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Abstract
In this paper, we are concerned with the existence and properties of ground states for
the Schrödinger–Poisson system with combined power nonlinearities

{
−�u + γφu = λu + μ|u|q−2u + |u|4u, in R

3,

−�φ = u2, in R
3,

having prescribed mass

∫
R3

|u|2dx = a2,

in the Sobolev critical case. Here a > 0, and γ > 0,μ > 0 are parameters, λ ∈ R is an
undetermined parameter. By using Jeanjean’ theory, Pohozaev manifold method and
Brezis and Nirenberg’s technique to overcome the lack of compactness, we prove
several existence results under the L2-subcritical, L2-critical and L2-supercritical
perturbation μ|u|q−2u, under different assumptions imposed on the parameters γ, μ

and the mass a, respectively. This study can be considered as a counterpart of the
Brezis-Nirenberg problem in the context of normalized solutions of a Sobolev critical
Schrödinger–Poisson problem perturbed with a subcritical term in the whole space
R
3.
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1 Introduction andMain Results

In this paper we study the nonlinear Schrödinger–Poisson system

{
i∂t� − �� + γφ(x)� = a f (|�|2)�, x ∈ R

3,

−�φ = |�|2, x ∈ R
3,

(1.1)

where� : R×R
3 → C is the time-dependentwave function, γ, a ∈ R are parameters,

the nonlinear term f simulates the interaction between many particles or external
nonlinear perturbations. The nonlinear Schrödinger–Poisson system (1.1) attracted
much attention in the last decade, starting from the fundamental contribution [13].
System (1.1) has many physical motivations, it derived from the approximation of the
Hartree-Fock equation that describes a quantum mechanical of many particles, and
is highly beneficial in the quantum description of the ground states of nonrelativistic
atoms and molecules [34, 35, 39], and also arises in semiconductor theory [18].

When we are concerned with the standing wave solutions �(t, x) = e−iλt u(x),
λ ∈ R, then u : R

3 → R must verify

{
−�u + λu + γφu = a f (u), x ∈ R

3,

−�φ = u2, x ∈ R
3.

(1.2)

At this time, there are two possible choices to deal with (1.2). One can fix λ ∈ R

and to look for solutions as critical points of the associated energy functional

Jλ(u) = 1

2

∫
R3

|∇u|2dx + λ

2

∫
R3

|u|2dx + γ

4

∫
R3

∫
R3

|u(x)|2|u(y)|2
|x − y| dxdy − a

∫
R3

F(u)dx .

where F(u) = ∫ u0 f (s)ds is the primitive integral of f . Alternatively, one can search
for solutions of Eq. (1.2) with prescribed L2-norm. At this point, the parameter λ ∈ R

cannot longer be fixed but instead appears as a Lagrange multiplier. Analogous to the
first case, the solutions of (1.2) with ‖u‖22 = m > 0 can be obtained as critical points
of the energy functional

J (u) = 1

2

∫
R3

|∇u|2dx + γ

4

∫
R3

∫
R3

|u(x)|2|u(y)|2
|x − y| dxdy − a

∫
R3

F(u)dx .

under the constraint L2-sphere Sm := {u ∈ H1(R3) : ‖u‖22 = m2}. It is easy to check
that J is a well-defined and C1 functional on Sm . This approach is relevant from the
physical point of view, in particular, since the L2-norm is a preserved quantity of the
evolution and since the variational characterization of such solutions is often a strong
help to analyze their orbital stability, see for example, [6, 9–11, 29–31] and references
therein.
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As far as we know, the first work for normalized solution to Eq. (1.2) in the case
γ = 1, and f (u) = |u|p−2u is due to Sánchez and Soler [41]. They showed that
there exists a normalized solution of (1.2) provided that m is sufficiently small and
p = 8

3 . Since then, there are some further studies for problem (1.2) in mass subcritical
case. In this case, the corresponding functional is bounded from below on Sm, then a
global minimizer can be obtained for somem. See for instance, [10, 11, 31, 32]. When
the nonlinearity f in (1.2) is mass supercritical, the constrained functional J |Sm is no
longer bounded from below and coercive. In this case, using amountain-pass argument
on Sm, Bellazzini, Jeanjean and Luo [12] proved the existence and the instability of
standing waves for m > 0 sufficiently small. Bartsch and de Valeriola [6], Luo [38]
studied the multiplicity of normalized solutions of (1.2).

At the same time, normalized solutions for Schrödinger–Poisson–Slater equation
with general nonlinearity in case γ = −1, has also attracted much more attention.
Xie, Chen and Shi [49] showed the existence and multiplicity results of solutions
when f satisfies limt→0 f (t)/t = 0 and lim|t |→∞ F(t)/|t |10/3 = ∞ under some
mild conditions on f . Recently, Chen Tang and Yuan [17] investigated the existence
of normalized solution by some new analytical techniques in case that f satisfies
limt→0 F(t)/t2 = 0 and lim|t |→∞ F(t)/|t |10/3 = ∞.

Very recently, Wang and Qian [45] obtained the existence of normalized ground
states and infinitely many radial solutions for (1.2) with Sobolev subcritical term f ,
by constructing a particular bounded Palais-Smale sequence when γ < 0, a > 0.
Meanwhile, they obtained the nonexistence result in the case γ < 0, a < 0 and the
existence result whenγ > 0, a < 0 via variational methods. In [29], Jeanjean and
Trung Le specialized in the existence of normalized solutions for problem (1.2) with
L2-supercritical growth:

⎧⎨
⎩

−�u + γ (|x |−1 ∗ |u|2)u = λu + a|u|p−2u, in R
3,∫

RN
|u|2dx = c2,

(1.3)

where u ∈ H1(R3), γ ∈ R, a ∈ R and p ∈ ( 103 , 6]. The authors dealt with the
following cases:

(a) If γ < 0 and a > 0, both in the Sobolev subcritical case p ∈ ( 103 , 6) and in the
Sobolev critical case p = 6, they showed that there exists a c1 > 0 such that, for
any c ∈ (0, c1), (1.3) admits two solutions u+

c and u−
c , which can be characterized

as a local minimum and a mountain pass critical point of the associated energy
functional, respectively.

(b) In the case γ < 0 and a < 0, they proved that, for any p ∈ ( 103 , 6] and any c > 0,
(1.3) has a solution which is a global minimizer.

(c) Finally, in the case γ > 0, a > 0 and p = 6, they showed that (1.3) does not exist
positive solutions.

When γ = 1, p ∈ ( 103 , 6), Bellazzini, Jeanjean and Luo [12] studied the existence of
normalized solutions of (1.3) by a mountain-pass argument as c > 0 is sufficiently
small and nonexistence as c > 0 is not small. In [31], Jeanjean and Luo considered the
existence of minimizers with L2-norm for (1.3) when p ∈ [3, 10

3 ], and they showed
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a threshold value of c > 0 separating existence and nonexistence of minimizers. For
more results on normalized solutions of Schrödinger–Poisson systems, we refer to [1,
19, 27, 29, 31, 33, 37, 38, 50–53] and references therein.

After the above literature review,wefind that, only the article [29] has considered the
existence of normalized solutions of (1.3) in the case p ∈ ( 103 , 6], and γ < 0; and the
no-existence of normalized solution of (1.3) with p = 6, γ > 0 and a > 0. Therefore,
a natural and important question arising is how toobtain normalized solutions to system
(1.3) in the case γ > 0, and in the presence of Sobolev critical exponent and mixed
nonlinearities: a|u|p−2u+|u|4u? here a|u|p−2u is a subcritical perturbation termwith
p ∈ (2, 6) and a > 0 a parameter. We notice that, this kind of critical nonlinearities
has been used by Soave [42], Wei and Wu [47] to search for the normalized solutions
for the Schrödinger equation

−�u = λu + a|u|p−2u + |u|2∗−2u in R
N ,

with the prescribed L2-norm
∫
R3 |u|2dx = c2.But for theSchrödinger–Poisson system

in presence of the Sobolev critical term |u|4u, coupled with a subcritical perturbation
term a|u|p−2u, the existence of normalized solutions has not been studied in the exist-
ing literature, as far as we know. For more studies of existence of normalized solutions
of the Schrödinger equation, see for example [28, 30, 42, 43, 54] and references therein.

Motivated by the works mentioned above, in this paper we focuss on studying the
Schrödinger–Poisson system

{
−�u + γφu = λu + μ|u|q−2u + |u|4u, in R

3,

−�φ = u2, in R
3,

(1.4)

having prescribed L2-norm

∫
R3

|u|2dx = a2, (1.5)

where λ ∈ R is an undetermined parameter, a > 0 and μ, γ > 0 are parameters,
μ|u|q−2u is a subcritical perturbation term with q ∈ (2, 6). For this purpose, applying
the reduction argument introduced in [40], system (1.4) is equivalent to the following
single equation

− �u + γφuu = λu + μ|u|q−2u + |u|4u, x ∈ R
3, (1.6)

whereφu(x) = 1
4π

∫
R3

|u(y)|2
|x−y| dy.We shall look for solutions to (1.4)–(1.5), as a critical

points of the action functional

Iμ(u) = 1

2

∫
R3

|∇u|2dx + γ

4

∫
R3

φu |u|2dx − μ

q

∫
R3

|u|qdx − 1

6

∫
R3

|u|6dx,
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under the L2-norm constrained manifold

S(a) :=
{
u ∈ H(R3) : �(u) = 1

2
a2
}

,

where�(u) = 1
2

∫
R3 u2dx . Physically, such type of solutions are the so-called normal-

ized solutions to (1.4)–(1.5). In order to state ourmain results, we introduce some of the
constants from the following Gagliardo-Nirenberg-Sobolev (GNS) inequality. That is,
there exists a best constant C(p) depending on p such that for any u ∈ H1(R3),

‖u‖p
p ≤ C(p)‖u‖(1−γp)p

2 ‖∇u‖γp p
2 , (1.7)

where γp = 3(p−2)
2p . The constant C(p) can be achieved by function Qp, see [43].

For the problem obtained from (1.4)–(1.5) by removing the critical exponent term
and the nonlocal term, we obtain one of its normalized solutions by rescaling Qp.
From γp p = 2, we get p = 10

3 which is called the L2-critical exponent for problem
(1.4)–(1.5). Before presenting the existence result, we give the definition of ground
states. If u∗ is a solution to (1.4)–(1.5) having minimal energy among all the solutions
which belongs to S(a) :

(Iμ|S(a))
′(u∗) = 0 and Iμ(u∗) = inf{(Iμ|S(a))

′(u) = 0, and u ∈ S(a)},

we say that u∗ is a ground state of (1.4)–(1.5).
The following are the main results of this paper. In the L2-subcritical case: 2 < q <

10
3 , we have the following existence result of the normalized ground state solutions.

Theorem 1.1 Let 2 < q < 10
3 , γ > 0, and assume that 0 < a < min{α1, α2}, where

α1 :=
⎧⎨
⎩ 2q

C(q)μ(6 − qδq)

(
(2 − qδq)S3

6 − qδq

) 2−qδq
4

⎫⎬
⎭

1
q(1−δq )

,

and

α2 :=

⎧⎪⎨
⎪⎩

4

C(q)μδq(6 − qδq)

(
qδq S

3
2

2 − qδq

) 2−qδq
2

⎫⎪⎬
⎪⎭

1
q(1−δq )

,

where S is defined in (2.1). Then there exists μ̃ > 0 such that μ > μ̃, problem
(1.4)–(1.5) has a couple of solutions (ua, λa) ∈ S(a) × R. Moreover,

Iμ(ua) = inf
u∈P(a)

Iμ(u) = inf
u∈P(a)+

Iμ(u) = inf
u∈Dk

Iμ(u),
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for some suitable small constant k > 0, where P(a) is the Pohozaev manifold defined
in Lemma 2.5, the set P(a)+ is defined in (3.1), and

Dk = {u ∈ S(a) : ‖∇u‖L2(R3) < k}.

In the L2-critical case: q = 10
3 , we have the following conclusion.

Theorem 1.2 Let q = 10
3 , μ > 0, and assume that 0 < a < min{α3, α4}, where

α3 :=
(

q

2μC(q)

) 1
q(1−δq )

,

and

α4 :=
(

k
1
2

4γ C̃[C(12/5)] 53

) 1
3

,

where C̃ is defined as (2.3), and k is defined as

k = min

⎧⎪⎨
⎪⎩
⎛
⎝q(4γ C̃[C(12/5)] 53 ) q(1−δq )

3

32μC(q)

⎞
⎠

6
q(1−δq )

,

(
3

64
S3
) 1

2

⎫⎪⎬
⎪⎭ .

