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Abstract
Let (M, g) be a smooth compact Riemannian manifold of dimension N > 8. We are
concerned with the following elliptic system

—Agu 4+ h(x)u = vP~%, in M,
—Agv+h(x)v = ui=Pe in M,
u,v >0, in M,

where A, = div,V is the Laplace-Beltrami operator on M, h(x) is a C'-function
on M, & > 0is a small parameter, o, 8 > 0 are real numbers, (p, g) € (1, +00) X
(1, 400) satisfies ﬁ + ﬁ = NT*Z Using the Lyapunov—Schmidt reduction method,
we obtain the existence of multiple blowing-up solutions for the above problem.

Keywords Multiple blowing-up solutions - Asymptotically critical - Lane-Emden
system - Riemannian manifolds

Mathematics Subject Classification 58J05 - 35J47 - 35B33

1 Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension N > 8, where
g denotes the metric tensor. We consider the following elliptic system

—Agu+h(x)u =vP7%, in M,
—Agv+ h(x)v = u?=P in M, (1.1)
u,v >0, in M,
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where A, = div,V is the Laplace-Beltrami operator on M, h(x) is a C'-function
on M, ¢ > 0is a small parameter, o, 8 > 0 are real numbers, (p, g) € (1, +00) X
(1, 400) is a pair of numbers lying on the critical hyperbola

1 1 N -2

p+1 qg+1 N (12)

Without loss of generality, we assume that 1 < p < %—f% < g. Moreover, by (1.2),

we have p > ﬁ

Inthecase u = v, p =q and o = § = 1, system (1.1) is reduced to the following
equation

— Agu+ h(x)u = w1 4y 50, in M, (1.3)
where N > 3, 2* = %, e € R is a small parameter. If h(x) = AKIX,—*_Zl)Scalg,

where Scal, is the scalar curvature of the manifold, equation (1.3) is intensively
studied as the well-known Yamabe problem whose positive solutions u are such the
scalar curvature of the conformal metric uz*_zg is constant, see e.g. [1, 31, 32, 34].
If hix) # 48’\, 21)Scalg, Micheletti et al. [26] first proved that (1.3) has a single
blowing-up solution, provided the graph of A(x) is distinct at some point from the
graph of %Scalg. Here, we say that a family of solutions u, of (1.3) blows up
at a point &y € M if there exists a family of points & € M such that £, — &y and
ug(&:) = +o00 as e — 0. Soon after, Deng [9] considered the existence of multiple
blowing-up solutions which are separate from each other for (1.3). Chen [4] discovered
the existence of clustered solutions which concentrate at one point in M for (1.3).
Moreover, Sign-changing bubble tower solutions of (1.3) have been established in [,
27]. For more related results about (1.3), we refer the readers to [8, 10, 13, 30] and
references therein.
Now, we return to the following elliptic system

—Au = [v|P~ly, inQ,
—Av=ully, inQ, (1.4)
(u,v) € Xp,q(Q)»

called the Lane-Emden system, where N > 3, (p, g) satisfies (1.2), 2 is either a
. +1 . +1
smooth bounded domain or RV, and Xpq(R2) = Wz’pT(Q) X Wz’qT(Q). System

(1.4) has received remarkable attention for decades. When = RV, by the Sobolev
embedding theorem, there holds
2,2 N 1. p* N q+1 N
W= (RY) —> WP (R") — LI (R"Y),
. 5 g+l N
W2 RY) < WIRY) < LPH(RY),
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with

1_p 1_ 11

q 1 1 1
p* p+1 N g+1 N g gq+1 N_p+1+N‘

1
— = =

Thus the following energy functional is well defined in X, , (RN)Y:

1 1
ju,v:/Vu-Vvdz——/vp+1dz——/uq+ldz.
(u, v) P [v] e |ue]
RN RN RN

By applying the concentration compactness principle, Lions [25] found a positive
least energy solution to (1.4) in &), 4 (RM), which is radially symmetric and radially
decreasing. Moreover, Wang [33] and Hulshof and Van der Vorst [19] independently
proved that the uniqueness of the positive least energy solution (Uj 0(x), V1,0(2)) €
Xy g (RM), and all the positive least energy solutions (U,g,g (@), Vs.e (x)) given by

N

(Us(2). Ve (2)) = (57T ULo(6™ (2 — £)).8 7T V1 05~ (2
—E))), forany § > 0,& € RN,

Frank et al. [12] established the non-degeneracy of (1.4) at each least energy solution,
that is, the linearized system around a least energy solution has precisely the (N +
1)-dimensional spaces of solutionsin &, , (RN).Furthermore, by using the Lyapunov—
Schmidt reduction method and the non-degeneracy result obtained in [12], Guo et al.
[18] established the existence and non-degeneracy of multiple blowing-up solutions
to (1.4) with two potentials. For more investigations of system (1.4) with @ = RV,
we can see [7, 14].

If Q is a smooth bounded domain, much attention has been paid to study (1.4). Kim
and Pistoia [22] first built multiple blowing-up solutions for the Lane-Emden system

—Au = |v|P" v + e(au + Biv), in Q,

—Av = [u|?"'u + e(av + Bou), in Q, (1.5)
u,v=>0, on 012,
where N > 8,¢ > 0,0, 81,50 e R, 1 < p < %—:;, and (p, q) satisfies (1.2). Further-

more, using the local Pohozaev identities for the system, Guo et al. [16] proved the
non-degeneracy of the blowing-up solutions to (1.5) constructed in [22]. Jin and Kim
[20] studied the Coron’s problem for the critical Lane-Emden system, and established
the existence, qualitative properties of positive solutions. More recently, inspired by
[29], Guo and Peng [ 15] considered sign-changing solutions to the sightly supercritical
Lane-Emden system with Neumann boundary conditions. For more classical results
regarding Hamiltonian systems in bounded domains, the readers may refer to [3, 6,
17, 21, 28] for a good survey.

As far as we know, no existence result for the system (1.1)—(1.2) in the literature.
Therefore, it is natural to ask that if the system possesses solutions on a smooth
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compact Riemannian manifold. Motivated by [22] and [26], in this paper, we give an
affirmative answer for this question.
To state our main result, we first recall some definitions and results.

Definition 1.1 For k > 2 to be a positive integer, let (u.,v.) be a family of
solutions of (1.1)—(1.2), we say that (u., ve) blows up and concentrates at point
g0 = 0,80, ... &) € MK if there exist £ = (£7,&5, - ,&)) € MK and
(8,85,---,8) € (RMHF such that £ - sj(? and 8 — Oas e — O for
j=12,---,k,and

k k
(ue, ve) — (Z Wg;ﬁyg;‘, Z Hg;s]é) — 0, ase— 0,
j=1 j=1

where || - || and (W5 ¢, H; ¢) are defined in (2.1) and (2.5).

I?eﬁnition 1.2 [23, Definition 0.1]Let f € C'(M, R), for any given integerk > 2, set
E=(&,8, &), letC,Co, -+ ,Cr C M be k mutually disjoint closed subsets
of critical points of f, we say that (Cy, Ca, -+ ,Ci) C M¥ is a Cl-stable critical set

_ k
of function F(§) := Y  f(&)), if for any ¢ > 0, there exists o > 0 such that if
j=1

® e CY(MK, R) with

dg(sj,Ci-r)liz,lsjsk (IFE) — @@+ Ve F(E) — Ve @(©)]) <3,

then ® has at least one critical point £ € M* with dy(§;,C;) < &, where dj is the
geodesic distance on M with respect to the metric g.

Remark 1.3 [23, Remark 0.1] (C1,Ca, -+ ,Cr) C MFKisa Cl-stable critical set of
function F () if one of the following conditions holds:

(i) Every C; is a strict local minimum (or local maximum) setof f, j =1,2,--- , k.
(ii) Bvery C; = {E;.)} is an isolated critical point of f(§;) with
deg(Vy f, By (SQ, p),0) # 0 for some p > 0, where deg is the Brouwer degree,

and B, (5;), p) is the ball in M centered at .‘E;-) with radius p with respect to the
distance induced by the metric g, j = 1,2, --- , k.
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Let Ly, Ly, - - -, L7 be positive numbers defined by

L4=f|z|2V1'?5rl(z)dz,
L1=/\uummvwo@mL
BV L5=/|z|2Uﬁg‘(z)dz,
Ly = f 2ZPVUL(@VVio@dz, g RW
Ry Lo= [ Vi @log Vi
L3=/U1,0(Z)V1,O(Z)dz, RN
R L= [ Ul @ 1ogUro@)dz.
RN

(1.6)

Our main result states as follows.

