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Abstract
We study Thurston’s circle packings with obtuse intersection angles on closed sur-
faces. By using combinatorial Ricci/Calabi flows and variational principle, we extend
Thurston’s existence theorem for circle packings with non-obtuse intersection angles
to those with obtuse intersection angles. As consequences, we generalize the exis-
tence and convergence results related to Chow-Luo’s combinatorial Ricci flows (J
Differ Geom 63(1):97–129, 2018) and Ge’s combinatorial Calabi flows (Combinato-
rial Methods and Geometric Equations, Thesis (Ph.D.), Peking University, Beijing,
2012, Trans Am math Soc 370(2):1377–1391, 2018, Adv Math 333:528–533, 2018).

Keywords Circle packings · Combinatorial Ricci/Calabi flow · Combinatorial Ricci
potential

Mathematics Subject Classification 52C26 · 53C44

1 Introduction

1.1 Backgrounds

In the pioneeringwork of Thurston [32], he introduced circle packings (on triangulated
surfaces with non-obtuse intersection angles) to construct hyperbolic metrics on a
closed surface. The main idea is to take the triangulation as the nerve of a circle
packing, fromwhich themetric structure on the triangulated surface can be constructed
via radii of circles and intersection angles between circles in the packing.
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We recall Thurston’s construction first. Let M be a closed surface with a triangu-
lation T = (V , E, F), where V , E, F denote the sets of vertices, edges and faces,
respectively. A circle packing is a positive function on the vertices which defined as
r : V → (0,+∞), vi �→ ri , i = 1, . . . , N , where N = |V | is the number of vertices..
Fix a triangulated surface (M, T ). Each circle packing r endows a metric structure
on (M, T ) as follows. Let E

2 (H2 resp.) denote the Euclidean plane (the hyperbolic
plane resp.) with constant Gaussian curvature 0 (-1 resp.). Using the cosine law in E

2

(H2 resp.), one can equip each edge {i j} ∈ E with the length

li j =
√
r2i + r2j + 2rir j cos�i j (1.1)

(li j = cosh−1(cosh ri cosh r j + sinh ri sinh r j cos�i j ) resp.). (1.2)

Thurston proved a three-circle configuration theorem, which reads as for each face
{i jk} ∈ F , the three edge lengths li j , l jk , lik satisfy the triangle inequalities, see
Lemma 13.7.2 in [32]. This makes each face in F isometric to a triangle in E

2 (H2

resp.). Furthermore, a triangulated surface (M, T ) could be constructed by gluing
these Euclidean (hyperbolic resp.) triangles coherently, i.e. along common edges. The
resulting surface has a flat (hyperbolic resp.) cone metric with cone points in V .
Obviously, this metric has no singularity on M −V (one should notice that there is no
singularity in the interior of each edges). The singularities of this metric are recorded
at each vertex i in V by the so called combinatorial Gaussian curvature (also called
discrete Gaussian curvature) Ki , which equals to 2π minus the cone angle at i . Denote
θ
jk
i by the inner angle at the vertex i in the triangle {i jk} ∈ F , then we can express
the combinatorial Gaussian curvature at i as

Ki = 2π −
∑

{i jk}∈F
θ
jk
i , (1.3)

where the sum is taken over all triangles with i as one of its vertices. Similar to the
smooth case, the following combinatorial version of Gauss-Bonnet formula holds true:

N∑
i=1

Ki = 2πχ(M) − λArea(M), (1.4)

where λ = −1, 0 correspond the two geometries, i.e., hyperbolic geometry H
2 and

Euclidean geometry E
2. Consider the curvature map K = K (r), where K varies as r

varies. In Euclidean background geometry, we concerns a particular circle packing rav

that determines a constant combinatorial curvature K (rav) = (Kav, . . . , Kav) with

Kav = 2πχ(M)

N

for the reason that the corresponding Euclidean cone metric on (M, T ) curves the
same way around each vertex.
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Fig. 1 The position relations of two circles

In hyperbolic background geometry, we concerns a particular circle packing rze
that determines the zero curvature K (rze) = 0 for the reason that the corresponding
hyperbolic cone metric has no singularities, and hence is a complete hyperbolic met-
ric on (M, T ). However, Thurston find that there are combinatorial and topological
obstacles (see [32], 13.6) for the existence of such circle packings rav and rze. In
fact, Thurston’s existence theorem characterized perfectly the image of the curvature
map K = K (r) by the information of the combinatorics T and the topology of M .
Thurston also suggested an algorithm to find particular circle patterns with polynomial
convergence rate. Inspired by Hamilton’s Ricci flow method, Chow-Luo [5] further
introduced a combinatorial version of Ricci flow, which is the negative gradient flow of
the Ricci potential. The flows can be used to deform the circle packing to a particular
one with exponential convergence rate. Similarly, the thesis of Ge [8] (or see [9, 10])
introduced a combinatorial version of Calabi flow, which is the negative gradient flow
of a more nature Calabi energy ‖K‖2 = ∑

i K
2
i . Since then, various discrete curvature

flows were introduced and studied. We refer the the readers to Luo [30, 31], Guo [23],
Glickenstein [21, 22], Ge-Xu [14, 16, 18], Ge-Jiang [11, 12], Lin-Zhang [28, 29].

1.2 Main Results

It is noticeable that the above work deal with circle packings with non-obtuse inter-
section angles, i.e. � ∈ [0, π

2 ]. The purpose of this paper is to study combinatorial
Ricci/Calabi flows under the condition � ∈ [0, π). See Fig. 1 for all possible arrange-
ments of the circles.

The idea originated from Huang-Liu [26] and Zhou’s [36] pioneering observation:

(HLZ): For each triangle {i jk} ∈ F , either �i j + � jk + �ik ≤ π , or

�i j + � jk < π + �ik,�ik + � jk < π + �i j ,�i j + �ik < π + � jk .