Then there exist γ̃1, γ̃2 > 0 such that 0 < γ < min{γ̃1, γ̃2}, problem (1.4)–(1.5) has
a couple of solutions (ua, λa) ∈ S(a) × R. Moreover,

Iμ(ua) = inf
u∈P(a)

Iμ(u) = inf
u∈P(a)−

Iμ(u),

where P(a)− is defined in (3.2).

In the L2-supercritical case: 10
3 < q < 6, we have the following existence result.

Theorem 1.3 Let 10
3 < q < 6, μ > 0, and assume that 0 < a < α5, where

α5 :=
(

k∗ 1
2

4γ C̃[C(12/5)] 53

) 1
3

,

where k∗ is defined in (5.1). Then there exist γ̃1, γ̃2 > 0 such that 0 < γ < min{γ̃1, γ̃2},
problem (1.4)–(1.5) has a couple of solutions (ua, λa) ∈ S(a) × R. Moreover,

Iμ(ua) = inf
u∈P(a)

Iμ(u) = inf
u∈P(a)−

Iμ(u).
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Remark 1.1 In [29] Jeanjean and Le only studied the no-existence of normalized solu-
tions of problem (1.4)–(1.5) with γ > 0 and μ = 0. The existence of normalized
solutions for (1.4)–(1.5) in the case γ > 0, μ > 0 and q ∈ (2, 6) has not been stud-
ied in the existing literature. Theorems 1.1–1.3 provide a complete description of the
existence of normative solutions in the L2-subcritical, L2-critical and L2-supercritical
perturbation μ|u|q−2u, respectively.

Remark 1.2 In Theorem1.1, we assume that the parameterμ > 0 is large enough, so as
to ensure that the Lagrange multiplier sequence λn → λ < 0 as n → ∞, which plays
a crucial role in our proof of the H1-convergence of (PS)-sequence {un} ⊂ S(a).
In Theorem 1.2 and Theorem 1.3, it is necessary for the parameter γ > 0 to be

appropriately small so that the Mountain Pass level is strictly less than 1
3 S

3
2 . This

characteristic is completely different from the critical Schrödinger–Poisson system
without L2-mass constrained, see for example [25, 26, 46, 55].

In order to prove Theorems 1.1–1.3, we apply the constrained variational methods.
Note that the Sobolev critical terms |u|4u is L2-supercritical, the functional Iμ is
always unbounded from below on S(a), and this causes difficulty to treat the existence
of normalized solutions on the L2- constraint. One of the main difficulties is to prove
the convergence of constrained Palais-Smale sequences: Indeed, the Sobolev critical
term |u|4u and nonlocal convolution term γφuu, make it more complex to estimate
the critical value of mountain pass, and has to consider how the interaction between
the nonlocal term and the mixed nonlinearities. In particularly, the energy balance
between these competing terms needs to be controlled through moderate adjustments
of parameter γ > 0. Another obstacle is that sequences of approximated Lagrange
multipliers have to be controlled, sinceλ is not prescribed; andmoreover,weak limits of
Palais-Smale sequences could leave the constraint, since the embeddings H1(R3) ↪→
L2(R3) and also H1

rad(R
3) ↪→ L2(R3) are not compact.

To overcome these difficulties, we shall employ Jeanjean’s theory [28] by showing
that themountain pass geometry of Iμ|S(a) allows to construct a Palais-Smale sequence
of functions satisfying the Pohozaev identity, to obtain the boundedness, which is the
first step to show strong H1-convergence. To restore the loss of compactness caused by
the critical growth, we shall utilize the concentration-compactness principle, mountain
pass theorem and energy analysis to get the existence of normalized ground states of
(1.4)–(1.5), by showing that, suitably combining some of the main ideas from [15,
42], compactness can be derived in the present setting.

This paper is organized as follows: In Sect. 2 we summarize some preliminary
results which will often be used in the rest the paper. In Sect. 3, we investigate the
existence of normalized ground state solutions for system (1.4)–(1.5) under the L2-
subcritical perturbation case: q ∈ (2, 10

3 ) and complete the proof Theorem 1.1. In
Sect. 4, we address the presence of the normalized ground state solutions for sys-
tem (1.4)–(1.5) in L2-critical perturbation case: q = 10

3 and prove Theorem 1.2, by
employingmanifold andmountain road theorems. In Sect. 5, we tackle the existence of
the normalized ground state solutions for problem (1.4)–(1.5) under L2-supercritical
perturbation case: q ∈ ( 103 , 6) and prove Theorem 1.3.
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Notations.Throughout this paper,we denote Br (z) the open ball of radius r with center
at z in R

3, and ‖u‖p is the usual norm of the space L p(R3) for p ≥ 1. Moreover, we
denote by C,Ci > 0, i = 1, 2, · · · , different positive constants whose values may
vary from line to line and are not essential to the problem.

2 Preliminary Stuff

In this section, we will give the functional space setting and introduce some notations
and useful preliminary results, which are important to proving our Theorems. Let
H1(R3) be the completion of C∞

0 (R3) with respect to the norm

‖u‖H =
(∫

R3
|∇u|2 + |u|2dx

) 1
2

.

And the homogeneous Sobolev space D1,2(R3) is defined by

D1,2(R3) =
{
u ∈ L6(R3) :

∫
R3

|∇u|2dx < +∞
}

,

endowed with the norm

‖u‖2 := ‖u‖2D1,2(R3)
= ‖∇u‖22 =

∫
R3

|∇u|2dx .

The work space H1
rad(R

3) is defined by

H1
rad(R

3) :=
{
u ∈ H1(R3) : u is radially symmetric and decreasing

}
.

Let H = H × R with usual scalar product

〈·, ·〉H = 〈·, ·〉H + 〈·, ·〉R,

and the corresponding norm

‖(·, ·)‖2
H

= ‖·, ·‖2H + |·, ·|2
R
.

We denote the best Sobolev constant S by

S = inf
u∈D1,2(R3)\{0}

‖∇u‖22
(
∫
R3 |u|6dx) 1

3

. (2.1)
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It is well know that S is achieved by

Uε(x) = C∗ε 1
2

(ε2 + |x |2) 1
2

, (2.2)

for any ε > 0 and C∗ being normalized constant such that (see [15]):

∫
R3

|∇Uε|2dx =
∫
R3

|Uε|6dx = S
3
2 .

In the following, we recall some useful inequalities, which play an important part
in the proof of our main results.

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality [34]) Let l, r > 1 and 0 <

μ < N be such that 1
r + 1

l + μ
N = 2, f ∈ Lr (RN ) and h ∈ Ll(RN ). Then there exists

a constant C(N , μ, r , l) > 0 such that

∣∣∣∣
∫
RN

∫
RN

f (x)h(y)|x − y|−μdxdy

∣∣∣∣ ≤ C(N , μ, r , l)‖ f ‖r‖h‖l .

From Proposition 2.1, with l = r = 6
5 , we have that:∫

R3
φuu

2dx ≤
∫
R3

(
1

|x | ∗ u2
)
u2dx ≤ C̃‖u‖412

5
. (2.3)

Next, we introduce the following Gagliardo-Nirenberg inequality.

Lemma 2.2 ([43]) Let p ∈ (2, 6). Then there exists a constant C(p) > 0 such that

‖u‖p
p ≤ C(p)‖∇u‖pδp

2 ‖u‖p(1−δp)

2 , ∀u ∈ H1(R3), (2.4)

where δp = 3(p−2)
2p .

Lemma 2.3 (Lemma 5.1 [23]) If un⇀u in H1
rad(R

3), then

∫
R3

φun u
2
ndx →

∫
R3

φuu
2dx, (2.5)

and ∫
R3

φun unϕdx →
∫
R3

φuuϕdx, ∀ϕ ∈ H1
rad(R

3). (2.6)

In the sequel, we define a useful fiber map (e.g. [42]) preserving the L2-norm

(ι�u)(x) := e
3ι
2 u(eιx), x ∈ R

3, ι ∈ R. (2.7)
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By simple calculation, we can infer that

‖(ι�u)‖22 = ‖u‖22, (2.8)

‖(ι�u)‖qq = eqδq ι‖u‖qq , (2.9)

and

‖∇(ι�u)(x)‖22 = e2ι‖∇(ι�u)(x)‖22. (2.10)

Next, we define a auxiliary functional E : H → R by

E(u, ι) : = Iμ((ι�u))

= 1

2
e2ι‖∇u‖22 + γ

4
eι

∫
R3

φuu
2dx − μ

q
eqδq ι

∫
R3

|u|qdx − 1

6
e6ι
∫
R3

|u|6dx . (2.11)

Besides, we have the fact that

qδq

⎧⎨
⎩

< 2, as 2 < q < q̄;
= 2, as q = q̄;
> 2, as q̄ < q < 6,

where q̄ := 10
3 is the L2-critical exponent.

The Pohozaev manifold plays an important role in the proof of our main results, so
we introduce it below [22].

Proposition 2.4 Let u ∈ H1(R3)∩L∞(R3) be aweak solution of (1.4), then u satisfies
the equality

1

2

∫
R3

|∇u|2dx + 5γ

4

∫
R3

φuu
2dx = 3λ

2

∫
R3

|u|2dx + 3μ

q

∫
R3

|u|qdx + 1

2

∫
R3

|u|6dx .
(2.12)

Lemma 2.5 Let u ∈ H1(R3) be a weak solution of (1.4)–(1.5), then we can construct
the following Pohozaev manifold

P(a) = {u ∈ S(a) : Pμ(u) = 0},

where

Pμ(u) =
∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx − μδq

∫
R3

|u|qdx −
∫
R3

|u|6dx . (2.13)

Proof Since u is the weak solution of (1.4)–(1.5), we have that

1

2

∫
R3

|∇u|2dx + 5γ

4

∫
R3

φuu
2dx = 3λ

2

∫
R3

|u|2dx + 3μ

q

∫
R3

|u|qdx + 1

2

∫
R3

|u|6dx .
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Moreover, since u is the weak solution of system (1.4)–(1.5), we have

∫
R3

|∇u|2dx + γ

∫
R3

φuu
2dx = λ

∫
R3

|u|2dx + μ

∫
R3

|u|qdx +
∫
R3

|u|6dx .

Combining with (2.13) and the above equality, we obtain that

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx = μδq

∫
R3

|u|qdx +
∫
R3

|u|6dx .

The proof is completed. ��
We define ϕu(ι) := E(u, ι) for any u ∈ S(a) and ι ∈ R, then

(ϕu)
′(ι) = e2ι

∫
R3

|∇u|2dx + γ

4
eι

∫
R3

φuu
2dx − μδqe

qδq ι

∫
R3

|u|qdx − e6ι
∫
R3

|u|6dx

=
∫
R3

|∇(ι�u)|2dx + γ

4

∫
R3

φ(ι�u)|ι�u|2dx − μδq

∫
R3

|ι�u|qdx −
∫
R3

|ι�u|6dx
= Pμ((ι�u)).

(2.14)

Moreover, by direct calculation, we have

(ϕu)
′′(ι) = 2e2ι

∫
R3

|∇u|2dx + γ

4
eι

∫
R3

φuu
2dx

−μqδq
2eqδq ι

∫
R3

|u|qdx − 6e6ι
∫
R3

|u|6dx . (2.15)

Therefore, we have the following lemma:

Lemma 2.6 For any u ∈ S(a), ι ∈ R is a critical point of ϕu(ι) if and only if (ι�u) ∈
P(a). Particularly, u ∈ P(a) if and only if 0 is a critical point for ϕu(ι).

Finally, we state the following well-known embedding result.

Lemma 2.7 ([44]) Let N ≥ 2. The embedding H1
rad(R

N ) ↪→ L p(RN ) is compact for
any 2 < p < 2∗.

Remark 2.8 ([11]) The map (u, ι) ∈ H → (ι�u) ∈ H is continuous.

3 L2-Subcritical Perturbation Case

In this section, we shall address the L2-subcritical perturbation case: 2 < q < 10
3 and

provide the proof of Theorem 1.1. First, we think about a decomposition of P(a) as
in [42, 43]. By Lemma 2.6, we define the following sets:

P(a)+ :=
{
u ∈ P(a) : 2

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx > μqδq

2
∫
R3

|u|qdx + 6
∫
R3

|u|6dx
}

= {u ∈ P(a) : (ϕu)
′′(0) > 0},

(3.1)
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296 Page 12 of 49 Q. Gao, X. He

P(a)0 :=
{
u ∈ P(a) : 2

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx = μqδq

2
∫
R3

|u|qdx + 6
∫
R3

|u|6dx
}

= {u ∈ P(a) : (ϕu)
′′(0) = 0},

(3.2)

P(a)− :=
{
u ∈ P(a) : 2

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx < μqδq

2
∫
R3

|u|qdx + 6
∫
R3

|u|6dx
}

= {u ∈ P(a) : (ϕu)
′′(0) < 0}. (3.3)

We can easily get that

P(a) = P(a)+ ∪ P(a)0 ∪ P(a)−.