Theorem 1.4 Let (M, g) be a smooth compact Riemannian manifold, let h(x) be
a Cl-function on M, (p, q) satisfies (1.2), for any given integer k > 2, set 0 =

(5;'?, %-g’ - %‘,?), let E? be an isolated critical point of
L4 L5 Scalg(g:j)
N nEd — (L — _ 1.7
(&j) (&) ( 2 p+1 q—|—1) 6N L3 -

with (£)) > 0 and deg(Ve9, By (&), p),0) # 0 for some p > 0, j = 1,2,--- .k,
Assume that one of the following conditions holds:

(1)m<p< andN>8
(i) p =13 andN> 10;
(111)1<p< 2andN>8

Then for & > 0 small enough, system (1.1) admits a family of solutions (us, ve), which
blows up and concentrates at £° as & — 0.

Remark 1.5 Under the assumptions on p,g and N of Theorem 1.4, we have that
L; < +oofori=1,2,---,7

Remark 1.6 From the proof of Theorem 1.4 (see Sect. 3), it’s easy to find that if

o n B -
(p+D?  (g+1)?

)

then Theorem 1.4 still holds true. However, in the proof of Proposition 3.1, we have
to impose o, 8 > 0 to guarantee the continuous embedding, see e.g. (4.9)—(4.10) and
(5.18)—(5.19).

Remark 1.7 Ifu = v, p_q_ 2 ,a=pf =1, then

-2
Scalg (&),

(&) = h(j) — aN-D
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and Theorem 1.4 is exactly the conclusion obtained in [9, Theorem 1.1].

The proof of our result relies on a well known finite dimensional Lyapunov—Schmidt
reduction method, introduced in [2, 11]. The paper is organized as follows. In Sect. 2,
we introduce the framework and present some preliminary results. The proof of The-
orem 1.4 is given in Sect.3. In Sect.4, we perform the finite dimensional reduction,
and Sect. 5 is devoted to the reduced problem. Throughout the paper, C, C;, i € N
denote positive constants possibly different from line to line.

2 The Framework and Preliminary Results

Concerning the least energy solution (Uy,0(z), V1.0(z)) of (1.4) with Q@ = RV, we
have the following asymptotic behaviour and non-degeneracy result.

Lemma 2.1 [19, Theorem 2] Assume that 1 < p < % If r — +o00, there hold

Vio(r) = 00*™N),

and
O™, ifp> gy
— 2—N : _ _N .
Uo(r) =1 0> Nlogr), if p = 55:
O N=2r) if p < F5.

Lemma 2.2 [21, Lemma 2.2] Assume that 1 < p < % If r — 400, there hold

Vi o) = 0@,

and

o', ifp>
Uio(r) =1 0¢""Nlogr), if p=
O'=N=2n) if p <

===
) [NS1 N S)

=
o

Lemma 2.3 [15, Remark 2.3] Assume that 1 < p < %—f% Ifr — +o00, there hold

Vo) = 00™N),
and

O(r_N), ifp>
Ul or) =1 0 Nlogr), ifp =
OG=N=2r), if p <

ﬂzﬂzﬂz
I\.) ) (3]
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Lemma 2.4 [12, Theorem 1] Set

Wl o! ):(z-VU10+NU1’O - VVio+
1,0° 1,0 s q+17 s D

and
(‘I'i,o’ q)ll,o) = (U109 V1,0), forl=1,2,--- N.
Then the space of solutions to the linear system

—AV = pV/y'D, inRY,
~AD =qU{ W, inRY,

+1

. . 5 gt
W, ®) € W7 RNy x W RY)
is spanned by
0 0 1 1 N N
{(\Ijl’01 (DLO)? (\IJ],()’ qDL())s R (\Il1’09 (D]’())}~

Moreover, we have the following elementary inequality.

Lemma 2.5 [24, Lemma 2.1] For any a > 0, b real, there holds

CB)@P~ b+ b1F),  ifp=1,

B _ 3B

[la + 61" — 67| < {C(ﬁ)mm{aﬂl|b|, bIPY, if0 < B < 1.

Now, we recall some definitions and results about the compact Riemannian manifold

M, ).

Definition 2.6 Let (M, g) be a smooth compact Riemannian manifold. On the tangent
bundle of M, define the exponential map exp : T M — M, which has the following
properties:

(i) expis of class C*;
(i1) there exists a constant ro > 0 such that eXpe B0, ) — Bg(§,70) is a
diffeomorphism for all £ € M.

Fix such r¢ in this paper with ry < i, /2, where i, denotes the injectivity radius of
(M, g).Forany 1 < s < +oo and u € L*(M), we denote the L*-norm of u by

P 1/s
e = ( [ apavg) "
M

where dvg = /det gdz is the volume element on M associated to the metric g. We
introduce the Banach space

2

. M .zL‘H
XpgM)y=W= 72 (M) x W= a (M)
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equipped with the norm

[, )| = [Agull p1 + [[Agv] g1 2.1)
p q

Denote by Z* the formal adjoint operator of the embedding Z : A, ,(M) —
LPTI (M) x L9t (M). By the Calderén-Zygmund estimate, the operator Z* maps

Lijr1 (M) x quil (M) to Xp 4 (M). Then we rewrite problem (1.1) as
(u, v) = T*(fe(v), geW)). 2.2)

where f.(u) = ui_as, g.(u) = ul P and u+ = max{u, 0}. Moreover, by the
Sobolev embedding theorem, we have

IZ*(fe (v), ge )l < C”fe(v)”pTH + Cllge(u)lquH, (2.3)

and

Xpg(M) = WP (M) x WH' (M), X, (M) = L2 M) x LX(M).
(2.4)

Let x be a smooth cutoff function such that 0 < x < 1in R*, x = 11in [0, ro/2],

and x = 0 out of [rg, +0o0]. For any & € M and § > 0, we define the following
functions on M

(Wi (x), Hs g () = (x (dy (x. £)8" 7T U1 (6™ exp; ' (),

_N_ _ _
X(dg(x,£)8” 7TV o(8~ " exp; ' (x))) 2.5)
and
4 . N _
(W5 £ (x), P £ (x)) == (x(dg(x, )5 a+1 Wi o8 ICXPg (),
_N_ _
X(dg(x,£)87 71 @ (87" exp, ' (x))),
fori =0,1,---, N, where (\I/i,o, CI>’i’0) is given in Lemma 2.4.
Forany e > Oand? = (11,12, - - , tx) € (RT)X, we set

_ 1
§=(81,80,--,8) € RO, 8, = [et;, 01 <tj <—, (2.6)
01

for fixed small o1 > 0. Moreover, for g2 € (0, 1), we define the configuration space
A by

A ={(5,§)15= (81,82, ---,80) € RN, E= (&1, &, , &) e MK,
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dg(§j.En) = 02 > 2rg for jm =12, kand j 7ém}.

Let V5 ¢ and Zj z be two subspaces of &, 4 (M) given as

_ i i - -
yayg = span{(\llsj’gj, @51,,5]_) :i=0,1, ,Nand j =1,2, ,k}
and
Zie = {(,®) € X, (M) 1 (W, @), (¥}, Df )y =0
fori=0,1,--- ,Nand j =1,2,--- ,k},
where

(s v), (@0 ) = / (Ve - Vot + Vgu - Vo)dvg + / (hus + hvp)dv,
M M

for any (u, v), (¢, ¥) € X 4(M).
Lemma 2.7 There exists &g > O such thatforanye € (0, £9), Xp g(M) = V5 : ®Z5 ;.

Proof We shall prove that for any (¥, ®) € &), ,(M), there exists unique pair

(\IJ()’ q>0) S Zg’é and COCfﬁCientS €10, Cl1, """ s CIN,C20,C21, """ , C2N, " , CkO,
Ck1, - - , kN such that
N k
(W, ®) = (W, Do) + D Y cim (W . @ ). 2.7
1=0 m=1

The requirement that (Vg, ®¢) € Zg’ E is equivalent to demanding

/ (VoW - Vo®f o + V@ VoW o +hWO) o +hdW) . )dv,

! ! i
+h¥} e Vi )dvg 2.8)

m s %—m

foranyi =0,1,--- ,Nand j =1,2,--- ,k.