Under the (HLZ) condition, by a complicated calculation, Zhou proved that Thurston’s
three-circle configuration theorem (i.e. for each face {i jk} ∈ F , the three edge lengths
li j , l jk , lik satisfy the triangle inequalities, see Lemma 13.7.2 in [32]) is still valid.
Geometrically, the three circles at the vertices have a power center Oi jk , see Fig. 2.
Assuming (HLZ) andwithout further assumptions on�, the power center Oi jk may lie
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Fig. 2 A three-circle configuration

outside the triangle �viv jvk . This is the main obscure to extend Andreev-Thurston’s
rigidity results and Chow-Luo and Ge’s combinatorial Ricci/Calaib flow results. To
overcome this obscure, Zhou first introduced the following condition

(Z):Set Ist = cos�st for st = i j, jk, ik. For each triangle {i jk} ∈ F , there holds

Ii j + Iik I jk ≥ 0, Iik + Ii j I jk ≥ 0, I jk + Ii j Iik ≥ 0.

As pointed by Zhou, (Z) implies (HLZ). Thus under (Z) condition, Thurston’s three-
circle configuration theorem is valid, and the power center Oi jk is inside the triangle
�viv jvk .

Our first result says that Thurston’s existence theorem (i.e. the image of the cur-
vature map K = K (r) as a convex polytope whose boundary is characterized by the
combinatorics of T and the topology of M) is the same as non-obtuse intersection
angle case. Let FA be the sub-complex constituted of those t-simplex (t = 0, 1, 2)
that have at least one vertex in A, and Lk(A) is the set of pairs (e, v) of an edge e and
a vertex v satisfying (i) v ∈ A; (ii) both the two end points of e are not in A; (iii) v

and the two end points of e forms a triangle in F . We have

Theorem 1.1 Assume that� ∈ [0, π) satisfies (Z). InEuclideanbackgroundgeometry,
the image of the curvature map K consists of vectors (K1, K2, . . . , K|V |) satisfying

∑
i∈A

Ki > −
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA) (1.5)
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Fig. 3 Two adjacent triangles

for any non-empty subset A of V , where the equality holds if and only if A = V .
While in hyperbolic background geometry, the image of the curvature map K consists
of vectors (K1, K2, . . . , K|V |) satisfying

∑
i∈A

Ki > −
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA) (1.6)

for any non-empty subset A of V .

Remark 1 (1.5) was obtained by Ge-Jiang [13]. We restate here for completeness.

Thus the existence problem of a particular packing (such as rav and rze) transfers
to the problem whether Kav (zero resp.) is in the image of the curvature map K (r).
Recall C(r) = ‖K − Kav‖2 (C(r) = ‖K‖2 resp.) is the Euclidean (hyperbolic resp.)
combinatorial Calabi energy, and a coordinate change ui = ln ri (ui = ln tanh ri

2
resp.) in Euclidean (hyperbolic resp.) background geometry. To find such a particular
packing, we use Ge’s combinatorial Calabi flow [8–10]

u′
i (t) = −1

2
∂ui C = �Ki , (1.7)

for i = 1, 2, . . . , N , where C is considered as a function of u = (u1, . . . , uN ) in the
expression ∂ui C. Moreover, set

Bi j = ∂(θ
jk
i + θ

jl
i )

∂u j
,
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� is a discrete Laplacian and

�Ki =
∑
j∼i

Bi j (K j − Ki ) in E
2;

�Ki =
∑
j∼i

Bi j (K j − Ki ) − Ai Ki , in H
2

with

Ai = ∂

∂ui

( ∑
{i jk}∈F

Area(�viv jvk)
)
.

We have

Theorem 1.2 Assume that� ∈ [0, π) satisfies (Z). InEuclideanbackgroundgeometry,
the solution r(t) to the combinatorial Calabi flow (1.7) exists for all the time t ≥ 0,
and the following properties (E1)-(E3) are equivalent:

(E1) r(t) converges as t → +∞.
(E2) The vector (Kav, . . . , Kav) belongs to the image of the curvature map.
(E3) If A is a proper non-empty subset of V , then

2πχ(M)
|A|
|V | > −

∑
(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA). (1.8)

Moreover, if one of the above properties holds, then the combinatorial Calabi flow
converges exponentially fast to a circle packing which produces an Euclidean cone
metric on M with cone angles all equal to 2π − Kav .

In hyperbolic background geometry, the results are more fruitful. Recall Chow-
Luo’s hyperbolic combinatorial Ricci flow [5]

dri (t)

dt
= −Ki sinh ri (1.9)

for i = 1, 2, . . . , N . We have

Theorem 1.3 Assume that � ∈ [0, π) satisfies (Z). In hyperbolic background geom-
etry, the solutions to the combinatorial Ricci flow (1.9) exists for all the time t ≥ 0,
and the following properties (H1)-(H6) are equivalent:

(H1) The solution r(t) to the combinatorial Ricci flow (1.9) converges as t → +∞.
(H2) If A is a proper non-empty subset of V , then

∑
(e,v)∈Lk(A)

(
π − �(e)

)
> 2πχ(FA). (1.10)
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(H3) The genus g > 1 and for any simple, null-homotopic closed path e1, e2, . . . , es ,
which is not the boundary of a triangle, there holds

s∑
i=1

�(ei ) < (s − 2)π. (1.11)

(H4) The origin (0, . . . , 0) belongs to the image of the curvature map.
(H5) The solution r(t) to the combinatorial Calabi flow (1.7) converges as t → +∞.
(H6) The image of the curvature map contains a point with non-positive coordinates.

Moreover, if one of the above properties holds, then the combinatorial Ricci/Calabi
flow converges exponentially fast to a circle packing which produces a complete hyper-
bolic metric on M (with no cone points).

Remark 2 The results in the above theorem related to the combinatorial Ricci flows are
essentially obtained by Ge-Hua-Zhou [19, 20]. In fact, they studied the combinatorial
Ricci flow on surfaces of finite type. While our results are established on closed
surfaces.

Our last result concerns the prescribed curvature problem. For any K̄ =
(K̄1, . . . , K̄N ), the prescribed Calabi energy is C̄(r) = ‖K − K̄‖2. Consider the
prescribed Ricci flow

dui
dt

= (K̄i − Ki ) (1.12)

and the prescribed Calabi flow

u′
i (t) = −1

2
∂ui C̄ = �(Ki − K̄i ) (1.13)

in Euclidean background geometry, we have

Theorem 1.4 Assume that� ∈ [0, π) satisfies (Z). The solutions r(t) to the prescribed
Ricci flow (1.12) (Calabi flow (1.13) resp.) exists for all the time t ≥ 0, and r(t)
converges if and only if K̄ belongs to the image of the curvature map. Moreover, r(t)
converges exponentially fast to the unique (up to scaling in Euclidean background
geometry) circle packing r̄ with K (r̄) = K̄ .