Next, we will give some lemmas, which are useful for the proof of Theorem 1.1.

Lemma 3.1 Let 2 < q < 10
3 , μ, γ > 0, and 0 < a < α1, where

α1 :=
⎧⎨
⎩ 2q

C(q)μ(6 − qδq)

(
(2 − qδq)S3

6 − qδq

) 2−qδq
4

⎫⎬
⎭

1
q(1−δq )

.

Then P(a)0 = ∅ and P(a) is a smooth manifold of codimension 2 in H(R3).

Proof Suppose by contradiction that P(a)0 �= ∅. Taking u ∈ P(a)0, one has

2
∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx = μqδq

2
∫
R3

|u|qdx + 6
∫
R3

|u|6dx,

and

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx = μδq

∫
R3

|u|qdx +
∫
R3

|u|6dx .

Since γ
4

∫
R3 φuu2dx ≥ 0, so combining the above equalities with the GNS inequality

(2.4) and (2.1), we can infer to

∫
R3

|∇u|2dx ≤ 6 − qδq

2 − qδq

∫
R3

|u|6dx ≤ 6 − qδq

(2 − qδq)S3

(∫
R3

|∇u|2dx
)3

,

and

∫
R3

|∇u|2dx ≤ μδq(6 − qδq)

4

∫
R3

|u|qdx

≤ μδq(6 − qδq)

4
C(q)aq(1−δq )

(∫
R3

|∇u|2dx
) qδq

2

.
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By simple calculation and the fact qδq < 2, we have

aq(1−δq ) ≥ 4

μδqC(q)(6 − qδq)

(∫
R3

|∇u|2dx
) 2−qδq

2

≥ 4

μδqC(q)(6 − qδq)

(
(2 − qδq)S3

6 − qδq

) 2−qδq
4

≥ 2q

μC(q)(6 − qδq)

(
(2 − qδq)S3

6 − qδq

) 2−qδq
4

:= α
q(1−δq )

1 ,

which contradicts to a < α1.
Then, we verify that P(a) is a smooth manifold of codimension 2 in H(R3). Let

P(a) = {u ∈ H : Pμ(u) = 0,G(u) = 0},

for G(u) = ‖u‖22 − a2, with Pμ and G of class C1 in H . Hence, we need to show that
the differential (dG(u), dPμ(u)) : H → R

2 is surjective, for every u ∈ P(a). For
this purpose, we will prove that for every u ∈ P(a), there exists ϕ ∈ TuS, where

TuS := {v ∈ E : (u, v)H = 0},

which is the tangent space of S at a point u ∈ S. Then, one has dPμ(u)[ϕ] �= 0. Once
the existence of ϕ is established, the system

{
dG(u)[αϕ + βu] = x

dPμ(u)[αϕ + βu] = y

that is

{
βa2 = x

αdPμ(u)[ϕ] + βdPμ(u)[u] = y

is solvable with respect to α, β for every (x, y) ∈ R
2, so the surjective is proved. Next,

suppose by contrary that for u ∈ P(a) such that a tangent vector ϕ does not exist, that
is, dPμ(u)[ϕ] = 0 for every ϕ ∈ TuS. Then u is a constrained critical point for the
functional Pμ(u) on S(a). Thus, by the Lagrange multipliers rule, there exists ν ∈ R

such that

−�u + γ

2
φuu = νu + μqδq

2
|u|q−2u + 3|u|4u, in R

3.
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Then we can conclude the following Pohozaev type identity:

2
∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx = μqδq

2
∫
R3

|u|qdx + 6
∫
R3

|u|6dx,

which is contradiction to the fact that u ∈ P(a). ��
In virtue of the GNS inequality (2.4) and (2.1), for every u ∈ H(R3)

⋂
S(a), we

have

Iμ(u) = 1

2

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx − μ

q

∫
R3

|u|qdx − 1

6

∫
R3

|u|6dx

≥ 1

2
‖∇u‖22 − μ

q
C(q)aq(1−δq )‖∇u‖qδq

2 − 1

6S3
‖∇u‖62

:= g(‖∇u‖2),

(3.4)

where

g(t) = 1

2
t2 − μ

q
C(q)aq(1−δq )tqδq − 1

6S3
t6.

By the fact qδq < 2, we can derive that g(0+) = 0− and g(+∞) = −∞.
In the following, we show the properties of the function g and give some technical

lemmas.

Lemma 3.2 Let 2 < q < 10
3 , μ, γ > 0, and 0 < a < α1. Then the function g has a

local strict minimum at negative level and a global strict maximum at positive level,
and there exist two positive constants R1,R2 both depending on a, with R1 < R2, such
that g(R1) = g(R2) = 0 and g(t) > 0 for t ∈ (R1, R2).

Proof Note that

g(t) = 1

2
t2 − μ

q
C(q)aq(1−δq )tqδq − 1

6S3
t6

= tqδq

(
1

2
t2−qδq − 1

6S3
t6−qδq − μ

q
C(q)aq(1−δq )

)
= tqδqm(t),

where

m(t) = 1

2
t2−qδq − 1

6S3
t6−qδq − μ

q
C(q)aq(1−δq ).

It is easy to see that g(t) > 0 if and only if m(t) > 0 for all t > 0. So, by direct
calculation, we have

m′(t) = 2 − qδq

2
t1−qδq − 6 − qδq

6S3
t5−qδq .
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Let m′(t) = 0, it follows that

t1 =
(
3S3(2 − qδq)

6 − qδq

) 1
4

,

and we know that m is strictly increasing on (0, t1) and decreasing on (t1,∞). More-
over, the maximum value of m on (0,+∞) is

m(t1) = 1

2

(
3S3(2 − qδq)

6 − qδq

) 2−qδq
4

− 1

6S3

(
3S3(2 − qδq)

6 − qδq

) 6−qδq
4

− μ

q
C(q)aq(1−δq )

= 2

6 − qδq

(
3S3(2 − qδq)

6 − qδq

) 2−qδq
4

− μ

q
C(q)aq(1−δq )

>
2

6 − qδq

(
S3(2 − qδq)

6 − qδq

) 2−qδq
4

− μ

q
C(q)aq(1−δq )

= μ

q
C(q)α

q(1−δq )

1 − μ

q
C(q)aq(1−δq ).

By virtue of a < α1, we deduce that there exist two constants R1 and R2 such that

g(t)

⎧⎪⎨
⎪⎩

< 0, if t ∈ (0, R1) or (R2,∞);
= 0, if t = R1 or R2;
> 0, if t ∈ (R1, R2).

Based on above analysis and the fact g(0+) = 0−, we infer that g(t) has a global
maximum at positive level in (R1, R2) and a local minimum at negative level in
(0, R1). It is easy to see that R1 < t1 < R2. Besides, by a simple calculation, we have

g′(t) =qδq t
qδq−1

(
1

2
t2−qδq − 1

6S3
t6−qδq − μ

q
C(q)aq(1−δq )

)

+ tqδq

(
2 − qδq

2
t1−qδq − 6 − qδq

6S3
t5−qδq

)

=tqδq−1
(
t2−qδq − 1

S3
t6−qδq − μδqC(q)aq(1−δq )

)
:=tqδq−1h(t),

where

h(t) = t2−qδq − 1

S3
t6−qδq − μδqC(q)aq(1−δq ).
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It is easy to see that g′(t) = 0 if and only if h(t) = 0 for t > 0. So, by direct
calculation, we get

h′(t) = (2 − qδq)t
1−qδq − 6 − qδq

S3
t5−qδq .

From h′(t) = 0, there exists a unique solution t2 > 0 with the expression:

t2 =
(
S3(2 − qδq)

6 − qδq

) 1
4

,

and we know that h is a strictly increasing on (0, t2) and decreasing on (t2,+∞).
Hence, h has at most two zeros on (0,+∞), which are necessarily the previously
found local minimum and the global maximum of g. ��
Lemma 3.3 Let 2 < q < 10

3 , μ, γ > 0, and 0 < a < α1. Then for every u ∈ S(a),
ϕu(ι) has two critical points su < tu ∈ R and two zeros cu < du with su < cu < tu <

du. Besides,

(i) su�u ∈ P(a)+, tu�u ∈ P(a)−, and if ι�u ∈ P(a), then either ι = su or ι = tu;
(ii) ‖∇u‖2 ≤ R1 for every ι < cu and

Iμ(su�u) = min{Iμ(ι�u) : ι ∈ R and ‖∇u‖2 ≤ R1} < 0; (3.5)

(iii) we have

Iμ(tu�u) = max{Iμ(ι�u) : ι ∈ R} > 0, (3.6)

and ϕu(ι) is strictly decreasing and concave on (tu,+∞);
(iv) the maps u ∈ P(a) �→ su × R and u ∈ P(a) �→ tu × R are of class C1.

Proof We claim that ϕu(ι) has two critical points. In view of (3.4), one has

ϕu(ι) = Iμ((ι�u))

≥ 1

2
‖∇(ι�u)‖22 − μ

q
C(q)aq(1−δq )‖∇(ι�u)‖qδq

2 − 1

6S3
‖∇(ι�u)‖62

= g(‖∇(ι�u)‖2) = g(eι‖∇u‖2),

we can obtain ϕu(ι) > 0 on (ξ(R1), ξ(R2)) from Lemma 3.2, where

ξ(R) = log R − log ‖∇u‖2.

Since ϕu(ι) is a C2 function, and by the fact that ϕu(−∞) = 0−, ϕu(+∞) = −∞, it
follows that ϕu(ι) has at least critical points su , tu with su < tu . Moreover, we know
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that su is a local minimum point on (−∞, ξ(R1)) at negative level and tu is a global
maximum point at positive level. Hence, we derive to

Iμ(tu�u) = max{Iμ(ι�u) : ι ∈ R} > 0,

‖∇(su�u)‖2 = esu‖∇u‖2 ≤ eξ(R1)‖∇u‖2 = R1, (3.7)

and

Iμ(su�u) = min{Iμ(ι�u) : ι ∈ R and ‖∇u‖2 ≤ R1} < 0.

Arguing as in the proof of Lemma 3.2, we can deduce that ϕu(ι) has no other critical
points. In view of (ϕu)

′′(su) ≥ 0, (ϕu)
′′(tu) ≤ 0 and the fact that P(a)0 = ∅, we have

su�u ∈ P(a)+ and tu�u ∈ P(a)−.
Next, we claim that ϕu(ι) has two zeros cu < du . Since ϕu(su) < 0, ϕu(tu) > 0

and ϕu(+∞) = −∞, it is easy to get that ϕu(ι) has two zeros cu < du with su <

cu < tu < du . Furthermore, ϕu(ι) has no other zeros. Indeed, if ϕu(ι) has other zeros,
then it will have other critical point, which leads to a contradiction.

Recalling that

(ϕu)
′′(ι) = 2e2ι

∫
R3

|∇u|2dx + γ

4
eι

∫
R3

φuu
2dx

−μqδq
2eqδq ι

∫
R3

|u|qdx − 6e6ι
∫
R3

|u|6dx,

we have (ϕu)
′′(−∞) = 0−. Since (ϕu)

′′(su) > 0 and (ϕu)
′′(tu) < 0, we get (ϕu)

′′(ι)
has two zeros, which means that ϕu(ι) has two inflection points. Arguing as before,
(ϕu)

′′(ι) has exactly two inflection points. Hence, ϕu(ι) is is strictly decreasing and
concave on (tu,+∞). The items (i)–(iii) are proved.

Finally, we will prove that maps u ∈ P(a) �→ su × R and u ∈ P(a) �→ tu × R

are of class C1. Applying the implicit function theorem, let �(ι, u) := (ϕu)
′(ι) > 0,

since �(su, u) = 0 and ∂ι�(su, u) > 0, we know that u ∈ P(a) �→ su × R is of class
C1. Similarly, we have u ∈ P(a) �→ tu × R is of class C1. ��

Thus, we can easily deduce the following conclusion.

Corollary 3.4 supu∈P(a)+ Iμ(u) ≤ 0 ≤ infu∈P(a)− Iμ(u) and P(a)+ ⊂ DR1,where

DR1 := {u ∈ S(a) : ‖∇u‖2 < R1}, for R1 > 0.