We estimate the integral on the right-hand side of (2.8). By standard properties of the
exponential map, there exists C > 0 such that for any & € M, 8§ > 0,z € B(0, ro/d),
and i, j, k € N, there hold

185¢(2) — Euct’| < C81zP, and |g,()(Ts.0)f;)| < €8zl (29)
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where g5¢(z) = expg g(8z) and (Fg’g){?j stand for the Christoffel symbols of the
metric gs ¢. Taking into account that there holds

2

A, =g —(T )k.i (2.10)
85, gﬁ,f 8,8)ij 97k ’ :

0z;07;

by Lemma 2.4 and dg(§;, &n) > 2r¢ for j # m, we have

I ' / ;
/Vg‘ys,,l,gm - Vg @, ¢ dvg =8 jm / VeWs, ¢, - V@5, o dvg

M M

=0jm / Vs e (X3 LI’{,o) * Vs e (X3 q)il,O)dZ

B(0,r0/8;)
-1 i
B(0,r0/85)
—1 ;
= p8l181m f X82/ VIITO (4311’0)2dz + 0(8?)7
B(0,r0/85)
.11

and

1 i 1 [ 2 1 i
/h\ysnzqgn7q>l5jvéjdvg =djm / h‘l’s,,gj ¢3jygjdvg = 5.im5j / Xafhéj,éj\y1,0®a,0dz
M M B(0.r0/3;)

AD!
1,0 =i
=} [ Xghs St 0] e o) =

B(0,r0/8;) 1,0
(VO )2
x / Xyohs, &, ——ro—dz + 0(62), 2.12)
! quqo
B(0,ro/3j) ’

where X8, (x) = x(3;lz]) and hg_/,g’:_/. () = h(expsj (6;2)). Similarly, we have

. 1,
/ng)ém’sm . Vg\pé.j’sjdvg = qsllajm / Xazj UKO (\I]iyo)zdz + 0(83)1

M B(0,r0/8;)
(2.13)
and
. (V\I’i )2
I 2 1,0 2
/h(l) m,gmq/(lsj,gjdvg = Silsjmgj / X(S%/’l(;j’gj ?dz +0(5j). (2.14)
M B(0,70/8;) PYi0
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By plugging (2.11)—(2.14) into (2.8), we can see that the coefficients cj;,, are uniquely
determined for / = 0,1,--- ,N and m = 1,2,---,k. By virtue of (2.7), so is
(o, @o).

On the other hand, yg’g and Zgyé are clearly closed subspaces of X, ,(M),
Therefore, they are topological complements of each other. O

3 Scheme of the Proof of Theorem 1.4

We look for solutions of system (1.1), or equivalently of (2.2), of the form

k
(e, ve) = Wiz +Voiz Mg+ Pope) Wiz =D W,
j=0
k
Hse=D Hs.e. (5.8) €A, G.1)
Jj=0

where § is as in (2.6), (Ws;.&;, Hs; ¢;) 1s as in (2.5), and (\ps,t_,é’ d>8,t—’§) € Zgyg. By
Lemma 2.7, X, ;(M) = yggé D Zg’g. Then we define the projections Hg)g and l'ISLé

of the Sobolev space &), 4(M) onto Vs ¢ and Zj ¢ respectively. Therefore, we have
to solve the couples of equations

5z [(Wg’g +V, 78 Hse+ q)g,;,g) - I*(fs(HS,é +&,.78). 8Ws g + ‘I’g,;‘,é))] =0,
3.2)

and

My [(Ws,g + Wi Mg+ Oorg) — T (fe(Hip + D7 p) 8 Wsg + \Ifg,,-,g))] =0.
(3.3)
The first step in the proof consists in solving equation (3.3). This requires
Proposition 3.1 below, whose proof is postponed to Sect. 4.

Proposition 3.1 Under the assumptions of Theorem 1.4, if (5,€) € A and § is as
in (2.6), then for any ¢ > 0 small enough, equation (3.3) admits a unique solution
(W, 78 P, 78) in Z5 g, which is continuously differentiable with respect to tand &,
such that

(W78, Pp72)ll < Cellogel.
We now introduce the energy functional .7, defined on X, , (M) by

Je(u,v) = / Veu - Vovdug +/huvdvg
M M
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l 1—
/ UP+ Dté‘dvg

_p—i—l—ozs
M
_;/uqﬂ—ﬂsdv .
qg+1-— e §
M

It is clear that the critical points of J; are the solutions of system (1.1). Moreover,

ﬂ(u, V) (@, V) = /(Vgu -V + Vv - Vep)dvg + /(huw + hvp)dvg
M M

—/uq_ﬂa(pdvg—/vp_“sl//dvg,
M M

forany (u, v), (¢, ¥) € X} 4(M). We also define the functional Te t RO MK —
R

et By = Te(Wsg +V, ;5. Hs g + @, 2). (34

where (W z, H; ¢) is as (3.1), (W @, ; ¢) is given in Proposition 3.1.

e1,E0
Definition 3.2 For a given C!-function ¢, we say that the estimate ¢, = o(e) is

C!-uniform if there hold @ = o0(e) and Vg, = o(e) ase — 0.

We solve equation (3.2) in Proposition 3.3 below whose proof is postponed to Sect. 5.

Proposition 3.3 (i) Under the assumptions of Theorem 1.4, if § is as in (2.6), for any

& > 0 small enough, if (t,&) is a critical point of the functional J,, then (Wg’g +
Vi Hg’g + dJE,t—’é) is a solution of system (1.1), or equivalently of (2.2).
(i1) Under the assumptions of Theorem 1.4, there holds

~ 2k _ =
JeOWs g, Hs ¢) =WL1 + c1e — cpeloge + Wi (1, &)e + o(e),

as e — 0, Cl-uniformly with respect to € in M* and to t in compact subsets of (RT)k,
where

o
T2 qr1?

Wi =3 a0 - Jiozp}. 3.5

j=1

and

“@= [<pLia1 * qL7Tﬂl) “(Griet 4 f )k
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NL1k< o B )

> \Grnz T qrng) e

C) =

with Ly, L3, Le, L7 are positive constants given in (1.6), ¢(§;) is defined as (1.7),
j=12,-- k.

We now prove Theorem 1.4 by using Propositions 3.1 and 3.3.
Proof of Theorem 1.4 Define J : (RT)F x M* — R by

k
JE&) =) fuj.£), with f(t;,&) = —Clogt; + Lap(&)t,,

NL;

where C = =t and Ly, L3 > 0 are given in (1.6). Since SJQ

(Gi + o)
is an isolated critical point of the function ¢(§;) with (p(éj.)) > (0, and set t;) =

Lo &0 (pc@o) , then t}) > OQand (t(.), & ?) is an isolated critical point of f(z;, §;). Moreover, by

deg(Vyp, By (£Y, p), 0) # 0 for some p > 0, we obtain deg(V, f, By (€Y, p), 0) # 0,
j= 1,2, ---, k.Hence, beemark 1.3, (t_o, 5_0) is a C!l-stable critical set of j where
10 =@, 1), 1)) and £0 = (&0, &), .-, £0). Using Proposition 3.3, we have

3,‘(8_1j:; - j)‘ + ‘ag(E_li - j)‘ — 0,

as ¢ — 0, uniformly with respect to & in M¥ and to 7 in compact subsets of (RT)¥.

By standard properties of the Brouwer degree, it follows that there exists a family of
critical points (£¢, £¢) of jg converging to (to 50) as ¢ — 0. Using Proposition 3.3
again, we can see that the function (u,, v;) = (W&s’ss W, e Hee g+ CD&Z%S) is
a pair of solutions of system (1.1) for any ¢ > 0 small enough, where §¢ is as in (2.6).

Moreover, (i, ve) blows up and concentrates at £9 at ¢ — 0. This ends the proof.
O

4 Proof of Proposition 3.1

This section is devoted to the proof of Proposition 3.1. For any & > 0, f e (RMX and
£ € MK, if § is as in (2.6), we introduce the map L,iz: 255 — Z5 defined by

L7V, @) = M| (W, ®) = T (f(H; 0. gl Vs W) | @)

It’s easy to check that £, ; g 1s well defined in Zj . Next, we prove the invertibility
of this map.

Lemma 4.1 Under the assumptions on p, q and N of Theorem 1.4, if (5,€) € A and
8 is as in (2.6), then for any ¢ > 0 small enough, and (¥, ®) € Zg’g, there holds

£, 76(¥, @) = ClI(Y, D),
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where L, 7 £ (W, @) is as in (4.1).

Proof We assume by contradiction that there exist a sequence ¢, — 0 as n — +00,
On,&n) € Aty = (tins tons -+ - S kn) € (R+)ka &n = G, 6, &) € Mk, and
a sequence of functions (¥,,, ®,) € Z(S-n g, such that

”(\I"n, q)n)” = 11 (lpny q>n)|| — O asn — +00.

