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Abstract
In this article, we consider a complete, non-compact almost Hermitianmanifoldwhose
curvature is asymptotic to that of the complex hyperbolic space. Under natural geo-
metric conditions, we show that such a manifold arises as the interior of a compact
almost complex manifold whose boundary is a strictly pseudoconvex CR manifold.
Moreover, the geometric structure of the boundary can be recovered by analysing the
expansion of the metric near infinity.

Keywords Complex hyperbolic space · Asymptotic geometry · Asymptotically
symmetric space · CR structure.
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1 Introduction

The complex hyperbolic space is the unique simply connected, complete, Kähler man-
ifold of constant negative holomorphic sectional curvature (we adopt the convention
that this constant is −1). It is the complex analogue of the real hyperbolic space, and
similarly to its real counterpart, the complex hyperbolic space can be compactified by
a sphere at infinity. This sphere at infinity carries a natural geometric structure, which
is closely related to the Riemannian geometry of the complex hyperbolic space: their
respective groups of automorphisms are in one-to-one correspondence. This structure
is that of a strictly pseudoconvex CR manifold, namely, the CR sphere (S, H , J ). If
S is thought of as the unit sphere of CN , then H = (TS) ∩ (iTS) is the standard
contact distribution, and J is given by the multiplication by i in H . Set ρ = e−r with
r the distance function to a fixed point. Then ρ is a defining function for the boundary
of the above compactification, and as ρ → 0, the complex hyperbolic metric has the
asymptotic expansion
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1

ρ2 dρ ⊗ dρ + 1

ρ2 θ ⊗ θ + 1

ρ
γ + o(1), (1.1)

with θ the standard contact form of S, and γ = dθ |H×H (·, J ·) the associated Levi-
form. The strict pseudoconvexity of the boundary means that the Levi-form is positive
definite on H .

The aim of this paper is to construct a similar compactification by a strictly
pseudoconvex CR structure for complete, non-compact, almost Hermitian manifolds
satisfying some natural geometric conditions. These conditions are the existence of a
convex core (called an essential subset) whose complement is negatively curved, the
convergence of the curvature tensor R to that of the complex hyperbolic space R0 near
infinity, and the fact that the underlying almost complex structure J is asymptotically
Kähler at infinity. More precisely, we show the following.

Main Theorem Let (M, g, J ) be a complete, non-compact, almostHermitianmanifold
of real dimension at least 4, which admits an essential subset whose complement has
negative sectional curvature. Let r be the distance function to any compact subset.
Assume that there exists a > 1 such that

‖R − R0‖g, ‖∇ J‖g, ‖∇R‖g, and ‖∇2 J‖g = O(e−ar ). (1.2)

Then (M, J ) is the interior of a compact almost complex manifold (M, J ), whose
underlying almost complex structure J is continuous. The hyperplane distribution
H0 = (T ∂M)∩ (JT ∂M) and the restriction J0 = J |H0 are of class C1. Moreover, H0
is a contact distribution, and J0 is formally integrable, and (∂M, H0, J0) is a strictly
pseudoconvex CR manifold.
In addition, the metric g is asymptotically complex hyperbolic: there exists a defining
function ρ for the boundary, a contact form η0 of class C1 annihilating H0, and a
continuous Carnot metric γ , with γ 0 = γ |H0×H0 > 0 of class C1, such that

g =
ρ→0

1

ρ2 dρ ⊗ dρ + 1

ρ2 η0 ⊗ η0 + 1

ρ
γ +

⎧
⎪⎪⎨

⎪⎪⎩

Og
(
ρa−1

)
if 1 < a < 3

2 ,

Og

(
ρ

1
2 ln ρ

)
if a = 3

2 ,

Og

(
ρ

1
2

)
if a > 3

2 .

(1.3)

The contact form and the Carnot metric are related by dη0|H0×H0(·, J0·) = γ 0.

This result gives a geometric characterisation of complete, non-compact, almost
Hermitian manifolds that are asymptotically complex hyperbolic and admit a com-
pactification by a strictly pseudoconvex CR structure. Notice the similarity between
equations (1.1) and (1.3). The real analogue of this result, involving a compactifica-
tion by a conformal boundary for asymptotically locally real hyperbolic manifolds,
has been proven by E. Bahuaud, J. M. Lee, T. Marsh and R. Gicquaud [2–5, 12],
pursuing the seminal work of M. T. Anderson and R. Schoen [1]. Notice that, contrary
to the real hyperbolic setting, the independence of the compactification with respect
to the choice of the essential subset is not established in this article and would deserve
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further investigations. The techniques used in the real hyperbolic setting, which rely
on the smoothness of isometries, do not seem to extend per se to our context.