This paper is organized as follows. In Sect. 2, we study the three-circle configu-
rations and some useful lemmas. In Sect. 3, we give the proof of Theorem 1.2. In
Sect. 4.1, we obtain an uniform estimate about the solutions to the combinatorial Cal-
abi flow for hyperbolic background geometry. We give the proof of Theorem 1.3 in
Sect. 4.2. In Appendix 1, we get the existence of the three-circle configurations for
Euclidean background geometry; in Appendix 2, we obtain the image of K (r) for
hyperbolic background geometry; in Appendix 3, we give a direct detailed proof of

the uniform bounded from above to the
∂θ

jk
i

∂u j
.
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2 Preliminaries: Three-Circle Configurations

To endow a metric structure on (M, T ) with the help of circle packings, we first need
a three-circle configuration.

Lemma 2.1 Let �i j , � jk , �ik ∈ [0, π) be three intersection angles satisfying (HLZ).
For any three positive numbers ri , r j , rk , there exits a configuration of three mutually
intersecting closed disks in both Euclidean and hyperbolic geometry, unique up to
congruence, having radii ri , r j , rk and meeting with exterior intersection angles �i j ,
� jk , �ik ∈ [0, π).

Proof In hyperbolic geometry, this was proved by Zhou, see Lemma 2.4 in [36]. In
Euclidean geometry, we postpone its proof to Appendix 1. ��
Lemma 2.2 ([36], Proposition 5.1) Let �i j , � jk , �ik ∈ [0, π) be three intersection
angles satisfying (Z), then they satisfy (HLZ). Consequently, the above three-circle
configuration theorem is valid under the condition (Z).

Remark 3 Zhou’s proof of Proposition in [36] can be used to both Euclidean and
hyperbolic background geometry.

Lemma 2.3 ([33], Lemma 2.6) Let�i j ,� jk ,�ik ∈ [0, π) be three intersection angles
satisfying (Z). In Euclidean background geometry, the Jacobian matrix of functions
θ
jk
i , θ ikj , θ

i j
k in terms of ui , u j , uk is symmetric and semi-negative definite with rank

2 and kernel {t(1, 1, 1)|t ∈ R}. Moreover,
∂θ

jk
i

∂ui
< 0 and

∂θ
jk
i

∂u j
≥ 0.

Lemma 2.4 ([36], Lemma 5.5) Let�i j ,� jk ,�ik ∈ [0, π) be three intersection angles
satisfying (Z). In hyperbolic background geometry, the Jacobian matrix of functions
θ
jk
i , θ ikj , θ

i j
k in terms of ui , u j , uk is symmetric and negative definite. Moreover,

∂θ
jk
i

∂ui
< 0,

∂θ
jk
i

∂u j
≥ 0,

∂(θ
jk
i +θ ikj +θ

i j
k )

∂ui
< 0.

Lemma 2.5 ([33], Corollaries 2.7 and 3.8) Let �i j , � jk , �ik ∈ [0, π) be three
intersection angles satisfying (Z). In Euclidean background geometry, the Jacobian
matrix � = − ∂(K1,...,KN )

∂(u1,...,uN )
is symmetric and semi-negative definite with rank N − 1

and kernel {t1|t ∈ R}. In hyperbolic background geometry, the Jacobian matrix � =
− ∂(K1,...,KN )

∂(u1,...,uN )
is symmetric and negative definite.

3 Euclidean Geometry Background

Suppose �viv jvk is a topological triangle in F . We use li j , l jk, lik (defined as (1.1))
to denote the lengths of the edge viv j , v jvk, vivk , respectively. From Lemma 2.4 in
[36], we can see that there is no restriction on the radii such that the lengths li j , l jk, lik
for �viv jvk ∈ F satisfy the triangle inequalities.
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Fig. 4 The corresponding contact graph

Proposition 3.1 ([9], Proposition 4.1) Along the Combinatorial Calabi flow, the dis-
crete Gauss curvature evolves according to

dK

dt
= −L2K ,

where L = −� and � defined as in Lemma 2.5.

Lemma 3.2 Forany topological triangle�viv jvk ∈ F withfixedweights�i j ,� jk,�ik ∈
[0, π) as intersection angles satisfying (Z), then there exists a constant C(�) which
only depends on the given � such that

0 <
∂θ

jk
i

∂u j
≤ C(�).

Proof Here we give a geometric proof by following He [25]. Under the (Z) condition,
let O be the power center which is inside the triangle �viv jvk , then θ

Oj
i ∈ [0, π

2 ).
See Fig. 4, let hi j be the length of the altitude from O onto side viv j and hik be the

length of the altitude from O onto side vivk . Thus
∂θ

jk
i

∂u j
= hi j

li j
.

If θ
Oj
i is not close to π

2 , say, θ
Oj
i ∈ [0, 1), we have

∂θ iki

∂u j
= hi j

li j
< tan θ

Oj
i ≤ C(�),
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where C(�) is a positive constant which only dependent on the given �.
If θ

Oj
i ∈ [1, π

2 ), then θ
jk
i ≥ θ

Oj
i ≥ 1 is bounded from below. Since O lies in

the convex hull of the union of circles Ci , C j , we know ri < li j and r j < li j . Thus
hi j < 2li j . It follows that

∂θ iki

∂u j
= hi j

li j
< 2.

Which completes the proof. ��
By Lemma 2.5 in [33], we can see Bi j = Bji . Directly from Lemma 3.2, we have

Lemma 3.3 For any two adjacent topological triangles �viv jvk, �viv jvl ∈ F with
fixed weights �i j ,� jk,�ik,�il ,� jl ∈ [0, π) as intersection angles satisfying (Z),
then there exists a constant C(�)which only depends on the given weight� such that

0 < Bi j ≤ C(�).

3.1 Proof of Theorem 1.2

We first study the long time existence of the combinatorial Calabi flows (1.7) in
Euclidean geometry background and get the following theorem.

Theorem 3.4 Given a triangulated surface (M, T ,�) in E
2 with weight � ∈ [0, π)

satisfying (Z). For any initial circle packing metric r(0) ∈ R
N
>0, the solution to the

combinatorial Calabi flow (1.7) in E
2 exists for all time t ∈ [0,+∞).

