)

=
(ε

2

)2 (
r∑

i=1

diμiσ
2
i − n(n − 1)

)

as s → ∞.

We note that the solitons have bounded curvature by direct computation. Therefore
we can apply the work of Bamler-Chen [7, Theorem 2.3] which shows that if the
scalar curvature of an expanding Ricci soliton is positive at infinity, then it is positive
everywhere. The claim follows from the observation that the scalar curvature of the
cone is

Rcone =
(

r∑
i=1

diμiσ
2
i − n(n − 1)

)
1

t2
.

��

6 A Limiting Subsystem

Consider the Ricci soliton ODE for L = 0 and Xi = Yi = 0 for i = 2, . . . , r . Then
one obtains an invariant subsystem in X = X1,Y = Y1 with d = d1 ≥ 2. Namely,

X
′ = X(dX2 − 1) + (d − 1)Y 2,

Y
′ = XY (dX − 1).
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The ODE has the fixed points (X ,Y ) = (0, 0), (± 1√
d
, 0), ( 1d ,± 1

d ). The fixed

point (X ,Y ) = ( 1d , 1
d ) is a saddle and there is precisely one trajectory in the unstable

manifold that emanates into the region 0 < X ,Y < 1
d .

Proposition 6.1 Suppose that 0 < X ,Y < 1
d at s0 ∈ R. Then 0 < X ,Y < 1

d for all
times and moreover

X ,Y → 0,
X

Y 2 → (d − 1),
1

X

(
X

Y 2 − (d − 1)

)
→ 2(d − 1)

as s → ∞.

Proof Clearly, X ≥ 0 and Y ≥ 0 are preserved. Furthermore, note that for 0 <

X ,Y < 1
d we have X

′
,Y ′ < 0. Thus 0 ≤ X ,Y ≤ 1

d is also preserved and moreover
if 0 < X ,Y < 1

d at s0 ∈ R, then X ,Y → 0 as s → ∞.

Furthermore, notice that

d

ds

X

Y 2 = X

Y 2 (−dX2 + 2X − 1) + d − 1

and thus Lemma 4.1 implies that X
Y 2 → d − 1 as s → ∞. Similarly, it follows from

d

ds

X
Y 2 − (d − 1)

Y 2 =
X
Y 2 − (d − 1)

Y 2

(
−dX2 + 2X − 1 − 2X(dX − 1)

)

+ (d − 1)
X

Y 2 (2 − dX)

that 1
Y 2

(
X
Y 2 − (d − 1)

)
→ 2(d − 1)2 as s → ∞. ��

Consequently, for trajectories as in Proposition 6.1, there are α1 > 0 and s1 ∈ R

such that
∣∣X − (d − 1)Y 2

∣∣ ≤ α1X2 for s > s1. Thus there are α2 > 0 and s2 ≥ s1
such that the renormalized scalar curvature R restricted to the subsystem satisfies

R = 2dX − d(d + 1)X2 − (d − 1)dY 2 ≥ dX − α2X
2 > 0

for s > s2.

7 Expanding Ricci Solitons Asymptotic to Cones

Throughout this section we assume that d1 ≥ 2 and that the manifolds (Mi , gi ) are
Ricci flat, hence μi = 0 for i = 2, . . . , r .

Recall from Lemma 5.4 that all σ−1
i = limt→∞ ḟi exist and are positive. The proof

of Theorem A (c) relies on the following Lemma.

Lemma 7.1 For any f̄2, . . . , f̄r > 0 the trajectories corresponding to the initial
conditions ( f̄2, . . . , f̄r ,C) achieve all values of σ1 ∈ (0,∞) as C varies in (−∞, 0).
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Before proving the Lemma, we show how it implies Theorem A(c).

