

A Note on Almost Everywhere Convergence Along Tangential Curves to the Schrödinger Equation Initial Datum

Javier Minguillón[1](http://orcid.org/0009-0002-2246-4546)

Received: 26 March 2024 / Accepted: 11 July 2024 © Mathematica Josephina, Inc. 2024

Abstract

In this short note, we give an easy proof of the following result: for $n \geq 2$, $\lim_{t\to 0} e^{it\Delta} f(x + \gamma(t)) = f(x)$ almost everywhere whenever γ is an α -Hölder curve $t\rightarrow 0$ with $\frac{1}{2} \le \alpha \le 1$ and $f \in H^s(\mathbb{R}^n)$, with $s > \frac{n}{2(n+1)}$. This is the optimal range of regularity up to the endpoint.

Keywords Schrödinger equation · Schrödinger maximal function · Almost everywhere convergence · Tangential convergence

Mathematics Subject Classification 35Q41 · 42B25 · 42B37

1 Introduction

Consider the linear Schrödinger equation on $\mathbb{R}^n \times \mathbb{R}$, $n \geq 1$, given by

$$
\begin{cases}\ni\partial_t u(x,t) - \Delta_x u(x,t) = 0, \\
u(x,0) = f(x).\n\end{cases} \tag{1}
$$

Its solution can be formally expressed as

$$
e^{it\Delta} f(x) = \int_{\mathbb{R}^n} e^{2\pi ix \cdot \xi} e^{2\pi it |\xi|^2} \widehat{f}(\xi) d\xi.
$$
 (2)

It was first proposed by Carleson in 1980 [\[3\]](#page-6-0) to find the values of $s > 0$ for which

$$
\lim_{t \to 0} e^{it\Delta} f(x) = f(x), \quad \text{a.e.} \quad x \in \mathbb{R}^n,
$$
\n(3)

Javier Minguillon was supported by Grant PID2022-142202NB-I00/AEI/10.13039/501100011033.

 \boxtimes Javier Minguillón javier.minguillon@uam.es

¹ Department of Mathematics, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Published online: 09 September 2024

holds true for all functions $f \in H^s(\mathbb{R}^n)$. Carleson [\[3\]](#page-6-0) proved this convergence when $n = 1$ and $s \geq \frac{1}{4}$. Later, in 2006, Dahlberg and Kenig [\[6\]](#page-6-1) showed that [\(3\)](#page-0-0) was false whenever $s < \frac{1}{4}$.

Many researchers have worked in this problem throughout the years. Authors such as Carbery, Cowling, Vega, Sjölin, Moyua, Vargas, Tao, Lee and Bourgain to name a few. More recently, the problem has been solved in higher dimensions, except for the endpoint. In 2016, Bourgain [\[1](#page-6-2)] proved the necessity of $s \geq \frac{n}{2(n+1)}$ in order to have [\(3\)](#page-0-0). In 2017, Du et al. [\[7](#page-6-3)] proved the sufficiency of the condition $s > \frac{1}{3}$ when $n = 2$. Later, in 2019, Du and Zhang [\[8\]](#page-6-4) proved the sufficiency of $s > \frac{n^2}{2(n+1)}$ for general $n \geq 3$. A more detailed history of the problem can be found in [\[8\]](#page-6-4) and the references therein.

Take a solution of [\(1\)](#page-0-1). Consider a set of curves $\rho(x, t) = x + \gamma(t)$ that are bi-Lipschitz in $x \in \mathbb{R}^n$ and α -Hölder in $t \in \mathbb{R}$. Cho et al. [\[4](#page-6-5)] proved in 2012 that $u(\rho(x, t), t)$ converges to $f(x)$ almost everywhere as $t \to 0$ in $n = 1$ when $s >$ max $\left\{\frac{1}{2} - \alpha, \frac{1}{4}\right\}$. They also found this to be sharp up to the endpoint. Later, in 2021, Li and Wang [\[11\]](#page-6-6) proved that convergence in dimension $n = 2$, for index $\frac{1}{2} \le \alpha \le 1$ and the range $s > \frac{3}{8}$. In 2023, Cao and Miao [\[2\]](#page-6-7) gave a proof for general dimension *n*, index $\frac{1}{2} \le \alpha \le 1$, and $s > \frac{n}{2(n+1)}$. Their proof followed the argument presented in [\[8](#page-6-4)] and relied on techniques such as dyadic pigeonholing, broad-narrow analysis and induction on scales.

