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Abstract
In this paper, we are concerned with the existence and properties of ground states for
the Schrodinger—Poisson system with combined power nonlinearities

—Au+ you = ru~+ plul?2u + |ul*u, inR3,
—A¢ =u?, in R3,

having prescribed mass

/ |u|2dx =a’,
R3

in the Sobolev critical case. Herea > 0,and y > 0, u > 0 are parameters, A € R is an
undetermined parameter. By using Jeanjean’ theory, Pohozaev manifold method and
Brezis and Nirenberg’s technique to overcome the lack of compactness, we prove
several existence results under the L2-subcritical, L2-critical and Lz—supercritical
perturbation 1|u|?~2u, under different assumptions imposed on the parameters y,
and the mass a, respectively. This study can be considered as a counterpart of the
Brezis-Nirenberg problem in the context of normalized solutions of a Sobolev critical
Schrodinger—Poisson problem perturbed with a subcritical term in the whole space
R3.
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1 Introduction and Main Results

In this paper we study the nonlinear Schrodinger—Poisson system

iV — AV + yp(0)V =af (|VHW, xeR3, i1
—A¢ = |V|?, x € R, (-
where W : RxR3 — Cisthe time-dependent wave function, y, a € R are parameters,
the nonlinear term f simulates the interaction between many particles or external
nonlinear perturbations. The nonlinear Schrédinger—Poisson system (1.1) attracted
much attention in the last decade, starting from the fundamental contribution [13].
System (1.1) has many physical motivations, it derived from the approximation of the
Hartree-Fock equation that describes a quantum mechanical of many particles, and
is highly beneficial in the quantum description of the ground states of nonrelativistic
atoms and molecules [34, 35, 39], and also arises in semiconductor theory [18].

When we are concerned with the standing wave solutions W (¢, x) = e My(x),
A € R, then u : R? — R must verify

—Au 4+ Au+ you = af (u), x € R3,
9 3 (1.2)
—A¢p =u”, x e R°.

At this time, there are two possible choices to deal with (1.2). One can fix A € R
and to look for solutions as critical points of the associated energy functional

2
T (u) = /qul dx + = /|u|2dx+ // lu@ P xdy—a/ Fu)dx.
rR3JR3S X =yl R3

where F(u) = fou f(s)ds is the primitive integral of f. Alternatively, one can search
for solutions of Eq. (1.2) with prescribed L2-norm. At this point, the parameter A € R
cannot longer be fixed but instead appears as a Lagrange multiplier. Analogous to the
first case, the solutions of (1.2) with ||« ||§ = m > 0 can be obtained as critical points
of the energy functional

2
J(u)=1/ \Vul?dx + ¥ /f Ju @) Pl xdy—af Fodx.
2 R3 JR3 Ix—yl R3

under the constraint L>-sphere S, := {u € H'(R?) : ||u||% = m?}. It is easy to check
that J is a well-defined and C'! functional on S,,. This approach is relevant from the
physical point of view, in particular, since the L?-norm is a preserved quantity of the
evolution and since the variational characterization of such solutions is often a strong
help to analyze their orbital stability, see for example, [6, 9—11,29-31] and references
therein.
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As far as we know, the first work for normalized solution to Eq. (1.2) in the case
y = 1, and f(u) = |u|?"2u is due to Sdnchez and Soler [41]. They showed that
there exists a normalized solution of (1.2) provided that m is sufficiently small and
p= %. Since then, there are some further studies for problem (1.2) in mass subcritical
case. In this case, the corresponding functional is bounded from below on S, then a
global minimizer can be obtained for some m. See for instance, [10, 11, 31, 32]. When
the nonlinearity f in (1.2) is mass supercritical, the constrained functional J|s,, is no
longer bounded from below and coercive. In this case, using a mountain-pass argument
on S,,, Bellazzini, Jeanjean and Luo [12] proved the existence and the instability of
standing waves for m > 0 sufficiently small. Bartsch and de Valeriola [6], Luo [38]
studied the multiplicity of normalized solutions of (1.2).

At the same time, normalized solutions for Schrodinger—Poisson—Slater equation
with general nonlinearity in case y = —1, has also attracted much more attention.
Xie, Chen and Shi [49] showed the existence and multiplicity results of solutions
when f satisfies lim;_,o f(¢)/t = 0 and lim|_ F(t)/|t|10/3 = oo under some
mild conditions on f. Recently, Chen Tang and Yuan [17] investigated the existence
of normalized solution by some new analytical techniques in case that f satisfies
lim, o F(t)/t* = 0 and lim};| oo F(2)/]¢]'%3 = 0.

Very recently, Wang and Qian [45] obtained the existence of normalized ground
states and infinitely many radial solutions for (1.2) with Sobolev subcritical term f,
by constructing a particular bounded Palais-Smale sequence when y < 0,a > 0.
Meanwhile, they obtained the nonexistence result in the case y < 0,a < 0 and the
existence result wheny > 0,a < 0 via variational methods. In [29], Jeanjean and
Trung Le specialized in the existence of normalized solutions for problem (1.2) with
L?-supercritical growth:

—Au+y(x| s uPu = 2w+ alulP?u,  inR3,

1.3
|u|2dx =2, (1.3)

RN

where u € H'(R3), y € Rba €e Rand p € (13—0,6]. The authors dealt with the
following cases:

(a) If y < 0 and a > 0, both in the Sobolev subcritical case p € (13—0, 6) and in the
Sobolev critical case p = 6, they showed that there exists a ¢; > 0 such that, for
any ¢ € (0, 1), (1.3) admits two solutions uj‘ and u , which can be characterized
as a local minimum and a mountain pass critical point of the associated energy
functional, respectively.

(b) Inthecase y < 0anda < 0, they proved that, for any p € (%, 6] and any ¢ > O,
(1.3) has a solution which is a global minimizer.

(c) Finally, in the case y > 0,a > 0 and p = 6, they showed that (1.3) does not exist
positive solutions.

Wheny =1,p € (%, 6), Bellazzini, Jeanjean and Luo [12] studied the existence of
normalized solutions of (1.3) by a mountain-pass argument as ¢ > 0 is sufficiently
small and nonexistence as ¢ > 0 is not small. In [31], Jeanjean and Luo considered the
existence of minimizers with L2-norm for (1.3) when p € [3, 1—30], and they showed
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a threshold value of ¢ > 0 separating existence and nonexistence of minimizers. For
more results on normalized solutions of Schrodinger—Poisson systems, we refer to [1,
19, 27, 29, 31, 33, 37, 38, 50-53] and references therein.

After the above literature review, we find that, only the article [29] has considered the
existence of normalized solutions of (1.3) in the case p € (13—0, 6], and y < 0; and the
no-existence of normalized solution of (1.3) with p = 6, ¥ > O and a > 0. Therefore,
anatural and important question arising is how to obtain normalized solutions to system
(1.3) in the case y > 0, and in the presence of Sobolev critical exponent and mixed
nonlinearities: a|u|” 2u+ |u |4u? here a|u|? 2y is a subcritical perturbation term with
p € (2,6) and a > 0 a parameter. We notice that, this kind of critical nonlinearities
has been used by Soave [42], Wei and Wu [47] to search for the normalized solutions
for the Schrodinger equation

* .
—Au =+ alulP2u+u* 2u in RV,

with the prescribed L2-norm fR3 lu|?dx = c?. Butfor the Schrédinger—Poisson system
in presence of the Sobolev critical term |u|*u, coupled with a subcritical perturbation
term a|u|”~2u, the existence of normalized solutions has not been studied in the exist-
ing literature, as far as we know. For more studies of existence of normalized solutions
of the Schrodinger equation, see for example [28, 30,42, 43, 54] and references therein.

Motivated by the works mentioned above, in this paper we focuss on studying the
Schrodinger—Poisson system

—Au+ ydu = ru+ plul??u + lul*u, inR3, (1.4)
—A¢p = u?, in R3, '
having prescribed L2-norm
/ lul?dx = a°, (1.5)
R3

where A € R is an undetermined parameter, @ > 0 and w,y > O are parameters,
w|u|?2u is a subcritical perturbation term with ¢ € (2, 6). For this purpose, applying
the reduction argument introduced in [40], system (1.4) is equivalent to the following
single equation

— Au+ yduu =+ wlul?2u + |u*u, x e R3, (1.6)

2
where ¢, (x) 1 ng Mdy. We shall look for solutions to (1.4)—(1.5), as a critical

: O el
points of the action functional

1 1
I,(u) = _/ |Vu|2dx~|—Z/ ¢u|u|2dx—ﬁf lul?dx — —f u|®dx,
2 Jr3 4 Jgr3 q Jr3 6 Jgr3
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under the L2-norm constrained manifold

3 1,
S(a) = {uEH(R):\I’(u)zza },

where ¥ (1) = % ng u*dx. Physically, such type of solutions are the so-called normal-
ized solutions to (1.4)—(1.5). In order to state our main results, we introduce some of the
constants from the following Gagliardo-Nirenberg-Sobolev (GNS) inequality. That is,
there exists a best constant C(p) depending on p such that for any u € H'(R?),

(1=yp)
lulh < CPlully 7P IvVuly?, (1.7)

where y, = 3(’;2). The constant C(p) can be achieved by function Q, see [43].
For the problem obtained from (1.4)—(1.5) by removing the critical exponent term
and the nonlocal term, we obtain one of its normalized solutions by rescaling Q.
From y,p = 2, we get p = % which is called the L?-critical exponent for problem
(1.4)—(1.5). Before presenting the existence result, we give the definition of ground
states. If u* is a solution to (1.4)—(1.5) having minimal energy among all the solutions
which belongs to S(a) :

(IM|S(a))’(u*) =0 and IM(u*) = inf{(IM|5(a))’(u) =0, and u € S(a)},

we say that u™ is a ground state of (1.4)—(1.5).
The following are the main results of this paper. In the L?-subcritical case: 2 < ¢ <
?, we have the following existence result of the normalized ground state solutions.