The proof of our main Theorem is divided into several main results for a better
exposition. We first derive an asymptotic expansion of the metric near infinity.

Theorem A Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K . Assume that M \ K has negative
sectional curvature and that there exists a > 1

2 such that

‖R − R0‖g, ‖∇ J‖g = O(e−ar ), (1.4)

where r is the distance function from K . Then on ∂K, there exists a continuous 1-
form η0 and a continuous positive semi-definite symmetric 2-tensor γ such that the
Riemannian metric g reads in an appropriate chart M \ K � (0,+∞) × ∂K

g = dr ⊗ dr + e2rη0 ⊗ η0 + erγ + lower order terms. (1.5)

If furthermore a > 1, then η0 is nowhere vanishing and γ is positive definite on the
distribution of hyperplanes H0 = ker η0.

See Section 3 for an explicit form of the remainder. Under the condition a > 1, we
build a natural almost complex structure on H0 which is compatible with γ .

Theorem B Under the assumptions of Theorem A with a > 1, there exists a natural
almost-complex structure J0 on H0, and in addition, γ 0 = γ |H0×H0 is J0-invariant.

If furthermore we assume exponential decays for ∇R and ∇2 J near infinity, we
show that η0, γ 0, J0 and H0, which are given by Theorems A and B , are of class C1
and define a strictly pseudoconvex CR structure.

Theorem C Assume furthermore that ‖∇R‖g, ‖∇2 J‖g = O(e−ar ). Then η0 is a con-
tact form of class C1 and satisfies dη0H0×H0

(·, J0·) = γ 0.

Theorem D Under the assumptions of Theorem C, the tangent distribution H0 and
the bilinear form γ 0 are of class C1.
Theorem E Under the assumptions of Theorem C, the almost-complex structure J0
defined on the tangent distribution H0 is of class C1 and is formally integrable. In
addition, (∂K , H0, J0) is a strictly pseudoconvex CR manifold of class C1.

Our main Theorem is then obtained by constructing an explicit compactification
and by naturally identifying (∂K , H0, J0) with the boundary at infinity. In a previous
paper [14], the author proved similar results in theKähler setting. For othermotivations
from complex analysis, see the references therein. The improvement here is twofold.
First, we are able to remove the Kähler assumption, which was of great importance
in the previous proof. Here, the almost complex structure is no more assumed to be
parallel, and in fact, needs not even be formally integrable, nor the associated almost
symplectic form needs to be closed. In particular, the result applies to perturbations of
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asymptotically complex hyperbolic Kähler metrics which are only almost Hermitian.
Second, the strict pseudoconvexity of the boundary is obtained with an exponential
decay of order a > 1, while the earlier version of this result needed a decay of order
a > 3

2 . Note that this has a cost: the Carnot metric can be shown to be C1 only in
the direction of the contact distribution. This is the reason why the extended almost
complex structure J is only continuous in the transverse direction. Both improvements
imply that the set of examples to which the result applies is much increased.

A compactification by a CR structure for some complete, non-compact, Kähler
manifolds was already given by J. Bland [10, 11], under assumptions that are rather
analytic and not totally geometric. To obtain a continuous compactification with no
regularity on the CR structure, these assumptions imply the a posteriori estimates
‖R − R0‖g, ‖∇R‖g = O(e−4r )1. A strictly pseudoconvex boundary of class C1
is similarly obtained under assumptions implying ‖R − R0‖g, ‖∇R‖g, ‖∇2R‖g =
O(e−5r ). It was proven by O. Biquard and M. Herzlich [8] that for asymptotically
complex hyperbolic Kähler-Einstein metrics in real dimension 4, the curvature tensor
has the form R = R0 + Ce−2r + og(e−2r ), where C is a non-zero multiple of the
Cartan tensor of the CR boundary. It is known that the Cartan tensor vanishes exactly
when the CR structure is locally equivalent to that of the sphere (such CR manifolds
are called spherical). Many examples are then not covered by J. Bland’s results.

The paper is organised as follows. In Section 2, we set up the notations and explain
themain idea of the proof of ourmainTheorem. InSection3,we compute the expansion
of the metric near infinity and prove Theorem A. Section 4 is dedicated to the proof
of Theorem B. Section 5 is then devoted to proving Theorems C, D and E . Finally,
we prove our main Theorem in Section 6.