Our objective is to give an easy proof of the result in [\[2\]](#page-6-7) without using the aforementioned techniques.

Fix $0 < \alpha \le 1$ and $\tau \ge 1$. We consider the family of curves,

$$
\Gamma_{\tau}^{\alpha} := \{ \gamma : [0, 1] \to \mathbb{R}^n : \text{for all } t, t' \in [0, 1], \ |\gamma(t) - \gamma(t')| \le \tau |t - t'|^{\alpha} \}.
$$
 (4)

The convergence result follows from the maximal bound below. Let $B_r^n(x_0)$ denote the ball of radius $r > 0$ centered at $x_0 \in \mathbb{R}^n$.

Theorem 1.1 *Let* $n \geq 1$ *. Fix* $\frac{1}{2} \leq \alpha \leq 1$ *and* $\tau \geq 1$ *. For any* $\varepsilon > 0$ *, there exists a positive constant* $C_{\varepsilon, \tau}$ *such that, for every* $\gamma \in \Gamma_\tau^\alpha$,

$$
\left\| \sup_{0 < t < 1} \left| e^{it\Delta} f \left(x + \gamma(t) \right) \right| \right\|_{L^2(B_1^n(0))} \le C_{\varepsilon, \tau} \| f \|_{H^{\frac{n}{2(n+1)} + \epsilon}(\mathbb{R}^n)},\tag{5}
$$

holds for all $f \in H^{\frac{n}{2(n+1)} + \epsilon}(\mathbb{R}^n)$.

Remark 1.2 A change of variables shows that it is enough to consider the case $\tau = 1$. From now on we assume $\tau = 1$.

Then, we can reduce Theorem [1.1](#page-1-0) as in [\[8\]](#page-6-4). We begin with a definition.

Definition 1.3 Fixed $0 < \alpha \leq 1$ and $R > 1$, we define

$$
\Gamma^{\alpha}\left(R^{-1}\right) := \left\{\gamma : [0, R^{-1}] \to \mathbb{R}^n : \text{for all } t, t' \in [0, R^{-1}], \ |\gamma(t) - \gamma(t')| \le |t - t'|^{\alpha}\right\}.
$$
\n⁽⁶⁾

By Littlewood–Paley decomposition, the time localization lemma (e.g. Lemma 3.1 in Lee [\[9](#page-6-8)]) and parabolic rescaling, Theorem [1.1](#page-1-0) can be reduced to the following Theorem [1.4.](#page-2-0)

Theorem 1.4 *Let* $n \geq 1$ *and* $\frac{1}{2} \leq \alpha < 1$ *. For any* $\varepsilon > 0$ *, there exists a constant* C_{ε} *such that, for all* $\gamma \in \Gamma^{\alpha}(R^{-1}),$

$$
\left\|\sup_{0
$$

holds for all R ≥ 1 *and all f with* supp $\widehat{f} \subset A(1) = {\xi \in \mathbb{R}^n : |\xi| \sim 1}.$

2 Intermediate Results

We consider the following result from [\[8\]](#page-6-4).