Theorem 1.1 Let2 < g < 13—0, y > 0, and assume that 0 < a < min{«y, ap}, where

1
2-49%q ) q(1-3¢)

2q ((2—q8q)s3> g
Clg)n(6—qgdy) \ 6—qgd,

and

1
2-49%¢ ) 0=y
2

4 48,53
0y = s
C(q)udy(6 —qdy) \ 2 —qd,

where S is defined in (2.1). Then there exists ;i > 0 such that @ > [i, problem
(1.4)—(1.5) has a couple of solutions (ug, L) € S(a) x R. Moreover,

u

I,(u,)= inf I,(u)= inf I,(u)= inf I, (u),
p(ita) ueP(a) w0 ePla)* u () ueDy u()
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for some suitable small constant k > 0, where P(a) is the Pohozaev manifold defined
in Lemma 2.5, the set P(a)" is defined in (3.1), and

Dy = {u € S@) : [Vull @) < k).
10

In the L?-critical case: ¢ = =5, we have the following conclusion.

Theorem 1.2 Let g = %, u > 0, and assume that 0 < a < min{as, aq}, where

( q )q(llm
o3 = s
2uC(q)

1

k 3
oy = <~—5> )
4y C[C(12/5)]3

where C is defined as (2.3), and k is defined as

and

=

6
gy Cieaz/sh = (s S3>é
2uClg) |

k = min

64

Then there exist yy, y» > 0 such that 0 < y < min{yy, y»}, problem (1.4)—(1.5) has
a couple of solutions (ugq, Ag) € S(a) x R. Moreover,

1 = inf [ = inf [ ,
u(ua) uelp(a) M(M) E'}D(a)_ 'u(u)

u

where P(a)~ is defined in (3.2).
In the L2-supercritical case: %0 < g < 6, we have the following existence result.

Theorem 1.3 Let % <q <6, u>0,and assume that 0 < a < as, where

asi=\——————5] >
4y C[C(12/5)13

where k* is defined in (5.1). Then there exist yy, y» > 0suchthat0 < y < min{yy, y»},
problem (1.4)—(1.5) has a couple of solutions (ug, Ay) € S(a) x R. Moreover,

I = inf [ = inf [ .
p.(”a) uelp(a) M(M) eP(a)~ M(M)
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Remark 1.1 In [29] Jeanjean and Le only studied the no-existence of normalized solu-
tions of problem (1.4)—(1.5) with y > 0 and u = 0. The existence of normalized
solutions for (1.4)—(1.5) in the case y > 0, © > 0 and ¢ € (2, 6) has not been stud-
ied in the existing literature. Theorems 1.1-1.3 provide a complete description of the
existence of normative solutions in the L2-subcritical, L2-critical and Lz-supercritical
perturbation ¢|u|?2u, respectively.

Remark 1.2 InTheorem 1.1, we assume that the parameter i > 0 is large enough, so as
to ensure that the Lagrange multiplier sequence 1, — A < 0 as n — oo, which plays
a crucial role in our proof of the H 1—convergence of (PS)-sequence {u,} C S(a).
In Theorem 1.2 and Theorem 1.3, it is necessary for the parameter y > 0 to be

appropriately small so that the Mountain Pass level is strictly less than %S 3. This
characteristic is completely different from the critical Schrodinger—Poisson system
without Z2-mass constrained, see for example [25, 26, 46, 55].

In order to prove Theorems 1.1-1.3, we apply the constrained variational methods.
Note that the Sobolev critical terms |u|*u is L>-supercritical, the functional I, is
always unbounded from below on S(a), and this causes difficulty to treat the existence
of normalized solutions on the L?- constraint. One of the main difficulties is to prove
the convergence of constrained Palais-Smale sequences: Indeed, the Sobolev critical
term |u|*u and nonlocal convolution term y ¢, u, make it more complex to estimate
the critical value of mountain pass, and has to consider how the interaction between
the nonlocal term and the mixed nonlinearities. In particularly, the energy balance
between these competing terms needs to be controlled through moderate adjustments
of parameter y > 0. Another obstacle is that sequences of approximated Lagrange
multipliers have to be controlled, since A is not prescribed; and moreover, weak limits of
Palais-Smale sequences could leave the constraint, since the embeddings H'! (R?) <
L*(R?) and also H! ,(R%) <> L?(R?) are not compact.

To overcome these difficulties, we shall employ Jeanjean’s theory [28] by showing
that the mountain pass geometry of 7, | s(4) allows to construct a Palais-Smale sequence
of functions satisfying the Pohozaev identity, to obtain the boundedness, which is the
first step to show strong H !-convergence. To restore the loss of compactness caused by
the critical growth, we shall utilize the concentration-compactness principle, mountain
pass theorem and energy analysis to get the existence of normalized ground states of
(1.4)—(1.5), by showing that, suitably combining some of the main ideas from [15,
42], compactness can be derived in the present setting.

This paper is organized as follows: In Sect.2 we summarize some preliminary
results which will often be used in the rest the paper. In Sect.3, we investigate the
existence of normalized ground state solutions for system (1.4)—(1.5) under the L>-
subcritical perturbation case: ¢ € (2, 1) and complete the proof Theorem 1.1. In
Sect.4, we address the presence of the normalized ground state solutions for sys-
tem (1.4)—(1.5) in L2-critical perturbation case: ¢ = % and prove Theorem 1.2, by
employing manifold and mountain road theorems. In Sect. 5, we tackle the existence of
the normalized ground state solutions for problem (1.4)—(1.5) under L?-supercritical
perturbation case: g € (?, 6) and prove Theorem 1.3.
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Notations. Throughout this paper, we denote B, (z) the open ball of radius r with center
at z in R?, and lu]l » is the usual norm of the space LP(R3) for p > 1. Moreover, we
denote by C,C; > 0,i = 1,2, ---, different positive constants whose values may
vary from line to line and are not essential to the problem.

2 Preliminary Stuff

In this section, we will give the functional space setting and introduce some notations
and useful preliminary results, which are important to proving our Theorems. Let
H'(R?) be the completion of C§° (R?) with respect to the norm

1

2
lully = (/ |Vul® + |u|2dx>
R3

And the homogeneous Sobolev space D!2(R?) is defined by
D (R?) = {u e LR : f |Vul?dx < +oo},
R3
endowed with the norm

2._ 2 _ 2 _ 2
lull” := Nullprogsy = Vullz = /R3 |Vuldx.

The work space Hrla d (R3) is defined by
H,lad(R3) = {u € Hl(R3) . u is radially symmetric and decreasing} .
Let HH = H x R with usual scalar product
(m=(Com + (R,
and the corresponding norm
G =l + 1l
We denote the best Sobolev constant S by

\v4 2
S=  inf IVuelly

e o T T 2.1
€DI2RHNO} ( fps |u|®dx)3
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It is well know that S is achieved by

1
C*e2

Ue(¥) = ———»
(e + [x[)2

2.2)

for any ¢ > 0 and C* being normalized constant such that (see [15]):

/ﬂv VU, [2dx = /N U, |%dx = S3.

In the following, we recall some useful inequalities, which play an important part
in the proof of our main results.

Proposition 2.1 (Hardy—Littlewood—Sobolev inequality [34]) Let [, ¥ > 1 and 0 <

w < N be such that % + % + % =2, fe L RYYandh LY (RN). Then there exists

a constant C(N, ., r, 1) > 0 such that

‘ / / FEORWIx =y dxdy
RN JRN

From Proposition 2.1, withl = r = g, we have that:

1 s
/ buu’dx < / (— * u2> u’dx < Cllu|)?,. (2.3)
R3 R3 \ [X] 5

Next, we introduce the following Gagliardo-Nirenberg inequality.

= CN, i, r, DIFIANALL

Lemma 2.2 ([43]) Let p € (2, 6). Then there exists a constant C(p) > 0 such that

Sy 1-6
Il < CIVul w27 vu e H'(R?), (2.4)
where §, = 3(1;;2).
Lemma2.3 (Lemma 5.1 [23]) Ifu,—u in H' ,(R?), then
2q 2d 2.5)
R3 ¢Mnun X — R ¢Mu X, ( .
and
A; Pu, Unpdx — /R3 buugdx, Vo € HL ,(R®). (2.6)

In the sequel, we define a useful fiber map (e.g. [42]) preserving the LZ-norm
() (x) 1= e u(e'x), xeR®, LeR. @7
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By simple calculation, we can infer that

Il () 13 = Nlull3, (2.8)
I (xu) 13 = e?% |Ju ), 2.9)

and
IV (ext) () |13 = e[|V (exu) ()13 (2.10)

Next, we define a auxiliary functional E : H — R by
Eu,u) : = I, ((txu))
1 1
= 762‘I|Vu\|% + Zelf uu’dx — ﬁeq‘s"‘/ lul?dx — 766‘/ lu|®d
2 4 Jrs q R3 6 R3

Besides, we have the fact that

@2.11)

<28 2<gq<gq;
qé; y =2,a8 q =q;
>2,a8 g <q <6,

where g := 13—0 is the L>-critical exponent.
The Pohozaev manifold plays an important role in the proof of our main results, so
we introduce it below [22].

Proposition 2.4 Letu € HYR3)NL®(R3) be a weak solution of (1.4), then u satisfies
the equality

1 5 31 3 1
f/ |Vu|2dx+l/ duuldx = 7/ |u|2dx+—M/ |u|qu+7/ lu|Sdx.
2 R3 4 R3 2 R3 L] R3 2 R3

(2.12)

Lemma2.5 Let u € H'(R?) be a weak solution of (1.4)—(1.5), then we can construct
the following Pohozaev manifold

P(a) ={u € S(a) : P,(u) =0},
where
_ 2 4 2 q 6
P,(u) = |Vul|“dx + — Quu~dx — udy lul?dx — lul"dx. (2.13)
R3 4 R3 R3 R3
Proof Since u is the weak solution of (1.4)—(1.5), we have that

1 5 31 3 1
f/ |W|2dx+—y/ buuldx = 7/ |u|2dx+—“/ |u|qu+7/ lu[Sdx.
2 Jr3 4 Jr3 2 Jgr3 q Jr3 2 Jr3
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Moreover, since u is the weak solution of system (1.4)—(1.5), we have

/ |Vu|2dx+yf d)uuzdx:k/ |u|2dx+uf |u|qu+f |u|®dx.
R3 R3 R3 R3 R3

Combining with (2.13) and the above equality, we obtain that

/ |Vu|2dx+Z/ buuldx =Maq/ |u|qu+/ lu|Cdx.
R3 4 R3 R3 R3

The proof is completed. O

We define ¢, (1) := E(u, ) forany u € S(a) and ¢ € R, then

() (1) = % /]R? [Vul?dx + %e‘ /R* Guu’dx — M(Sqeq‘s‘ll/]R3 lul?dx — &% /R3 [u|dx
=f |V (k)| Pdx + Z/ ¢(W)|t*u|2dx—u5q/ |t*u|qu—/ |L*u|6dA(2'14)
R3 4 Jr3 R3 R3
= P, ((txu)).