” Enslns gn

Then || W, [lg+1 < C and || @, p+1 < C.
Step1: Foranyn e Nt and j = 1,2, -+, k, let

@ (1), B () = (X Bjulx D8] Wi (expy,, (802)). X (Bjnlx)S L Dy (expy,, (8jux))).

where x is a cutoff function as in (2.5). A direct computations shows

~ B2t A Pl
||A\IJnH Tt < |8;.1n AlI/n(expEjn((Sjnx))I P dx
L P
( B(0,r0/8n)
= / S5 N|8]n q+1A\IJ (eng (y))' P dy
B(0,r0)
ptl ptl
= / |qujn| 4 dvnglAg\yn| p dvg <C,
Bg(gjn’ro) M
and
q+1 L
q p+1
[a®a] 40 < / 18777 AD, (expg,, (8;0)] 7 dx
L9 RN

B(0,r0/8jn)
N2 Eal
= / 8 18, " Ay (expg, ()| ¥ dy
B(0,r0)
+1 +1
= / |qu>,,|quvg=/|qu>n|q7dug <c.
Bg(§jn.10)
Hence, (\IJn, <I>y,) is bounded inX), q(RN ). Up toasubsequence there exists (\IJ <I>) €

Xpg®RY) such that (B, ®,)— (¥, ®) in X, RY), (¥,,d,) — (¥, P) in
L (RV)x L (RN)forany (s, 1) € [1,¢g+1]x[1, p+1], and(\IJn,QJ,,) — (U, D)

almost everywhere in RV . For convenience, we denote (P,, K,,) = sn g v, ©,).
o et A0 1 N 0 .1 N
Furthermore, by (P,, K,) € Z(Sn,én’ there exist ¢}, C1,,s =+ * 5 Clyy» Cops Cops = ** 5 Cos
0 .1 N
“s Chy» Cpns *** » Cpey, SUch that

Yy, @) — I*(fg/n (Hg_mg'n)q)n’ g;n (Wg_mgn)an)
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N k
= (Pn’ K}’[) + Z Z C’lnn (lpémnagmn’ q>émn»§mn)’ (4.2)
=0 m=1
which also reads
N ! 1 : N
—AV, = f, (Mg £)Pu — APy _120 _lcmnA\ySmn,Smn’ in RY,
N m—k “4.3)
—AD, =g, W5 2 )W —AK, — Y Y cﬁnnAcblgmmsmn, inRN.
[=0m=1
Using (¥, ®,) € Za-"’%:n again, by an easy change of variable, fori =0,1,--- , N

and j =1,2---,k, we have

0= /(vg\pn Ve, o 4 Ve VoWl h WD h®, W dy
M

__N

N-2 p+I i
= 5 Ve, Wn(exDg,, (8ju2)) - Ve, (Xa®f )
B(0,r0/8n)

N—2— N )
+8;, Ve, Bulexpg,, (3jn2)) - Vg, (a¥ o)
N— .
85, " h(expe, (8jn2) W (eXPg,, (82 n P
N—2 '
+ ajn o h(expgj,l (SjnZ))q)n (expgjn (61."Z))X"\Ili,0j| dz
= / Ve Un - Vo, tn @' o) + Ve, @ - Ve, Gn ¥} )
B(0,r0/8jn)

+ 85, ha 0, @ + sznhn%n‘lli,o}dz,

where g,(z) = exp;, 8(8jn2), xn(2) = X(8;nlzl) and hy(z) = h(expg, (8n2))- By
Lemma 2.4, passing to the limit for the above equality, we obtain

/ (pVio @ 0@ +qUiy Wi (T)dz = / (VI - V& o+ VP - VWi ()dz =0.
RN RN
(4.4)

Step 2: Forany [ = 0,1,--- ,Nandm = 1,2,--- ,k, ¢}, — Oasn — oc.
For any n € N, since (¥,,, ®,) and (P,, K,,) belong to Z&,E}’ multiplying (4.2) by
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(ngmgjn, A £,),0<i <N, 1< j<k, using (2.11)~(2.14), we have

jnsSjn

- / (fg/” (Ha;laé;z)(bn(bgjnssjn + g‘én (WB;zaE;t)‘Ijnleéjnssjn)dvg
M

N
=0

k
1. 1
Z cin,,6,~18jm / (px,?VfO (dD’LO)2 + qx,%Uﬁo (\Ili,o)z)dz + O(ep).
m=1 B(0.70/8jn)
4.5)

Moreover, by (4.4), we have

/ (fg/n (H(S_ngf_n)q)n (ngnsgjn + g;n (Wls_nsé—n)\pn\llféjnv%‘ju)dvg
M
—1-ag, - —1—-Be, ~
:/ (([7 _agn)thgn o ¢"®f§_m,$jn +(q _'BS")W;,%; pe \D”\péjmfjn)dvg
M

k
_ p—1l—ag, i q—1—Ben i
- Z / ((p - agn)Hsmmgmn q>n d)isjnvsjn + (q - ﬁgﬂ)WamnsEmn \Iln\péjn-éfjn)dvg
m:lM
-t — -
e B [ A e O T M R
B(0,ro/8jn)

N_N(q—t;Sn)_Ll | Ll .
+@—Bendy, T T U0 T P sty %(expsj,,<81nz>>‘lfi,o]dz

N Mpzgen) 1—cen G, '
:Sjm / [(P - Ofsn)‘sjn ’ " (a1 ,0)17— e, (Z)q)lly()
B(0,r0/8jn)

_N@—Ben) _ _N_

N ~ .
+g— e, T T U0 P, 0w |z

—8jm /(p\/]’?(;ldi'"l,o5 + quq’al\lfi’o\T/)dz =0, asn — +4oo. 4.6)

RN

It follows from (4.5) and (4.6) that forany ! = 0,1,--- ,Nandm = 1,2,--- ,k,

!

Cun — 0asn — oo.

Step 3: (\T/, 515) = (0,0). Forany j = 1,2, --- , k, there hold

- Np.
AW, =877 [xn AW (expg,, (8n2)) + Vixn - VW5 (expy,, (87nx))
+ v, (eXng,, (8jnz))AXn],

and

~ Ng.
AD, =87 [xn APu(expg,, (8n2) + Vit - VPu(expg,, (8nx))
+ CDn(engjn (SjnZ))AXn]‘
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Thus we obtain a system of equations satisfied by (\Tfn, 5n). For any (¢, ¢¥) €
CSO(RN ) x C§° (R¥)and j = 1,2,--- , k, by the dominated convergence theorem,
we obtain

Np N
. ) S| p—l—oae
im (p — ae)s in f (Xn8;,"" V10) Xn®n(expg,, (8jn2))pdz

{zeRV:0(2)#0}
_1 ~
=p f VIl Pedz,
{xeRN:0(2)#0}

and

N
_N_ 1
Jim (g — Be)s ;f;‘ / (8" U10)" ™ P g W (expe,, (870 2)) Wiz
{zeRN:y (2)#0)
_yq f Ul Tydz.
{zeRN 9 (2)#0}
Using (4.3), |(Pn, Kp)|| — O, cﬁnm - Oasn — ooforanyl/ =0,1,---, N and
m=1,2,---,k, we deduce that (W, ®) satisfies
—AY = pV/'®, inRN,
“AD = quq,gl{fl, in RV,

This together with (4.4) and Lemma 2.4 yields that (¥, ) = (0, 0).
Step 4: | Z*(f., (Hz, )P, g, Wy, 2 )Wa)l| = 0asn — oco. By (2.3), we know

IZ*(f:, (Hs, £)Pn, g0, W, £)W)ll < C|| f1, (Hg, &) Py ||th1 +C|lgr, W, £, ||qu1

For any fixed R > O and j = 1 2,---,k, by the Holder inequality, ®, — 0in

p+l

Ly (RY) and ¥, — 0in L) '“”" (RM), we have

L
172,06, )%l s

“l—as, ptl
= / |(17—(X811)H§h§;1 e q)n| P dvg
M

Nozan

N
o “l—as, ST ptl
(p—ae)xh VST 8 I @y (expe, (8jn2))| 7 dz
B J $/n

B(0,r0/8jn)

p—2—aey,p—l—ae, ¥ s
|(p — aen) xi vl ,(2)| 7 dz

B(0,r0/8jn)

k
20

k Noza,,
20
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p=l-aen I+aen
P P
1 ~ p+l
=C vl dz | @ (2)| TFeen dz
\B(quo/sjn) 0,r0/8n)
14+aen
P
~ Pl Ww
<C |q>n(z)| T+aep + Csp r -0, as 1 — oo,
\ﬁ(O,R)
and

g+l

Ik, Wi, % Lo
q

e g1
:f ltq —ﬂsn)Wg-mé Peng, |3 dv,
M

N
o —1—Bey 71T g+l
(g — Bewxd >0 P 8 T W (expg, (8702))] T dz

j=1 B(0.r0/8;n)
k NBen
o N—Ben v g+l
=35, (g — Bewxd > UL TP, 0 dz
j=1 B(O.ro/8jn)
q—1-Pen 1+Ben
q q
1 ~ q+1
<C Uit'dz W, (2)| +#en dz
0,r0/8jn) 0.r0/8jn)
1+Ben
Lepn
~ g+1 [(N—2)g—2](g—1—Ben)
c |V, (z)| T+Pen dz + Csp & , ifp > ,
N -2
B(0,R)
1+Ben
~ q+1 ! [(N*3)4I*32](q*1*/38n) ) N
1€ |, (2)| T¥Fon dz + Cep a , ifp= ,
N-2
B(0,R)
1+Ben
q
~ g+1 Nplg—=1—Ben)
gl - ,
C |V, (z)| HPen dz + Ce, , ifp < .
N-2
\B(0,R)

—0 asn — +o0.