Theorem 2.1 (Corollary 1.7 in [\[8\]](#page-6-4)) *Let* $n \ge 1$ *. For any* $\varepsilon > 0$ *, there exists a constant* C_{ε} *such that the following holds for all R* ≥ 1 *and all f with* supp $\widehat{f} \subset B_1^n(0)$ *. Suppose that* $X = \bigcup_k B_k$ *is a union of lattice unit cubes in* $B_R^{n+1}(0)$ *. Let* $1 \le \beta \le n+1$ *and*

$$
\phi := \phi_{X,\beta} := \max_{\substack{B_r^{n+1}(x') \subset B_R^{n+1}(0) \\ x' \in \mathbb{R}^{n+1}, r \ge 1}} \frac{\#\{B_k : B_k \subset B_r^{n+1}(x')\}}{r^{\beta}}.
$$
(8)

Then

$$
\left\|e^{it\Delta}f\right\|_{L^2(X,dxdt)} \leq C_{\varepsilon}\phi^{\frac{1}{n+1}}R^{\frac{\beta}{2(n+1)}+\varepsilon}\|f\|_2.
$$
 (9)

We generalize the above result to include α -Hölder curves.

Theorem 2.2 *Let* $n \geq 1$ *and* $\frac{1}{2} \leq \alpha \leq 1$ *.*

For any $\varepsilon > 0$ *, there exists a constant* C_{ε} *such that the following holds for any* $R \geq 1$ *, every* $\gamma \in \Gamma^{\alpha}(R^{-1})$ and all f with supp $\widehat{f} \subset B_1^n(0)$ *. Suppose that* $X = \bigcup_k B_k$ *is a union of lattice unit cubes in* $B_R^{n+1}(0)$ *. Let* $1 \leq \beta \leq n+1$ *and* ϕ *be given by* [\(8\)](#page-2-1)*. Then*

$$
\left\|e^{it\Delta}f\left(x+R\gamma\left(\frac{t}{R^2}\right)\right)\right\|_{L^2(X,dxdt)} \le C_\varepsilon\phi^{\frac{1}{n+1}}R^{\frac{\beta}{2(n+1)}+\varepsilon}\|f\|_2. \tag{10}
$$

Proof of Theorem [2.2](#page-2-2) Denote

$$
\theta(t) := \theta_R(t) := R\gamma\left(\frac{t}{R^2}\right). \tag{11}
$$

We begin with

$$
\left\|e^{it\Delta}f\left(x+R\gamma\left(\frac{t}{R^2}\right)\right)\right\|_{L^2(X,dxdt)}^2 = \sum_k \int_{B_k} \left|e^{it\Delta}f\left(x+\theta(t)\right)\right|^2 dxdt. \quad (12)
$$

 \mathcal{D} Springer

Denote (x_k, t_k) to be the center of B_k . Then,

$$
\leq \sum_{k} \int_{t_k-1}^{t_k+1} \int_{B_1^n(x_k)} \left| e^{it\Delta} f\left(x + \theta(t)\right) \right|^2 dx dt \tag{13}
$$

$$
= \sum_{k} \int_{t_{k}-1}^{t_{k}+1} \int_{B_{1}^{n}(x_{k}+\theta(t))} \left| e^{it\Delta} f(y) \right|^{2} dy dt.
$$
 (14)

Recall that $\gamma \in \Gamma^{\alpha} (R^{-1})$, and $\alpha \geq \frac{1}{2}$. Thus, if $t \in (t_k-1, t_k+1)$, then $|\theta(t) - \theta(t_k)| \leq$ 1. Hence,

$$
\leq \sum_{k} \int_{t_k-1}^{t_k+1} \int_{B_3^n(x_k+\theta(t_k))} \left| e^{it\Delta} f(y) \right|^2 dy dt \tag{15}
$$

$$
\leq \int_{\mathbb{R}^n} \sum_k \chi_{B_4^{n+1}(x_k+\theta(t_k),t_k)}(y) \left| e^{it\Delta} f(y) \right|^2 dy dt \tag{16}
$$

$$
\leq C \int_{\bigcup B_{4}^{n+1}(x_{k}+\theta(t_{k}),t_{k})} \left| e^{it\Delta} f\left(y\right) \right|^{2} dy dt, \tag{17}
$$

for some $C > 0$. Note that, if $B_4(x_k + \theta(t_k), t_k) \cap B_4(x_i + \theta(t_i), t_i) \neq \emptyset$, then $|t_k - t_i|$ ≤ 8. Since $\alpha \ge \frac{1}{2}$, we have $|\theta(t_k) - \theta(t_i)|$ ≤ 8. Hence, $|x_k - x_i|$ ≤ 16. Therefore, the balls ${B_4(x_k + \theta(t_k), t_k)}_k$ have finite overlap $C = C_n$.