Proof of TheoremA(c) For a given cone

(
(0,∞) × Sd1 × M2 × . . . × Mr , dt2 + (σ−1

1 t)2gSd1 +
r∑

i=2

(σ−1
i t)2gi

)

pick C < 0 according to Lemma 7.1 such that the trajectory with initial condition
fi (0) = f̄i > 0 for i = 2, . . . , r and ü(0) = C

d1+1 satisfies limt→∞ ḟ1(t) = σ−1
1 .

Since all Mi are by assumption Ricci flat, we have μi = 0 for i = 2, . . . , r and
we may observe that Yi decouples from the other equations in the Ricci soliton ODE.
In particular, given any regular trajectory (X1,Y1, Xi ,Yi ,L), we may obtain for any
ci > 0 another regular trajectory given by (X1,Y1, Xi , ci · Yi ,L). Clearly the limit
of Y1

X1
is not affected by this process while that of Yi

Xi
is rescaled by a factor of ci for

i = 2, . . . , r . Since we know this limit to be nonzero along any regular trajectory, we
may thus obtain any limits σi by suitable rescalings of Yi . ��
Remark 7.2 If the original trajectory has the initial condition ( f̄2, . . . , f̄r ,C0), then
the rescaled trajectory has the initial condition (c−1

2 · f̄2, . . . , c−1
r · f̄r ,C0).

The proof of Lemma 7.1 relies on the following observations.

Proposition 7.3 Along regular andEinstein trajectories the following hold for all time:

• X1 > Xi for i = 2, . . . , r ,
• X1 >

∑r
j=1 d j X2

j ,

• X1 > ε
2L2.

Proof X1 > Xi is preserved for i = 2, . . . , r as

d

ds
(X1 − Xi ) = (X1 − Xi )

⎛
⎝

2∑
j=1

d j X
2
j − ε

2
L2 − 1

⎞
⎠ + (d1 − 1)Y 2

1

as μi = 0 for i = 2, . . . , r and Y1 > 0.
The second statement now follows immediately from the first, using || · ||22 ≤

|| · ||∞ · || · ||1 on the vector X = (X1, . . . , X1, X2, . . . , X2, . . . , Xr , . . . , Xr ) and
that ||X ||1 = ∑

di Xi ≤ 1 with equality only along Einstein trajectories. In particular,
the claim follows for regular trajectories. Along Einstein trajectories, we also have
||X ||22 < ||X ||∞ as equality is only possible if all nonzero Xi are equal, which is
impossible since X1 > X2 > 0.

For the last claim, it is immediate to compute that

d

ds

(
X1 − ε

2
L2

)
=

(
X1 − ε

2
L2

)
⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2 − 1

⎞
⎠

123



  327 Page 14 of 18 J. Nienhaus, M. Wink

+ (d1 − 1)Y 2
1 − ε

2
L2

⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2

⎞
⎠ .

Note that whenever X1 = ε
2L2 we have

−ε

2
L2

⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2

⎞
⎠ = X1

⎛
⎝X1 −

r∑
j=1

d j X
2
j

⎞
⎠ > 0

and the claim follows. ��
Proposition 7.4 Consider a trajectory of the Ricci soliton ODE with X1,Y1 > 0,
X1 ≥ Xi ≥ 0 for i = 2, . . . , r and L ≥ 0. Set

Z = 1

X1

(
(d1 − 1)Y 2

1 + ε

2
L2

)
.

((a) If Y1
X1

>

√
n−1
d1−1 and 1 − X1 − Z > 0 at s0 ∈ R, then Y1

X1
is non-decreasing for

s ≥ s0.
(b) If Y1

X1
< 1 and 1 − X1 − Z < 0 at s0 ∈ R, then Y1

X1
is non-increasing for s ≥ s0.

Proof Note that

d

ds

Y1
X1

= Y1
X1

(1 − X1 − Z)

and

(1 − X1 − Z)
′ =

⎛
⎝

r∑
j=1

d j X
2
j − ε

2
L2

⎞
⎠ (1 − X1 − Z)

−
r∑
j=1

d j X
2
j + X1 + (d1 − 1)Y 2

1 − Z + Z2.