Moreover, by direct calculation, we have

' =26 [ uldx+ e [ gl
R3 4 R3
—quqzeq%‘/ |u|qu—6e6‘/ |u|®dx. (2.15)
R3 R3

Therefore, we have the following lemma:

Lemma 2.6 Foranyu € S(a), t € R is a critical point of ¢, (1) if and only if (1txu) €
‘P(a). Particularly, u € P(a) if and only if O is a critical point for ¢, (1).

Finally, we state the following well-known embedding result.

Lemma 2.7 ([44]) Let N > 2. The embedding H' ,(RN) < LP(RN) is compact for
any2 < p < 2%

Remark 2.8 ([11]) The map (u, ) € H — (1xu) € H is continuous.

3 L2-Subcritical Perturbation Case
In this section, we shall address the L>-subcritical perturbation case: 2 < g < 13—0 and

provide the proof of Theorem 1.1. First, we think about a decomposition of P(a) as
in [42, 43]. By Lemma 2.6, we define the following sets:

Pyt = {u €P@: 2[ \Vuldx + Zf Puu’dx > uq&ff \u\qu%/ \u\(’dx}
R3 4 R3 R3 R3 (31)
={u € P(a) : (p,)"(0) > 0},
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P@)’ = {u € Pla): 2/1]%3 |Vu|?dx +%/R} uudx = ;anqZ/R} u|?dx +6/R} \u\"dx} 32)
={u € P(a) : (9)"(0) =0},

Pla)” = {u € P): 2/ |Vul?dx + Z[ uu’dx < uquzf \u\qu—i-G/ \u\ﬁdx}
R3 4 R3 R3 R3

={u e P@): (¢u)"(0) < 0}. (3.3)
We can easily get that
P(a) = P(@)T UP@’UP@).

Next, we will give some lemmas, which are useful for the proof of Theorem 1.1.

Lemma3.1 Let2 < g < %, w,y >0,and0 < a < ay, where

2-495¢ q(llsq)
2q ((2—q8q)s3> :
C(Q)M(6_q8q) 6_61811

Then P(a)? = & and P(a) is a smooth manifold of codimension 2 in H(R3).

Proof Suppose by contradiction that P(a)? # @. Taking u € P(a)®, one has

2f |Vul?dx + Z/ buu’dx =Mq5q2/ |u|qu+6f u|®dx,
R3 4 R3 R3 R3

and

f |Vu|2dx+Z/ burldx =Maq/ |u|qu+/ |u|Cdx.
]R3 4 R3 R3 ]R3

Since ¥ [p3 ¢uu’dx > 0, so combining the above equalities with the GNS inequality
(2.4) and (2.1), we can infer to

6—qs 6—qs 3
/ |Vu|dx < ﬁ/ u|bdx < — 9% / \Vul?dx ) |
R3 2 —qdy Jgr3 2 - qu)S3 R3

and

98q

84(6 —¢gé
/ |Vu|2dx < M/ lul9dx
R3 4 R3

34(6 —¢qé 2
< 220028 ¢ g)qai-so (/ |vu|2dx)
4 R3
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By simple calculation and the fact ¢§, < 2, we have

2-9%
a?1=%) > 4 (/ |Vu|2dx)
wdgC(q)(6 — qdq) \Jr3
3 2—qdq
_ )
. 4 ((2 q54)S )
ndqCg)(6 —gqdy) \ 6—4qd,
2—q4,
- 2 ((2 - qaq)S3)4
— uC(g)6—gdy) \ 6—gd,
= a‘l’“*a"),

which contradicts to a < oj.
Then, we verify that P(a) is a smooth manifold of codimension 2 in H (R3). Let

Pla)={uec H: P,(u)y=0,G(u) =0},

for G(u) = ||u||% — a2, with P, and G of class C!in H. Hence, we need to show that
the differential (dG(u),dP,(u)) : H — R2 is surjective, for every u € P(a). For
this purpose, we will prove that for every u € P(a), there exists ¢ € T,S, where

T,S:={vekE: (u,v)g =0},
which is the tangent space of S at a point u € S. Then, one has d P, (u)[¢] # 0. Once

the existence of ¢ is established, the system

dGu)[ag + Bu] = x
dP,(u)ag + Bul =y

that is

Ba* = x
OldPM(M)[(ﬂ] + ﬂdPM(M)[M] =Yy

is solvable with respect to r, 8 for every (x, y) € R?, so the surjective is proved. Next,
suppose by contrary that for u € P(a) such that a tangent vector ¢ does not exist, that
is, d P, (u)[¢] = O for every ¢ € T,S. Then u is a constrained critical point for the
functional P, (1) on S(a). Thus, by the Lagrange multipliers rule, there exists v € R
such that

1)
—Aut %m = vu+ %Iul"*zu +3luf*u, in R
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Then we can conclude the following Pohozaev type identity:

2/ |Vu|?dx + Z/ Guu*dx :MquZ/ |u|qu+6/ u|®dx,
R3 4 R3 R3 R3

which is contradiction to the fact that u € P(a). O

In virtue of the GNS inequality (2.4) and (2.1), for every u € H (R3) N S(a), we
have

1 1
L) = 5/ |Vu|2dx+Z/ ¢>uu2dx—ﬁ/ |u|‘1dx——/ |u|Cdx
R3 4 Jgr3 q Jr3 6 Jr3

1 m _ s 1
> —|Vul? — ZC(q)a? || Vu |2 — — || VulS
> 2|| 2 7 (@) Vull, 65 (Vull;

(34)

= g(IVull2),

where

1, wu _ 1
1) ==1>— ZC(q)al1 7% 19% — (O,
g(t) > p (q)a 653

By the fact ¢8, < 2, we can derive that g(0") = 0~ and g(400) = —o0.
In the following, we show the properties of the function g and give some technical
lemmas.

Lemma3.2 Let2 < g < %, w,y > 0,and 0 < a < «ay. Then the function g has a
local strict minimum at negative level and a global strict maximum at positive level,
and there exist two positive constants Ry, Ry both depending on a, with Ry < R», such

that g(R1) = g(Ry) =0and g(t) > 0 fort € (Ry, R).

Proof Note that

L, u 1— 1
1= -1 —ZC(q)a?' P 9% — 46
8(t) =7 p (q)a 53

— tqsq lt2—q3q —
2

=19 m(),

U 6-qs, _ M -
— %79 _ Z q(1=34)
53 p (q)a

where

1 2—q$ 1 6—¢3, H 1-6
1) = —t° 9% — — ¢ qq__(' q( q).
mt) =5 653 g C @

It is easy to see that g(#) > 0O if and only if m(t) > O for all + > 0. So, by direct
calculation, we have

2 —qd, (148 _ 6—qd, 548

/
1) =
m(®) 2 653
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Let m/(t) = 0, it follows that

1
L (352 —ad)?
1= 6—q8q ’

and we know that m is strictly increasing on (0, #1) and decreasing on (¢, 00). More-
over, the maximum value of m on (0, +00) is

2—44 6—48,
3y _ - 3y -
mi) = (M) _ L@ (M) — A C(grati=50
2 6 —qdy 6S° 6 —qdy q
3 2—qdq
7
_ 2 <3S Q- q8q)> _ e (grati-a
6 —qd, 6 —qd, q
3 2-a%q
_ 7
o2 <S 2 618q)> _ P e(gratt-t
6 — qd, 6 — qd, q

ﬁC(q)a?(l_aq) _ Ec(q)aq(l—sq)'
q q

By virtue of a < o, we deduce that there exist two constants R; and R» such that

<0, if 1€ (0, Ry)or (Ry, 00):
g(t)1=0, if t =Rjor Ry;
>0, if t € (R, Ry).

Based on above analysis and the fact g(07) = 07, we infer that g(¢) has a global
maximum at positive level in (Ry, Ry) and a local minimum at negative level in
(0, Ry). Itis easy to see that Ry < 1 < R;. Besides, by a simple calculation, we have

1 1 m
’ 8,—1 2—q$ 6—4q3, (1-38,4)
g (I) _C](S 1% <—t 9% _ —_4579% __ _C(q)aq q )
4 2 653 q

1 44% 243 148 _ 6— a5, (548
2 653
:[‘](Sq—l <t2—l]5q _ %t6—l]5q _ M(sqc(q)aq(l—éq)>

=t1% 1 p (1),
where
1
h(t) = 1>~1% — Eﬁ—qéq — 18, C(gq)at =0,
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It is easy to see that g’(r) = 0 if and only if 4(r) = O for r > 0. So, by direct
calculation, we get

;1 8q 548

B (t) = (2 — g8t 1% — S

From 7'(r) = 0, there exists a unique solution #; > 0 with the expression:
1

o $32—q8,)\*

2 - 6 _ qaq 1)
and we know that £ is a strictly increasing on (0, ;) and decreasing on (f, +00).
Hence, h has at most two zeros on (0, +00), which are necessarily the previously
found local minimum and the global maximum of g. O
Lemma33 Let2 < g < 13—0, w,y >0,and 0 < a < «ay. Then for every u € S(a),

@y (V) has two critical points s, < t, € R and two zeros ¢, < d,, with s, < c, <1t, <
d,. Besides,

(i) syxu € P(a)™, tyxu € P(a)~, and if 1xu € P(a), then either 1 = s, or it = t,,;
(ii) |Vulla < Ry for every < ¢, and

I (syxu) = min{l, (oxu) : « € Rand |Vull2 < R1} < 0; 3.5)
(iii) we have
I, (tyxu) = max{l, (txu) : 1 € R} > 0, 3.6)

and ¢, (1) is strictly decreasing and concave on (t,, +00);
@iv) the mapsu € P(a) — s, x Randu € P(a) — t, x R are of class cl.