Lemma 3.5 There holds that−∞ < mμ(a) = infu∈P(a) Iμ(u) = infu∈P(a)+ Iμ(u) <

0, and

mμ(a) < inf
u∈DR1\DR1−ρ

Iμ(u),
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for ρ > 0 small enough, where

mμ(a) := inf
u∈DR1

Iμ(u).

Proof For u ∈ DR1 , in view of (3.4), we have

Iμ(u) ≥ g(‖∇u‖2) ≥ min
t∈[0,R1]

g(t) > −∞.

Besides, for any u ∈ S(a), we get ‖∇u‖2 < R1 and Iμ(su�u) < 0. Hence, we can
infer to

mμ(a) < 0.

On one hand, since P(a)+ ⊂ DR1 , we get that mμ(a) ≤ infP(a)+ Iμ. On the other
hand, if u ∈ DR1 , then su�u ∈ P(a)+ ⊂ DR1 , and

Iμ(su�u) = min{Iμ(ι�u) : ι ∈ R and ‖∇u‖2 ≤ R1} ≤ Iμ(u),

which implies that infu∈P(a)+ Iμ(u) ≤ mμ(a). Combining with the fact 0 ≤
infu∈P(a)− Iμ(u), we obtain

inf
u∈P(a)

Iμ(u) = inf
u∈P(a)+

Iμ(u).

Finally, due to the continuity of g and g(R1) = 0, there exists ρ > 0 such that

g(t) ≥ mμ(a)

2
, t ∈ [R1 − ρ, R1].

Therefore, by (3.4), we have

Iμ(u) ≥ g(‖∇u‖2) ≥ mμ(a)

2
≥ mμ(a),

for any u ∈ DR1 \ DR1−ρ . The proof is completed. ��
Proof of Theorem 1.1 First, we take aminimizing sequence {vn} ⊂ H∩S(a) for Iμ|DR1
and assume that {vn} ⊂ Hr are radially decreasing for every n. Otherwise, we can
let vn := |vn|∗, which is the Schwarz rearrangement of |vn|. In view of Lemmas 3.3
and 3.5, we know that there exists a sequence {svn } such that svn�vn ∈ P(a)+ and
Iμ(svn�vn) ≤ Iμ(vn) for every n. Furthermore, we have svn�vn /∈ DR1\DR1−ρ . Based
on above analysis, we get a new minimizing sequence {vn := svn�vn} for Iμ|DR1

,
satisfying

vn ∈ Hr ∩ P(a)+ and ‖∇vn‖2 ≤ R1 − ρ.
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By Ekeland’s variational principle, there exists a new minimizing sequence {un},
with ‖un − vn‖ → 0 as n → ∞, which is also a PS sequence for Iμ on S(a). Since
{un} ⊂ DR1 , we see that {un} is bounded in H . So from ‖un − vn‖ → 0 and the
boundedness of {un}, we can obtain

Pμ(un) = Pμ(vn) + on(1) → 0 as n → ∞.

In fact,

∫
R3

|∇un |2dx =
∫
R3

|∇vn |2dx +
∫
R3

|∇(un − vn)|2dx +
∫
R3

∇un∇vndx

=
∫
R3

|∇vn |2dx + on(1),

γ

4

∫
R3

φun u
2
ndx = γ

4

∫
R3

φvn v
2
ndx + γ

∫
R3

φ(vn+θ1n (un−vn ))
|vn + θ1n (un − vn)|(un − vn)dx

= γ

4

∫
R3

φvn v
2
ndx + on(1),

and ∫
R3

|un|pdx =
∫
R3

|vn|pdx +
∫
R3

p|vn + θ2n (un − vn)|p−1(un − vn)dx

=
∫
R3

|vn|pdx + on(1),

for every p ∈ [2, 6], where θ1n , θ2n ∈ [0, 1]. Moreover, {un} satisfies
{
Iμ(un) → mμ(a) as n → ∞
I ′
μ|S(a)(un) → 0 as n → ∞ (3.8)

Then, using the Lagrange multipliers rule, there exists a sequence λn ∈ R such that

I ′
μ(un) − λn�

′(un) → 0 in H−1. (3.9)

Since {un} ⊂ DR1 , we have {un} is bounded in H . So there exists ua ∈ H , such
that, for some subsequence, un⇀ua in H . In the following, we will proceed with our
argument in three steps.

Step 1We show that, up to subsequence, limn→+∞ λn = λa < 0. By (3.9) and the
fact {un} is bounded in H , we get

I ′
μ(un)un − λn�

′(un)un = on(1). (3.10)

Then, we infer to

λn‖un‖22 = ‖∇un‖22 + γ

∫
R3

φun u
2
ndx − μ‖un‖qq − ‖un‖66 + on(1). (3.11)
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Again by {un} is bounded in H , we see that {λn} is bounded. Thus, up to subsequence,
there exists λa ∈ R such that λn → λa ∈ R. Next, we prove λa < 0. Before this, we
show

∫
R3

|un|qdx →
∫
R3

|ua |qdx �= 0, i.e. ua �= 0.

Assume by contradiction that,
∫
R3 |un|qdx → 0. In view of the proof of Lemma 3.2,

we have ‖∇un‖2 ≤ R1 < t1, and t1 =
(
3S3(2−qδq )

6−qδq

) 1
4

< S
3
4 . Then we deduce

‖∇un‖2 < S
3
4 .

From the definition of Iμ and above inequality, we infer that

0 > mμ(a) = lim
n→∞ Iμ(un)

= lim
n→∞

[
1

2

∫
R3

|∇un |2dx + γ

4

∫
R3

φun u
2
ndx − μ

q

∫
R3

|un |qdx − 1

6

∫
R3

|un |6dx
]

≥ lim
n→∞

[
1

2
‖∇un‖22 − 1

6
S−3‖∇un‖62 − μ

q

∫
R3

|un |qdx
]

≥ − μ

q
lim
n→∞

∫
R3

|un |qdx = 0,

which is absurd.
We claim that there exists μ̃ > 0 independently on n ∈ N such that, if μ > μ̃,

the lagrange multiplier λa < 0. In fact, since {un} ⊂ DR1 , by (2.3) and the GNS
inequality (2.4), there exists T1 > 0 independently on n ∈ N such that

T1 ≤
∫
R3

|un|qdx ≤ C(q)‖∇un‖qδq
2 ‖un‖q(1−δq )

2

≤ C(q)R
qδq
1 aq(1−δq ),

(3.12)

and

∫
R3

φun u
2
ndx ≤ C̃‖un‖412

5
≤ C̃[C(12/5)] 53 ‖∇un‖2‖un‖32
≤ C̃[C(12/5)] 53 R1a

3 := T2,

(3.13)

where T2 = T2(R1, a) > 0. We define the constant

μ̃ := 3γ T2
4(1 − δq)T1

. (3.14)
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By (3.12)–(3.14) we have

μ̃ ≥ lim
n→+∞

{
3γ
∫
R3 φun u

2
ndx

4(1 − δq)
∫
R3 |un|qdx

}
= 3γ

∫
R3 φua u

2
adx

4(1 − δq)
∫
R3 |ua |qdx > 0. (3.15)

By the fact Pμ(un) → 0, (3.11), Lemma 2.7 and δq < 1, if μ > μ̃, then

λaa
2 = lim

n→+∞

(∫
R3

|∇un|2dx + γ

∫
R3

φun u
2
ndx − μ

∫
R3

|un|qdx −
∫
R3

|un|6dx
)

= lim
n→+∞

(
3

4
γ

∫
R3

φun u
2
ndx − μ(1 − δq)

∫
R3

|un|qdx
)

= 3

4
γ

∫
R3

φua u
2
adx − μ(1 − δq)

∫
R3

|ua |qdx

<
3

4
γ

∫
R3

φua u
2
adx − μ̃(1 − δq)

∫
R3

|ua |qdx ≤ 0.

Thus, if μ > μ̃, we have limn→+∞ λn = λa < 0.
Step 2 Since λa < 0, we define an equivalent norm of H as:

‖u‖2 =
∫
R3

|∇u|2dx − λ

∫
R3

|u|2dx .

In view of the fact un⇀ua in H and (3.9), then ua satisfies

∫
R3

∇ua∇vdx + γ

∫
R3

φua uavdx − λa

∫
R3

uavdx

−μ

∫
R3

|ua |q−2uavdx −
∫
R3

|ua |4uavdx = 0, (3.16)

for ∀v ∈ H . It follows from the Pohozaev identity that Pμ(ua) = 0. Let vn =
un − ua⇀0, by Brezis–Lieb Lemma [48], we conclude

{
‖∇vn‖22 = ‖∇un‖22 − ‖∇ua‖22 + on(1),

‖vn‖66 = ‖un‖66 − ‖ua‖66 + on(1).
(3.17)

By the fact (2.5), Lemma 2.7 and Pμ(vn) = Pμ(un) − Pμ(ua) → 0, we obtain

‖∇vn‖22 = ‖vn‖66 + on(1).

Thus, for some subsequence, we suppose that

‖∇vn‖22 = ‖vn‖66 → τ.
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By using (2.1), we derive to

τ
1
3 ≤ τ

S
,

then, one has

τ ≥ S
3
2 or τ = 0.

If τ ≥ S
3
2 , by (3.17), we have

mμ(a) = lim
n→+∞ Iμ(un)

= lim
n→+∞

(
Iμ(ua) + 1

2
‖∇vn‖22 − 1

6
‖vn‖66

)

= Iμ(ua) + 1

3
τ

≥ Iμ(ua) + 1

3
S

3
2 .

(3.18)

In what follows, we verify that τ ≥ S
3
2 , which will lead to a contradiction. In fact, by

the GNS inequality (2.5) and Pμ(ua) = 0, we get

Iμ(ua) = Iμ(ua) − 1

6
Pμ(ua)

= 1

3
‖∇ua‖22 + 5

24
γ

∫
R3

φua u
2
adx − μ

(
1

q
− δq

6

)
‖ua‖qq

≥ 1

3
‖∇ua‖22 − μ(6 − qδq)

6q
‖ua‖qq

≥ 1

3
‖∇ua‖22 − μ(6 − qδq)

6q
C(q)aq(1−δq )‖∇ua‖qδq

2

:= f (‖∇u‖2),

where

f (t) = 1

3
t2 − μ(6 − qδq)

6q
C(q)aq(1−δq )tqδq .

By f ′(t) = 0, there exists a unique t3 > 0 such that

f ′(t3) = 2

3
t3 − μ(6 − qδq)

6q
C(q)aq(1−δq )qδq t

qδq−1
3 = 0,

with

t3 =
(
3

2

μ(6 − qδq)

6q
C(q)aq(1−δq )qδq

) 1
2−qδq

.
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Then, we see that f (t) is strictly decreasing on (0, t3) and increasing on (t3,+∞).
Moreover, f (t) gets the minimum on (0,+∞), that is

f (t3) = −2 − qδq

2

(
μ(6 − qδq)

6q
C(q)aq(1−δq )

) 2
2−qδq

(
3qδq

2

) qδq
2−qδq

.

Define

α2 :=

⎧⎪⎨
⎪⎩

4

C(q)μδq(6 − qδq)

(
qδq S

3
2

2 − qδq

) 2−qδq
2

⎫⎪⎬
⎪⎭

1
q(1−δq )

.

Since a < α2, we get

f (t) > −1

3
S

3
2 on (0,+∞). (3.19)

Combining (3.18) and (3.19), we infer that mμ(a) > 0, which is a contradiction.
Step 3 From the above analysis, we know that τ = 0. In other words, we have

‖un‖66 → ‖ua‖66.

Then, by (3.16), we have

I ′
μ(ua)ua − λa�

′(ua)ua = 0. (3.20)

Combining (3.10) and (3.20), one has

‖un‖2 → ‖ua‖2.

Since un⇀ua in H , we have un → ua in H . Moreover, by the fact that Iμ(ua) =
infu∈P(a) Iμ(u), we know that ua is a ground state.

Finally, in view of Lemma 3.5, one has

Iμ(ua) = inf
u∈P(a)

Iμ(u) = inf
u∈DR1

Iμ(u).

The proof is completed. ��

4 L2-Critical Perturbation Case

In this section, we shall address the L2-critical perturbation case: q = 10
3 and provide

the proof of Theorem 1.2. To begin with, we give some useful lemmas, and show that
E(u, ι)has themountain pass geometry on Sr (a)×R, where Sr (a) = H1

rad(R
3)∩S(a).

Lemma 4.1 Let q = 10
3 , μ, γ > 0 and u ∈ S(a), then
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(i) ‖∇(ι�u)‖2 → 0+ and Iμ((ι�u)) → 0+ if ι → −∞;
(ii) ‖∇(ι�u)‖2 → +∞ and Iμ((ι�u)) → −∞ if ι → +∞.