Proof Let di denote the degree at vertex vi , which is the number of edges adjacent to
vi . Set d = max{d1, . . . , dN }, then (2 − d)π < Ki < 2π , and

|K j − Ki | < dπ, for all i ∈ {1, . . . , N }.

Hence, by Lemma 3.3, the combinatorial Calabi flow equation
∑

j∼i Bi j (K j − Ki )

are uniformly bounded by a positive constant c1 = 2πdC(�), which depends only
on the triangulation and the fixed weight �, where C(�) is a positive constant comes
from Lemma 3.3. Then we have

c0e
−c1t ≤ ri (t) ≤ c0e

c1t ,

where c0 = c(r(0)), which implies that the combinatorial Calabi flow (1.7) has a
solution for all time t ∈ [0,+∞) for any r(0) ∈ R

N
>0. ��

Now, we give the proof of Theorem 1.2.

Proof We first show “(E1) ⇒ (E2)”. From Theorem 3.4, we know the solution of
the combinatorial Calabi flow (1.7) in E

2 exists for all the time. Then we can denote
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r(t), t ∈ [0,+∞) as the solution of the combinatorial Calabi flow (1.7) in E
2. We

recall the definition of combinatorial Calabi energy in [9], that is

C(r) = ‖K − K (rav)‖2 =
N∑
i=1

(Ki − Kav)
2. (3.1)

In fact, the combinatorial Calabi flow (1.7) is the negative gradient flow of combina-
torial Calabi energy, and the Calabi energy (3.1) is descending along this flow.

If {r(t)|t ∈ [0,+∞)} converges, i.e.,

r(+∞) = lim
t→+∞ r(t) ∈ R

N
>0

exists, then both K (+∞) = limt→+∞ K (t) ∈ R
N
>0 and L(+∞) = limt→+∞ L(t) ∈

R
N
>0 exist. This leads to the existence of C(+∞) and C′(+∞). Combining with the

fact that C(t) is uniformly bounded and using Lemma 2.5 and Proposition 3.1, we
have

C′(t) = 2
N∑
i=1

K ′
i Ki = 2KT K ′ = −2KT L2K ≤ 0,

and then

C′(+∞) = −2KT (+∞)L2(+∞)K (+∞) = 0.

Hence

K (+∞) ∈ Ker(L2) = Ker(L).

By Lemma 2.3, we know K (+∞) is a constant and r(+∞) is a constant curvature
metric.

Nowweshow“(E2) ⇒ (E1)”.Assume there exists a constant curvature circle pack-
ing metric rav which implies K (rav) ∈ K (RN

>0). We claim {r(t)|t ∈ [0,+∞)} ⊂⊂
R

N
>0. Consider the combinatorial Ricci potential

F(u) =
∫ u

uav

N∑
i=1

(Ki − Kav)dui , u ∈ R
N , (3.2)

where uav = ln rav . This type of line integral was first introduced by Verdière in [6].
By Lemma 2.5, we know

∂Ki

∂u j
= ∂K j

∂ui
,
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the smooth differential 1-form
∑N

i=1(Ki − Kav)dui is closed, and hence then (3.2) is
well defined and is independent on the choice of piecewise smooth paths in R

N from
uav to u. By Lemma B.2 in [9], we know that F(u) is strictly convex, uav is the unique
critical point and

lim
‖u‖→+∞,u∈R

N
F(u) = +∞. (3.3)

Set ϕ(t) = F(u(t)), then

ϕ′(t) =
N∑
i=1

(Ki − Kav)
dui
dt

= (K − K (rav))
T (−LK ) = −KT LK ≤ 0,

which means ϕ(t) is descending as t increases. Combine with (3.3), we have {u(t)|t ∈
[0,+∞)} ⊂⊂ R

N , i.e., {r(t)|t ∈ [0,+∞)} ⊂⊂ R
N
>0. Hence r(t) converges.

Denote λ1 as the minimum positive eigenvalue of L = −�. Since the matrix L is
semi-positive definite by Lemma 2.3, λ21 is the minimum positive eigenvalue of L2.
Then

KT L2K = (K − K (rav))
T L2(K − K (rav)) ≥ λ21‖K − K (rav)‖2 = λ21C.

Since r(t) converges, λ21(t) has a uniform lower bound along the Combinatorial Calabi
flow, i.e., λ21(t) ≥ λ > 0, where λ is a positive constant. Hence

C′(t) = −2KT L2K ≤ −2λ21(t)C(t) ≤ −2λC(t).

So C(t) ≤ C(0)e−2λt and using (3.1),

|Ki (t) − Kav| ≤ |K (t) − K (rav)| ≤ √
C(t) ≤ √

C(0)e−λt .

Since {r(t)|t ∈ [0,+∞)} ⊂⊂ R
N
>0, ri is bounded along the combinatorial Calabi

flow. By Lemma 3.3, we have

∣∣∣∣
dri
dt

∣∣∣∣ = |ri�Ki | = |ri
∑
j∼i

Bi j (K j − Ki )| ≤ C(M,�)e−λt ,

where C(M,�) is a positive constant and only dependent on M and �. This implies
that the solution converges with exponential rate.

In view of
∑

i∈V Ki = 2πχ(M) and Theorem 1.1, “(E2) ⇔ (E3)” is obviously.

Moreover, from the step “(E1) ⇒ (E2)”, we can see that the combinatorial Calabi
flow converges exponentially fast to a circle packing which produces an Euclidean
cone metric on M with cone angles all equal to 2π − Kav . ��
It is easy to see that we can also proof Theorem 1.4 by using the similar method of
Theorems 3.4 and 1.2.
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4 Hyperbolic Geometry Background

4.1 An Uniform Estimate

Suppose�viv jvk is a topological triangle in F . We use li j , l jk, lik (defined as (1.2)) to
denote the lengths of the edge viv j , v jvk, vivk , respectively. Zhou [36] obtained that
there is no restriction on the radii such that the lengths li j , l jk, lik for �viv jvk ∈ F
satisfy the triangle inequalities.

If �i j ,�ik,� jk ∈ [0, π/2), the following result was first proved by Chow-Luo,
Lemma 3.5 in [5], with a geometric argument. Moreover, Ge-Xu [17] Lemma 3.2,
Ge-Jiang [13] Lemma 2.3 stated it by an analytic proof. Now we give a similar proof
of Ge-Xu [17] Lemma 3.2 just for completeness.