Proof We claim that ¢, (¢) has two critical points. In view of (3.4), one has
@u () = 1, ((xu))
> L1912 — EC@at 101V @ 19 — [V @) S
-2 q 2 683
= g(IV(u)|2) = g(e'||Vull2),
we can obtain ¢, (1) > 0 on (§(R1), £(R2)) from Lemma 3.2, where
§(R) =1og R — log || Vull>.

Since ¢, (1) is a C? function, and by the fact that ¢, (—00) = 07, ¢, (+-00) = —o0, it
follows that ¢, () has at least critical points s,, t, with s, < t,,. Moreover, we know
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that s, is a local minimum point on (—oo, £(R1)) at negative level and ¢, is a global
maximum point at positive level. Hence, we derive to

1, (tyxu) = max{l, (xu) : 1 € R} > 0,

IV (syxu) |2 = e || Vullp < R Vuly = Ry, 3.7
and
1, (sy*u) = min{/, (txu) : « € Rand [[Vull2 < R} < 0.

Arguing as in the proof of Lemma 3.2, we can deduce that ¢, (¢) has no other critical
points. In view of (¢,)”(s,) > 0, (¢,)" (t,) < 0 and the fact that P(a)? = @, we have
syxit € P(a)t and tyxu € Pla)~.

Next, we claim that ¢, (¢) has two zeros ¢, < dy. Since ¢, (s,) < 0, ¢, (t,) > 0
and ¢, (+00) = —o0, it is easy to get that ¢, () has two zeros ¢, < d, with s, <
cu <ty < dy.Furthermore, ¢, () has no other zeros. Indeed, if ¢, (¢) has other zeros,
then it will have other critical point, which leads to a contradiction.

Recalling that

()" (1) = 26 f \Vuldx + Le / buuldx
R3 4 R3

—,uq8q26q‘s‘1‘ A; lu|?dx — 666‘/

|u|®dx,
R3

we have (¢,)” (—o0) = 0. Since (¢,)"(s,) > 0and (¢,)"(t,) < 0, we get (¢,)” (1)
has two zeros, which means that ¢, (¢) has two inflection points. Arguing as before,
(¢u)” (1) has exactly two inflection points. Hence, ¢, (¢) is is strictly decreasing and
concave on (f,, +00). The items (i)—(iii) are proved.

Finally, we will prove that maps u € P(a) +— s, x Randu € P(a) — f, x R
are of class C'. Applying the implicit function theorem, let ® (¢, u) := (¢,) (1) > 0,
since O (s,, u) = 0and 9, P (s, u) > 0, we know that u € P(a) — s, x Ris of class
cl. Similarly, we have u € P(a) — 1, x Ris of class cl. O

Thus, we can easily deduce the following conclusion.

Corollary 3.4 sup,cp(y+ I, () < 0 < inf,epa)- 1, () and P(a)™ C Dg,, where
Dp, :=1{u € S(a) : ||Vull2 < Ry}, for Ry > 0.

Lemma 3.5 There holds that —00 < my(a) = inf,epqy [ (w) = inf, cpy+ [, (1) <
0, and

my(a) < inf 1, (u),
uEDRl \DR] —p
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for p > 0 small enough, where

my(a) = uei%fR I, (u).
1

Proof For u € Dg,, in view of (3.4), we have
1, (u) > Vu > min 1) > —o0.
w@) = g(IVull2) = te[o’Rl]g( )

Besides, for any u € S(a), we get |Vullo < Ry and I, (sy*u) < 0. Hence, we can
infer to

my(a) <0.

On one hand, since P(a)™ C Dg,, we get that my(a) < infp(g)+ 1. On the other
hand, if u € Dg,, then s,xu € P(a)* C Dg,, and

I, (sy*u) = min{/, (txu) 1 € Rand [|Vull2 < R} < 1, (),

which implies that inf,cp)+ I, (w) < my(a). Combining with the fact 0 <
inf,,epy)- 1. (1), we obtain

inf I,(u) = inf [I,(u).
ueP(a) M( ) ueP(a)t M( )

Finally, due to the continuity of g and g(R;) = 0, there exists p > 0 such that

m, (a)
g(t) > %, t €[Ri—p. Ril.
Therefore, by (3.4), we have

my(a)

Lu(u) = g([[Vull2) = > my(a),

forany u € Dg, \ Dg,— - The proof is completed. O

Proof of Theorem 1.1 First, we take a minimizing sequence {v,} C HNS(a)for I, |p R,
and assume that {v,} C H, are radially decreasing for every n. Otherwise, we can
let v, := |v,|*, which is the Schwarz rearrangement of |v,|. In view of Lemmas 3.3
and 3.5, we know that there exists a sequence {s,,} such that s,, *v, € P(a)t and
1, (sy,*v,) < I,,(v,) for every n. Furthermore, we have s, xv, ¢ BRI \Dg,—,. Based
on above analysis, we get a new minimizing sequence {v, := Sy,*v,} for I,] Dp, >
satisfying

Uy € HNP@" and |VU,l2 < Ri — p.
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By Ekeland’s variational principle, there exists a new minimizing sequence {u,},
with |lu, — U, || — 0 asn — oo, which is also a P§ sequence for /,, on S(a). Since
{u,} C Dg,, we see that {u,} is bounded in H. So from ||u, — v,|| — 0 and the
boundedness of {u,}, we can obtain

Py(uy) = Py(vy) +0,(1) - 0 as n — oo.
In fact,
/ [Vu, |*dx =/ \szder/ IV (uy —i,,)Ide-i-/ Vi, Vi,dx
R3 R3 RS R3
:/ VT, |2dx + o, (1),
R3

Y puutdx =2 | ¢5Pdx+v | b ot 500 +6) n — )ty — Tp)dx
4 &3 un“n 4 &3 vn Yn &3 (U406, (1, —0,)) 10 n\%n n n n

= Z/ ¢, 52dx + 0, (1),
4 R3

and
[ = [ iras [ pl + 63 =500 s ~50ds

_ A; Dal7dx + on (1),

for every p € [2, 6], where 9,1, 03 € [0, 1]. Moreover, {u,} satisfies

{Iu(un)emu(a) as n — oo 3.8)

I/’L|S(a)(un) — 0 as n— o0
Then, using the Lagrange multipliers rule, there exists a sequence A, € R such that
I () = 2V (uy) - 0 in H™' (3.9)

Since {u,} C Dg,, we have {u,} is bounded in H. So there exists u, € H, such
that, for some subsequence, u,—u, in H. In the following, we will proceed with our
argument in three steps.

Step 1 We show that, up to subsequence, lim,,— 00 Ay = A, < 0. By (3.9) and the
fact {u,} is bounded in H, we get

I,;(un)un - )\n\y/(un)un = o,(1). (3.10)

Then, we infer to
2 _ 2 2 q 6
Mpllunlly = IVunll; + v /R} Gu,updx — pllugllg — llunllg +on(l).  (3.11)
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Again by {u,} is bounded in H, we see that {1, } is bounded. Thus, up to subsequence,
there exists A, € R such that ,, - A, € R. Next, we prove A, < 0. Before this, we
show

/]1@3 lu,|9dx — /11{3 lug|?dx #0, ie. u, #0.

Assume by contradiction that, fR3 | |9dx — 0. In view of the proof of Lemma 3.2,

1
3832—g8,)\ # 3
we have |Vu,|» < Ry <tj,and ] = (ﬁ) < S4. Then we deduce
q

3
Vil < S%.

From the definition of /,, and above inequality, we infer that

0>my(a) :nli)ngo 1 (uy)

1 1
= lim f/ |Vu,1|2dx+Z/ b, u2dx — ﬁ/ iy |7dx — f/ it |Oddx
n—oo| 2 Jps 4 Jgr3 q Jr3 6 Jgr3
. 1 > L3 6 M
> lim. [Euwnuz— &IVt = 2 [ tax

.
> — = lim lup|?dx = 0,
q n—oo R}

which is absurd.

We claim that there exists it > 0 independently on n € N such that, if © > [,
the lagrange multiplier A, < 0. In fact, since {u,} C Dg,, by (2.3) and the GNS
inequality (2.4), there exists 77 > 0 independently on n € N such that

S, 1-4
T s/ lunl9dx < C(@)[| Vit |22 a1~
- (3.12)

< C(@R{™a?070),

and

~ ~ 5
/ buuzdx < Clluy |1, < CIC(12/5)13 | Vuyllallun 3
R 5 (3.13)

< CICU12/5)13R1d® =T,

where Tp = T> (R, a) > 0. We define the constant

3y
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By (3.12)—(3.14) we have

3y [ps Gu,uzdx 3y [gs u uidx
41— 8,) s Juta|9dx

1> i - 0. (3.15
b e {4(1 = 6,) Js [t 9dx >0 G135

By the fact P, (u,) — 0, (3.11), Lemma 2.7 and 8, < 1,if u > f1, then

rga® = lim (/ |Vun|2dx+y/ d)unu,zldx—,u/ |un|qu—/ |un|6dx>
n—+00 \ JR3 R3 R3 R3

. (3 >
:nllToo (Zy/Rs Gu, updx — (1 —&;)/R3 |un|qu>
3
- Zy/ bu uzdx — p(l —5q)/ lug|dx
R3 R3

3
< —y/ du,uzdx — (1 —aq)/ lugl9dx < 0.
4° Jr3 R3

Thus, if u > @&, we have lim,,_, oo Ay, = Aq < 0.
Step 2 Since A, < 0, we define an equivalent norm of H as:

||u||2=/ |Vu|2dx—kf lu)’dx.
R3 R3

In view of the fact u,—u, in H and (3.9), then u, satisfies

/ VuaVvdx+yf (])uauavdx—)»a/ Ugvdx
R3 R3 R3

—u/ |ugl? " 2uqvdx —/ [ug|*ugvdx =0, (3.16)
R3 R3

for Vv € H. It follows from the Pohozaev identity that P, (u,) = 0. Let v, =
u, —uy—0, by Brezis—Lieb Lemma [48], we conclude

{uwnn% = IVunll3 = IVall3 + ou (D), 517)

lvoallg = Nunll§ = Nueall§ + 0n(1).
By the fact (2.5), Lemma 2.7 and P, (v,) = P, (u,) — Py (us) — 0, we obtain
IV Uall3 = llvall§ + 0n (D).
Thus, for some subsequence, we suppose that
IVval3 = llvall§ — 7.
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By using (2.1), we derive to