Define $Y = \bigcup_l Q_l$ to be the minimal union of lattice unit cubes satisfying that $\bigcup_k B_4^{n+1}(x_k + \theta(t_k), t_k) \subset Y$. We have proven that

$$
\left\|e^{it\Delta}f\left(x+\theta(t)\right)\right\|_{L^2(X,dxdt)} \leq C_n \left\|e^{it\Delta}f\left(x\right)\right\|_{L^2(Y,dxdt)}.\tag{18}
$$

Hence by Theorem [2.1,](#page-2-3)

$$
\leq C_{\epsilon,n} \phi_{Y,\beta}^{\frac{1}{n+1}} R^{\frac{\beta}{2(n+1)} + \epsilon} \|f\|_2.
$$
 (19)

We **claim** that

$$
\phi_{Y,\beta} \le c_n \phi_{X,\beta},\tag{20}
$$

for some $C > 0$. This would conclude the proof.

To prove [\(20\)](#page-3-0), note that, if Q_l ⊂ $B_r^{n+1}(y_0, s_0)$, $r \ge 1$, and $Q_l \cap B_4^{n+1}(x_k +$ $\theta(t_k), t_k \neq \emptyset$, then $B_k = B_1^{n+1}(x_k, t_k) \subset B_{r+5}^{n+1}(y_0 - \theta(s_0), s_0)$.

Therefore,

$$
\frac{\# \{Q_l : Q_l \subset B_r^{n+1}(y_0, s_0)\}}{r^{\beta}} \le c_n \frac{\# \left\{B_k : B_k \subset B_{r+5}^{n+1}(y_0 - \theta(s_0), s_0)\right\}}{(r+5)^{\beta}} \cdot \frac{(r+5)^{\beta}}{r^{\beta}} \le c_n \phi_{X, \beta}.
$$
\n(21)

 \Box

3 Proof of Theorem [1.4](#page-2-0)

Before the proof, let us introduce a stability property of the Schrödinger operator. More general versions of the following appeared in an article of Tao [\[12](#page-6-9)] from 1999 and an article of Christ [\[5\]](#page-6-10) from 1988.

Suppose that \widehat{f} is supported inside a ball of radius 1. If $|x' - y'|$ ≤ 4 and $|t' - s'|$ ≤ 4, then,

$$
\left|e^{it'\Delta}f(x')\right| \le \sum_{\mathfrak{l}\in\mathbb{Z}^n} \frac{1}{(1+|\mathfrak{l}|)^{n+1}} \left|e^{is'\Delta}f_{\mathfrak{l}}(y')\right|,\tag{22}
$$

where $\widehat{f}_{I}(\xi) = e^{2\pi i \xi} \widehat{f}(\xi)$.

Now, fix $\alpha \ge 1/2$ and $\gamma \in \Gamma^{\alpha}(R^{-1})$. Define θ as in [\(11\)](#page-2-4). Whenever $|x - y| \le 2$ and $|t - s| \leq 2$, we have that $|x + \theta(t) - (y + \theta(s))| \leq 4$. Thus,

$$
\left|e^{it\Delta}f(x+\theta(t))\right| \le \sum_{\mathfrak{l}\in\mathbb{Z}^n} \frac{1}{(1+|\mathfrak{l}|)^{n+1}} \left|e^{is\Delta}f_{\mathfrak{l}}(y+\theta(s))\right|.
$$
 (23)

Therefore, if $|x - x_0| \le 1$ and $|t - t_0| \le 1$, then,

$$
\left| e^{it\Delta} f(x + \theta(t)) \right| \le \sum_{\mathfrak{l} \in \mathbb{Z}^n} \frac{1}{(1 + |\mathfrak{l}|)^{n+1}} \int_{t_0}^{t_0 + 1} \int_{B_1(x_0)} \left| e^{is\Delta} f(\mathfrak{t} + \theta(s)) \right| dy ds. \tag{24}
$$