Lemma 4.1 Let �viv jvk be a hyperbolic triangle which is patterned by three circles
with fixed weighted �i j ,�ik,� jk ∈ [0, π) as intersection angles which satisfies (Z).

Let θ
jk
i be the inner angle at vi . Then for any ε > 0, there exists a number l so that

when ri > l, the inner angle θ
jk
i is smaller than ε.

Proof It is sufficient to prove that θ
jk
i → 0 uniformly as ri → +∞. Set a =

cosh(li j−lik)
cosh(li j+lik)

and b = cosh l jk
cosh(li j+lik)

. By the hyperbolic cosine law, we have

cos θ
jk
i = cosh li j cosh lik − cosh l jk

sinh li j sinh lik

= cosh(li j + lik) + cosh(li j − lik) − 2 cosh l jk
cosh(li j + lik) − cosh(li j − lik)

= 1 + a − 2b

1 − a
. (4.1)

Noting that

0 < a <
cosh li j

cosh(li j + lik)
<

1

cosh lik
<

1

cosh ri
,

we know a → 0 uniformly as ri → +∞. Now, we claim that b → 0 uniformly as
ri → +∞.
Since cosh l jk ≤ cosh r j cosh rk + sinh r j sinh rk = cosh(r j + rk), we have

b ≤ cosh(r j + rk)

cosh(li j + lik)
. (4.2)

Set ci j = min{cos�i j , 0}, then −1 < ci j ≤ 0. Since the triangulation T is a finite
subdivision, we have

eli j ≥ cosh li j = cosh ri cosh r j + sinh ri sinh r j cos�i j

= (1 + cos�i j ) cosh ri cosh r j − cosh(ri − r j ) cos�i j
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Fig. 5 Proof of Lemma 4.2

≥ (1 + ci j ) cosh ri cosh r j

≥ C1e
ri+r j ,

where C1 ∈ (0, 1/4] is a constant number and only depended on the triangulation
T . That is li j ≥ ri + r j + lnC1. Similarly, we have lik ≥ ri + rk + lnC2, where
C1 ∈ (0, 1/4] is also a constant number and only depended on the triangulation T .
Hence, we get

li j + lik − (r j + rk) ≥ 2ri + lnC1 + lnC2 → +∞ (4.3)

uniformly as ri → +∞. Combine (4.2) and (4.3), we know b → 0 uniformly as
ri → +∞. Hence, by (4.1), we complete the proof. ��
Lemma 4.2 Let �viv jvk be a hyperbolic triangle which is patterned by three circles
with fixed weights �i j ,� jk,�ik ∈ [0, π) as intersection angles and satisfying (Z).
There exists a constant C > 0 which is only depending on the triangulation T , such
that if ri ≥ C, then

∂

∂ri
(2Area(�viv jvk) + θ

jk
i ) ≥ 0. (4.4)

Proof The proof is similar to the proof of Lemma 3.2 in [10]. Assume the triangle
�viv jvk is embedded in H

2, with v j , vk and the corresponding radii r j , rk fixed. Let
v̂i be the new vertex with a larger radius r̂i > ri . Since r̂i > ri , we have lv̂iv j > lviv j

and lv̂ivk > lvivk . We draw two triangles, �viv jvk and �v̂iv jvk ; with common edge
v jvk in the same half hyperbolic plane separated by the (extended) geodesic v jvk .

By Lemma 2.4, for fixed r j and rk the angles θ ikj and θ
jk
i are increasing in ri which

implies that the vertex vi lies in the interior of the triangle �viv jvk , see Fig. 5. Denote
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θ̂
jk
i , θ̂ ikj and θ̂

i j
k as three inner angles of the new triangle �v̂iv jvk respectively. To

prove (4.4), it suffices to show that for any r̂i > ri , sufficiently close to ri ,

2Area(�v̂iv jvk) − 2Area(�viv jvk) + θ̂
jk
i − θ

jk
i ≥ 0. (4.5)

Setting x = θ̂ ikj − θ ikj and y = θ̂
i j
k − θ

i j
k , we get

2Area(�v̂iv jvk) − 2Area(�viv jvk) + θ̂
jk
i − θ

jk
i

=Area(�v̂iviv j ) + Area(�v̂ivivk) − x − y

=[Area(�v̂iviv j ) − x] + [Area(�v̂ivivk) − y]. (4.6)

Then it suffices to prove that

Area(�v̂iviv j ) ≥ x, and Area(�v̂ivivk) ≥ y.

By the symmetry, without loss of generality, we show that

Area(�v̂iviv j ) ≥ x . (4.7)

Let s be the point on the geodesic v̂iv j which attains the minimum distance from the
vertex vi to a point on the geodesic v̂iv j . Since lv̂iv j > lviv j , s is in the interior of
the geodesic v̂iv j , see Fig. 5. We assume that r̂i is sufficiently close to ri such that
lv̂ivi ≤ 1.

By the hyperbolic cosine law,

cos x = cosh lviv j cosh lv̂iv j − cosh lv̂ivi
sinh lviv j sinh lv̂iv j

→ 1,

uniformly as ri → ∞. Hence there is a universal constant C1 such that if ri ≥ C1,
then x ≤ π

8 . Set β = ∠sviv j .
If β < π

4 , then β + x + x < π
2 . By the Gauss-Bonnet theorem in the hyperbolic

case,

β + x + π

2
= π − Area(�sviv j ),

we get Area(�v̂iviv j ) ≥ Area(�sviv j ) > x, which yields (4.7).
If β ≥ π

4 , then

sinh ls j
sinh li j

= sin β ≥
√
2

2
.

Using the cosine law in the hyperbolic right triangle �sviv j , we have

cosβ = sin x cosh ls j , cos x = tanh ls j/ tanh li j , sin β = sinh ls j/ sinh li j .
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This leads to

sinh(Area(�sviv j )) = cos(x + β) = cos x cosβ − sin x sin β

= tanh ls j
tanh li j

sin x cosh ls j − sin x
sinh ls j
sinh li j

= sin x(cosh li j − 1)
sinh ls j
sinh li j

. (4.8)

Set ci j = min{cos�i j , 0}, then −1 < ci j ≤ 0. So, we have

cosh li j = cosh ri cosh r j + sinh ri sinh r j cos�i j

= (1 + cos�i j ) cosh ri cosh r j − cosh(ri − r j ) cos�i j

≥ (1 + ci j ) cosh ri cosh r j .