S
Il —
IA

Y|«

then, one has

T > S% or T=0.
If 7 > S%,by (3.17), we have

my(a) = n—lir—tl-loo 1y (un)

lim (1 (a) + = ||Wn||2 ||vn||2)

n—+

(3.18)

1
Iu(lzta) + 31’

I}
> Iu(ua) + 552

In what follows, we verify that t > § %, which will lead to a contradiction. In fact, by
the GNS inequality (2.5) and P, (u,) = 0, we get

1
Iu(ua) = //,(“a) - _Pp.(ua)

1 1 5q g
||Vua||2 + ¢uau dx — - E ”ua”q

3
= S 1Vual - %q“)uuauq
> %nwan% - %{f%)cwa‘m‘%)uv allg
= F(IVull),
where
fay =32 - 102 gqqsq—)c(q)aq(l—%)ﬂ%

By f/(¢t) = 0, there exists a unique #3 > 0 such that

2 u(6 —qéy)

, 1
1) = =13 —
f(#) 35 67

C(g)a?=30gs,8% ™" =,

with
1

3u(6—qgé =45
3 = (-Mc(q)aq(laq)q3q> e )

2 6q
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Then, we see that f(¢) is strictly decreasing on (0, #3) and increasing on (#3, +00).
Moreover, f () gets the minimum on (0, +00), that is

—2_ 4%
Fln) = _2 —q8q (((6—qdy) C(q)a?1-30) 4% (3, \ 4% ‘
2 6q 2

Define

1
2-495¢ ) q(T=3¢)"

4 48,87
=
Clq)udy 6 — q5,) \2— g3,

Since a < ay, we get
[}
f) > —§S2 on (0, +00). (3.19)

Combining (3.18) and (3.19), we infer that m, (a) > 0, which is a contradiction.
Step 3 From the above analysis, we know that t = 0. In other words, we have

g — llua le-
Then, by (3.16), we have
I;L(ua)ua — 2V (ug)u, = 0. (3.20)
Combining (3.10) and (3.20), one has
luenll? = Nlug 1.
Since u,—u, in H, we have u, — u, in H. Moreover, by the fact that I, (u,) =

infyep(q) £, (1), we know that u, is a ground state.
Finally, in view of Lemma 3.5, one has

1 = inf [ = inf [ .
p,(ua) Ltel%(a) M(u) uélz)Rl 'u(u)

The proof is completed. O

4 L2-Critical Perturbation Case

In this section, we shall address the L>-critical perturbation case: ¢ = 10 and provide
the proof of Theorem 1.2. To begin with, we give some useful lemmas, and show that
E (u, t) has the mountain pass geometry on S, (a) X R, where S, (a) = Hrla d RHNS(a).

Lemma4.1 Letq = %, w,y > 0andu € S(a), then

@ Springer



296 Page 24 of 49 Q. Gao, X. He

@) IV(xu)lla = 0T and I, ((xu)) — 01 if t > —o0;
(i) [V(xu)ll2 — +00 and 1, ((tku)) — —00 if t — +oc.

Proof By (2.10), we have

/ |V (ixut)|*dx =e2‘f |Vu|?dx,
R3 R3

Then, it is easy to obtain

IV (@xu) |l — 0T if 1 — —o0,
and

IV(xu)|p = +o0 if t = +o0.

From (2.11), we have

1, ((xu)) = %ez‘Hull2 + %e‘ /ﬂ-@ Guu’dx — geq‘sq‘ /R* lu|?dx — éeét /R3 lu|®dx.
From the fact g6, = 2, it follows that

1, ((xku)) — 07 if ¢« — —o0,
and

I, ((txu)) — —oo if + — +o0.

The proof is completed. O

Lemma4.2 Letq = 13—0, w,y >0, and assume that 0 < a < min{ws, oq}, where

( q ),1(1154)
o3 1= s
2uC(q)

and

W=

k3
Qg =\ ——3
4yC[C(12/5)]3
There exist 0 < k1 < ky < k such that

Pu(u), I,(u) >0 forall u e Ay, and 0 < sup I,(u) < inf I,(u),
uEAk] ueBk2
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where
Ap={u € S.(a) : |Vull3 <k} and By :={u € S,(a): |Vul3 = 2k}.
Proof Take k > 0, which will be determined later. Assume that u, v € S, (a) such that

Vull3 < k and ||Vv||3 = 2k. By (2.1), the GNS inequality (2.4) and g8, = 2, we
derive to

14
Pu(w) = [[Vul3 + 7 /R Gutdx — pbqllullg — lullg
- 3, -
> Va3 = Clg)udga™ ™| Vully™* — $7Vull§

2C
= (1 = ﬂa’f“%)) IVul2 — =3[ VulS,
q

and

1 2.,V 2 H 1 6
I, (u) = EIIVu||2+ Z/]R3 puudx — ;IIMIIZ - 8”””6

1 w0 F)
> [ Vul3 — C(g)=a? 2 | Vu 3™ — =73 Vull$
2 q 6
I C@n _ I _
=z - ==t ) Va3 — —S73 | Vul$.
2 q 6

If a < a3, we can deduce that
P,(u) >0 and I,(u) > 0,

for k > 0 small enough. Next, if a < o4, we have

1 1 y w 1
I _J vl — Zivun2 = X 25 Hywa Ly 6
w@) = Lu@) 2 IVl = S1IVully 4A3¢uu dx = vl = S vlg
1 1 Y s
zinwnﬁ - Enwnﬁ - ZC[C(IZ/S)]3a3HVMII2

n _ s, 1 _
- gaq)cﬂ“ )| vol|3* — &S vl

1 Y 5 ki 1
>k — k- —C[CA2/5)]3 | —— | k2
2 4 4y CIC(12/5)]3
. q(1-8¢)
C k2 ’ 1
U % — ~5730K)°
g9  \4yCrc2/513 6
1 1 2C (1-54) 4
—k— —k— C——l P Y
2" 16 ~ NI 3
g (4rcrcazsi)
5
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If we take

~ 5.4 q(lESq) 1
q(4yCIC(12/5)]3) <3 53)2
= , 4.1)
32uC(q) 64

then, for 0 < k1 < k2 < k small enough and 0 < @ < min{a3, @4}, we infer to

k = min

Py(u), I,,(u) forall u € Ay, and 0 < sup I, (u) < 1nf I, (u).

ueAkl

The proof is completed. O

In the following, we study the characteristics of the mountain pass levels for E (i, t)
and 7, (u). Here, we define a closed set I[f ={ueS(a): I, <d}.

Proposition4.3 Ler g = 13—0, w,y >0, and assume that 0 < a < min{as, og}. Take

Gu(a) = inf n}gx]E(g(t))

Cel, 1€
where
Ty = {¢ € C([0, 1], S;(a) x R) : T(0) € (A, 0), £(1) € (1), 0)},
and
oula) = gigrfa max, 1,(¢(0),
where

[y ={¢ € C(0,1], S;(a) : ¢(0) € Ay, ¢(1) € 1,9}-
Then we have
oula) =o,(a).

Proof Since I';, x {0} C l"a, it is easy to know that oy (a) < oy (a). Then we only
need to verify ,,(a) > o, (a). For ;“(t) = (;1 1), Q(t)) € Fa, one has,

2(0) = (21(0). 22(0)) € (Ar,, 0) and £(1) = (C1(1), &2(1)) € (1)), 0).
So, set £ (1) = (C2(1)%¢1 (1)), we have ¢ (1) € Iy, and so,
trerggﬁl E@) = trerggﬁ] 1, (52(t)*81 (1) = zrerff)l,’}] 1, (1)),
which implies that 5, (@) > oy, (a). The proof is completed. O
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Next, we will verify the existence of the (P S)z, 1) sequence for E(u, ¢) on Sy (a) x
R, which is demonstrated by a standard argument by using Ekeland’s variational
principle and constructing pseudo-gradient flow (Proposition 2.2 [28]).

Proposition 4.4 Ler {&,} C T, be such that

~ 1
E,(@)) < -
oy £ = @

then there exists a sequence {(un, tn)} C Sy(a) x R satisfying

(i) Eun, ) € [Uu(a) O',u(a) + 4 ]
(i) minepo, 1) | (un, tn) — Sn(t)llﬂ =< [
(i) 1E'ls, @xr . )| < = ice,

|<E (Un, tn), Z>H 1><]HI| [||Z||H»

forall
2 € Ty i=1(z1,22) € H : (un, 21) 12 = 0).

With the help of Proposition 4.4, we can obtain a (PS)s,(a) sequence for I, (u) on
Sy (a) in the following.

Proposition 4.5 Let g = 5, 1, y > 0, and assume that 0 < a < min{a3, aa}. There
exists a sequence {wy,} C S (a) such that

(1) I, (wy) = opula) asn — oo;
(i) Pu(w,) — 0asn — oo;
(i) 1},[s, () (wn) — O0asn — oo, ie,

KL (i), D) g1 1] — O,
uniformly forallh € Ty, and |h|| < 1, whereTy,, :={h € H : (wp, h);2 = 0}.