In particular,

(1 − X1 − Z)
′
|Z=1−X1

= −
r∑
j=1

d j X
2
j + (d1 − 1)Y 2

1 + X2
1 .

In case (a) it follows that

(1 − X1 − Z)
′
|Z=1−X1

≥ X2
1

(
−(n − 1) + (d1 − 1)

(
Y1
X1

)2
)

≥ 0.
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Thus the term 1 − X1 − Z remains nonnegative and thus Y1
X1

is non-decreasing.
In case (b) observe that

(1 − X1 − Z)
′
|Z=1−X1

≤ (d1 − 1)X2
1

((
Y1
X1

)2

− 1

)
≤ 0.

Therefore 1 − X1 − Z remains nonpositive and Y1
X1

is non-increasing. ��

Remark 7.5 Note that the condition 1 − X1 − Z > 0 is equivalent to d
ds

Y1
X1

> 0. It
follows that the trajectory γ of the subsystem in Sect. 6 eventually satisfies part (a) of
Proposition 7.4 as Y

X → ∞ as s → ∞.

Similarly, Einstein trajectories eventually satisfy part (b) of Proposition 7.4 due to
the asymptotics of Sect. 4.

Remark 7.6 Note that Z → 1 both along regular trajectories as well as along trajecto-
ries of the subsystem of Sect. 6. In fact, it follows from (Z −1)

′
|Z=1 ≤ nX2

1 − X1 ≤ 0
that Z − 1 ≤ 0 is preserved. Moreover, an application of Lemma 4.1 to

d

ds

Z − 1

X1
= Z − 1

X1
(1 − 2Z) − Z − (d1 − 1)

Y 2
1

X1
+

∑r
j=1 d j X2

j

X1

shows that Z−1
X1

→ −1 as s → ∞.

By quantifying the strategy of the proof of Lemma 5.4, we obtain continuity of σ1,

which is the last ingredient for the proof of Lemma 7.1.

Proposition 7.7 σ1 is continuous on the set of regular trajectories.

Proof Pick some regular trajectory γ and fix some T > 0. Pick some small compact
neighborhood K of γ (T ). We want to establish that the constant of equation (3) may
be chosen uniformly for all trajectories passing through K .

Since Y1
L2 is always decreasing by Proposition 7.3, it is bounded in terms of its value

at γ (T ) for all trajectories passing through K and times t ≥ T . Plugging this into the
differential equation for Xi

L2 we get a priori bounds for Xi
L2 as well, using that μi = 0

and that the conservation law implies ε
2L2 ≤ X1 ≤ 1

d1
,Y1 ≤ 1. This in turn gives a

priori bounds for
X1− ε

2L2

L4 .

With d
ds = L d

dt we find that

d

ds
tL = L2 + tL

(
r∑

i=1

di X
2
i − ε

2
L2

)

≤ L2 + tL
(
c(γ, T )L4 − ε

2
L2

)
.

We may choose T ′ > T such that γ (T ′) is close enough to the origin such that
Proposition 3.1 applies. Hence we may assume cL2 < ε

4 for all t > T ′ and all
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trajectories passing through K (after possibly shrinking K ). This gives

d

ds
tL ≤ L2

(
1 − ε

4
tL

)
,

which gives a uniform bound for tL depending only on its value at γ (T ′).
In particular, we do obtain that the constant of Eq. (3) may be chosen uniformly for

trajectories passing through K . We now deduce continuity σ1 at γ .
For α1 > 0 we find T1 such that

Y1
X1

(γ (t)) ≤ (1 + α1)σ1(γ ) for all t ≥ T1.

Note that the comparison solution g±(t) of

dg±

dt
= ±c

g±

t3
, g±(T0) = g0

converges for each T0 and that the limit converges to g0 as T0 → ∞. In particular, for
α2 > 0 there is T2 > 0 such that limt→∞ g+(t) ≤ (1 + α2)g0 for T0 ≥ T2.