From the above arguments, we get || (V,,, ®,)|| — 0asn — +o00, which is an absurd.
Thus, we complete the proof. O

For any ¢ > 0 small enough, 7 € (R+)k, and é e Mk if §isasin (2.6), then equation
(3.3) is equivalent to

LoV, @) =N ;:(V, @) +R, ;5
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where

N iz(W, @) = Hg{gf*[fa(Hg,g + @) — fe(H;52) — fo(H5 )P, 8 W5z + W)
—8Wsg) — gé(Wg,g)‘If], 4.7

and
Reig= Hs%g [Z*(fe(Hg,g), 8Ws ) — —Wsz, Hg,g)]- (4.8)

In the following lemma, we estimate the reminder term R, ; E-

Lemma4.2 Under the assumptions on p,q and N of Theorem 1.4, if (6,&) € A and
38 is as in (2.6), then for any & > 0 small enough, there holds

IR, 7zl < Cellogel,

where R&t—é is as in (4.8).

Proof By (2.3),_We know there exists C > 0 such that for ¢ > 0 small enough,
7 € (RM)¥, and € € M¥, there holds

IRz ell < CfeHs ) + AsWig = hWsg] oo + Cllae W5 ) + AgHs e — Mg

k
=C Z “ Je(Hsj ;) + BgWsj6; — hWs, g ” el
j=1
k
+C Z ” 8e(Ws; 5;) + AgHs; gy — hHs, g ” ﬂqil
j=1

k
= CY (I +1I).

j=1

By an easy change of variable, and using Lemma 2.4, forany j = 1,2,--- , k, we
have

a IYTL:? p—ac(, p—ae | 2 ptl
;" =C / ’5; Xs;  Vio |7 dz+C / |X5/Agaj.sjU110‘ P dz
B(0,r0/8;) B(0,ro/8;)
ptl pr1
+C / |8?U1»0Ags,.ij<3j| rdz+C / |8jvgs_,.si X8 Ve, Uro| 7 dz
B(0,r0/3;) B(0,r0/3;)
5 ptl
+C / |5jha_fX5,U1.0 P dz
B(0,r0/5))

Nag ptl
S B e O (O R

B(0,r0/3;)
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P pae p 2
+ ‘(5;‘ X5, —xs)Vio| 7 dz
B(0.70/57)

P+l

+ / |xs; (Ags; ¢, Uro — AguaUr0)| 7 dx
B(0.70/5;)

P ptl
+ f }BjUI,OAggjygj X8j| P dZ
B(O.ro/ﬁj)

p+l
P dz+

- / 18 Vs, 2, + Vi, U0
B(O.70/8))

) ptl
"th&.f’éj x5;U1,0 ’ ? dz]
B(0,70/8;)

=:C(A1 + A2 + A3 + Ay + As + Ag),

where g5, ¢;(2) = expgj 8(8;2), x5;(z) = x(8jlz]) and hs; ¢;(z) = h(expg,(8;2)).
We are led to estimate each A;, i = 1,2, -, 6. First, for any fixed R > 0 large
enoughand j = 1,2, -, k, by Lemma 2.1 and Taylor formula, we have

- ptl ptl el
Ar=C / (Vo =Vl 7 dz=0 ¢ f |V11jgl logV, ¢ |dz
B(0,r0/8;) B(0,r0/85)
pl p+l 2t
=0@E7)+0|ev / |V1”’(;rllogVL(’)’ dz
B(0,r0/8;)\B(0,R)
r0/5j
ptl ptl No1_ =2t ptl
=0 P?P)+0|evr /r P dr | =0 7)),
R

as ¢ — 0, uniformly with respectto §; € M and ¢; € [a,b],0 < a < b < +oo,

(N-2)(p+1)?

where we have used the fact that N < , since p > ﬁ Using Lemma

2.1 and Taylor formula again, for j = 1,2, --- , k, we obtain
+1 +1
Ay = O(|810g8|p7)+0 |810g8|p7 / Vfgldz

B(0,r0/28;)\B(0,R)

+0 Vi dz
B(0,r0/8)\B(0,r0/28)
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r0/28;
p+1 +1
= 0(|810g8|]T) + 0<|£10g£|p7 / rN—l—(N—Z)(p+1)dr)
R
ro/8;
+ 0 / FN=1=(N=2)(p+1) 4,
0/23;

W-2p=2

(|slogs| v )+ 0(

),

as e — 0, uniformly with respect to §; € M and ¢; € [a, b]. Since N >

8, then

Ay < |£10g8| s . For any fixed R > 0 large enough and j = 1,2, - - - , k, it follows

from (2.9) and (2.10) that

r0/8;
ptl N—1— N=2(+D P+l .
0(ep)+0(sn /r , dr):O(e "), ifp >

R
ro/Sj

ptl ptl N—]— W=3(p+D Pl )
Az = 0(sﬂ)+0(sf’ , » dr):O(sP), if p =

R
r0/8;

p+l1 2p+2 p+1
0(5 + )+0(s = / N=1=(N=-2)(p+ 1)+ dr) _ 0(8'[—,)’ if p <
R

N .
N-2>

N-2°

N-2°

as ¢ — 0, uniformly with respectto §; € M and ¢; € [a, b], where we have used the
fact that N > 8 and p > 1. Since there hold |X§j| < C§; and |X§;| < CSJZ for any

j=12,--- k, we have

ro/d;
2p+1) Ne— V=2)(p+D) 2p+1) )
0(8 P r P dr) =0@E » ), if p>

r0/28;
ro/8;

2(p+1) Nel— N=3p+D 2p+1) .
O(s P r P dr) =0 » ), if p=

r0/28j
ro/d;

2p+1D) 2p+2 Aeth
O(ng / AN=1=(N=D(p+D+2 d) 0(5 » ), ifp <

r0/28;

Ay

N_2°

N

N-2

N=-2°
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and
ro/d;
p+l _1_WN=-D(p+D p+1 .
0(sp N1 v dr)zo(gp), if p > %5
r0/28;
r0/8;
Pl Ne—1— =2+ ptl . N
As = 0(s P r 2 dr)=0(8 P, if p=x=3;
r0/28;
r0/8;
p+l _1—(N— prl ptl
0({;‘ > / rN 1-(N=2)(p+D+ ? d}") — 0(8 P )’ lfp < %’
r0/28;

as ¢ — 0, uniformly with respect to §; € M and ¢; € [a, b]. Moreover, for any fixed
R > Olargeenoughand j = 1,2, --- , k, it’s easy to obtain

ro/éj
ptl ptl N—1— W=D+ ptl . N
O(e» )+0(s g r g dr) =07 ), ifp >y

R
ro/ﬁj

p+l p+l _1_(N=3)(p+D ptl
Ag = 0(sp)+0(sp /er » dr):O(sP), if p = 75

R
ro/Sj

ptl ptl (N 2p+2 ptl
0@ )+ 0(e7 / PN ) = 0 ), if p < 4%,
R

as ¢ — 0, uniformly with respect to §; € M and t; € [a, b]. From the above
arguments, we obtain /; = O(¢|loge|) forany j =1,2,--- , k.
Similarly, we can prove that

X3 FEq—pe qra-pe o
1 = / |87 %l P Wi~ Ul dz
B(0.10/3;)

nee ol
- ./ |6 x5, " = 15Ut 7 dz

B(0.70/8))
(el gl
+ / |X6,- (Ags, e, V10— ApucaV1,0)| ¢ dz+ / |8?V1,0Ag8jﬁéj xs;| 7 dz
B(0.r/8)) B(0.r0/8;)
4l gtl
+ / |8jvga_/-.gj X85 Vgé_,-,sj V1,0| ¢ dz + / |512-h5j,gj X8, V1,0| a dz]
B(0,70/8)) B(0,r0/8))

=: C(B1 4+ By + B3 + B4 + Bs + Bg).
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For any fixed R > O large enoughand j = 1,2,--- ,k,by N > 8and g > 1, we have

r0/3;
pant pant Ne1— (V=212 pant , N
0(8‘7)-‘;-0(8‘1 r q dr):O(sq), if p > y53;
R
r0/3j
qt1 g+l No1_ W=3)g+1)? paa , N
B = 0@4)+0@q r 7 d0=0@qx if p=
R
ro/d;
g+l g+l N1 LV=2)p=2)(g+D? g+l N
0@4)+0Gq r 7 m):owqyﬁp<ﬁ3,
R
and
ro/8;
+1 +1
0(|510g5\q7) + 0( / erl*(Nfz)(qH)dr) = 0(|£loge|q7), it p > 5
r0/28;
ro/8;
+1 +1
By, = 0(|810g8\q7) + 0( / rN_'_(N_3)(q+l)dr) = 0(\8logs|qT), if p= %5, N > 10;
r0/28;
ro/8;
+1 g+1
O(jetoge| T ) + 0 / N0 Gr) = O(lelogel T ), ifp < 4. N 2 12,
10/28;

as ¢ — 0, uniformly with respect to §; € M and ¢; € [a, b]. Similar arguments as
above, we have

ro/8;
past ot N =Dg+D o+l
&zowq)+0Gq r 7 dO:O@qL
R
r0/8;
2g+1) Ne1— (N=D@+D) 2g+1)
B4:0(8 q / r q dr)=0(8 q ),
r0/28j
ro/d;
q+1 Nf]f(N—l)(q-H) q+1
B5=0(8‘I / r q dr)=0(8‘1),
r0/28;
and
ro/8;
tl tl N—1_ N=D(g+D) g+l
&zowq)+0@q , 7 dQ:O@qL
R
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ase — 0, uniformly withrespectto&; € Mand¢; € [a, b]. Hence I1; = O(¢|logel)
forany j = 1,2, ---, k. This ends the proof. |

We now prove Proposition 3.1 by using Lemmas 4.1 and 4.2.

