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Abstract
In this short note, we give an easy proof of the following result: for n ≥ 2,
lim
t→0

eit� f (x + γ (t)) = f (x) almost everywhere whenever γ is an α-Hölder curve

with 1
2 ≤ α ≤ 1 and f ∈ Hs(Rn), with s > n

2(n+1) . This is the optimal range of
regularity up to the endpoint.
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1 Introduction

Consider the linear Schrödinger equation on Rn × R, n ≥ 1, given by{
i∂t u(x, t) − �xu(x, t) = 0,

u(x, 0) = f (x).
(1)

Its solution can be formally expressed as

eit� f (x) =
∫
Rn

e2π i x ·ξ e2π i t |ξ |2 f̂ (ξ)dξ. (2)

It was first proposed by Carleson in 1980 [3] to find the values of s > 0 for which

lim
t→0

eit� f (x) = f (x), a.e. x ∈ R
n, (3)
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holds true for all functions f ∈ Hs(Rn). Carleson [3] proved this convergence when
n = 1 and s ≥ 1

4 . Later, in 2006, Dahlberg and Kenig [6] showed that (3) was false
whenever s < 1

4 .

Many researchers have worked in this problem throughout the years. Authors such
as Carbery, Cowling, Vega, Sjölin, Moyua, Vargas, Tao, Lee and Bourgain to name a
few. More recently, the problem has been solved in higher dimensions, except for the
endpoint. In 2016, Bourgain [1] proved the necessity of s ≥ n

2(n+1) in order to have

(3). In 2017, Du et al. [7] proved the sufficiency of the condition s > 1
3 when n = 2.

Later, in 2019, Du and Zhang [8] proved the sufficiency of s > n
2(n+1) for general

n ≥ 3. A more detailed history of the problem can be found in [8] and the references
therein.

Take a solution of (1). Consider a set of curves ρ(x, t) = x + γ (t) that are bi-
Lipschitz in x ∈ R

n and α-Hölder in t ∈ R. Cho et al. [4] proved in 2012 that
u (ρ(x, t), t) converges to f (x) almost everywhere as t → 0 in n = 1 when s >

max
{ 1
2 − α, 1

4

}
. They also found this to be sharp up to the endpoint. Later, in 2021,

Li and Wang [11] proved that convergence in dimension n = 2, for index 1
2 ≤ α ≤ 1

and the range s > 3
8 . In 2023, Cao and Miao [2] gave a proof for general dimension

n, index 1
2 ≤ α ≤ 1, and s > n

2(n+1) . Their proof followed the argument presented in
[8] and relied on techniques such as dyadic pigeonholing, broad-narrow analysis and
induction on scales.

Our objective is to give an easy proof of the result in [2] without using the
aforementioned techniques.

Fix 0 < α ≤ 1 and τ ≥ 1. We consider the family of curves,


α
τ := {

γ : [0, 1] → R
n : for all t, t ′ ∈ [0, 1], |γ (t) − γ (t ′)| ≤ τ |t − t ′|α}

. (4)

The convergence result follows from the maximal bound below. Let Bn
r (x0) denote

the ball of radius r > 0 centered at x0 ∈ R
n .

Theorem 1.1 Let n ≥ 1. Fix 1
2 ≤ α ≤ 1 and τ ≥ 1. For any ε > 0, there exists a

positive constant Cε,τ such that, for every γ ∈ 
α
τ ,∥∥∥∥ sup

0<t<1

∣∣∣eit� f (x + γ (t))
∣∣∣
∥∥∥∥
L2(Bn

1 (0))

≤ Cε,τ‖ f ‖
H

n
2(n+1) +ε

(Rn)
, (5)

holds for all f ∈ H
n

2(n+1) +ε
(Rn).

Remark 1.2 A change of variables shows that it is enough to consider the case τ = 1.
From now on we assume τ = 1.

Then, we can reduce Theorem 1.1 as in [8]. We begin with a definition.

Definition 1.3 Fixed 0 < α ≤ 1 and R > 1, we define


α
(
R−1

)
:=

{
γ : [0, R−1] → R

n : for all t, t ′ ∈ [0, R−1], |γ (t) − γ (t ′)| ≤ |t − t ′|α
}

.

(6)
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By Littlewood–Paley decomposition, the time localization lemma (e.g. Lemma 3.1
in Lee [9]) and parabolic rescaling, Theorem 1.1 can be reduced to the following
Theorem 1.4.

Theorem 1.4 Let n ≥ 1 and 1
2 ≤ α < 1. For any ε > 0, there exists a constant Cε

such that, for all γ ∈ 
α
(
R−1

)
,

∥∥∥∥∥ sup
0<t≤R

∣∣∣∣eit� f

(
x + Rγ

(
t

R2

))∣∣∣∣
∥∥∥∥∥
L2(Bn

R(0))

≤ CεR
n

2(n+1) +ε‖ f ‖2. (7)

holds for all R ≥ 1 and all f with supp f̂ ⊂ A(1) = {ξ ∈ R
n : |ξ | ∼ 1}.