Choose T ≥ T1, T2. By continuity, for eachα3 > 0 there is a compact neighborhood
K of γ (T ) such that

Y1
X1

(γ̃ (T )) ≤ (1 + α3)
Y1
X1

(γ (T ))

for all γ̃ with γ̃ (T ) ∈ K .

If g+ denotes the comparison solution with g+(T ) = Y1
X1

(γ̃ (T )), then

σ1(γ̃ ) ≤ lim
t→∞ g+(t) ≤ (1 + α1)(1 + α2)(1 + α3)σ1(γ ).

The lower bound follows analogously using g−. ��
Proof of Lemma 7.1 Fix f̄2, . . . , f̄r > 0. In Proposition 7.7 we proved that σ1 depends
continuously on C < 0. Therefore it suffices to show that σ1 → ∞ as C → −∞ and
σ1 → 0 as C → 0.

Pick σ̄ >

√
n−1
d1−1 . According to Remark 7.5, we can parametrize the limit system

trajectory γ of Sect. 6 such that it satisfies Y1
X1

> σ0 and 1 − X1 − Z > 0 for s ≥ 0.

Note that for any f̄2, . . . , f̄r > 0 the Ricci soliton system converges to the limiting
system as C → −∞. By continuous dependence on initial conditions we may thus
pick δ0 > 0 andC0 < 0 such that the trajectory corresponding to the initial conditions
( f̃2, . . . , f̃r ,C) passes through a small neighborhood of γ (0) for all f̃i ∈ ( f̄i −
δ0, f̄i + δ0) and C < C0. In particular, we may choose parametrizations such that
they are within this neighborhood at s = 0. We may then assume that Y1

X1
(0) > σ̄

and (1 − X1 − Z)(0) > 0 for all these curves. Proposition 7.4 shows that Y1
X1

is non-
decreasing along all of these curves for s ≥ 0 and thus the limit σ1 must be larger than
σ̄ .

Similarly, to show thatσ1 → 0 asC → 0, consider for f̄2, . . . , f̄r > 0 the trajectory
with initial condition ( f̄2, . . . , f̄r , 0), which is Einstein. In particular, according to
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Sect. 4, Y1 → 0 while X1 → 1
n as t → ∞. By continuous dependence on initial

conditions, given ε0 > 0 we find δ0 > 0 and C0 < 0 such that for all f̃i ∈ ( f̄i −
δ0, f̄i + δ0) and C0 < C < 0 the trajectory corresponding to the initial condition
( f̃2, . . . , f̃r ,C) satisfies Y1

X1
< ε0 as well as 1 − X1 − Z < 0 at some t = T > 0. By

Proposition 7.4, Y1
X1

< ε0 is preserved and thus σ1 < ε0. ��
Acknowledgements MW thanks Eric Chen and Tristan Ozuch for bringing his attention to the problem
of constructing expanding Ricci solitons on R

3 × S1 with positive scalar curvature. JN acknowledges
support by the Alexander von Humboldt Foundation through Gustav Holzegel’s Alexander von Humboldt
Professorship endowed by the Federal Ministry of Education and Research. Both authors were funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure.

Data availability This manuscript has no associated data.

References

1. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:0211159
(2002)

2. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:0303109 (2003)
3. Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient

Kähler–Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)
4. Máximo, D.: On the blow-up of four-dimensional Ricci flow singularities. J. Reine Angew. Math. 692,

153–171 (2014)
5. Sigurd, B.: Angenent and Dan Knopf, Ricci solitons, conical singularities, and nonuniqueness. Geom.

Funct. Anal. 32(3), 411–489 (2022)
6. Gianniotis, P., Schulze, F.: Ricci flow from spaces with isolated conical singularities. Geom. Topol.