Proof of Theorem [1.4.](#page-2-0) For the sake of briefness, given $(x, t) \in \mathbb{R}^{n+1}$ let us denote

$$
E'f(x,t) := E'_{\gamma,R}f(x,t) := e^{it\Delta} f\left(x + R\gamma\left(\frac{t}{R^2}\right)\right). \tag{25}
$$

Now, we can write

$$
\left\| \sup_{0 < t \le R} \left| e^{it\Delta} f \left(x + R\gamma \left(\frac{t}{R^2} \right) \right) \right| \right\|_{L^2(B_R^n(0))}^2 = \left\| \sup_{0 < t \le R} |E' f(x, t)| \right\|_{L^2(B_R^n(0))}^2 \tag{26}
$$

$$
= \int_{B_R^n(0)} \left(\sup_{0 < t \le R} |E' f(x, t)|^2 \right) dx \tag{27}
$$

$$
= \sum_{\substack{x_0 \in \mathbb{Z}^n \\ |x_0| < R}} \int_{B_1^n(x_0)} \left(\sup_{0 < t \le R} |E' f(x, t)|^2 \right) dx \tag{28}
$$

$$
\leq C_n \sum_{\substack{x_0 \in \mathbb{Z}^n \\ |x_0| < R}} \left[\sup_{|x - x_0| \leq 1} \left(\sup_{0 < t \leq R} |E' f(x, t)|^2 \right) \right]. \tag{29}
$$

For each x_0 , there exists $\tilde{t}_0 = \tilde{t}_0(x_0) \in \mathbb{Z} \cap [0, R]$ such that the supremum on each term of the above sum is almost attained inside $B_1^{n+1}(x_0, \tilde{t}_0)$. Therefore,

$$
\left\| \sup_{0 < t \le R} |E' f(x, t)| \right\|_{L^2(B_R^n(0))}^2 \lesssim \sum_{\substack{x_0 \in \mathbb{Z}^n \\ |x_0| < R}} \sup_{(x, t) \in B_1^{n+1}(x_0, \tilde{t}_0)} |E' f(x, t)|^2, \qquad (30)
$$

which is, by (24) ,

$$
\lesssim \sum_{\substack{x_0 \in \mathbb{Z}^n \\ |x_0| < R}} \left| \sum_{\mathfrak{l} \in \mathbb{Z}^n} \frac{1}{(1 + |\mathfrak{l}|)^N} \int_{B_1^n(x_0)} \int_{\widetilde{t_0}}^{\widetilde{t_0} + 1} |E' f_{\mathfrak{l}}(y, s)| \, ds \, dy \right|^2. \tag{31}
$$

Therefore, denoting $C_{\mathfrak{l}} = \frac{1}{(1+|\mathfrak{l}|)^N}$ and using Cauchy–Schwarz,

$$
\lesssim \sum_{\substack{x_0 \in \mathbb{Z}^n \\ |x_0| < R}} \sum_{\mathfrak{l} \in \mathbb{Z}^n} C_{\mathfrak{l}} \|E' f_{\mathfrak{l}}(y, t)\|_{L^2(B_2^{n+1}(x_0, \widetilde{t_0}))}^2. \tag{32}
$$

Let us choose $X = \bigcup_{\substack{x_0 \in \mathbb{Z}^n \\ |x_0| < R}}$ $B_2^{n+1}(x_0, \tilde{t_0})$. The above lets us deduce that

$$
\left\| \sup_{0 < t \le R} |E' f(x, t)| \right\|_{L^2(B_R^n(0), dx)}^2 \lesssim \sum_{\mathfrak{l} \in \mathbb{Z}^n} C_{\mathfrak{l}} \|E' f_{\mathfrak{l}}(y, t)\|_{L^2(X)}^2. \tag{33}
$$