FN’roof By Proposition 4.3, we have 6, (a) = o, (a). Now, we take {&, = ((§,)1,0)} €
I', such that

,n[lf)"i E&, (1) <ou(a) + l

From Proposition 4.4, we know that there exists a sequence {(u,, t,)} C Sr(a) x R
such that as n — o0, we have

E(up, tn) = ou(a), 4.2)
t — 0, 4.3)
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0.E Wy, tn) — 0. 4.4)

Let w, = t,*uy, then I,,(w,;) = E(up, 1), so item (i) follows.
Next, we show item (ii). Since

A E(up, 1n) = € f Vu, Pdx + Lo f Pu, Undx — p184e7% f lun|?dx
R3 4 R3 R3

—e6‘”/ |un|®dx
R3

Y
_ / IV (et P + L f Oty (i) dx — 18, / kit |dx
R3 4 R3 R3

— /3 |Ln*un|6dx
R‘

= Py (wy),

it follows that item (i7) holds.
To prove item (iii), we set h, € Ty,,, then

(I;L(wn)y hn)-15cn

= /2 Vw,Vh,dx +y /q G, Wphpdx — /*/3 [w, 92wy h,dx — f1 [wn|* W, dx
R’ R’ R’ R

n

=% / Vity (1) Vhy (e x)dx + ye~ % / Bu oy n (X (7" x)dx
R3 R3

3g=3)

_ue‘z

/ lit (0192t () (™ x)lx — €31 / it ()| * 10,y (X) R (™" ) x
R3 R3
L —3u —ln L 3 —tn
=e, Vu,(x)V (e 2h, (e x))dx—i—)/en Gu,(x)n(x)e” 2" hy (e x)dx
R3 R3
—ueq‘s"‘”/ i ()14 20 (X)e ™ 2%y (™ x)dx
]R3
—66"’/ i () *10 (¥)e™ 2 Iy (e x)dx.
R3
~ 3 .
Let h,(x) = e 2'h,(e ‘" x), we obtain
<Il;(wn)y hn)Hfle = (E/(un, tn), (hp, O)>H*1><]HI'
Moreover, we get
~ _3 _
Tz = [ a0y ™)
R3
3
=/ ey, (e x)h, (x)dx
R3

=/ wy(x)h, (x)dx = 0.
R3
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Thus, we obtain (i, 0) € YN"(L,”J”). On the other hand,

I (hns O = 1 ()11
= I COII3 + e 72 | 7 () |1
< Cllh, ()%,

where the last inequality can be established by (4.3). So the item (iii) is proved.

Now, we construct the relationship between o, (a) and m, ,(a), where

m/L,r(a) = uei;?lf(a) I/L(“)v

and

Pr(a) = P(a) N S, (a).

O

Lemma4.6 Let g = %, w,y > 0, and assume that 0 < a < min{as, aq}. Then we

have

my (a) = udi)n(fg)f 1, (u) =oy(a) >0,

where
Pr(a)” =Pla)” NSy (a).

Proof In the following, we split the proof into four steps.

Step 1 We verify that for each u € S, (a), there exists a unique #, € R such that
tyxu € Pr(a), with 1, is the strict maximum point for the function ¢, (¢) on (0, +00)

at positive level. Moreover, P, (a) = P,(a)~.
In fact, by Lemma 4.1, we have

¢u(—00) =07 and ¢, (+00) = —00. 4.5)

Since ¢, (1) is a C2 function, we can deduce that ¢, (1) has at least one critical point 7,,,
with #, is a global maximum point at positive level. In view of Lemma 2.6, we have
tyxu € P,(a). Next, we prove that ¢, (¢) has no other critical points. Indeed, recall

(@) (1) and (¢,)" (1) as follow:
(9u) (V) =e2‘/ |Vul*dx + Ze‘/ ¢uu2dx—usqe454tf |u\qu—e6‘/ |u|%dx,
R3 4 R3 R3 R3
and

()" () = 2€2L/ |Vu|?dx + Ze‘/ Guu’dx
R3 4 R3
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—,uquzeqaq‘/ |u|qu—666‘/ lu|®dx.
R3 R3

Assume by contradiction, there exists other critical point ¢, € R with 7, < e, and ¢,
is also a global maximum point of ¢, (¢). Then, we see that there exists a critical point
fu, such that t, < f, < e, and f, is a minimum point of ¢, (¢). Consequently, we
have

(@) (ew) = 0. (@) (fi) =O.
(@) (e) = — Lot / Gui’dx — 4% f ul®dx <0,
4 R3 R3

and
()" (fu) = Y ot / Guudx — 457 / lu|®dx < 0,
4 R3 R3

which is a contradiction.

Step 2 We show that /,(u) < O implies P,(u) < 0. In fact, since ¢,(0) =
1,,(Oxu) = I,,(u) < 0, by the properties of the function ¢, (¢) presented in Step 1 and
by (4.5), we infer that 7, < 0. Besides, since

Py (tyxu) = (¢) (ty) =0 and Py (u) = Py (0%u) = (¢,)'(0),

we obtain that P, (u) < 0.
Step 3 We claim that m, ,(a) = 0y, (a). Indeed, letu € S, (a), we take :~ < 0 and
tt > O such that . #u € Ay, and I,,(tTxu) < 0, respectively. Then we can define a
path
Lot ef0, 11— (1=t +tH)su e Iy. (4.6)

Hence, we get

trer%(e)l,)i] Iu(é-u(t)) = O‘p,(a),

and so, we have m, ,(a) > o, (a). Moreover, for any z(t) = (El (1), Ez(t)) € Fa, one
has,

2(0) = (21(0), £2(0)) € (A, 0) and Z(1) = (Z1(1), L2(1)) € (1, 0).
Now, we define the function
P,(1) = P, Q%1 (1))
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Since (£2(0)*51(0)) = £1(0) € Ay, and (L ()+Z1 (1) = ¢i(1) € I), in view of
Lemma 4.2 and Step 2, we have

P, (0) = P,(21(0)) > 0,
and
P,(1) = P, (51 (1)) < 0.

Since P () is continuous and by Remark 2.8, we infer that there exists t* € (0, 1) so
as to P (t*) = 0, which implies that ({2(t*)*§1(t*)) € P, (a). Consequently, one has

zgfgf] E(¢ (@) = lrer[lgﬁ] 1, (5 ()*C1(2) > ueigf(a) I, (u).

Hence, we have o, (a) > m, ,(a). In conclusion, one has o, (a) = m ,(a).
Step 4 We claim that m,, ,(a) > 0. Let u € P,(a), we have P, (u) = 0. By the
GNS inequality (2.4) and (2.1), we infer to

vty = =2 [ gt + s, ]+
< 18, C(@)a? %) | Vul| 3™ + 573 Vul.
And by g8, = 2, one has
(1= 18, C@a”' =) | Vul} < 57 VullS.
By a < a3, there exists p > 0 such that

inf ||Vul3 > p.

uePy(a

So, for any u € P,(a), it follows that

Ty (u) = 1y, (u) — lP (u)

1 14 2 21
v/ - -z 94
3l u||2+24/Rs¢uu dx =3, A@w x

1 2 2u 1-8 q8
> ZIVull3 - gcw)aq( )| Va3
1 2
=3 (1 - iC(q)aq(1‘5q>> I Vul3
q

1

2
> - (1 - —“C(q)aq“—“q)) p>0.
3 q

Consequently, we obtain o, (a) > 0, which completes the proof. O
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Next, we give an upper bounded estimate for the mountain pass level oy, (a) in the
following Lemma, which plays an important role in the proof of Theorem 1.2.
10
3 X
exists y1 > 0, such that o, (a) < %Si fory € (0, 1) small enough.

Lemma4.7 Let g = u > 0, and assume that 0 < a < min{os, aa}. Then there

Proof Recall (2.1) and (2.2), we have the best constant S is attained by

1
C*e2

Ue(x) = —————
(€2 + x[»)?

for any ¢ > 0 and C* being normalized constant such that

/ VU, |*dx =/ |U.[0dx = S2.
R3 R3

We take
ug = U,

where ¢(x) € Cgo (B2(0)) is a radial cutoff function such that 0 < ¢(x) < 1 and
¢(x) =1o0n B1(0). Let

Ve = a—2— € S(a) N H\,,(R).
llzeell2
As showed in [15], we have
/ \Vue|2dx = S2 + O(e), “.7)
R3
and
6 3 3
/ luedx = S22 4+ O(¢g”). 4.8)
R3

From Lemma 7.1 [30], we have the following estimations:

05%), if2<q<3
/ lue9dx = | O e%|1ogg|), if ¢ = 3; (4.9)
R3 _
08°T"), if 3<q<6.
and when g = 2, one has
/ lug|?dx = Ce. (4.10)
R3
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Recall the function
15, 2 Vo 2
v, (1) 1= 1, ((1xv)) = ze Vv |“dx + =e ¢y v dx
R3 4 ]R3

3(q—2) 1
K. 2 / |ve|9dx — —66‘/ |ve |%dx, 4.11)
q R3 6 Jgrs

Similar to the first step in proving Lemma 4.6, we can conclude that ¢,, can obtain its
global positive maximum at some (.. And so, by (2.14), we have

@)y, (te) = Pu(texve) = 0. (4.12)

By (4.12) and ¢§, = 2, we deduce

e — ”VUe”z o te f]R3 (bvgvgdx 8. e@dq=2e 1Vella ||U£||q
llvellg 4 llvellg e lvellS
IVvels o llvellg
llve 118 el
_ el Vuely o e 1~ e 1
a*lug 8 TP “-13)

4 2—q q

||us||2 2 ||u£||2 ||”8||q

= 2 (IVuelf = o, =2
a ||u8||6 a

4
lluelly s w8y Nuellg
= e \ Vel — 2, —— 5 |-
a*lluellg a lluelly

In view of (4.7) and (4.8), we have that there exist positive constants Cy, C and
C3 depending on s and ¢, such that

1
C < —, 4.14
1 < = 4.14)
= 1 4.15
< — .
= (4.15)
and
lluce |1 (=]
——— =(C38 4. 4.16
el T 1o
Hence, by (4.13)—(4.16) and ¢4, = 2, we obtain
4 4
e s clells (00w o 2 o o lluely 4.17)
at a?—4a at
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In the following, we shall make an upper estimation of max,cg ¢, (1). Firstly, we
define the function <p8§ (1) as follow:

2t 61
0,y._ ¢ 2, € 6
%v(l) = |Vug|“dx |ve|Pdx. (4.18)
€ 2 R3 6 R3

By simple calculation, we derive that the function <p3€ (v) has a unique critical point Lg,
which is a strict maximum point given by

1

Vel \*
o = (IVvelz) (4.19)
||Ua||6

Applying the fact that
62 b 1/ a\2
(323"
0>0 2 6 3 b§
for any fixed a, b > 0. In view of (4.7) and (4.8), we infer that
: ;
0 ”VUs”z 1 ||V“8||%
W =-—F%) = =3\ et
(IIUEII(,)3 (lluellg)3
3
1 sitoe \ Ly
3\ (57 4 0(2)3 30

Secondly, we make an estimation for ¢,, (1). By (2.3), (4.12) and Holder inequality,
we derive to

(4.20)

N\w

+ O(e).