Proof of Proposition 3.1 For any ¢ > 0 small enough, 7 € (RT)¥, and & € M*,if § is
as in (2.6), we define the map 7, ; i Z5F > Z58 by

Tie(W. @) =L (N (W @)+ R, ;75).

N,

where £ .

set

P and Rs’;’g are as in (4.1), (4.7) and (4.8), respectively. We also

i,

B,z = {(¥, @) € Z5 1 (W, D) < IR, ¢},
where y > 0 is a fixed constant large enough. We prove that the map 7, ; g admits a
fixed point (W (o} ef, é). Therefore, we shall prove that, for any & > O small, there
hold:

() 7,76 B g(1) C B,z (1);

(ii) T iE is a contraction map on l’)’E 7 g(y)

For (z) by (2.3) and Lemma 4.1, for any ¢ > 0 small enough, and (¥, ®) €
BS,,—’E()/), we have

0,8

17, 2B, sz < CIN ; £ (¥, )] + CIIR, ;|
< C[IR, el + | fe(Hs g+ ®) = fo(Hs ) — f(H; )

Pl
P
+ [ geWsz + W) — g W5 6) — ge W5 )V || i] = C(IR, el +1+1D).

By the mean value formula, Lemmas 2.5, 4.2, and the Sobolev embedding theorem,
we obtain

I < ClI®N e < CIPIT < CYPT IR, 72177 < VIR, £l
P
and
CIWI e + CIWI3g Z IWs,e 195777 < IR, 61l ifq > 2,
II < 7 2+ j=
CIW S Ay e < VIR 7. ifg <2,
q
where we have used the fact that [|Ws, ¢, [l44+1 < +ooforany 1 < p < N—J“% < g and

j=12,---,k.Sowe have (i).

Similarly, by (2.3) and Lemma 4.1, for any ¢ > 0 small enough, and
(W1, @1), (W2, P2) € B, ;7 (y), we have

17, 76 (W1, @1) — T, 7z (W2, Do)l
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S ClIN 7 g(W1, @1) = N, 72 (W2, Do)l
< C[” fe(Hs g+ @1) — fe(Hsz + P2) — fi(H;52)(P1 — P2)

p+1
P

+ CleeOWs g + W) = 8: V5 +W2) = 8LOV; (W1 — W) 1 |
= CUII+1V).

By the mean value formula, Lemma 2.5, and the Sobolev embedding theorem, we
obtain

p—l—ae p—l—ae
1< (I + 1921 ) 191 = @2l
p—1 p—1

< CyP IR e IPTITH @) — o, 4.9)

and

—1-pBe —1-Be
C(||\I/1n‘{q,1,,éi§<q+n + ||\vz\|‘{q,l,§£<qm)|w1 — W2llg41
k
2— .
1V 1 AN g+ 192l g )9 = allgar 2 0Wsy g™ ifg > 2.
& j_
—1- 1- .
(w0 +||w2u" g )1 = W2l ifg <2,

l—ﬂs])(q+l) o ﬁf)(fﬁrl)
= p

Cya= = PE IR, 147 FE Wy — Wal + Cy IR, ;g lI1W1 — Wall, if g > 2,
Cya= PR el =P8 1wy — W, ifg =<2

IA

(4.10)

By Lemma 42, we know CyIIR,;¢ll, CyP~""* R, ;z|P~ 178, Cya~1-F¢
||R8’t—)§||" —1=B¢ < (0, 1). This proves (ii). Finally, by using the implicit function
theorem, we can prove the regularity of (W, ; z, ®, 7 z) with respect to 7 and &. Thus
we complete the proof. O

5 Proof of Proposition 3.3

This section is devoted to the proof of Proposition 3.3. As a first step, we have

Lemma 5.1 Under the assumptions on p, q and N of Theorem 1.4, if 8 is as in (2.6),
then for any € > 0 small enough, if (, ) is a critical point of the functional jg, then
(Wa,g +V. e Hse+ @8’,’5) is a solution of system (1.1), or equivalently of (2.2).

Proof Let (f, S) is a critical point of Jg, where 1 = (11, 12, - tk) e (RT)* and
E = (E1.&. . &) € ME Let E(y) = (exps, (b)), exp&(y ), s €XPg (y"))
y =04y 59 € BO,NE and §(7) = expg; (/) forany j = 1,2, k,
then E(O) = S;‘ Since (7, 5) is a critical point of jg, forany m = 1,2,--- ,k and
l=1,2,---, N, there hold

TiWs g+ Wiz Hs g+ Poiz) (@, Wsg + 0, Ye iz 0, Hs g + 0, Pe 7 5) =0,
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and
T Wsz+Vere Hsz + @ 72) (0 Wiz + 0V, iz dnHs s +9,md, ;) = 0.

For any (p,v¥) € &, (M), by Proposition 3.1, there exist some constants
€105 Cl1s " » CIN5 €20, C21, " ** s CIN» ***» Ck0> Ck1, * * * , CkN Such that

T Wi+, 15 Hse + @700 9) =Y Y cim{(¥f, . P, ). (0, 9),,-
[=0 m=1

Let 95 denote 9;, or 8ylm foranym=1,2,--- ,kandl =1,2,--- , N. Then
VAR
= js/(WS,é(y) Wi Msgo) + ‘I’s,r‘,é(y>)(3sWS,§<y> 0¥, 7 £ 6 M58y
+ 85@8,5,5@))
= <<WS,§(y> +Weico) Mg + q%,z:ém) - I*(fs Hs0)
@ik 8s Wiy + ‘I’e,f,é(y)))v

( Wik +05¥e iz Hs gy +0:® srs<y>>>

N &k
i _ _ _
=22 i <( 5;.6,(v)" qjéj,ifj(yj))’ (ast,ay) 0¥ 75 5 M58y
i=0 j=I
+ 3Sq’e,z’,§<y)))h' (5.1)

We prove that if we compute (5.1) at y = 0, then for any ¢ > 0 small enough, there
holds

¢ijj=0, foranyi=0,1,---,Nandj=1,2,--- k.
Since (7, £) is a critical point of 7, then
05 Je (1, E(3))]y=0 = 0, (5.2)
Foranym =1,2,--- ,kandl =1,2,---, N, we can easily check that there hold

1
(atmwgsé’ athg’g) = _E(\Ijgmyém ’ q)gmsSm)’ (53)

and
1
(B Ws )| y—r Dy s 60| ,—) = E(‘I’ém,sm + R, D5 . +Ry), (54)
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where || (R1, R2)| = 0(8%) ase — Oforall ¥ € (0, 1). Using (2.11)—(2.14), we have

k
22D il (e @) (8, Wag. 01, M5 ),

i=0 j=I
Nk
1 0 0
== 5 2 2 cuil(¥5, 0 @) (%5, 60 506
Mi=0 j=1
Nk
1 2 yP=li50 (2 2 ra—1q0 |2
722 i78i08 m (P2, Ve (@007 +ax3, Ufy (W )?)dx + O e),
i=0 j=1 B(0,r0/8m)

(5.5)

N &k
Z Zcij((\p{lsj,%‘j’ q)gj,{-‘j)’ (8}'71W1§,§(}')|y=0’ 8}’2"7—18,%(,\’)‘)1:0))11

N k
1 _
=— "> cijbudjm / (Px3 VIS (@) 2 +qxd ULy (W )?)dx + O(e),

i=0 j=I B(0,70/8n)
(5.6)
and

N &k
ZZCU((\I](S £ CDSJ ) (as\ys,f,é(y)|y=0’ 8Scbs,f,§()‘)|y=0)>h
i=0 j=1

N k

ZZC 3 ‘I’l & (}I)iy =0’ ds q):sj £ (y/)\y:())’ (\I’s,f,é’ q)a,f,é))h’ 3.7

i=0 j=1

where x5, (x) = x(§mlx]). For any ¢+ € (0, 1), with the aid of Proposition 3.1, it’s
easy to check

ZZCU 01 W5, £ 0 Db ) (Ve Pezg))

i=0 j=1
N k

1 _N .
SZTZZCiijm(Haa(«S qﬁl‘yi,o(‘s_]”)h:] i e o 1 Vg @ . g
m =0 j=1

+ ||83(8_%¢>’i’0(5*1y))|5:1 “Wl-q*(RN)||Vg‘I’a,r‘,é||p*> + O(e*loge)
=o(?), (5.8)
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and

N &k
ZZCU A/ 5 g(\/)‘v =0’ ), 4)5 S,(vf)| —0) (\Ij .f,é’d)g,f,é))h
i=0 j=1

*m Z Z ¢ij8jm (“ Ay, ‘I’i,OH WLr* (RN) Ve @, 7 gllg= + ” Ay, q’il,o ” Wla* (RN) Ve W, i g ||p*)
i=0 j=1

+0(*%loge) = ()(81?). 5.9

Therefore, by (5.2) and (5.5)—(5.9), we deduce that the linear system in (5.1) has only
a trivial solution when y = 0 provided that ¢ > 0 small enough. This ends the proof.
O

In the next lemma, we give the asymptotic expansion of J,(Wj ¢, H; z) ase — 0
for (8, &) € A, where § is as in (2.6).