Proof By (2.10), we have

∫
R3

|∇(ι�u)|2dx = e2ι
∫
R3

|∇u|2dx,

Then, it is easy to obtain

‖∇(ι�u)‖2 → 0+ if ι → −∞,

and

‖∇(ι�u)‖2 → +∞ if ι → +∞.

From (2.11), we have

Iμ((ι�u)) = 1

2
e2ι‖u‖2 + γ

4
eι

∫
R3

φuu
2dx − μ

q
eqδq ι

∫
R3

|u|qdx − 1

6
e6ι
∫
R3

|u|6dx .

From the fact qδq = 2, it follows that

Iμ((ι�u)) → 0+ if ι → −∞,

and

Iμ((ι�u)) → −∞ if ι → +∞.

The proof is completed. ��
Lemma 4.2 Let q = 10

3 , μ, γ > 0, and assume that 0 < a < min{α3, α4}, where

α3 :=
(

q

2μC(q)

) 1
q(1−δq )

,

and

α4 :=
(

k
1
2

4γ C̃[C(12/5)] 53

) 1
3

.

There exist 0 < k1 < k2 < k such that

Pμ(u), Iμ(u) > 0 for all u ∈ Ak1 and 0 < sup
u∈Ak1

Iμ(u) < inf
u∈Bk2

Iμ(u),
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where

Ak := {u ∈ Sr (a) : ‖∇u‖22 ≤ k} and Bk := {u ∈ Sr (a) : ‖∇u‖22 = 2k}.

Proof Take k > 0, which will be determined later. Assume that u, v ∈ Sr (a) such that
‖∇u‖22 ≤ k and ‖∇v‖22 = 2k. By (2.1), the GNS inequality (2.4) and qδq = 2, we
derive to

Pμ(u) = ‖∇u‖22 + γ

4

∫
R3

φuu
2dx − μδq‖u‖qq − ‖u‖66

≥ ‖∇u‖22 − C(q)μδqa
q(1−δq )‖∇u‖qδq

2 − S−3‖∇u‖62
=
(
1 − 2C(q)μ

q
aq(1−δq )

)
‖∇u‖22 − S−3‖∇u‖62,

and

Iμ(u) = 1

2
‖∇u‖22 + γ

4

∫
R3

φuu
2dx − μ

q
‖u‖qq − 1

6
‖u‖66

≥ 1

2
‖∇u‖22 − C(q)

μ

q
aq(1−δq )‖∇u‖qδq

2 − 1

6
S−3‖∇u‖62

=
(
1

2
− C(q)μ

q
aq(1−δq )

)
‖∇u‖22 − 1

6
S−3‖∇u‖62.

If a < α3, we can deduce that

Pμ(u) > 0 and Iμ(u) > 0,

for k > 0 small enough. Next, if a < α4, we have

Iμ(v) − Iμ(u) ≥1

2
‖∇v‖22 − 1

2
‖∇u‖22 − γ

4

∫
R3

φuu
2dx − μ

q
‖v‖qq − 1

6
‖v‖66

≥1

2
‖∇v‖22 − 1

2
‖∇u‖22 − γ

4
C̃[C(12/5)] 5

3 a3‖∇u‖2

− μ

q
C(q)aq(1−δq )‖∇v‖qδq

2 − 1

6
S−3‖∇v‖62

≥k − 1

2
k − γ

4
C̃[C(12/5)] 5

3

(
k

1
2

4γ C̃[C(12/5)] 5
3

)
k

1
2

− C(q)μ

q

(
k

1
2

4γ C̃[C(12/5)] 5
3

) q(1−δq )

3

2k − 1

6
S−3(2k)3

=1

2
k − 1

16
k −

⎛
⎜⎜⎝ 2C(q)μ

q
(
4γ C̃[C(12/5)] 5

3

) q(1−δq )

3

k
q(1−δq )

6

⎞
⎟⎟⎠ k −

(
4

3
S−3k2

)
k

≥ 5

16
k > 0.
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If we take

k = min

⎧⎪⎨
⎪⎩
⎛
⎝q(4γ C̃[C(12/5)] 53 ) q(1−δq )

3

32μC(q)

⎞
⎠

6
q(1−δq )

,

(
3

64
S3
) 1

2

⎫⎪⎬
⎪⎭ , (4.1)

then, for 0 < k1 < k2 < k small enough and 0 < a < min{α3, α4}, we infer to

Pμ(u), Iμ(u) for all u ∈ Ak1 and 0 < sup
u∈Ak1

Iμ(u) < inf
u∈Bk2

Iμ(u).

The proof is completed. ��
In the following, we study the characteristics of the mountain pass levels for E(u, ι)

and Iμ(u). Here, we define a closed set I dμ := {u ∈ Sr (a) : Iμ(u) ≤ d}.
Proposition 4.3 Let q = 10

3 , μ, γ > 0, and assume that 0 < a < min{α3, α4}. Take

σ̃μ(a) := inf
ζ̃∈�̃a

max
t∈[0,1] E (̃ζ (t)),

where

�̃a = {̃ζ ∈ C([0, 1], Sr (a) × R) : ζ̃ (0) ∈ (Ak1 , 0), ζ̃ (1) ∈ (I 0μ, 0)},

and

σμ(a) := inf
ζ∈�a

max
t∈[0,1] Iμ(ζ(t)),

where

�a = {ζ ∈ C([0, 1], Sr (a)) : ζ(0) ∈ Ak1 , ζ(1) ∈ I 0μ}.

Then we have

σ̃μ(a) = σμ(a).

Proof Since �a × {0} ⊂ �̃a, it is easy to know that σ̃μ(a) ≤ σμ(a). Then we only
need to verify σ̃μ(a) ≥ σμ(a). For ζ̃ (t) = (̃ζ1(t), ζ̃2(t)) ∈ �̃a , one has,

ζ̃ (0) = (̃ζ1(0), ζ̃2(0)) ∈ (Ak1 , 0) and ζ̃ (1) = (̃ζ1(1), ζ̃2(1)) ∈ (I 0μ, 0).

So, set ζ(t) = (̃ζ2(t)�̃ζ1(t)), we have ζ(t) ∈ �a , and so,

max
t∈[0,1] E (̃ζ (t)) = max

t∈[0,1] Iμ(̃ζ2(t)�̃ζ1(t)) = max
t∈[0,1] Iμ(ζ(t)),

which implies that σ̃μ(a) ≥ σμ(a). The proof is completed. ��
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Next, we will verify the existence of the (PS)σ̃μ(a) sequence for E(u, ι) on Sr (a)×
R, which is demonstrated by a standard argument by using Ekeland’s variational
principle and constructing pseudo-gradient flow (Proposition 2.2 [28]).

Proposition 4.4 Let {ξn} ⊂ �̃a be such that

max
t∈[0,1] E(ξn(t)) ≤ σ̃μ(a) + 1

n
,

then there exists a sequence {(un, ιn)} ⊂ Sr (a) × R satisfying

(i) E(un, ιn) ∈ [̃σμ(a) − 1
n , σ̃μ(a) + 1

n ];
(ii) mint∈[0,1] ‖(un, ιn) − ξn(t)‖H ≤ 1√

n
;

(iii) ‖E ′|Sr (a)×R(un, ιn)‖ ≤ 2√
n
, i.e.,

|〈E ′(un, ιn), z〉H−1×H| ≤ 2√
n
‖z‖H,

for all

z ∈ T̃(un ,ιn) := {(z1, z2) ∈ H : 〈un, z1〉L2 = 0}.

With the help of Proposition 4.4, we can obtain a (PS)σμ(a) sequence for Iμ(u) on
Sr (a) in the following.

Proposition 4.5 Let q = 10
3 , μ, γ > 0, and assume that 0 < a < min{α3, α4}. There

exists a sequence {wn} ⊂ Sr (a) such that

(i) Iμ(wn) → σμ(a) as n → ∞;
(ii) Pμ(wn) → 0 as n → ∞;
(iii) I ′

μ|Sr (a)(wn) → 0 as n → ∞, i.e.,

|〈I ′
μ(wn), z〉H−1×H | → 0,

uniformly for all h ∈ Twn and ‖h‖ ≤ 1, where Twn := {h ∈ H : 〈wn, h〉L2 = 0}.
Proof By Proposition 4.3, we have σ̃μ(a) = σμ(a). Now, we take {ξn = ((ξn)1, 0)} ∈
�̃a such that

max
t∈[0,1] E(ξn(t)) ≤ σ̃μ(a) + 1

n
.

From Proposition 4.4, we know that there exists a sequence {(un, ιn)} ⊂ Sr (a) × R

such that as n → ∞, we have

E(un, ιn) → σμ(a), (4.2)

ιn → 0, (4.3)
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∂ιE(un, ιn) → 0. (4.4)

Let wn = ιn�un , then Iμ(wn) = E(un, ιn), so item (i) follows.
Next, we show item (i i). Since

∂ιE(un, ιn) = e2ιn
∫
R3

|∇un|2dx + γ

4
eιn

∫
R3

φun u
2
ndx − μδqe

qδq ιn

∫
R3

|un|qdx

− e6ιn
∫
R3

|un|6dx

=
∫
R3

|∇(ιn�un)|2dx + γ

4

∫
R3

φ(ιn�un)(ιn�un)
2dx − μδq

∫
R3

|ιn�un|qdx

−
∫
R3

|ιn�un|6dx
= Pμ(wn),

it follows that item (i i) holds.
To prove item (i i i), we set hn ∈ Twn , then

〈I ′
μ(wn), hn〉H−1×H

=
∫
R3

∇wn∇hndx + γ

∫
R3

φwnwnhndx − μ

∫
R3

|wn |q−2wnhndx −
∫
R3

|wn |4wnhndx

= e− ιn
2

∫
R3

∇un(x)∇hn(e
−ιn x)dx + γ e− ιn

2

∫
R3

φun(x)un(x)hn(e
−ιn x)dx

− μe
3(q−3)

2 ιn

∫
R3

|un(x)|q−2un(x)hn(e
−ιn x)dx − e

9
2 ιn

∫
R3

|un(x)|4un(x)hn(e−ιn x)dx

= eι
n

∫
R3

∇un(x)∇
(
e− 3

2 ιn hn(e
−ιn x)

)
dx + γ eι

n

∫
R3

φun(x)un(x)e
− 3

2 ιn hn(e
−ιn x)dx

− μeqδq ιn

∫
R3

|un(x)|q−2un(x)e
− 3

2 ιn hn(e
−ιn x)dx

− e6ιn
∫
R3

|un(x)|4un(x)e− 3
2 ιn hn(e

−ιn x)dx .

Let h̃n(x) = e− 3
2 ιn hn(e−ιn x), we obtain

〈I ′
μ(wn), hn〉H−1×H = 〈E ′(un, ιn), (̃hn, 0)〉H−1×H.

Moreover, we get

〈un, h̃n〉L2 =
∫
R3

un(x)e
− 3

2 ιn hn(e
−ιn x)dx

=
∫
R3

e
3
2 ιn un(e

ιn x)hn(x)dx

=
∫
R3

wn(x)hn(x)dx = 0.
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Thus, we obtain (̃hn, 0) ∈ T̃(un ,ιn). On the other hand,

‖(̃hn, 0)‖2H = ‖h̃n(x)‖2H
= ‖hn(x)‖22 + e−2ιn‖hn(x)‖2
≤ C‖hn(x)‖2,

where the last inequality can be established by (4.3). So the item (i i i) is proved. ��
Now, we construct the relationship between σμ(a) and mμ,r (a), where

mμ,r (a) = inf
u∈Pr (a)

Iμ(u),

and

Pr (a) = P(a) ∩ Sr (a).

Lemma 4.6 Let q = 10
3 , μ, γ > 0, and assume that 0 < a < min{α3, α4}. Then we

have

mμ,r (a) = inf
u∈Pr (a)−

Iμ(u) = σμ(a) > 0,

where

Pr (a)− = P(a)− ∩ Sr (a).