Hence, combine with (4.8), there exists a large enough universal constant C2 which
depending only on the triangulation T , such that if ri ≥ C2, then

sin(Area(�sviv j )) ≥ sin x .

Noting that both x and Area(�sviv j ) are in (0, π
2 ), we obtain (4.7).

By setting max{C1,C2}, combining all cases above, we complete the proof. ��
Lemma 4.3 There exists a universal number C > 0, such that if ri > C, then

Ai ≥
∑
j∼i

Bi j .

Proof By (4.4), we have

Ai −
∑
j∼i

Bi j =
∑

{i jk}∈F

∂Area(�viv jvk)

∂ri
sinh ri −

∑
j∼i

(
∂θ

jk
i

∂r j
sinh r j + ∂θ

jl
i

∂r j
sinh r j

)

=
∑

{i jk}∈F

∂Area(�viv jvk)

∂ri
sinh ri −

∑
{i jk}∈F

(
∂θ

jk
i

∂r j
sinh r j + ∂θ

k j
i

∂rk
sinh rk

)

=
∑

{i jk}∈F

∂
(
Area(�viv jvk) − θ ikj − θ

i j
k

)

∂ri
sinh ri

=
∑

{i jk}∈F

∂
(
2Area(�viv jvk) + θ

jk
i

)

∂ri
sinh ri ≥ 0.

��
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Theorem 4.4 Let (M, T ) be a triangulated compact hyperbolic surface with an edge
weight� : E → [0, π) which satisfies (Z). Let r(t) be the unique solution to the com-
binatorial Calabi flow on a maximal time interval [0, T ). Then all ri (t) are uniformly
bounded above on [0, T ).

Proof By contradiction. Suppose it is not true, then there exists at least one vertex
i ∈ V , such that

lim sup
t→T

ri (t) = +∞. (4.9)

For this vertex i , using Lemma 4.1, we can choose a large enough positive number l
such that ri > l, the inner angle θi is smaller than π

di
, where di is the degree of the

vertex i . Then we have Ki > π .
Set L = max{l, c, ri (0) + 1}, where c is given in Lemma 4.3. Now, we claim that

for any t ∈ (0, T ) and if ri (t) > l, then

dri
dt

< 0. (4.10)

Since

1

sinh ri

dri
dt

= �Ki =
∑
j∼i

Bi j (K j − Ki ) − Ai Ki <
∑
j∼i

Bi j (2π − Ki ) − Ai Ki

= 2π
∑
j∼i

Bi j −
⎛
⎝∑

j∼i

Bi j + Ai

⎞
⎠ Ki ≤ 2π

∑
j∼i

Bi j − π

⎛
⎝∑

j∼i

Bi j + Ai

⎞
⎠

= π

⎛
⎝∑

j∼i

Bi j − Ai

⎞
⎠ ≤ 0.

Hence we proved the claim.
By (4.10), we may choose t0 ∈ (0, T ) such that ri (t0) > c. Let t1 ∈ [0, t0] attain

the maximum of ri (t) in [0, t0]. By the definition of L , t1 > 0. Hence

dri
dt

(t1) ≥ 0,

which contradicts to (4.10). This proves the theorem. ��

4.2 Proof of Theorem 1.3

Proof “(H1) ⇒ (H2)”. Suppose the solution r(t) to the combinatorial Ricci flow
(1.9) converges as t → +∞. Let u∗ be the corresponding u-coordinate of r∗, then
u(t) converges to u∗.

ui (n + 1) − ui (n) = u′
i (ξn) = −Ki (ξn) → 0, as n → +∞.
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As u(t) → u∗, we have K (t) → K (u∗). Thus Ki (u∗) = 0 for each vertex i ∈ V
and then u∗ has zero curvature. This implies that there exists a particular circle pattern
with all its curvatures Ki ≤ 0. By Theorem 1.1, we know the image of the curvature
map K consists of vectors (K1, K2, . . . , K|V |) satisfying

∑
i∈A

Ki > −
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA)

for any non-empty subset A of V , which implies (1.10).
“(H2) ⇔ (H3)”. First we prove (H2) ⇒ (H3). We follow the way in [20] and [19].

Assume

−
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA) < 0

for each A ⊂ V , we need to prove
∑s

i=1 �(ei ) < (s − 2)π , whenever e1, e2, . . . , es
form a simple, null-homotopic closed path which is not the boundary of a triangle.
Given such a path, we take A ⊂ V as the interior vertices that are bounded by the sim-
ple, null-homotopic closed path e1, e2, . . . , es . Because the path is not a boundary of
a triangle, A is nonempty. In addition, χ(FA) = 1 since FA is contractible. Moreover,
it is easy to see

s∑
l=1

(
π − �(el)

) =
∑

(e,v)∈Lk(A)

(
π − �(e)

)
> 2π,

which implies what we need to prove.
Next we prove (H3) ⇒ (H2). Assume

∑s
i=1 �(ei ) < (s − 2)π , or equivalently,

s∑
i=1

(
π − �(ei )

)
> 2π

whenever e1, e2, . . . , es form a simple, null-homotopic closed path which is not the
boundary of a triangle. We need to prove

−
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA) < 0 (4.11)

for each A ⊂ V . Let A ⊂ V , A �= ∅. If A = V , then the above inequality degenerates
to χ(M) < 0, which is already guaranteed by the genus g > 1. For A � V , we just
need to prove

∑
(e,v)∈Lk(A)

(
π − �(e)

)
> 2πχ(FA) on each connected component

of FA. Hence we may assume that FA is connected. In this case, it is easy to see
χ(FA) ≤ 1. If χ(FA) ≤ 0, then (4.11) holds naturally. If χ(FA) = 1, all triangles in
FA (i.e. all triangles that has at least one boundary vertex in A) constitutes a simply-
connected domain bounded by the edges emarked with a triangle f such that (e, f ) ∈
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Lk(A). Denote all such edges as e1, e2, . . . , es , then e1, e2, . . . , es form a simple,
null-homotopic closed path which is not the boundary of a triangle. It follows that

∑
(e,v)∈Lk(A)

(
π − �(e)

) ≥
s∑

i=1

(
π − �(ei )

)
> 2π = 2πχ(FA),

which completes the proof.
“(H2) ⇒ (H4)” is obvious. By Theorem 1.1, (H2) implies that (0, . . . , 0) belongs

to the image of the curvature map.
“(H4) ⇒ (H5)”. Assume the origin (0, . . . , 0) belongs to the image of the curvature

map, i.e., there exists a circle pattern r∗ ∈ R
N
>0 with zero curvature. Let r(t) be the

unique solution to the combinatorial Calabi flow on a maximal time interval [0, T ),
we need to prove T = +∞ and r(t) → r∗ exponentially fast.