22(7), 3925–3977 (2018)
7. Bamler, R.H., Chen, E.: Degree theory for 4-dimensional asymptotically conical gradient expanding

solitons (2023). arXiv:2305.03154
8. Böhm, C.: Non-compact cohomogeneity one Einstein manifolds. Bull. Soc. Math. France 127(1),

135–177 (1999)
9. Dancer, A.S., Wang, M.Y.: Non-Kähler expanding Ricci solitons. Int. Math. Res. Not. 6, 1107–1133

(2009)
10. Buzano,M.,Dancer, A.S., Gallaugher,M.,Wang,M.K.:Non-Kähler expandingRicci solitons, Einstein

metrics, and exotic cone structures. Pac. J. Math. 273(2), 369–394 (2015)
11. Gastel, A., Kronz, M.: A Family of Expanding Ricci Solitons Variational Problems in Rieman-

nian Geometry Progress in Nonlinear Differential Equations Application, vol. 59, pp. 81–93. Basel,
Birkhäuser (2004)

12. Schulze, F., Simon, M.: Expanding solitons with non-negative curvature operator coming out of cones.
Math. Z. 275(1–2), 625–639 (2013)

13. Deruelle, A.: Smoothing out positively curved metric cones by Ricci expanders. Geom. Funct. Anal.
26(1), 188–249 (2016)

14. Cao, H.-D.: Limits of solutions to the Kähler–Ricci flow. J. Differ. Geom. 45(2), 257–272 (1997)
15. Dancer, A.S., Wang, M.K.Y.: On Ricci solitons of cohomogeneity one. Ann. Glob. Anal. Geom. 39(3),

259–292 (2011)
16. Siepmann, M.: Ricci flows of Ricci flat cones, Doctoral thesis, ETH Zurich, Zürich (2013)
17. Ronan, J.: Conlon and Alix Deruelle, Expanding Kähler–Ricci solitons coming out of Kähler cones.

J. Differ. Geom. 115(2), 303–365 (2020)
18. Conlon, R.J., Deruelle, A., Sun, S.: Classification results for expanding and shrinking gradient Kähler–

Ricci solitons (2019). arXiv:1904.00147
19. Wink, M.: Complete Ricci solitons via estimates on the soliton potential. Int. Math. Res. Not. IMRN

6, 4487–4521 (2021)

123

http://arxiv.org/abs/2305.03154
http://arxiv.org/abs/1904.00147


  327 Page 18 of 18 J. Nienhaus, M. Wink

20. Hamilton, R.S.: The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry,
Vol. II, pp. 7–136. International Press, Cambridge (1995)

21. Buzano, M.: Initial value problem for cohomogeneity one gradient Ricci solitons. J. Geom. Phys.
61(6), 1033–1044 (2011)

22. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009)
23. Zhang, S.J.: On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded

below. Acta Math. Sin. 27(5), 871–882 (2011)
24. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268(3–

4), 777–790 (2011)
25. Dancer, A.S.,Wang,M.K.Y.: Some new examples of non-Kähler Ricci solitons. Math. Res. Lett. 16(2),

349–363 (2009)
26. Buzano,M.,Dancer,A.S.,Wang,M.:A family of steadyRicci solitons andRicci-flatmetrics. Commun.

Anal. Geom. 23(3), 611–638 (2015)
27. Carr, J.: Applications of Centre Manifold Theory. Applied Mathematical Sciences, vol. 35. Springer,

New York (1981)
28. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 3rd

edn. Springer, New York (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	New Expanding Ricci Solitons Starting in Dimension Four
	Abstract
	1 Introduction
	2 Multiple Warped Product Gradient Ricci Solitons
	3 Desingularization of the Ricci Soliton ODE
	4 Approximate Asymptotics of the Metrics
	5 Scalar Curvature at Infinity
	6 A Limiting Subsystem
	7 Expanding Ricci Solitons Asymptotic to Cones
	Acknowledgements
	References