Proof In the following, we split the proof into four steps.
Step 1 We verify that for each u ∈ Sr (a), there exists a unique tu ∈ R such that

tu�u ∈ Pr (a), with tu is the strict maximum point for the function ϕu(ι) on (0,+∞)

at positive level. Moreover, Pr (a) = Pr (a)−.
In fact, by Lemma 4.1, we have

ϕu(−∞) = 0+ and ϕu(+∞) = −∞. (4.5)

Since ϕu(ι) is a C2 function, we can deduce that ϕu(ι) has at least one critical point tu ,
with tu is a global maximum point at positive level. In view of Lemma 2.6, we have
tu�u ∈ Pr (a). Next, we prove that ϕu(ι) has no other critical points. Indeed, recall
(ϕu)

′(ι) and (ϕu)
′′(ι) as follow:

(ϕu)
′(ι) = e2ι

∫
R3

|∇u|2dx + γ

4
eι

∫
R3

φuu
2dx − μδqe

qδq ι

∫
R3

|u|qdx − e6ι
∫
R3

|u|6dx,

and

(ϕu)
′′(ι) = 2e2ι

∫
R3

|∇u|2dx + γ

4
eι

∫
R3

φuu
2dx
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−μqδq
2eqδq ι

∫
R3

|u|qdx − 6e6ι
∫
R3

|u|6dx .

Assume by contradiction, there exists other critical point eu ∈ R with tu < eu and eu
is also a global maximum point of ϕu(ι). Then, we see that there exists a critical point
fu , such that tu < fu < eu and fu is a minimum point of ϕu(ι). Consequently, we
have

(ϕu)
′(eu) = 0, (ϕu)

′( fu) = 0,

(ϕu)
′′(eu) = −γ

4
eeu
∫
R3

φuu
2dx − 4e6eu

∫
R3

|u|6dx < 0,

and

(ϕu)
′′( fu) = −γ

4
e fu

∫
R3

φuu
2dx − 4e6 fu

∫
R3

|u|6dx < 0,

which is a contradiction.
Step 2 We show that Iμ(u) ≤ 0 implies Pμ(u) < 0. In fact, since ϕu(0) =

Iμ(0�u) = Iμ(u) ≤ 0, by the properties of the function ϕu(ι) presented in Step 1 and
by (4.5), we infer that tu < 0. Besides, since

Pμ(tu�u) = (ϕu)
′(tu) = 0 and Pμ(u) = Pμ(0�u) = (ϕu)

′(0),

we obtain that Pμ(u) < 0.
Step 3We claim that mμ,r (a) = σμ(a). Indeed, let u ∈ Sr (a), we take ι− � 0 and

ι+ � 0 such that ι−�u ∈ Ak1 and Iμ(ι+�u) < 0, respectively. Then we can define a
path

ζu : t ∈ [0, 1] �→ ((1 − t)ι− + t ι+)�u ∈ �a . (4.6)

Hence, we get

max
t∈[0,1] Iμ(ζu(t)) ≥ σμ(a),

and so, we have mμ,r (a) ≥ σμ(a). Moreover, for any ζ̃ (t) = (̃ζ1(t), ζ̃2(t)) ∈ �̃a , one
has,

ζ̃ (0) = (̃ζ1(0), ζ̃2(0)) ∈ (Ak1 , 0) and ζ̃ (1) = (̃ζ1(1), ζ̃2(1)) ∈ (I 0μ, 0).

Now, we define the function

P̃μ(t) = Pμ(̃ζ2(t)�̃ζ1(t)).
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Since (̃ζ2(0)�̃ζ1(0)) = ζ̃1(0) ∈ Ak1 and (̃ζ2(1)�̃ζ1(1)) = ζ̃1(1) ∈ I 0μ, in view of
Lemma 4.2 and Step 2, we have

P̃μ(0) = P̃μ(̃ζ1(0)) > 0,

and

P̃μ(1) = P̃μ(̃ζ1(1)) < 0.

Since P̃μ(t) is continuous and by Remark 2.8, we infer that there exists t∗ ∈ (0, 1) so
as to P̃μ(t∗) = 0, which implies that (̃ζ2(t∗)�̃ζ1(t∗)) ∈ Pr (a). Consequently, one has

max
t∈[0,1] E (̃ζ (t)) = max

t∈[0,1] Iμ(̃ζ2(t)�̃ζ1(t)) ≥ inf
u∈Pr (a)

Iμ(u).

Hence, we have σμ(a) ≥ mμ,r (a). In conclusion, one has σμ(a) = mμ,r (a).
Step 4 We claim that mμ,r (a) > 0. Let u ∈ Pr (a), we have Pμ(u) = 0. By the

GNS inequality (2.4) and (2.1), we infer to

‖∇u‖22 = −γ

4

∫
R3

φuu
2dx + μδq‖u‖qq + ‖u‖66

≤ μδqC(q)aq(1−δq )‖∇u‖qδq
2 + S−3‖∇u‖62.

And by qδq = 2, one has

(
1 − μδqC(q)aq(1−δq )

)
‖∇u‖22 ≤ S−3‖∇u‖62.

By a < α3, there exists ρ > 0 such that

inf
u∈Pr (a)

‖∇u‖22 ≥ ρ.

So, for any u ∈ Pr (a), it follows that

Iμ(u) = Iμ(u) − 1

6
Pμ(u)

= 1

3
‖∇u‖22 + 5γ

24

∫
R3

φuu
2dx − 2μ

3q

∫
R3

|u|qdx

≥ 1

3
‖∇u‖22 − 2μ

3q
C(q)aq(1−δq )‖∇u‖qδq

2

= 1

3

(
1 − 2μ

q
C(q)aq(1−δq )

)
‖∇u‖22

≥ 1

3

(
1 − 2μ

q
C(q)aq(1−δq )

)
ρ > 0.

Consequently, we obtain σμ(a) > 0, which completes the proof. ��
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Next, we give an upper bounded estimate for the mountain pass level σμ(a) in the
following Lemma, which plays an important role in the proof of Theorem 1.2.

Lemma 4.7 Let q = 10
3 , μ > 0, and assume that 0 < a < min{α3, α4}. Then there

exists γ̃1 > 0, such that σμ(a) < 1
3 S

3
2 for γ ∈ (0, γ̃1) small enough.

Proof Recall (2.1) and (2.2), we have the best constant S is attained by

Uε(x) = C∗ε 1
2

(ε2 + |x |2) 1
2

for any ε > 0 and C∗ being normalized constant such that

∫
R3

|∇Uε|2dx =
∫
R3

|Uε|6dx = S
3
2 .

We take

uε = ϕUε,

where ϕ(x) ∈ C∞
0 (B2(0)) is a radial cutoff function such that 0 ≤ ϕ(x) ≤ 1 and

ϕ(x) ≡ 1 on B1(0). Let

vε = a
uε

‖uε‖2 ∈ S(a) ∩ H1
rad(R

3).

As showed in [15], we have∫
R3

|∇uε|2dx = S
3
2 + O(ε), (4.7)

and ∫
R3

|uε|6dx = S
3
2 + O(ε3). (4.8)

From Lemma 7.1 [30], we have the following estimations:

∫
R3

|uε|qdx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O
(
ε
q
2

)
, if 2 < q < 3;

O
(
ε

3
2 | log ε|

)
, if q = 3;

O
(
ε

6−q
2

)
, if 3 < q < 6.

(4.9)

and when q = 2, one has ∫
R3

|uε|2dx = Cε. (4.10)
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Recall the function

ϕvε (ι) := Iμ((ι�vε)) = 1

2
e2ι
∫
R3

|∇vε|2dx + γ

4
eι

∫
R3

φvεv
2
εdx

−μ

q
e
3(q−2)

2 ι

∫
R3

|vε|qdx − 1

6
e6ι
∫
R3

|vε|6dx, (4.11)

Similar to the first step in proving Lemma 4.6, we can conclude that ϕvε can obtain its
global positive maximum at some ιε. And so, by (2.14), we have

(ϕ)′vε
(ιε) = Pμ(ιε�vε) = 0. (4.12)

By (4.12) and qδq = 2, we deduce

e4ιε = ‖∇vε‖22
‖vε‖66

+ γ

4
e−ιε

∫
R3 φvεv

2
εdx

‖vε‖66
− μδqe

(qδq−2)ιε
‖vε‖qq
‖vε‖66

≥ ‖∇vε‖22
‖vε‖66

− μδq
‖vε‖qq
‖vε‖66

= ‖uε‖42‖∇uε‖22
a4‖uε‖66

− μδq
‖uε‖6−q

2 ‖uε‖qq
a6−q‖uε‖66

= ‖uε‖42
a4‖uε‖66

(
‖∇uε‖22 − μδq

‖uε‖2−q
2 ‖uε‖qq
a2−q

)

= ‖uε‖42
a4‖uε‖66

(
‖∇uε‖22 − μδq

a2−q

‖uε‖qq
‖uε‖q−2

2

)
.

(4.13)

In view of (4.7) and (4.8), we have that there exist positive constants C1,C2 and
C3 depending on s and q, such that

C1 ≤ (‖∇uε‖22)
6−qδq

4 ≤ 1

C1
, (4.14)

C2 ≤ (‖uε‖66)
qδq−2

4 ≤ 1

C2
, (4.15)

and

‖uε‖qq
‖uε‖q(1−δq )

2

= C3ε
6−q
4 . (4.16)

Hence, by (4.13)–(4.16) and qδq = 2, we obtain

e4ιε ≥ C
‖uε‖42
a4

(
C1 − μδq

a2−q
C3ε

2
3

)
≥ C

‖uε‖42
a4

. (4.17)
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In the following, we shall make an upper estimation of maxι∈R ϕvε (ι). Firstly, we
define the function ϕ0

vε
(ι) as follow:

ϕ0
vε

(ι) := e2ι

2

∫
R3

|∇vε|2dx − e6ι

6

∫
R3

|vε|6dx . (4.18)

By simple calculation, we derive that the function ϕ0
vε

(ι) has a unique critical point ι0ε ,
which is a strict maximum point given by

eι0ε =
(

‖∇vε‖22
‖vε‖66

) 1
4

. (4.19)

Applying the fact that

sup
θ≥0

(
θ2

2
a − θ6

6
b

)
= 1

3

(
a

b
1
3

) 3
2

,

for any fixed a, b > 0. In view of (4.7) and (4.8), we infer that

ϕ0
vε

(ι0ε) = 1

3

(
‖∇vε‖22
(‖vε‖66)

1
3

) 3
2

= 1

3

(
‖∇uε‖22
(‖uε‖66)

1
3

) 3
2

= 1

3

(
S

3
2 + O(ε)

(S
3
2 + O(ε2))

1
3

) 3
2

= 1

3
S

3
2 + O(ε).

(4.20)

Secondly, we make an estimation for ϕvε (ι). By (2.3), (4.12) and Hölder inequality,
we derive to

e4ιε = ‖∇vε‖22
‖vε‖66

+ γ

4
e−ιε

∫
R3 φvεv

2
εdx

‖vε‖66
− μδqe

(qδq−2)ιε
‖vε‖qq
‖vε‖66

≤ 1

‖vε‖66

(
‖∇vε‖22 + γ

4
e−ιε

∫
R3

φvεv
2
εdx

)

≤ 1

‖vε‖66
(
‖∇vε‖22 + γ

4
e−ιε C̃‖vε‖412

5

)

≤ 1

‖vε‖66
(
‖∇vε‖22 + γ

4
e−ιε C̃‖vε‖32‖vε‖6

)

= 1

a4‖uε‖66
(
‖∇uε‖22‖uε‖42 + γ

4
e−ιε C̃a2‖uε‖52‖uε‖6

)
.

(4.21)
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By virtue of (4.7)–(4.8), (4.10) and (4.21), we can see that ιε can not go to +∞,
namely, there exists some ι∗ ∈ R such that

ιε ≤ ι∗, for all ε > 0. (4.22)

Based on above analysis, by (2.3)–(2.4), (4.7)–(4.8), (4.17), (4.20), (4.22) and the fact
qδq = 2, we derive to

sup
ι∈R

ϕvε (ι) = ϕvε (ιε) = ϕ0
vε

(ιε) + γ

4
eιε

∫
R3

φvεv
2
εdx − μ

q
eqδq ιε‖vε‖qq

≤ sup
ι∈R

�0
vε

(ι) + γ

4
eιε

∫
R3

φvεv
2
εdx − μ

q
e2ιε‖vε‖qq

≤ �0
vε

(ιv0ε
) + γ

4
eιε C̃‖vε‖412

5
− Cμ

q

‖uε‖22
a2

‖vε‖qq

≤ 1

3
S

3
2 + O(ε) + Cγ

a4

‖uε‖42
‖uε‖412

5
− Cμ

q

aq−2

‖uε‖q−2
2

‖uε‖qq

≤ 1

3
S

3
2 + C1ε + C2γ

ε
6
5× 5

3

ε2
− C3ε

6−q
4

= 1

3
S

3
2 + C1ε + C2γ − C3ε

2
3 <

1

3
S

3
2 ,

(4.23)

if we choose γ = εα for some constant α ≥ 1, and use the fact 0 <
6−q
4 < 1.