Lemma 5.2 Under the assumptions on p,q and N of Theorem 1.4, if (8,&) € A and
8 is as in (2.6), then there holds

2k o
%(qug, Hg’g) =NL1 4+ c1e — creloge + Wi (t, E)e + o(e),

ase — 0, C'-uniformly with respect to £ in M* and to t in compact subsets of (RT)k,
where the function Vi (t, §) is defined as (3.5), c| and ¢ are given in (3.6).

Proof For any & € M, there holds

1

N1

1
do, =1 — —Scal Zro0t
o1 / o] N calg(8)r™+ O@r™)

dB(&,r)

as r — 0, where wy_; is the volume of the unit sphere in RY. Furthermore, by
standard properties of the exponential map, the reminder O (r*) can be made C!-
uniform with respect to £&. Under the assumptions on p, g and N of Theorem 1.4, we
can compute

k k
[T W) 93 )
j=1 j=1

M

—Z/v Ws, &, - VoHs, ¢,dvg

i=ly

k
|
-3 / Vo e Uno Vs, o Vio(1 = = Sealy €)s31al + 0641zl )de
I=1B(0.r0/28))
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+ Vgaj,gj (X(Sj Ul,O) . Vgaj,gj (X(Sj VI,O)
B(ro/8;)\B(ro/28;)

1
x (1= = Seal )81z + 0@H1zl") )

1
(Z [ / Vs U0 - Vs e, Vl,o(l — —Scaly(§)832* + 0(5§|z|4>)dz

Jj=1 RN

1
Vas, e U1 Vs o, Vio(1 = o Scal 6831 + 0}lz1*) ) dz

B<(0,r0/26)

+ Vs, e (X8;U1,0) - Vs o (X6; V1,0)

B(ro/8;)\B(ro/25;)
1
x (1= o Sealy €)8 127 + 0@}zl )z

k
LoScaly(E)
kL =Y {#53 +0(8J2-)], (5.10)
j=1
d k
() (5 )
M Jj=1 Jj=
LyScal, (&
_ { 2Scalg®;) 8 +0(3; )} (5.11)
5 3N
j=1
and
k k k
/h(ZW%EJ(ZH&f«&)d% ZZ/”W%@H‘S/‘@"I%
i =t j=1 J=134
k
= Z {65 / h,s/.,gj U1,0V1‘0(1 + 8?|z|2)dz - (S? hﬁj,s,- Ul,()VI,O(1 + 5?‘Z|2)dz
=t g B€(0,70/26))
+8 sy e 13, UroVio(1 + 83121z}
B(ro/8j)\B(ro/26;)
k
ZZ{Lgh(Sj)Sz—O—O((Sz)} (5.12)
(5.13)

k
/ ZW(; 5] Zng,gj)dug}=Z{2L3h(§,-)a -+ 0(8;8))},
j=1 =1

j=1

S|~

M
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as & — 0, C'-uniformly with respect to & in M* and to 7 in compact subsets of (RT)¥,
where g, ¢;(z) = expg, 8(8;2), xs;(2) = x(8;lz]), and hs, &, (2) = h(expg; (8;2))-
Using the Taylor formula, we have

k
p+l—ae 1 B
_— — - pt+l—ae
p+1—a€/(zH8 51) dvg_zp+1_a8/H8/,§j dvg
j=1 M
H]Y  H]Y log Hs ¢
= Z Hp+1dvg +as 8.8 . MNav + o)
i p+1 (p+D P
B M
: 1
1
Z{p+1 / viy (1 - aScalg(sj»)zs§|z|2+0(3;¥|z|4))dz
j=1 RN
1 1 1
N p+1 VIIT(-)F (1 - a.gcalg@j)%z-lzl2 + 0(8§\z|4))dz
Be(0,r0/28)
1 1
p+1 5pj+1 Vfoﬂ <1 - @Swlg(éj)@?lzlz + 0(8?|z|4)>dz
B(ro/8j)\B(ro/25)
e p+1 2 2 ae ol -
+m/‘/l,0 (1+6871z17)dz — Gri2 Vio (1+8j1z%)dz
RY BE(0,r0/25)
as IR -
ETESIE x5, Vi (L+8]1z7)dz
B(ro/8;)\B(ro/25;)
e Pl — 7T 21,2
T o1 Vio log (5j Vio) (14 87121%)dz
RN
ae p+1 *,,% 2 2
+ Pl Vio log (5j Vio) (14 87121%)dz
Be(0,r0/25,)
ae p+1 p+1 - 5
Tl Vi oz (1,8, " V10) (14 1) dz + 066 |
B(ro/8;)\B(ro/25)
k
kL kL a kLgo L4Scaly(&; NL«
= e e Z{* y g@’)é? ! 2810g8j+0(8J2-)},
(5.14)
and
d 1 k p+l—ae
e | (me)
M=
k /
L4Scal, (& NLjad'.e
= Z L4 g@/)a_,ﬁ} 2’ +0(8;8)) (5.15)
o 3N(p+1) (p+ 1)2s;
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as & — 0, C'-uniformly with respect to & in M and to 7 in compact subsets of (RT)~.
Similarly, we can prove that

q+1—ﬁs/(zw‘s 5/) " dvg

k
kL kL kL LsScal i NL
_ L 1/9287 7ﬂ8+2{7 5 g(S,)Sjg 1/32

g+1 (g+1) q+1 6N(g + 1) (g+1)

elogs; +o(5§)},
(5.16)

and

k —
i [ (o))
M

Jj=1

k /
_ _ L5SCalg(e’;'j) o NL]ﬂ(Sjg .
_Z{ NG D) 8,8 + Py +o(8,5j)}, (5.17)

as & — 0, C'-uniformly with respect to & in M¥* and to 7 in compact subsets of (R1)*,
where we have used the fact that N > 10if p = N v and N > 12if p < L . From
(5.10)—(5.17), we conclude the result. O

We now give the asymptotic expansion of the function js defined in (3.4) as ¢ — O.

Lemma 5.3 Under the assumptions on p, q and N of Theorem 1.4, if (5,€) € A and
8 is as in (2.6), then there holds

Je(@, &) = J:Ws 5. Hs ¢) + o(e),
as e — 0, CO-uniformly with respect to & in M* and to t in compact subsets of (R*T)K.
Proof 1t’s easy to verify
Je(0.E) — T Wsg. Hs.6)

= f (—AWsz +hWsz — fe(H52)) P, 7 zdvg
M
+ ( — Ag'Hg’g + h'Hg’g — g8(WS,§))\De,z’,§dvg

+ (V qjet’;‘ Y q>81§+h qE s,t_,é)dvg

(Fe(H;, FtPere) — Fe(Hsp) — fe(Hs )@, 7.5)dvg

E\ To— < —
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- / (GeWs s+ Wo16) — GeOWs ) — 2 OW; )W, - £)dug,
M

u u

where Fy(u) = [ fe(s)ds, Ge(u) = [ g¢(s)ds. By the Holder inequality, Proposition
0 0

3.1, Lemma 4.2, and (2.4), for any ¢ € (0, 1), we get

/ (= AWs g +hWsz — fo(H; )@, ; zdlvg
M
= [ = AWsg + Wiz = fe (M50 o @z lpan = 0™,
/ ( — AgHg’E + hHg)g - gs(Wg‘g))\If&;,ga’vg
M
= [ = AgHsg +hHsE = geVs ) ant 19 g llg+t = 0(6™),

and

(vg\ys,t_,é ’ vg@e‘t_,é + h\pe,t_,gcbs,t_,é)dvg
M
< IVeW, 7 el Ve @, 2l + CIY, 7211201 D, 7 512 = o(e™),

as ¢ — 0, uniformly with respect to & in M* and to 7 in compact subsets of (RT).
Moreover, by the mean value formula, Lemma 2.5, (5.14), (5.16) and the Sobolev
embedding theorem, for any ¢ € (0, 1), we obtain

[ (Rt + 0,50 - Rz~ 1.0 90, ),

M
< C/Hgg‘*"“cpz -dvg+C/c1>1’“f°‘€dvg
M

&1, &,1,€
M
k
—1— +1— 20
< U, 721w D IHs, 10 " + CllO gl 70 = 0(e™), (5.18)
j=1

and

/ (G,S(Wg’g + ‘I's,f,é) — GS(Wg,g) — gg(Wgﬁg)‘I'&t—,g)dvg
M
q—1—Be\y,2 q+1-Be
< C/VV&é \I’w-’édvg-I-C/A\Ilm_’g dvg
M M
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1- 1-
< Ut g 32 W, 951 4 I 118 = oe), (5,19
j=1

as ¢ — 0, uniformly with respect to & in M¥ and to 7 in compact subsets of (RT)X.
This ends the proof. O

Next, we estimate the gradient of the reduced energy.