By Theorem [2.2,](#page-2-2) this is,

$$
\lesssim C_{\epsilon} \sum_{\mathfrak{l} \in \mathbb{Z}^n} C_{\mathfrak{l}}(\phi_{X,n})^{\frac{2}{n+1}} \|f_{\mathfrak{l}}\|_{L^2(\mathbb{R}^n)}^2 R^{\frac{2n}{2(n+1)} + \epsilon}.
$$
 (34)

Recall that, given $x_0 \in \mathbb{Z}^n \cap B_R^n(0)$, we have chosen exactly one $\tilde{t}_0 \in \mathbb{Z} \cap [0, R]$.
Consequently $\phi_{xx} \leq 1$. Therefore, the above inequalities yield Consequently, $\phi_{X,n} \leq 1$. Therefore, the above inequalities yield

$$
\left\| \sup_{0 < t \le R} |E' f(x, t)| \right\|_{L^2(B_R^n(0), dx)}^2 \lesssim C_{\epsilon} R^{\frac{2n}{2(n+1)} + \epsilon} \|f\|_2^2. \tag{35}
$$

 \Box

Data Availability Data availability is not applicable to this manuscript.

Conflict of Interest I declare that I have no conflict of interest in relation to this manuscript.

References

- 1. Bourgain, J.: A Note on the Schrödinger maximal function. J. Anal. Math. **130**(1), 393–396 (2016). <https://doi.org/10.1007/s11854-016-0042-8>
- 2. Cao, Z., Miao, C.: Sharp pointwise convergence on the Schrödinger operator along one class of curves. Bull. Sci. Math. **184**, 103254 (2023). <https://doi.org/10.1016/j.bulsci.2023.103254>
- 3. Carleson, L.: Some Analytic Problems Related to Statistical Mechanics. Euclidean Harmonic Analysis. Lecture Notes in Mathematics, vol. 779, pp. 5–45. Springer, Berlin (1980). [https://doi.org/10.1007/](https://doi.org/10.1007/BFb0087666) [BFb0087666](https://doi.org/10.1007/BFb0087666)
- 4. Cho, C., Lee, S., Vargas, A.: Problems on Pointwise Convergence of Solutions to the Schrödinger Equation. J. Fourier Anal. Appl. **18**(5), 972–994 (2012). <https://doi.org/10.1007/s00041-012-9229-2>
- 5. Christ, M.: On the Regularity of Inverses of Singular Integral Operators. Duke Math. J. **57**(2), 459–484 (1988). <https://doi.org/10.1215/S0012-7094-88-05721-3>
- 6. Dahlberg, B., Kenig, C.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. Harmonic Anal. **908**, 205–209 (2006). <https://doi.org/10.1007/BFb0093289>
- 7. Du, X., Guth, L., Li, X.: A sharp Schr ö dinger maximal estimate in R2. Ann. Math. **186**(2), 90 (2017). <https://doi.org/10.4007/annals.2017.186.2.5>
- 8. Du, X., Zhang, R.: Sharp *L*² estimates of the Schrödinger maximal function in higher dimensions. Ann. Math. **189**(3), 837–861 (2019). <https://doi.org/10.4007/annals.2019.189.3.4>
- 9. Lee, S.: On pointwise convergence of the solutions to Schr ö dinger equations in \mathbb{R}^2 . Int. Math. Res. Not. **2006**(9), 32597 (2006). <https://doi.org/10.1155/IMRN/2006/32597>
- 10. Lee, S., Rogers, K.M.: The Schrödinger equation along curves and the quantum harmonic oscillator. Adv. Math. **229**(3), 1359–1379 (2012). <https://doi.org/10.1016/j.aim.2011.10.023>
- 11. Li, W., Wang, H.: On convergence properties for generalized Schrödinger operators along tangential curves. Classical Anal. ODEs (2021). <https://doi.org/10.48550/arXiv.2111.09186>
- 12. Tao, T.: The Bochner–Riesz conjecture implies the restriction conjecture. Duke Math. J. **96**(2), 363–375 (1999). <https://doi.org/10.1215/S0012-7094-99-09610-2>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.