Finally, by Lemma 4.1, we take ι1 < 0 and ι2 > 0 such that ι1�vε ∈ Ak and
Iμ(ι2�vε) < 0, respectively. Define a path

ηvε : t ∈ [0, 1] �→ ((1 − t)ι1 + t ι2)�vε ∈ �a .

Consequently, by (4.23), we have that there exists some γ̃1 > 0, such that

mμ,r (a) = σμ(a) ≤ max
t∈[0,1] Iμ(ηvε (t)) ≤ sup

ι∈R
ϕvε (ι) <

1

3
S

3
2 ,

for γ ∈ (0, γ̃1) small enough. ��
Now, based on the above preparation, we are ready to accomplish the proof of

Theorem 1.2.

Proof of Theorem 1.2 Take a PS sequence {un} as in Proposition 4.5, we have

I ′
μ|Sr (a)(un) → 0 as n → ∞,

Using the Lagrange multipliers rule, we have that there exists a sequence {λn} ∈ R

such that

I ′
μ(un) − λn�

′(un) → 0 in H−1. (4.24)
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Again by Proposition 4.5, we get

Iμ(un) → σμ(a) as n → ∞.

which means Iμ(un) is bounded. So we deduce to

1

2

∫
R3

|∇un|2dx + γ

4

∫
R3

φun un
2dx − μ

q

∫
R3

|un|qdx − 1

6

∫
R3

|un|6dx ≤ C .

(4.25)

From Pμ(un) → 0 and qδq = 2, we infer that

|Iμ(un) + Pμ(un)| ≤ C,

that is,

3

2

∫
R3

|∇un|2dx + γ

2

∫
R3

φun u
2
ndx − 3μ

q

∫
R3

|un|qdx − 7

6

∫
R3

|un|6dx ≥ −C .

(4.26)

Combining (4.25)–(4.26), one has

γ

4

∫
R3

φun u
2
ndx + 2

3

∫
R3

|un|6dx ≤ 4C . (4.27)

Thus, we know that
∫
R3 φun u

2
ndx and

∫
R3 |un|6dx are bounded. Then, by (4.25) and

the GNS inequality (2.4), we infer to

C ≥ 1

2

∫
R3

|∇un|2dx − μ

q

∫
R3

|un|qdx

≥ 1

2
‖∇un‖22 − μ

q
C(q)aq(1−δq )‖∇un‖qδq

2

=
(
1

2
− μ

q
C(q)aq(1−δq )

)
‖∇un‖22.

Since a < α3, it is easy to get ‖∇un‖2 ≤ R∗ for some R∗ > 0 independently on n ∈ N.
Consequently, we obtain that {un} is bounded in H1(R3), and so, up to subsequence,
there exists ua such that{

un⇀ua in H1(R3),

un → ua in L p(R3), ∀p ∈ (2, 6).

From (4.24), we have

λn‖un‖22 =
∫
R3

|∇un|2dx + γ

∫
R3

φun un
2dx
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−μ

∫
R3

|un|qdx −
∫
R3

|un|6dx + on(1), (4.28)

that is

λn = 1

a2

[∫
R3

|∇un |2dx + γ

∫
R3

φun un
2dx − μ

∫
R3

|un |qdx −
∫
R3

|un |6dx
]

+ on(1).

From the boundedness of {un} in H1(R3), we have that {λn} is bounded. Now, we
verify

∫
R3

|un|qdx →
∫
R3

|ua |qdx �= 0, i.e. ua �= 0.

Assume by contradiction that,
∫
R3 |un|qdx → 0. By (2.3) and the interpolation

inequality, we obtain
∫
R3 φun u

2
ndx → 0. Combining with

Pμ(un) =
∫
R3

|∇un |2dx + γ

4

∫
R3

φun un
2dx − μδq

∫
R3

|un |qdx −
∫
R3

|un |6dx = on(1),

we get

λn = 1

a2

[
3γ

4

∫
R3

φun un
2dx + μ(δq − 1)

∫
R3

|un|qdx
]

+ on(1).

So, λn → 0 as n → ∞. Then (4.28) becomes

∫
R3

|∇un|2dx −
∫
R3

|un|6dx = on(1).

Set

lim
n→∞

∫
R3

|∇un|2dx = lim
n→∞

∫
R3

|un|6dx = l,

then,

lim
n→∞ Iμ(un) = lim

n→∞

[
1

2

∫
R3

|∇u|2dx + γ

4

∫
R3

φuu
2dx − μ

q

∫
R3

|u|qdx − 1

6

∫
R3

|u|6dx
]

= lim
n→∞

[
1

2

∫
R3

|∇u|2dx − 1

6

∫
R3

|u|6dx
]

= 1

2
l − 1

6
l

= 1

3
l.

(4.29)
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Since Iμ(un) → σμ(a) as n → ∞, and σμ(a) < 1
3 S

3
2 from Lemma 4.7 and (4.29),

we obtain

l < S
3
2 .

On the other hand, by virtue of the Sobolev inequality (2.1), we have

S ≤ limn→∞ ‖∇un‖22
(limn→∞

∫
R3 |un|6dx) 1

3

= l

l
1
3

= l
2
3 ,

which leads to a contradiction. Hence,
∫
R3 |un|qdx → ∫

R3 |ua |qdx �= 0. Then, by
the boundedness of {λn}, up to subsequence, there exists λa such that λn → λa .
Consequently, by ‖∇un‖2 ≤ R∗, (2.3), the GNS inequality (2.4) and qδq = 2, we
have

T3 ≤
∫
R3

|un|qdx ≤ C(q)‖∇un‖22‖un‖q(1−δq )

2

≤ C(q)R∗2aq(1−δq ),

and ∫
R3

φun u
2
ndx ≤ C̃‖un‖412

5
≤ C̃[C(12/5)] 53 ‖∇un‖2‖un‖32
≤ C̃[C(12/5)] 53 R∗a3

:= T4,

where T3 > 0 and T4 = T4(R∗, a). We define the positive constant

γ̃2 := 4μ(1 − δq)T3
3T4

.

So, we get

γ̃2 ≤ lim
n→∞

4μ(1 − δq)
∫
R3 |un|qdx

3
∫
R3 φun u

2
ndx

= 4μ(1 − δq)
∫
R3 |ua |qdx

3
∫
R3 φua u

2
adx

.

In view of (4.24) and {un} is bounded in H(R3), we have

λn‖un‖22 = ‖∇un‖22 + γ

∫
R3

φun un
2dx − μ‖un‖qq − ‖un‖66 + on(1).

Combining with Pμ(un) → 0 and Lemma 2.7, if γ ∈ (0, γ̃2), one has

λaa
2 = lim

n→∞

(
‖∇un‖22 + γ

∫
R3

φun un
2dx − μ‖un‖qq − ‖un‖66

)
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= lim
n→∞

(
3

4
γ

∫
R3

φun un
2dx + μ(δq − 1)‖un‖qq

)

= 3

4
γ

∫
R3

φua ua
2dx + μ(δq − 1)‖ua‖qq

<
3

4
γ̃2

∫
R3

φua ua
2dx + μ(δq − 1)‖ua‖qq ≤ 0,

which proves that limn→∞ λn = λa < 0. Let vn = un − ua⇀0, by (3.17), (2.5),
Lemma 2.7 and Pμ(vn) = Pμ(un) − Pμ(ua) → 0, we infer to

‖∇vn‖22 = ‖vn‖66 + on(1).

Up to subsequence, we assume that

‖∇vn‖22 = ‖vn‖66 → τ.

So, by (2.1), we have

τ
1
3 S ≤ τ,

that is,

τ ≥ S
3
2 or τ = 0.

If τ ≥ S
3
2 , in view of (3.17), we derive as

σμ(a) = lim
n→∞ Iμ(un)

= lim
n→∞

(
Iμ(ua) + 1

2
‖∇vn‖22 − 1

6
‖vn‖66

)

= Iμ(ua) + 1

3
τ

≥ Iμ(ua) + 1

3
S

3
2 .

Besides,

Iμ(ua) = Iμ(ua) + 1

2
Pμ(ua) = γ

8

∫
R3

φua ua
2dx + 1

3
‖ua‖66 > 0,

which is contradicted to Lemma 4.7. Thus, we have τ = 0. By a similar argument as
in the end of the proof of Theorem 1.1, we infer to

un → ua in H1(R3).
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Next, we claim that mμ(a) = mμ,r (a). Since Pr (a) ⊂ P(a), it is easy to see
that mμ(a) ≤ mμ,r (a). Then, we only need to verify mμ(a) ≥ mμ,r (a). Suppose by
contradiction, there exists w ∈ P(a)\Sr (a) such that

Iμ(w) < inf
Pr (a)

Iμ(u). (4.30)

Then, let v := |w|∗, by virtue of the schwarz rearrangement, it follows that

Iμ(v) ≤ Iμ(w) and Pμ(v) ≤ Pμ(w) = 0.

If Pμ(v) = 0, we know v ∈ P(a), v := |w|∗ ∈ Pr (a) and

Iμ(v) ≥ inf
Pr (a)

Iμ(u) > Iμ(w) ≥ Iμ(v),

which is a contradiction. If Pμ(v) < 0, we see that (ϕv)
′(0) = Pμ(v) < 0, by the

claim of Step 1 of the proof of Lemma 4.6, we have that tv < 0. Since tv�v ∈ Pr (a),
by (4.29), we deduce to

Iμ(w) < Iμ(tv�v) = Iμ(tv�v) − 1

2
Pμ(tv�v)

= γ

8
etv
∫
R3

φvv
2dx + 1

3
e6tv

∫
R3

|v|6dx

= γ

8
etv
∫
R3

φww2dx + 1

3
e6tv

∫
R3

|w|6dx

≤ etv
(
Iμ(w) − 1

2
Pμ(w)

)
= etv Iμ(w) < Iμ(w),

which leads to a contradiction. Again by the the claim of step 1 of the proof of
Lemma 4.6, we have P(a) = P(a)−. Consequently, we get

Iμ(ua) = σμ(a) = mμ,r (a) = mμ(a) = inf
P(a)

Iμ(u) = inf
P(a)−

Iμ(u),

and ua is a ground state. ��

5 L2-Supcritical Perturbation Case

In this section, we consider the L2-supercritical case: 10
3 < q < 6 and prove Theo-

rem 1.3. For the sake of convenience, we still utilize the notations and definitions in
Section 4.

In Lemma 4.1, the conclusion remains valid when 10
3 < q < 6. In the following,

we show that E(u, ι) has the mountain pass geometry on Sr (a) × R.
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Lemma 5.1 Let 10
3 < q < 6, μ, γ > 0, and assume that 0 < a < α5, where

α5 :=
(

k∗ 1
2

4γ C̃[C(12/5)] 53

) 1
3

.

There exist 0 < k∗
1 < k∗

2 < k∗ such that

Pμ(u), Iμ(u) for all u ∈ Ak∗
1
and 0 < sup

u∈Ak∗1

Iμ(u) < inf
u∈Bk∗2

Iμ(u),

where

Ak∗ := {u ∈ Sr (a) : ‖∇u‖22 ≤ k∗} and Bk∗ := {u ∈ Sr (a) : ‖∇u‖22 = 2k∗}

Proof Take k∗ > 0, which will be determined later. Suppose that u, v ∈ Sr (a) such
that ‖∇u‖22 ≤ k∗ and ‖∇v‖22 = 2k∗. The proof here is similar to Lemma 4.2, which
we briefly outline.

Pμ(u) = ‖∇u‖22 + γ

4

∫
R3

φuu
2dx − μδq‖u‖qq − ‖u‖66

≥ ‖∇u‖22 − C(q)μδqa
q(1−δq )‖∇u‖qδq

2 − S−3‖∇u‖62,

and

Iμ(u) = 1

2
‖∇u‖22 + γ

4

∫
R3

φuu
2dx − μ

q
‖u‖qq − 1

6
‖u‖66

≥ 1

2
‖∇u‖22 − C(q)

μ

q
aq(1−δq )‖∇u‖qδq

2 − 1

6
S−3‖∇u‖62.

Moreover,

Iμ(v) − Iμ(u) ≥ 1

2
‖∇v‖22 − 1

2
‖∇u‖22 − γ

4

∫
R3

φuu
2dx − μ

q
‖v‖qq − 1

6
‖v‖66

≥ 1

2
‖∇v‖22 − 1

2
‖∇u‖22 − γ

4
C̃[C(12/5)] 53 a3‖∇u‖2

−μ

q
C(q)aq(1−δq )‖∇u‖qδq

2 − 1

6
S−3‖∇u‖62

≥ k∗ − 1

2
k∗ − γ

4
C̃[C(12/5)] 53

(
k∗ 1

2

4γ C̃[C(12/5)] 53

)
k∗ 1

2

−C(q)μ

q

(
k∗ 1

2

4γ C̃[C(12/5)] 53

) q(1−δq )

3

(2k∗)
qδq
2 − 1

6
S−3(2k∗)3
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= 7

16
k∗ −

⎛
⎜⎜⎝ 2

qδq
2 C(q)μ

q
(
4γ C̃[C(12/5)] 53

) q(1−δq )

3

k∗ 2q−6
3

⎞
⎟⎟⎠ k∗ −

(
4

3
S−3k∗2

)
k∗

≥ 5

16
k∗ > 0,

for a < α5, and we take

k∗ = min

⎧⎪⎨
⎪⎩
⎛
⎝q(4γ C̃[C(12/5)] 53 ) q(1−δq )

3

16μC(q)2
qδq
2

⎞
⎠

3
2q−6

,

(
3

64
S3
) 1

2

⎫⎪⎬
⎪⎭ , (5.1)

then, for 0 < k∗
1 < k∗

2 < k∗ small enough and 0 < a < α5, we have

Pμ(u), Iμ(u) for all u ∈ Ak∗
1
and 0 < sup

u∈Ak∗1

Iμ(u) < inf
u∈Bk∗2

Iμ(u).