Let u∗ ∈ R
N
sps0 be the u-coordinate of r

∗. Consider the combinatorial Ricci potential

F(u) �
∫ u

u∗

N∑
i=1

Kidui , u ∈ R
N
sps0. (4.12)

By Lemma 2.5, we can see

∂Ki

∂u j
= ∂K j

∂ui
,

the smooth differential 1-form
∑N

i=1 Kidui is closed, and hence then (4.12) is well
defined and is independent on the choice of piecewise smooth paths in R

N
sps0 from u∗

to u. By Lemma B.1 in [16], there holds

lim
‖u‖→+∞,u∈R

N
sps0

F(u) = +∞. (4.13)

By Lemma 2.5 and a direct calculation, we have

d

dt
F(u(t)) =

∑
i

Ki�Ki = KT�K ≤ 0,

which implies that F(u(t)) is non-increasing along the Calabi flow. By (4.13), there
is a positive constant δ, depending only on the triangulation T and the initial circle
pattern r(0). such that ui (t) ≥ −δ for all i and t . It follows that

ri (t) ≥ ln
1 + e−δ

1 − e−δ
> 0 (4.14)

for all i and t . By (4.14) and Theorem 4.4, we know that r(t) lies in a compact subset of
R

N
>0. Then, by Lemma 4.1 in [15], r(t) exists for all time and converges exponentially

fast to r∗.
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“(H5) ⇒ (H6)”. Suppose the solution r(t) to the combinatorial Calabi flow (1.7)
converges as t → +∞. Let u∗ be the corresponding u-coordinate of r∗, then u(t)
converges to u∗.

ui (n + 1) − ui (n) = u′
i (ξn) = �Ki (ξn) → 0, as n → +∞.

As u(t) → u∗, we have K (t) → K (u∗). Thus �Ki (u∗) = 0 for each vertex i ∈ V .
From Lemma 2.5, we know the matrix� is negative definite, which implies Ki (u∗) =
0 for each i ∈ V and then u∗ has zero curvature. This also shows the image of the
curvature map contains at least one point with non-positive coordinates.

“(H6) ⇒ (H1)”.We deform themetric r(t) according toRicci flow (1.9), beginning
from a initial metric r(0) which is exactly the special metric with non-positive curva-
tures. Set M(t) = max{K1(t), . . . , K|V |(t), 0}, m(t) = min{K1(t), . . . , K|V |(t), 0}.
Using the maximum principle, Chow-Luo (Corollary 3.3, [5]) proved that M(t) is
non-increasing while m(t) is non-decreasing. So M(t) ≤ M(0) ≤ 0, and hence all
Ki (t) ≤ 0. Thus dri

dt ≥ 0 and every ri (t) is increasing, which implies that all ri (t) are
uniformly bounded below from a positive constant. By Corollary 3.6 in [5], all ri (t)
are uniformly bounded from above. Thus the solution {r(t)} lies in a compact region
in RN > 0. Using Proposition 3.7 in [5], we get (H1).

Moreover, from the step “(H4) ⇒ (H5)”, we can see if one of the above properties
holds, then the combinatorial Ricci/Calabi flow converges exponentially fast to a circle
packing which produces a complete hyperbolic metric on M (with no cone points) ��

5 Appendix 1: Proof of Lemma 2.1

Proof Assume the background geometry is Euclidean. Let li j > 0 such that

l2i j = r2i + r2j + 2rir j cos�i j .

Define lik, l jk similarly. The objective is to check that li j , lik, l jk satisfy the triangle
inequalities. Namely,

li j + lik > l jk,

and

|li j − lik | < l jk .

Combining the above two relations, we have

(l2i j + l2ik − l2jk)
2 < 4l2i j l

2
ik . (5.1)

To simplify the notations, we set Ist = cos�st for st = i j, jk, ik. And taking Ist into
(5.1), we need to prove that

123



On the Deformation of Thurston’s circle… Page 21 of 25 264

r2i r
2
j (1 − I 2i j ) + r2i r

2
k (1 − I 2ik) + r2j r

2
k (1 − I 2jk) + 2r2i r j rk(I jk + Ii j Iik)

+ 2rir
2
j rk(Iik + Ii j I jk) + 2rir j r

2
k (Ii j + Iik I jk) > 0. (5.2)

Now there are two cases to distinguish.
If �i j + � jk + �ik ≤ π , then

I jk + Ii j Iik = cos� jk + cos�i j cos�ik

= cos� jk + cos(�i j + �ik) + sin�i j sin�ik

≥ cos� jk + cos(π − � jk) + sin�i j sin�ik

≥ 0.

Similarly, Iik + Ii j I jk ≥ 0 and Ii j + Iik I jk ≥ 0. Note that 1 − I 2i j ≥ 0, 1 − I 2ik ≥ 0,

1− I 2jk ≥ 0. Thus we deduce (5.2), by these six inequalities can not obtain “=” at the
same time.

If �i j + � jk + �ik > π . Considering that

�i j + � jk < π + �ik, �ik + � jk < π + �i j , �i j + �ik < π + � jk,

there is a spherical triangle with inner angles�i j , � jk, �ik . Let φi j , φ jk, φik denote
the corresponding lengths of the three sides. By the second cosine law of spherical
triangles,

cosφ jk = cos� jk + cos�i j cos�ik

sin�i j sin�ik
.

So

I jk + Ii j Iik = cos� jk + cos�i j cos�ik = cosφ jk sin�i j sin�ik,

and

Iik + Ii j I jk = cosφik sin�i j sin� jk, Ii j + Iik I jk = cosφi j sin�ik sin� jk .