4 _ IIVUellz ole f]R? bv, Ugdx 5. 0(@8a—2)t ”van
e 4 ———— — udye
||U£||6 ||U£||6 ||v8||6
1 2 —t 2
= el (roue+ e [ rdar
< — (1v0 B + Lo Cluely) (421)
[ 4
2 Y .~ 3
< s (IVweld + el i3ivel)
ellg

1 y ~
2 4 — 2 5
= i (IVuelBlnell3 + L e~ Cauc I3 luec )
a ||u£||6
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By virtue of (4.7)—(4.8), (4.10) and (4.21), we can see that ¢, can not go to +oo,
namely, there exists some ¢* € R such that

<(*, forall € > 0. (4.22)

le

Based on above analysis, by (2.3)-(2.4), (4.7)-(4.8), (4.17), (4.20), (4.22) and the fact
qdy =2, we derive to

Y
D gy, (0 = g0, ) = 90, ) + Lot / 2 = E et
eR

< sup W) () + L / ot = e

eR
Cu lluell3
_wo(zvo)+ eC| snn— == e 1
4.23
<Lt iow e 4|| I} Ci_a’™ o o
__ 3 )/ 8 12__— 8
3 e |4 q fu )i
6.5
1 5%X3 6—
5§S%+C e+ C2y ——C3qu
1 3 5 3 1
:552+C8+Cy C83<3SZ,

if we choose y = &” for some constant o« > 1, and use the fact 0 < % < 1.
Finally, by Lemma 4.1, we take ¢; < 0 and ¢, > 0 such that ¢;xv, € Ay and
1, (1xxve) < 0, respectively. Define a path

Mo, 11 €10, 1] (1 — 1)) + 112)*v; € Ty

Consequently, by (4.23), we have that there exists some y; > 0, such that

1
my, r(a) = G;L(a) < max I (nvg(t)) =< sup ¢y, (OIS S2
rel0.1) ek 3

for y € (0, y1) small enough. O

Now, based on the above preparation, we are ready to accomplish the proof of
Theorem 1.2.

Proof of Theorem 1.2 Take a P S sequence {u,} as in Proposition 4.5, we have
1,1, (@)(un) = 0 as n — oo,

Using the Lagrange multipliers rule, we have that there exists a sequence {A,} € R
such that

I () — 2V (uy) — 0 in H™' (4.24)
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Again by Proposition 4.5, we get
I, (uy) — oy(a) as n — oo.

which means 1,,(u,) is bounded. So we deduce to

1 1
-/ |Vun|2dx+Z/ Bu, ttn2dx — ﬁ/ lun|9dx — -/ |un|0dx < C.
2 Jr3 4 Jr3 q Jr3 6 Jr3

(4.25)
From P, (u,) — 0and g8, = 2, we infer that
|I/L(ul’l) + P[L(”n)' <C,
that is,
3 3 7
—/ [Vu,|>dx + Z/ u uﬁdx — —M/ lup|?dx — —/ lun|®dx > —C
2 Jgr3 2 Jgz " q Jr3 6 Jr3
(4.26)
Combining (4.25)—(4.26), one has
f Pu,undx + % / |un|°dx < 4C. (4.27)
3

Thus, we know that [i3 ¢y, u2dx and Jgs3 lun |°dx are bounded. Then, by (4.25) and
the GNS inequality (2.4), we infer to

1
C> -/ |w,1|2dx—ﬁf lup |9 dx
2 q JRr3

—||wn||2——C<q>aq<‘ =50 | Vg, | 4%

1
= (— — —C(q)aq“—%)) V13-
q

I \

Sincea < a3, itiseasyto get ||Vu,|l2 < R* forsome R* > 0independentlyonn € N.
Consequently, we obtain that {u,} is bounded in H 1 (R3), and so, up to subsequence,
there exists u, such that

up—ug in H'(RY),
Uy — ug in LP(R3), Vp € (2,6).

From (4.24), we have
xnnunn%:f |Vun|2dx+y/ Pu, tn>dx
R3 R3
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—u / lup|?dx — / 0 [5dx + 0n (1), (4.28)
R3 R3

that is

1
Ap = 3 |:/ |V1/tn|2dx + V/ ¢un”n2dx - M/ |un|qu _/ |un|6dX:| + 0, (1).
a R3 R3 R3 R3

From the boundedness of {u,} in H!(R?), we have that {%,} is bounded. Now, we
verify

/ un|?dx —>/ lug|?dx #0, ie. uy, #0.
R3 R3

Assume by contradiction that, fR3 lu,|9dx — 0. By (2.3) and the interpolation
inequality, we obtain [ ¢y, uzdx — 0. Combining with

4
Py (uy) = / |Vun|2dx + 7,/ ¢unun2dx - Haq/ |un|Tdx _/ |”n|6dx = on(1),
R3 4 R3 R3 R3
we get

13
= — [—V/ uttndx + (8, — 1)/ |un|qu] +ou (1),
a | 4 Jrs R3

So, A, — 0 asn — o0. Then (4.28) becomes

/RS |Vuy,|>dx — /Rz lun|®dx = 0,(1).

Set

lim [Vu,|>dx = lim/ lun|®dx =1,
n—oo R3

n—o0 R3

then,

1 1
lim 7, (uy) = lim f/ |Vu|2dx+Z/ puuldx — ﬁ/ u|9dx — f/ |u|Cdx
n—00 n—oo | 2 Jp3 4 Jr3 q Jr3 6 Jr3

(4.29)

I
N
| — |
[N
7
q
<
o
Q,
=
|
AN =
D
=
o
QU
=
—_
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Since 1, (u,) — oy(a) as n — oo, and oy (a) < %S% from Lemma 4.7 and (4.29),
we obtain

3
Il < 8§72,
On the other hand, by virtue of the Sobolev inequality (2.1), we have

limp—oo IVualls 1 _ 2
1 - ]

S < - =
(limy,— 00 fﬂ@ |un|6dx)§ I3

which leads to a contradiction. Hence, fR3 lu,|9dx — fR3 luy|9dx # 0. Then, by
the boundedness of {A,}, up to subsequence, there exists A, such that A, — A,.
Consequently, by [|Vu,l2 < R*, (2.3), the GNS inequality (2.4) and g6, = 2, we
have

(1=64)
T < / lunldx < C(@ IVt [l |20
R\

< C(g)R*a917%),

and

~ ~ 5
/R Buntndx < Cllunllly < CICA2/S)T I Vunl2 a3

-~ 3 % 3
< C[C(12/5)]3R"a
=1y,

where T3 > 0 and Ty = T4 (R*, a). We define the positive constant

_au( 8T
Vo=
3Ty

So, we get

~ A = 8y) [g3 luplldx Al —8y) [ps lual?dx
y2 < lim B = 5
n— 00 3 [g3 Gu,uidx 3 [g3 Pu,uidx

In view of (4.24) and {u,} is bounded in H (R?), we have
dnlluenll3 = | Vanll3 + y fRa Guyttn>dx — pellun |G = llunlI§ + 00 (1)
Combining with P, (u,) — 0 and Lemma 2.7, if y € (0, 72), one has
haa® = lim (nwnn% +y fR Dupttn’dx — pllunllf — ||un||2)
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n—oo

. 3
= lim (ZV/ ¢)Mnun2d-x + u(dg — 1)”“11”2)
R3
_3 2 _ g
=77 Gu,ta”dx + 1(8q — Dlluallg
R3
3.
< Z)/z/ buyttadx + n(8g — Dllugll <0,
R3

which proves that lim,_, .o X, = A, < 0. Let v, = u, — u,—0, by (3.17), (2.5),
Lemma 2.7 and Py, (v,) = P, (un) — Pu(uy) — 0, we infer to

2 6
IVunllz = llvallg + 0n(1).
Up to subsequence, we assume that
2 6
IVoallz = llvallg = 7.

So, by (2.1), we have

that is,
3
T>82 or t=0.
Ifr > S%, in view of (3.17), we derive as
oula) = nlggo 1, (uy)
= nlgrolo I;L(ua) + Euvvnnz - 6””}1”6
1
= IM(MQ) + §'L'
I3
> 1, (ug) + §S2'
Besides,

1 1
Iu(ua) = Iu(ua) + _Pu(ua) = Z/ ¢uaua2dx + _”ua”g > 0,
2 8 R3 3

which is contradicted to Lemma 4.7. Thus, we have r = 0. By a similar argument as
in the end of the proof of Theorem 1.1, we infer to

Uy, — Ug in Hl(]R3).
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Next, we claim that m, (a) = m ,(a). Since Pr(a) C P(a), it is easy to see
that m, (a) < m r(a). Then, we only need to verify m, (a) > m, ,(a). Suppose by
contradiction, there exists w € P(a)\Sy(a) such that

I,(w) < 7;}1(2) 1, (u). (4.30)
Then, let v := |w|*, by virtue of the schwarz rearrangement, it follows that
I,(v) <I,(w) and P,(v) < P,(w)=0.
If P, (v) =0, we know v € P(a), v := |w|* € P,(a) and

I, (v) > Pin(f)lu(u) > Iy (w) > 1,(v),

which is a contradiction. If P, (v) < 0, we see that (¢,)'(0) = P,(v) < 0, by the
claim of Step 1 of the proof of Lemma 4.6, we have that ¢, < 0. Since #,*xv € P, (a),
by (4.29), we deduce to

1
1, (tyxv) = I, (ty*v) — EPM(tv*”)

I, (w) <
1
= Yo bpv’dx + —€6t”/ [v]®dx
8 R3 3 R3
1
=Y dpw’dx + —66’”/ |w|dx
8 R3 3 R3

< e (I,u(w) - %Pu(w)>

= et”IM(w) < I (w),

which leads to a contradiction. Again by the the claim of step 1 of the proof of
Lemma 4.6, we have P(a) = P(a)~. Consequently, we get

I,(uy) =0,(a)=m, (a) =m,(a) = inf I,,(u) = inf I,(u),
u(g) = oy (a) w.r(@) wl@) Jnf (1) Al (1)

and u, is a ground state. O

5 L2-Supcritical Perturbation Case
In this section, we consider the L>-supercritical case: % < g < 6 and prove Theo-
rem 1.3. For the sake of convenience, we still utilize the notations and definitions in
Section 4.

