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Abstract

In this short note, we give an easy proof of the following result: for n > 2,
liII(l) €A f (x + y(t)) = f(x) almost everywhere whenever y is an a-Holder curve
t—

with 3 < o < land f € H'(R"), with s >
regularity up to the endpoint.

ﬁ. This is the optimal range of
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1 Introduction

Consider the linear Schrodinger equation on R” x R, n > 1, given by

idu(x,t) — Ayu(x,t) =0, )
u(x,0) = f(x).
Its solution can be formally expressed as
eitAf ()C) — f €2Nix.§€2nit|é|2f(f)dé. (2)
]Rn

It was first proposed by Carleson in 1980 [3] to find the values of s > 0 for which

lir%eitAf(x) = f(x), ae. xeR", 3)
—
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holds true for all functions f € H®*(R"). Carleson [3] proved this convergence when
n=1ands > ‘—1‘. Later, in 2006, Dahlberg and Kenig [6] showed that (3) was false
whenever s < %.

Many researchers have worked in this problem throughout the years. Authors such
as Carbery, Cowling, Vega, Sjolin, Moyua, Vargas, Tao, Lee and Bourgain to name a
few. More recently, the problem has been solved in higher dimensions, except for the

endpoint. In 2016, Bourgain [1] proved the necessity of s > ﬁ in order to have

(3). In 2017, Du et al. [7] proved the sufficiency of the condition s > % when n = 2.
Later, in 2019, Du and Zhang [8] proved the sufficiency of s > ﬁ for general
n > 3. A more detailed history of the problem can be found in [8] and the references
therein.

Take a solution of (1). Consider a set of curves p(x,t) = x 4+ y(¢) that are bi-
Lipschitz in x € R"” and «-Holder in + € R. Cho et al. [4] proved in 2012 that
u(p(x,t),t) converges to f(x) almost everywhere as ¢ — Oinn = 1 when s >
max {% —a, }‘} They also found this to be sharp up to the endpoint. Later, in 2021,
Li and Wang [11] proved that convergence in dimension n = 2, for index % <a<l

and the range s > %. In 2023, Cao and Miao [2] gave a proof for general dimension

n, index % <a<l,ands > ﬁ Their proof followed the argument presented in
[8] and relied on techniques such as dyadic pigeonholing, broad-narrow analysis and
induction on scales.

Our objective is to give an easy proof of the result in [2] without using the
aforementioned techniques.

Fix 0 < o < 1 and T > 1. We consider the family of curves,

re:={y:[0,1]1—> R":forallz,’ € [0, 1], [y@®) —y(| <zlt =11}, @

The convergence result follows from the maximal bound below. Let B} (xp) denote
the ball of radius » > 0 centered at xo € R".

Theorem 1.1 Let n > 1. Fix % <o < landt > 1. For any ¢ > 0, there exists a
positive constant Cg ¢ such that, for every y € I'?,

sup |21 (x+y ()]

O<r<l

< CerllfIl
L2(B] )

(&)

HZ(nnJrl) +e ®RY

holds for all f € HTw (RN,

Remark 1.2 A change of variables shows that it is enough to consider the case t = 1.
From now on we assume 7 = 1.

Then, we can reduce Theorem 1.1 as in [8]. We begin with a definition.

Definition 1.3 Fixed 0 <« < 1and R > 1, we define

re (R_1> = [y [0, R = R - forall s, 7 €0, R\, |y(t) — y()| < |t — z/|“].
(6)
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By Littlewood—Paley decomposition, the time localization lemma (e.g. Lemma 3.1
in Lee [9]) and parabolic rescaling, Theorem 1.1 can be reduced to the following
Theorem 1.4.

Theorem 1.4 Let n > 1 and % < a < 1. For any ¢ > 0, there exists a constant C,
such that, forall y € T* (R_l),

érsr (v vy (42))

holds for all R > 1 and all f with supp fc A(l)={£ eR": |E] ~ 1}.

< CRTDTE fl (T)
L2(Bj(0)

sup
0<t<R

2 Intermediate Results

We consider the following result from [8].

Theorem 2.1 (Corollary 1.7 in [8]) Let n > 1. For any € > 0, there exists a constant
C¢ suchthat the following holds for all R > 1 and all f withsupp f C By (0). Suppose

that X = Uy By is a union of lattice unit cubes in Bﬁ“ ). Let1 < B8 <n+1and

#{Bi: By C B! ('
¢ =¢xp = max { 5 A )} (8)
B ()CBRH (0 r
x eRMF p>1

Then

B
< Cop T RTTT 4| £l )
L2(X,dxdt) —

eitAf‘

We generalize the above result to include «-Holder curves.

Theorem2.2 Letn > land 3 <o < 1.

For any ¢ > 0, there exists a constant C, such that the following holds for any
R > 1 everyy eI (R_l) and all f with supp fC B} (0). Suppose that X = Uy By,
is a union of lattice unit cubes in B}EH(O). Let1 < B <n+ 1and ¢ be given by (8).