Set yst = rsrt sin�st for st = i j, jk, ik. Hence (5.2) is equivalent to

y2i j + y2jk + y2ik + 2yi j y jk cosφik + 2yi j yik cosφ jk + 2yik y jk cosφi j > 0.

By the cosine law of spherical triangles, we obtain

cosφi j − cosφik cosφ jk = cos�i j sin φik sin φ jk .

It follows that

y2i j + y2jk + y2ik + 2yi j y jk cosφik + 2yi j yik cosφ jk + 2yik y jk cosφi j

= (yi j + cosφik y jk + cosφ jk yik)
2 + y2jk sin

2 φik + y2ik sin
2 φ jk

+ 2y jk yik(cosφi j − cosφik cosφ jk)
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≥ y2jk sin
2 φik + y2ik sin

2 φ jk + 2y jk yik(cosφi j − cosφik cosφ jk)

= (y jk sin φik + yik sin φ jk cos�i j )
2 + y2ik sin

2 φ jk sin
2 �i j

≥ y2ik sin
2 φ jk sin

2 �i j = r2i r
2
j sin

2 φ jk sin
2 �i j sin�ik

> 0.

Thus the lemma is proved. ��
Remark 4 We refer a more geometric formulation of Lemma 2.1, see Ge-Jiang-Liu
[7].

6 Appendix 2: Thurston’s Existence Theorem

Following Thurston’s formulation of Andreev’s theorem andMarden-Rodin’s original
methods [1], we give the image of the curvature map K = K (r). For Euclidean
background geometry, the image of K (r) were already obtained by Ge-Jiang in [11–
13]. For hyperbolic background geometry, we give a complete proof here for reader’s
convenience. Firstly, by Lemma 2.5 in [36] and Lemma 2.2, we have

Lemma 6.1 Let �i j , � jk , �ik ∈ [0, π) be three intersection angles satisfying (Z),
then we have

lim
ri→∞ θ

jk
i = 0,

lim
(ri ,r j ,rk )→(0,a,b)

θ
jk
i = π − � jk,

lim
(ri ,r j ,rk )→(0,0,c)

(θ
jk
i + θ ikj ) = π,

lim
(ri ,r j ,rk )→(0,0,0)

(θ
jk
i + θ ikj + θ

i j
k ) = π.

We use the above lemma to give the proof of Theorem 1.1.

Proof of Theorem 1.1 in hyperbolic background geometry. We can see that K (u) is
injective as a function of u. Obviously, K (r) is also injective as a function of r .
We next prove that the image of the curvature map K (r), r ∈ R

|V |
>0 is

Z =
⋂
A⊂V

{
K ∈ (−∞, 2π)|V | :

∑
i∈A

Ki > −
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA)

}
.

Obviously, all Ki < 2π by definition. For each vertex subset A ⊂ V , we consider
all the triangles in F having a vertex in A. These triangles can be classified into three
types A1, A2 and A3. For each i ∈ {1, 2, 3}, a triangle is in Ai if and only if it has

exactly i vertices in A. Since
∂θ

jk
i

∂ri
< 0 and the second limited of Lemma 6.1, we have
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θ
jk
i < π − � jk . Noting that θ jk

i + θ ikj < θ
jk
i + θ ikj + θ

i j
k < π , it follows

∑
i∈A

Ki =2π |A| −
∑
i∈A

∑
{i jk}∈F

θ
jk
i

=2π |A| −
⎛
⎝ ∑

i∈A,{i jk}∈A1

θ
jk
i +

∑
i, j∈A,{i jk}∈A2

(θ
jk
i + θ ikj )

+
∑

{i jk}∈A3

(θ
jk
i + θ ikj + θ

i j
k )

⎞
⎠

>2π |A| −
∑

(e,v)∈Lk(A)

(
π − �(e)

) − π |A2| − π |A3|

= −
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA).

Then it follows that K (R
|V |
>0 ), the image of the curvature map, is contained inZ . If we

can further prove K (r) is proper map (that is, the preimage of every compact set in Z
is compact in R

|V |
>0 ), then by the invariance of domain theorem, K is a diffeomorphism

fromR
|V |
>0 toZ . We just need to prove, if there is a sequence r (n) tends to the boundary

of R
|V |
>0 , then K (r (n)) contains a subsequence that tends to the boundary of Z . To see

this, assume r (n) tends to the boundary of R
|V |
>0 , then there is a subsequence, which is

still denoted as r (n) itself, there is a vertex subset A ⊂ V , so that r (n)
i → 0 for each

i ∈ A, while r (n)
j → c j ∈ (0,+∞] for each j ∈ V − A.

In case A = ∅, which means that r (n)
i → +∞ for all i ∈ V , all θ jk

i (r (n)) → 0 by
the first limit in Lemma 6.1, hence all curvatures Ki (r (n)) → 2π . This implies that
K (r (n)) tends to the boundary of Z .

In case A �= ∅ and A �= V , by Lemma 6.1, for i ∈ A and {i jk} ∈ A1, we have

θ
jk
i (r (n)) → π − � jk,

for i, j ∈ A and {i jk} ∈ A2, we have

(θ
jk
i + θ ikj )(r (n)) → π,

while for {i jk} ∈ A3, we have

(θ
jk
i + θ ikj + θ

i j
k )(r (n)) → π.

Then it follows

∑
i∈A

Ki =2π |A| −
⎛
⎝ ∑

i∈A,{i jk}∈A1

θ
jk
i +

∑
i, j∈A,{i jk}∈A2

(θ
jk
i + θ ikj )
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+
∑

{i jk}∈A3

(θ
jk
i + θ ikj + θ

i j
k )

⎞
⎠

→2π |A| −
∑

(e,v)∈Lk(A)

(
π − �(e)

) − π |A2| − π |A3|

= −
∑

(e,v)∈Lk(A)

(
π − �(e)

) + 2πχ(FA).

This implies that K (r (n)) tends to the boundary of Z .
In case A = V , by definition A1, A2, we have A1 = ∅, A2 = ∅, and

∑
i∈V

Ki (r
(n)) = 2π |V | −

∑
{i jk}∈A3

(θ
jk
i + θ ikj + θ

i j
k )

→ 2π |V | − π |F | = 2πχ(FV )

(6.1)

by the fourth limited of Lemma 6.1. This implies that K (r (n)) tends to the boundary
of Z . We finish the proof. ��
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