The proof is completed. ��

Lemma 5.2 Let 10
3 < q < 6, μ, γ > 0, and assume that 0 < a < α5. Then we have

(i) There exists a sequence {wn} ∈ Sr (a) such that

Iμ(wn) → σμ(a) as n → ∞, (5.2)

Pμ(wn) → 0 as n → ∞, (5.3)

I ′
μ|Sr (a)(wn) → 0 as n → ∞. (5.4)

(ii) σμ(a) = mμ,r (a) > 0, where σμ(a) and mμ,r (a) is defined in Section 4.

The proof of this lemma is similar to that of Propositions4.3–4.5 and Lemmas 4.2–
4.6 utilizing qδq > 2, and thus it is omitted here.

Now, we make an upper bounded estimation for the mountain pass level σμ(a) in
the following.

Lemma 5.3 Let 10
3 < q < 6, μ, γ > 0, and assume that 0 < a < α5. Then we have

σμ(a) < 1
3 S

3
2 for γ ∈ (0, γ̃1) small enough, where γ̃1 is defined in Lemma 4.7.

Proof As in the proof of Lemma 4.7, we conclude that ϕvε (ι) achieves its global
positivemaximum at some ιε, and the critical point ιε is unique. In view of (ϕvε )

′(ιε) =
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Pμ(ιε�vε) = 0, one has

e6ιε‖vε‖66 = e2ιε‖∇vε‖22 + γ

4
eιε

∫
R3

φvεv
2
εdx − μδqe

qδq‖vε‖qq

≤ e2ιε‖∇vε‖22 + γ

4
eιε

∫
R3

φvεv
2
εdx

= e2ιε
(

‖∇vε‖22 + γ

4
e−ιε

∫
R3

φvεv
2
εdx

)

≤ e2ιε2max

{
‖∇vε‖22,

γ

4
e−ιε

∫
R3

φvεv
2
εdx

}
.

(5.5)

Then, we consider the following possible cases.
Case 1 If ‖∇vε‖22 >

γ
4 e

−ιε
∫
R3 φvεv

2
εdx , we have

e6ιε‖vε‖66 ≤ e2ιε2‖∇vε‖22,

that is,

e4ιε ≤ 2‖∇vε‖22
‖vε‖66

. (5.6)

By (ϕvε )
′(ιε) = 0, we infer that

e4ιε = ‖∇vε‖22
‖vε‖66

+ γ

4

e−ιε
∫
R3 φvεv

2
εdx

‖vε‖66
− μδqe

(qδq−2)ιε
‖vε‖qq
‖vε‖66

≥ ‖∇vε‖22
‖vε‖66

− μδq

(
2‖∇vε‖22
‖vε‖66

) qδq−2
4 ‖vε‖qq

‖vε‖66

= ‖uε‖42‖∇uε‖22
a4‖uε‖66

− μδq

(
2‖uε‖42‖∇uε‖22

a4‖uε‖66

) qδq−2
4 ‖uε‖6−q

2 ‖uε‖qq
a6−q‖uε‖66

= ‖uε‖42(‖∇uε‖22)
qδq−2

4

a4‖uε‖66

⎡
⎣(‖∇uε‖22)

6−qδq
4 − μδq2

qδq−2
4 aq(1−δq )‖uε‖qq

‖uε‖q(1−δq )

2 (‖uε‖66)
qδq−2

4

⎤
⎦ ,

= ‖uε‖42(‖∇uε‖22)
qδq−2

4

a4‖uε‖66

⎡
⎣(‖∇uε‖22)

6−qδq
4 − μδq2

qδq−2
4 aq(1−δq )

(‖uε‖66)
qδq−2

4

‖uε‖qq
‖uε‖q(1−δq )

2

⎤
⎦ .

(5.7)

By virtue of (4.14)–(4.16) and (5.7), we get

e4ιε ≥ C
‖uε‖42
a4

[
C1 − μδqa

q(1−δq )2
qδq−2

4
C3

C2
ε

6−q
4

]
≥ C

‖uε‖42
a4

. (5.8)

123



296 Page 44 of 49 Q. Gao, X. He

Case 2 If ‖∇vε‖22 ≤ γ
4 e

−ιε
∫
R3 φvεv

2
εdx , we have

e6ιε‖vε‖66 ≤ 2e2ιε
γ

4
e−ιε

∫
R3

φvεv
2
εdx,

that is,

e5ιε ≤ γ

2

∫
R3 φvεv

2
εdx

‖vε‖66
. (5.9)

Again by (ϕvε )
′(ιε) = 0, (2.3) and Hölder inequality, we infer to

e4ιε = ‖∇vε‖22
‖vε‖66

+ γ

4
e−ιε

∫
R3 φvεv

2
εdx

‖vε‖66
− μδqe

(qδq−2)ιε
‖vε‖qq
‖vε‖66

≥ ‖∇vε‖22
‖vε‖66

− μδq

(
γ

2

∫
R3 φvεv

2
εdx

‖vε‖66

) qδq−2
5 ‖vε‖qq

‖vε‖66

≥ ‖∇vε‖22
‖vε‖66

− μδq

⎛
⎝γ

2

C̃‖vε‖412
5

‖vε‖66

⎞
⎠

qδq−2
5 ‖vε‖qq

‖vε‖66

≥ ‖∇vε‖22
‖vε‖66

− μδq

(
γ

2

C̃‖vε‖32‖vε‖6
‖vε‖66

) qδq−2
5 ‖vε‖qq

‖vε‖66

≥ ‖∇vε‖22
‖vε‖66

− μδq

(
γ C̃

2

) qδq−2
5

a
3(qδq−2)

5

(
1

‖vε‖56

) qδq−2
5 ‖vε‖qq

‖vε‖66

≥ ‖uε‖42‖∇uε‖22
a4‖uε‖66

− μδq

(
γ C̃

2

) qδq−2
5

a
5(q−6)−2(qδq−2)

5
‖uε‖qq‖uε‖4−q(1−δq )

2

‖uε‖qδq+4
6

= ‖uε‖42(‖∇uε‖22)
qδq−2

4

a4‖uε‖66[
(‖∇uε‖22)

6−qδq
4 − μδq

(
γ C̃

2

) qδq−2
5

a
5q−2qδq−26

5
‖uε‖qq‖uε‖q(δq−1)

2

‖uε‖qδq−2
6 (‖∇uε‖22)

qδq−2
4

]

= ‖uε‖42(‖∇uε‖22)
qδq−2

4

a4‖uε‖66[
(‖∇uε‖22)

6−qδq
4 − μδq

(
γ C̃

2

) qδq−2
5 a

5q−2qδq−26
5

‖uε‖qδq−2
6 (‖∇uε‖22)

qδq−2
4

‖uε‖qq
‖uε‖q(1−δq )

2

]
,

(5.10)
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By (4.7)–(4.8), we deduce that there exists constant C4 > 0 such that

C4 ≤ (‖∇uε‖22)
qδq−2

4 ‖uε‖qδq−2
6 ≤ 1

C4
. (5.11)

So, in view of (4.14)–(4.16) and (5.11), we get

e4ιε ≥ C
‖uε‖42
a4

⎡
⎣C1 − μδq

(
γ C̃

2

) qδq−2
5

a
5q−2qδq−26

5
C3

C4
ε

6−q
4

⎤
⎦

≥ C‖uε‖42
a4

.

(5.12)

Based on above analysis, we will make an upper estimation for ϕvε (ι). Firstly, as
in Lemma 4.7, we can define the function ϕ0

vε
(ι) and make an estimation for ϕ0

vε
(ι),

that is

ϕ0
vε

(ι0ε) = 1

3
S

3
2 + O(ε). (5.13)

where ι0ε is a unique strict maximum point of ϕ0
vε

(ι). Secondly, we make an estimation
for ϕvε (ι). By virtue of (4.22), we know that there exists some ι∗ ∈ R such that

ιε ≤ ι∗, for all ε > 0.

So, by (2.3)–(2.4), (5.11)–(5.13), (4.9)–(4.10), (4.16) and above inequality, we obtain

sup
ι∈R

ϕvε (ι) = ϕvε (ιε)

= ϕ0
vε

(ιε) + γ

4
eιε

∫
R3

φvεv
2
εdx − μ

q
eqδq ιε‖vε‖qq

≤ sup
ι∈R

�0
vε

(θ) + γ

4
eιε

∫
R3

φvεv
2
εdx − μ

q
eqδq ιε‖vε‖qq

≤ �0
vε

(ιε,0) + γ

4
C̃‖vε‖412

5
− μ

q
eqδq ιε‖vε‖qq

≤ 1

3
S

3
2 + O(ε) + Cγ

a4

‖uε‖42
‖uε‖412

5
− Cμaq(1−δq )

q

‖uε‖qq
‖uε‖q(1−δq )

2

≤ 1

3
S

3
2 + C1ε + C2γ

‖uε‖412
5

‖uε‖42
− C3 ‖uε‖qq

‖uε‖q(1−δq )

2

= 1

3
S

3
2 + C1ε + C2γ

ε
6
5× 5

3

ε2
− C3ε

6−q
4

= 1

3
S

3
2 + C1ε + C2γ − C3ε

6−q
4
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<
1

3
S

3
2 , (5.14)

if we choose γ = εα for some constant α ≥ 1, and using the fact 0 <
6−q
4 < 1.

Since vε ∈ Sr (a), from Lemma 5.2 we take ι3 < 0 and ι4 > 0 such that ι3�vε ∈ Ak

and Iμ(ι4�vε) < 0, respectively. We define a path

η∗
vε

: t ∈ [0, 1] �→ ((1 − t)ι3 + t ι4)�vε ∈ �a .

Consequently, by (5.14), we obtain that there exists some γ̃1 > 0, such that

σμ(a) ≤ max
t∈[0,1] Iμ(η∗

vε
(t)) ≤ sup

ι∈R
ϕvε (ι) <

1

3
S

3
2 ,

for γ ∈ (0, γ̃1) small enough, which completes the proof. ��
Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 By virtue of (5.4), we have that there exists a sequence {λn} ∈ R

such that

I ′
μ(un) − λn�

′(un) → 0 in H−1. (5.15)

Then we claim that {un} is bounded in H . Indeed, by (5.2)and (5.3), we have

|2Iμ(un) + Pμ(un)| ≤ C, (5.16)

that is,

2
∫
R3

|∇un|2dx + 3

4
γ

∫
R3

φun u
2
ndx − μ(3q − 2)

2q

∫
R3

|un|qdx

−4

3

∫
R3

|un|6dx ≥ −C . (5.17)

By (5.17) and the bounded of Iμ(un), we infer to

−C ≤ −γ

4

∫
R3

φun u
2
ndx − μ(3q − 10)

2q

∫
R3

|un|qdx − 2

3

∫
R3

|un|6dx + 4C,

it follows that

γ

4

∫
R3

φun u
2
ndx + μ(3q − 10)

2q

∫
R3

|un|qdx + 2

3

∫
R3

|un|6dx ≤ 5C,

which implies that∫
R3

φun u
2
ndx,

∫
R3

|un|qdx and
∫
R3

|un|6dx
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are all bounded. Thus, we deduce that
∫
R3 |∇un|2dx is also bounded. For convenience,

we still take ‖∇un‖2 ≤ R∗. We can proceed exactly as in the proof of Theorem1.2
utilizing Lemmas 5.2–5.3, so complete the proof of Theorem 1.3. ��
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