Lemma 5.4 Under the assumptions on p, q and N of Theorem 1.4, if (5,€) € A and
8 is as in (2.6), then foranym = 1,2, - - - , k, there holds

3y T (1, &) = 8y, Wi (7, E) + 0(e),

and set &(y) = (expg, (v, exps, (D). -+ . expe, (F)), ¥y = Ly 00 €
B(0, r)X, foranyl =1,2,---, N, it holds that

Oy Te (T, EG] g = dyp Wk ED)|,_g + 0(e),

ase — 0, CO-uniformly with respect to £ in M* and to t in compact subsets of (RT)K,
where the function Wi (t, £) is defined as (3.5).

Proof For any (¢, V) € X}, ,(M), by Proposition 3.1, there exist cjo, 11, - - - , C1n,
€20, €21, "+ C2N, "+ > Ck0> Ck1, - - -, CkN such that

T Wiz + 9, i Hse + @00 0) =D Y cim{(¥), &, D5, 2,)- (0. ),
- (5.20)
We claim that: for any ¢ € (0, 1), there holds
N k
3 el = 0" (5.21)

=0 m=1

Taking (¢, V) = (q/gj,éj, @éj’sj), 0<i<N,1<j<k,by(2.11)~(2.14), we have

M~

>

=0 m

Cim lI‘Iémé‘m ’ q)él11»§nl)’ (\pé_jsSj ’ q)g/f/))h
1

Mz

k
—1 i —1 i
S it jm / (P2 VL3 (@))% + ax ULS (Wi )?)dx + 0(e),

(=0 m=1 B(0.ro/8})

Il
o

(5.22)
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as ¢ — 0, uniformly with respect to & in M¥ and to 7 in compact subsets of (RT)¥,
where xs; (x) = x(§;]x]). On the other hand, it follows from (W, 7 (Dgy,—yg) € Zg’é;
that

TeWse+ W, iz Hoe + P i) (Vs e P )

_ / (— AgWsg+hWsg — fa(Hs,é))CDfsj,éjd”g
M

+ | (= AgHsz + M5z — ge(Wg,g))\Iféj,gjdvg
(fe (M5 + P, 10) — fo(H52)) D5, ¢ dvg

(8eOWVsz + W, 7 2) — 8:Ws.)) ¥, ¢ dvg

E\ E\ To—

= [ = 2eWsg +MWsg = fe(Hs )] ot 195, ¢, 51

+ | =AMz + Mz E — ge W5 a1 195, ¢, g1

1—
+ ClIPS, g, 1P gl et leHa o
j_
i p—ue
+ C“q)isj,gj ||p+l ||<ng,§ l (p—ae)(p+1)
p
k
1_
+ OIS, g g W gl g > W 1857
j=1
+CIWE ¢ g1 1Y, 1 e = 0(e”), (5.23)
q

as ¢ — 0, uniformly with respect to Ein M* andto 7 in compact subsets of RHH%,
where we have used the fact that ||\Ilgjy§j lg+1 < +ooand | d)gj’éj | p+1 < 400 forany
l<p=<f*2<gi=01,- ,Nandj =12 k From(522) and (5.23),
we prove the clalm

By (5.3) and (5.4), we can compute

3y, T (T, E) — 8y, Wi (7, E)
1

0 0
==5" (f (= DY, 6, + Y5, 6, = F(H3 PS¢, )P, 72dvg
m

M

0 0 0
+ / ( - qu)(smgm + hq)(sm,é — gé\(WS’é)\yam’%-m)\pg’l”édvg
M
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- / (fe(H5e + @, 75 — fe(Hs2) — fl(H5 )@, ;)Y & dvg

M
—/(ge(Wg,g+‘1’£’;’§)—85(Wg,§) Vs )Y, i2) Vs, gmdvg)
M
+ T Ws e+ Vi Hs s+ D760, Y, 7500, P, 7 £), (5.24)

and

oy Te (B, EG g = dyp Wk B EON g

1 1
=8_</(_Ag‘pém,sm+h‘ysm,sm Fi (M5 6@, 6,) Pe 76V
m

l [ 1
+ [ (=A@, g, +hPs o — 8OWVs5 )W, ¢ ) Ve 7 2dvg

(fe(Hzz + @, 75) — fe(H52) — fi(H5 )P, 7 £) Dy, &, dvg

ms%-m

(8eWsz + W, 72) —8:Ws ) — e W5 )W, 72) V5, gdvg)

E\ 3\ E\

30
+ j (W + W, 5 & Hs +®s,t‘,§)(ay{" lIJ.s,t_,é(y)|y:0’ ayl’" CD«s,f,é(y) |y:0) +o(e2),
(5.25)

as ¢ — 0. Next, we estimate (5.24) and (5.25). By the Holder inequality, Propo-
sition 3.1, and the Sobolev embedding theorem, arguing as Lemma 4.2, for any
[=0,1,---, N, we have

l [ l
/ (= Qg 5, +hV5, o — fi(H5 )P ¢ )P, 7 zdvg
M
S || - Ag\yém)snl + hlIlé"l’ém - f;(H835)¢1m7sﬂ1

29
pet [ @, 7 gl p+1 = 0(e77),
D
and

[ [ 1
/ (= Ag®s, 6, +hPs, ¢ — 8OV5) ¥, 5,) e 2dvg
M
< || = 2@, ¢, + 1P, 6 — 8 W55, 6,

29
LH”\IJE)I_)%H({+1 = 0(8 )’
q

as ¢ — 0, uniformly with respect to & in M¥ and to 7 in compact subsets of (RT)X.
Moreover, by the mean value formula, Lemma 2.5, (5.14), (5.16) and the Sobolev
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embedding theorem, forany/ =0, 1, --- , N, we obtain
/ (feHs e+ @, 10) — fe (M5 0) — fi(Hz )P, 1 2) D5, ¢ dvg

—2— l
<C/Hp Q2@ dvg < CI, I, 1

p—2—owe 29
X Z 1 Hs; 6 1 (p—2—aeripsy oD = =o0(e™"),

and

/ (8eWsz + ¥, ;5) — 8 Wsp) — OV )W, 7 £) W5, &, dvg

M

C/Wfi] ek d”g"'C/‘l’q B, g, dve, (g >2,
<{ M s M

q—2—Be 1,2 ! ]
¢ / WS,E \pst gwﬁm Emdvg’ ifg <2,
M
—2—

CIwS, & g1, 7 £l +IZ||W5, e ;?jw WL o N, E”M, ifq 2.
<

CH‘I/am £ Hq+]||“p€t§”q+l Z 1Ws, ¢; |M’ ifg <2,
—o(e?),

as ¢ — 0, uniformly with respect to & in M* and to 7 in compact subsets of (RT).
Using (2.4), (5.8), (5.9), (5.20) and (5.21), forany l = 1,2, --- , N, we get

j(Was"“I’szssH + @, 750, Yo 75 0, P E)

_ZZCU \Ija EI ) (alm gté’atm t_é))h

i=0 j=1
N
= _chij((atm‘"yé_,-fj’almq%jf_,) (\Ij JE @ t_é))h
i=0 j=1
N k
= 0(819 Z Z |c,-]|) = 0(8219),
i=0i=1

and

js/( +\Ijst$’H + cbeté)( et,é(y) y=0’ ay;"q)a,t_,g(y)|y:0)
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k
ZC s ,gj’ q’fs,—,gj)’ (ay,’” ‘I’s,z‘,é(y)|y:o’ ay,'” q’e,t‘,é(y)’):o))h

I
™M=

i=0 j=1
N k . ‘
== > il (0¥, g [mo 01 Db g o) (Peiziy Pecon)hn
i=0 j=1
N k
20—-1 49—1
( ZZ|CIJ|)—08 T ),

i=0 j=1

as ¢ — 0, uniformly with respect to & in M* and to 7 in compact subsets of (RT).
Taking % < ¥ < 1, we complete the proof. O
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