2 Intermediate Results

We consider the following result from [8].

Theorem 2.1 (Corollary 1.7 in [8]) Let n ≥ 1. For any ε > 0, there exists a constant
Cε such that the following holds for all R ≥ 1 and all f with supp f̂ ⊂ Bn

1 (0). Suppose
that X = ∪k Bk is a union of lattice unit cubes in Bn+1

R (0). Let 1 ≤ β ≤ n + 1 and

φ := φX ,β := max
Bn+1
r (x ′)⊂Bn+1

R (0)
x ′∈Rn+1,r≥1

#
{
Bk : Bk ⊂ Bn+1

r

(
x ′)}

rβ
. (8)

Then ∥∥∥eit� f
∥∥∥
L2(X ,dxdt)

≤ Cεφ
1

n+1 R
β

2(n+1) +ε‖ f ‖2. (9)

We generalize the above result to include α-Hölder curves.

Theorem 2.2 Let n ≥ 1 and 1
2 ≤ α ≤ 1.

For any ε > 0, there exists a constant Cε such that the following holds for any
R ≥ 1, every γ ∈ 
α

(
R−1

)
and all f with supp f̂ ⊂ Bn

1 (0). Suppose that X = ∪k Bk

is a union of lattice unit cubes in Bn+1
R (0). Let 1 ≤ β ≤ n + 1 and φ be given by (8).

Then ∥∥∥∥eit� f

(
x + Rγ

(
t

R2

))∥∥∥∥
L2(X ,dxdt)

≤ Cεφ
1

n+1 R
β

2(n+1) +ε‖ f ‖2. (10)

Proof of Theorem 2.2 Denote

θ(t) := θR(t) := Rγ

(
t

R2

)
. (11)

We begin with

∥∥∥∥eit� f

(
x + Rγ

(
t

R2

))∥∥∥∥
2

L2(X ,dxdt)
=

∑
k

∫
Bk

∣∣∣eit� f (x + θ(t))
∣∣∣2 dxdt . (12)
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Denote (xk, tk) to be the center of Bk . Then,

≤
∑
k

∫ tk+1

tk−1

∫
Bn
1 (xk )

∣∣∣eit� f (x + θ(t))
∣∣∣2 dxdt (13)

=
∑
k

∫ tk+1

tk−1

∫
Bn
1 (xk+θ(t))

∣∣∣eit� f (y)
∣∣∣2 dydt . (14)

Recall thatγ ∈ 
α
(
R−1

)
, andα ≥ 1

2 . Thus, if t ∈ (tk−1, tk+1), then |θ(t) − θ(tk)| ≤
1. Hence,

≤
∑
k

∫ tk+1

tk−1

∫
Bn
3 (xk+θ(tk ))

∣∣∣eit� f (y)
∣∣∣2 dydt (15)

≤
∫
Rn

∑
k

χBn+1
4 (xk+θ(tk ),tk )

(y)
∣∣∣eit� f (y)

∣∣∣2 dydt (16)

≤ C
∫

⋃
Bn+1
4 (xk+θ(tk ),tk )

∣∣∣eit� f (y)
∣∣∣2 dydt, (17)

for some C > 0. Note that, if B4(xk + θ(tk), tk) ∩ B4(xi + θ(ti ), ti ) �= ∅, then
|tk − ti | ≤ 8. Since α ≥ 1

2 , we have |θ(tk) − θ(ti )| ≤ 8. Hence, |xk − xi | ≤ 16.
Therefore, the balls {B4(xk + θ(tk), tk)}k have finite overlap C = Cn .

Define Y = ⋃
l Ql to be the minimal union of lattice unit cubes satisfying that⋃

k B
n+1
4 (xk + θ(tk), tk) ⊂ Y . We have proven that

∥∥∥eit� f (x + θ(t))
∥∥∥
L2(X ,dxdt)

≤ Cn

∥∥∥eit� f (x)
∥∥∥
L2(Y ,dxdt)

. (18)

Hence by Theorem 2.1,

≤ Cε,nφ
1

n+1
Y ,β R

β
2(n+1) +ε‖ f ‖2. (19)

We claim that
φY ,β ≤ cnφX ,β , (20)

for some C > 0. This would conclude the proof.
To prove (20), note that, if Ql ⊂ Bn+1

r (y0, s0), r ≥ 1, and Ql ∩ Bn+1
4 (xk +

θ(tk), tk) �= ∅, then Bk = Bn+1
1 (xk, tk) ⊂ Bn+1

r+5 (y0 − θ(s0), s0).
Therefore,

#{Ql : Ql ⊂ Bn+1
r (y0, s0)}

rβ
≤ cn

#
{
Bk : Bk ⊂ Bn+1

r+5 (y0 − θ(s0), s0)
}

(r + 5)β
· (r + 5)β

rβ

≤ cnφX ,β . (21)

��
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3 Proof of Theorem 1.4

Before the proof, let us introduce a stability property of the Schrödinger operator.
More general versions of the following appeared in an article of Tao [12] from 1999
and an article of Christ [5] from 1988.