)

Proof of Theorem 2.2 Denote

T B,
< Cep T R2FD | flo. (10)
L2(X,dxdt)

() := 0r(t) := Ry (%) . (11)

We begin with

eimf <x + Ry <%)>

2

L2(X,dxdt) B Z /Bk
’ k

itA 2
A (x +00)| dxdt. (12)
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i+1 . 2
¢ F (x + 0([))‘ dxdi (13)

Denote (xg, t) to be the center of By. Then,
-1 T (k)

<
2y
Z/thrl
= Ju—1 B o)

Recallthaty € I'* (R™!),anda > §.Thus,ifr € (tr—1, tr+1), then |0(1) — 6(1)] <
1. Hence,

itA 2
Ry (y)’ dyd. (14)

itA 2
e~ f (y)‘ dydt (15)

t+1
SN
& tr—1 Bg’ (x40 (1))

, 2
< [ Y g ot 0 725 00 v (16)
k

eitAf( ‘2‘1 d
y)| dydt, a7

<c /
U Bi T 0.0, 10)

for some C > 0. Note that, if Bs(xr + 0(tx), tx) N Ba(x; + 6(t;),t;) # @, then
ltw — 1| < 8. Since & > 1, we have |0(1) — 6(1;)| < 8. Hence, |xx — x;| < 16.
Therefore, the balls { B4 (xx + 0(#;), tx)}x have finite overlap C = C,,.

Define Y = | J; O; to be the minimal union of lattice unit cubes satisfying that

Uk BZ“ (xx + 6(tx), tr) C Y. We have proven that

itA itA
0t <cC ‘ . 18
¢S +00) L2Xdxdry — "¢ F@® L2(Y dxdr) (18)
Hence by Theorem 2.1,
1 B
< Cendy g RN £ (19)
We claim that
oy.g < cnx g, (20)

for some C > 0. This would conclude the proof.
To prove (20), note that, if Q; C B;’“(yo, s0), ¥ > 1, and Q; N BZH(xk +
0(tx), 1) # 0, then By = B (xe, 1) C B (yo — 6(50), 50)-

r+5
Therefore,
) +1
MO 01 C Bi Oo.s0)) _ H {8 B BH 00— 060, 0) 4 50
P = (r+ 5P P
< tnPx.p- 2D

]
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3 Proof of Theorem 1.4

Before the proof, let us introduce a stability property of the Schrédinger operator.
More general versions of the following appeared in an article of Tao [12] from 1999
and an article of Christ [5] from 1988.

Suppose that fis supported inside a ball of radius 1.

If |x' —y/| <4and |t/ — 5’| <4, then,

1
< -
- Z (1 _l’_ |[|)n+1

lezn

A F(x) A RGN, (22)

where fi(§) = > ¥ F ().
Now, fix @ > 1/2and y € I'* (R™'). Define 6 as in (11). Whenever |x — y| < 2
and |t — 5| < 2, we have that |x + 6(t) — (y + 0(s))| < 4. Thus,

R CELIONED

lezn

1 .
A+ [t A fily + 9(S))‘ . (23)

Therefore, if |x — xg| < 1 and |t — 1y| < 1, then,

itAf( +9(t))‘ < Z 1 /-to+1/-
e X _
- (I+ |[|)"+1 to B (x0)

lezn

e fi(y +6(5))| dyds.
4

Proof of Theorem 1.4. For the sake of briefness, given (x, t) € R"t! Jet us denote

E'f(x,1) = B g f(x, 1) = e™ f (x + Ry (%)) . (25)

Now, we can write

2
i t
sup |2 f (x+ Ry | — = | sup |E f(x,0) (26)
R2
0<t<R LZ(B?Q(O)) 0<t<R LZ(B;‘Q(O))
=[ sup |E'f(x,0)*)dx (27)
By (0) \0<t<R
= Z / sup |E'f(x,0)* ) dx (28)
xo€ZN B{ (x0) \0<t<R
[xol<R
<Cp ), [ sup (sup IE’f(x,t)|2>]. (29)
n | Ix—x0l<1 \O<t<R
X0EZ
[xol<R
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For each xg, there exists 7o = fo(xo) € Z N [0, R] such that the supremum on each
term of the above sum is almost attained inside Bf“ (x0, o). Therefore,

2

sup |E'f(x,1)] S Y s [Ef@of, 60

0<t<R LZ(Bﬁ(O)) xoeZ" (x,t)EB;lJrl(xo,iZ))
[xol <R
which is, by (24),
1 fo+1 ) 2
< Z ZW/ /~ |E f[(y,s)|dsdy . (31)
xoezZ" ltezn B (x0) J1o
|xo|<R

Therefore, denoting C; = W and using Cauchy—Schwarz,

<> Ya HE’f[(y,I)Hizwg“uo,%))' (32)

xo€Z leZ"
[xo| <R

Let us choose X = | yezn BE"H (xo, ia) The above lets us deduce that
Ixol<R

sup |E'f(x,1)]
0<t<R

S CE A0 ay - (33)
L2(B}(0),dx)  leZ"

By Theorem 2.2, this is,

2 2n
< Ce Y Culex )TN fill 7 2y RTD (34)
leZn

Recall that, given xo € Z" N B (0), we have chosen exactly one fo € ZN[0, R].
Consequently, ¢x , < 1. Therefore, the above inequalities yield

2
2n
< C R £3. 35)
L2(B}(0),dx)

sup |E'f(x,1)|
0<t<R
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