In Lemma 4.1, the conclusion remains valid when 13—0 < g < 6. In the following,
we show that E (u, ) has the mountain pass geometry on S;(a) x R.
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Lemma 5.1 Let 13—0 <q <6, 1,y >0, and assume that 0 < a < as, where

K+ 3
o5 = <—~ 5> .
4y C[C(12/5)]3

There exist 0 < ki < k3 < k* such that

Py (), I,(u) forall u € Apr and 0 < sup I,(u) < inf I, (u),
! MEAkT MeBk;

where
Ape = {u € S,(a) : |Vull3 <k*} and By :={u € S,(a) : |Vull3 = 2k*)

Proof Take k* > 0, which will be determined later. Suppose that u, v € S,(a) such
that ||Vu||% < k* and ||Vv||§ = 2k*. The proof here is similar to Lemma 4.2, which
we briefly outline.

Y
Pu) = [Vul3+ 2 | guu’dx — udglulld — ul
4 R3

_ S, _
> |[Vul3 — C(g)udya? 2| Vu|| 3% — $73||Vulls,

and
L) = ~1Vul2 + Z/ dundx — P = Lpuge
H 2 4 Jr3 g 1 6
1 K- 5 L
> Enwuﬁ — C(q)=a?" 3| Vu 3% — — 573 vulS.
q 6
Moreover,

1 ) 1 2 Y 2 H 1 6
I, (v) — I (u) > EIIVvllz - EIIVMIIQ 7 - duudx — gllvllz - EIIUII(,

1 1 Y ~ 5
> E||Vv||% - znwnﬁ - ZC[C(12/5)]3613||VM||2

m _ $ 1 _
—;aq)aq“ | Vu)3? — S vul$

v

1 Y ~ 5 k*2 ol
k¥ — —k* — ZC[C(12/5)]3 (—5) k*2
2 4 4yCIC(12/5)]3
q(1-84)
t 3
q 4y C[C(12/5)]3 6
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43,
_ Ly 27 Clgn e | (4
16 i 5\ 2050) ) ~\3
g (4rcrcaz/snt)
5
> —k* >0,
16

for a < as, and we take

3
q(1-59) \ 246 1

@y CIC(12/9)13) 3 < 3 s3>2
16,.C(q)2" 2

k™ = min

then, for 0 < k' < k5 < k* small enough and 0 < a < as, we have

Pu(u), I,(u) forall u e Ak;‘ and 0 < sup I,(u) < il}gf 1, (u).
ue k;

MEAkT

The proof is completed.

S

3k*2> k*

5.1

]

Lemma5.2 Let 13—0 <q <6, u,y >0, and assume that 0 < a < as. Then we have

(1) There exists a sequence {w,} € S,(a) such that
I, (w,) — oy(a) as n— oo,
Py(wy) — 0 as n— oo,

115, @(wn) = 0 as n— oo.

(ii) oy(a) =my (a) > 0, where o, (a) and m,, r(a) is defined in Section 4.

(5.2)
(5.3)
(5.4)

The proof of this lemma is similar to that of Propositions 4.3—4.5 and Lemmas 4.2—

4.6 utilizing g8, > 2, and thus it is omitted here.

Now, we make an upper bounded estimation for the mountain pass level o, (a) in

the following.

Lemma5.3 Let % <q <6, u,y >0, and assume that 0 < a < as. Then we have

oula) < %S% fory € (0, 1) small enough, where Y is defined in Lemma 4.7.

Proof As in the proof of Lemma 4.7, we conclude that ¢,, (t) achieves its global
positive maximum at some ¢, and the critical point ¢, is unique. In view of (¢,,)’(t¢) =
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Py (texve) = 0, one has

6 6 2 14 B q
% v IS = e | Ve |l3 + = ‘5/ o, vEdx — 118,¢4 |vellg

<e 2‘f||w£||2+ / b, v7dx
(5.5)
= o2 <||Vv5||%+—e_‘£/ qbvgvgdx)
4 R3
< ¢?#2 max ||va||%, Ze_‘s ¢Ugv§dx .
4 R3 )
Then, we consider the following possible cases.
Case 1If | Vv [|3 > Ze™ [os ¢y, v2dx, we have
O ua 1 < €222 Vv |13,
that is,
2| Vv,
< Vel 56”2. (5.6)
||vs||6
By (¢u,) (te) = 0, we infer that
e _IV0elly oy e fs duvddx s, 0l
= n — MHoge
lvell 4 llve 1 llvell
q6q72
N O B N0 o W 2
IVoely s, (22002 Mellg
llve I llvelI [EAH
q8q—2 6
~ luel3 IVl 5 20ucl3NVuell3\ * Nuely “lueld 57
q _ .
a*lug | a*flug$ a®= 4 |ug |
e I3 Vue |13  1éy 2 qa1- 5q>||u ||‘f
- 4 6 (1-8,) ’
@ lluells i lu gn‘f el
el Ve |13 X _ 1éy 2 aqU b0 fluellg
- 4 6 (1=84)
a*lue ] (e |© lluell3
By virtue of (4.14)—(4.16) and (5.7), we get
4 4
u sq—2 C 6— u
e zcm C — usyat1=002 4 275 zC“ ell2. (5.8)
at 2 at
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Case 2If | Vv, [|3 < Ye™ [ps ¢y, v2dx, we have

el < 26207 / $u, v2dx,
that is,

2
e < g fR3 Pu, Ve dx

5.9)
llve 18

Again by (¢y,)(tz) = 0, (2.3) and Hélder inequality, we infer to

2 2 q
e4‘5 _ ”VU8||2 + Ze_le f]RS ¢vgvsdx s e(q‘gq_z)Ls ”Us”q
6 4 6 Mg 6
||U£||6 ||Us||6 ||Ue||6
q6q72
5
_ Iveli3 s (7= v, vidx B8
T A VAL AE
q5q72
C v 5 q
IVoel} Ivell’y ve 14
> £
— 6 6
”Uenﬁ ||ve||6 “Us”6
q8qg—2
5 q
Ve I3 y Clivel3llve s llve I
> s, 1 &= 17e7q
T A ) 6
ellg Ve 6 ellg
[[vel l[velI J[vel
q8qg—2
~ 5
_ Iveeld . <y ) g g 1 (B8
(2L
el 2 llvell3 [EA[E
q8q—2 4
—q(1=84)
_ lel30Vuel3 (y_) 5 awnugnqn well
at q,+4
a*|uell$ 2 luellg
 luell3 U Vue |13
a*llug)|®
192 q(y—1)

4% 18 <y5> > aw ||Ms||q|| uells
q
2 qs
lluellg " (IIWsII2

=]

4 2

_ Nuell3IVuell

- 6
a4||u€”6

~ g2 54248426

~4% yC 3 a s ”ué‘”Z
L 2 48,2 N q<1 89)
||“8||6 (”V“snz

(5.10)
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By (4.7)—(4.8), we deduce that there exists constant C4 > 0 such that

‘I‘Sq 1
— 5.11
C (5.11)
So, in view of (4.14)—(4.16) and (5.11), we get
4 ~ q%q—2
5 — — _
“ 4 (5.12)
_ Clluel3.

Based on above analysis, we will make an upper estimation for ¢,, (¢). Firstly, as
in Lemma 4.7, we can define the function gpga (¢) and make an estimation for (pf,)g 1),
that is

S2 4 0(e). (5.13)

U)I»—

o) (1) =
0

where ¢, is a unique strict maximum point of (pgs (1). Secondly, we make an estimation
for ¢y, (1). By virtue of (4.22), we know that there exists some ¢* € R such that

1o <1*, forall ¢ > 0.
So, by (2.3)—(2.4), (5.11)—(5.13), (4.9)-(4.10), (4.16) and above inequality, we obtain

Sup @y, (1) = @y, (L)

eR

e el

—cpvg(tg)+—e / v, vedx —

< sup W) (0>+ / Gu, v 2dx e‘ﬁq‘snv ¥
eR

"
<00 (o) + L C v, — —e‘]‘sqtfnvgnz
4 3 q
< 152 +0()+C a’ I ” Cpa? %) lu, ||Z
BE TR 4 el
||”a|| 12 q
<licler oty 5 3 My
3 llue 13 9(1=5)
ell2 llue s
6.5
1 5%X3 6—
=§S%+C8+C2 ——C3aTq
1.3 2 3
=§SZ—I—C8+C)/ Cg4
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s3, (5.14)

W =

if we choose y = ¢* for some constant « > 1, and using the fact 0 < 6%4 < 1.
Since v € S, (a), from Lemma 5.2 we take (3 < 0 and ¢4 > O such that (3xv, € Ay
and I, (14%xve) < 0, respectively. We define a path
77:5 e [0,1] = ((1 — )z + tg)*v, € Ty,

Consequently, by (5.14), we obtain that there exists some 3, > 0, such that

1 3
< max I, (n) (1)) <s -82,
oula) < max. w(y, (1) = t;lﬂg%g(t) <3

for y € (0, ¥1) small enough, which completes the proof. O
Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 By virtue of (5.4), we have that there exists a sequence {1, } € R
such that

I (un) = kg W' (up) > 0 in H™L. (5.15)
Then we claim that {,} is bounded in H. Indeed, by (5.2)and (5.3), we have
|21u(un) + Pu(un)l <C, (5.16)

that is,
3 3g —2
2/ |Vu,,|2dx+—y/ q&unu%dx—u/ lun|9dx
R3 4° Jgr3 2q R3
4
—-/ lun|®dx > —C. (5.17)
3 R3
By (5.17) and the bounded of I, (u,,), we infer to
3¢ — 10 2
—C< —Z/ b, u2dx — M/ lup|9dx — -/ lup|Odx + 4C,
4 Jgr3 2q R3 3 Jrs
it follows that
3¢ — 10 2
Z/ y uﬁdx—i—M/ |un|qu+—/ lun|Sdx < 5C,
4 Jrz " 2q R3 3 Jr3
which implies that

/3(1)“,114%(1)6, /3 lun|?dx and /3 |”n|6dx
R R R
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are all bounded. Thus, we deduce that fR3 |Vu, |2dx is also bounded. For convenience,
we still take | Vu, |l < R*. We can proceed exactly as in the proof of Theorem 1.2
utilizing Lemmas 5.2-5.3, so complete the proof of Theorem 1.3. O
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