Suppose that f̂ is supported inside a ball of radius 1.
If |x ′ − y′| ≤ 4 and |t ′ − s′| ≤ 4, then,

∣∣∣eit ′� f (x ′)
∣∣∣ ≤

∑
l∈Zn

1

(1 + |l|)n+1

∣∣∣eis′� fl(y
′)
∣∣∣ , (22)

where f̂l(ξ) = e2π ilξ f̂ (ξ).
Now, fix α ≥ 1/2 and γ ∈ 
α

(
R−1

)
. Define θ as in (11). Whenever |x − y| ≤ 2

and |t − s| ≤ 2, we have that |x + θ(t) − (y + θ(s))| ≤ 4. Thus,

∣∣∣eit� f (x + θ(t))
∣∣∣ ≤

∑
l∈Zn

1

(1 + |l|)n+1

∣∣∣eis� fl(y + θ(s))
∣∣∣ . (23)

Therefore, if |x − x0| ≤ 1 and |t − t0| ≤ 1, then,

∣∣∣eit� f (x + θ(t))
∣∣∣ ≤

∑
l∈Zn

1

(1 + |l|)n+1

∫ t0+1

t0

∫
B1(x0)

∣∣∣eis� fl(y + θ(s))
∣∣∣ dyds.

(24)

Proof of Theorem 1.4. For the sake of briefness, given (x, t) ∈ R
n+1 let us denote

E ′ f (x, t) := E ′
γ,R f (x, t) := eit� f

(
x + Rγ

(
t

R2

))
. (25)

Now, we can write

∥∥∥∥∥ sup
0<t≤R

∣∣∣∣eit� f

(
x + Rγ

(
t

R2

))∣∣∣∣
∥∥∥∥∥
2

L2(Bn
R(0))

=
∥∥∥∥∥ sup
0<t≤R

|E ′ f (x, t)|
∥∥∥∥∥
2

L2(Bn
R(0))

(26)

=
∫
Bn
R(0)

(
sup

0<t≤R
|E ′ f (x, t)|2

)
dx (27)

=
∑
x0∈Zn

|x0|<R

∫
Bn
1 (x0)

(
sup

0<t≤R
|E ′ f (x, t)|2

)
dx (28)

≤ Cn

∑
x0∈Zn

|x0|<R

[
sup

|x−x0|≤1

(
sup

0<t≤R
|E ′ f (x, t)|2

)]
. (29)
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For each x0, there exists t̃0 = t̃0(x0) ∈ Z ∩ [0, R] such that the supremum on each
term of the above sum is almost attained inside Bn+1

1 (x0, t̃0). Therefore,

∥∥∥∥∥ sup
0<t≤R

|E ′ f (x, t)|
∥∥∥∥∥
2

L2(Bn
R(0))

�
∑
x0∈Zn

|x0|<R

sup
(x,t)∈Bn+1

1 (x0,t̃0)

∣∣E ′ f (x, t)
∣∣2 , (30)

which is, by (24),

�
∑
x0∈Zn

|x0|<R

∣∣∣∣∣
∑
l∈Zn

1

(1 + |l|)N
∫
Bn
1 (x0)

∫ t̃0+1

t̃0

∣∣E ′ fl(y, s)
∣∣ dsdy

∣∣∣∣∣
2

. (31)

Therefore, denoting Cl = 1
(1+|l|)N and using Cauchy–Schwarz,

�
∑
x0∈Zn

|x0|<R

∑
l∈Zn

Cl

∥∥E ′ fl(y, t)
∥∥2
L2(Bn+1

2 (x0,t̃0))
. (32)

Let us choose X = ⋃
x0∈Zn

|x0|<R
Bn+1
2

(
x0, t̃0

)
. The above lets us deduce that

∥∥∥∥∥ sup
0<t≤R

|E ′ f (x, t)|
∥∥∥∥∥
2

L2(Bn
R(0),dx)

�
∑
l∈Zn

Cl

∥∥E ′ fl(y, t)
∥∥2
L2(X)

. (33)

By Theorem 2.2, this is,

� Cε

∑
l∈Zn

Cl(φX ,n)
2

n+1 ‖ fl‖2L2(Rn)
R

2n
2(n+1) +ε

. (34)

Recall that, given x0 ∈ Z
n ∩ Bn

R(0), we have chosen exactly one t̃0 ∈ Z ∩ [0, R].
Consequently, φX ,n ≤ 1. Therefore, the above inequalities yield

∥∥∥∥∥ sup
0<t≤R

|E ′ f (x, t)|
∥∥∥∥∥
2

L2(Bn
R(0),dx)

� CεR
2n

2(n+1) +ε‖ f ‖22. (35)

��
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