2 Preliminaries

2.1 Notations

Let (M, g) be a Riemannian manifold. Its Levi-Civita connection is denoted by ∇.
Our convention on the Riemann curvature tensor is Besse’s convention [6], namely

R(X ,Y )Z = ∇[X ,Y ]Z − ∇X (∇Y Z) + ∇Y (∇X Z), (2.1)

for vector fields X , Y and Z . By abuse of notation, we still denote by R its four times
covariant version: we write R(X ,Y , Z , T ) = g(R(X ,Y )Z , T ) for vector fields X ,
Y , Z and T . With this convention, the sectional curvature of a tangent plane P with
orthonormal basis {u, v} is sec(P) = sec(u, v) = R(u, v, u, v).

Essential subsets and normal exponential map

Following [2–5, 12], an essential subset K ⊂ M is a codimension 0 compact sub-
manifold, with smooth boundary ∂K which is convex with respect to its unit outward
vector field ν, and such that the normal exponential map

1 One sees that these assumptions imply that ‖R − R0‖g = O(e−3r ) and ‖∇R‖g = O(e−4r ). Since
∇R0 = 0 for Kähler manifolds, applying Kato’s inequality to R − R0 yields the claimed estimate.
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E : R+ × ∂K −→ M \ K
(r , p) 
−→ expp(rνp)

(2.2)

is a diffeomorphism. Recall that for ∂K to be convex with respect to ν means that
v 
→ g(∇vν, v) is non-negative. For instance, a compact totally convex (meaning that
any geodesic segment whose endpoints belong to the subset entirely lies within it)
codimension 0 submanifold with smooth boundary and whose complement is neg-
atively curved is an essential subset (see [2, Theorem 3.1]). The level hypersurface
at distance r above K is denoted by ∂Kr . For r � 0, E induces a diffeomorphism
Er : ∂K → ∂Kr given by Er (p) = E(r , p); the induced Riemannian metric E∗

r g on ∂K
is denoted by gr . Gauss Lemma states that E∗g = dr ⊗ dr + gr . Note that g0 = g|∂K .

The gradient of the distance function r on M \ K , called the radial vector field, is
denoted by ∂r . A radial geodesic is a unit speed geodesic ray of the form r 
→ E(r , p)
with p ∈ ∂K . Note that the restriction of ∂r to a radial geodesic is its tangent vector
field, and thus satisfies the equation of geodesics ∇∂r ∂r = 0. More generally, a vector
field X on M \ K is called radially parallel if ∇∂r X = 0. The shape operator S
is the field of symmetric endomorphisms on M \ K defined by SX = ∇X∂r . As a
consequence of the equation of geodesics, it satisfies S∂r = 0. It moreover satisfies
the Riccati equation ∇∂r S = −S2 − R(∂r , ·)∂r .

The normal Jacobi field on M \ K associated to a vector field v on ∂K is defined
by Yv = E∗v. Such vector fields are orthogonal to and commute with the radial vector
field ∂r . Normal Jacobi fields are related to the shape operator S by the first order linear
differential equation ∇∂r Yv = SYv . As a consequence of the Riccati equation for S,
normal Jacobi fields satisfy the Jacobi field equation ∇∂r (∇∂r Yv) = −R(∂r ,Yv)∂r .

Almost Hermitian manifolds

An almost Hermitian manifold (M, g, J ) is a Riemannian manifold (M, g) together
with an almost complex structure J which is compatible with the metric, in the sense
that it induces linear isometries in the tangent spaces: one has g(J X , JY ) = g(X ,Y )

for all vector fields X and Y . Note that this implies that J is skew-symmetric (in fact,
these twoproperties are equivalent).A tangent plane P ⊂ T M is called J -holomorphic
(respectively totally real) if JP = P (respectively JP ⊥ P). The constant −1 J -
holomorphic sectional curvature tensor R0 on (M, g, J ) is defined by the equality

R0(X ,Y )Z = 1

4

(
g(Y , Z)X − g(X , Z)Y + g(JY , Z)J X − g(J X , Z)JY

+ 2g(X , JY )J Z
) (2.3)

for X , Y and Z vector fields on M . We still denote by R0 its fully covariant version,
meaning that R0(X ,Y , Z , T ) = g(R0(X ,Y )Z , T ) for all vector fields X , Y , Z and
T . Note that ‖R0‖g � 3

2 . For any pair of orthogonal unit tangent vectors u and
v, R0(u, v, u, v) = − 1

4 (1 + 3g(Ju, v)2); the minimal value −1 (respectively the
maximal value − 1

4 ) is achieved precisely when {u, v} spans a J -holomorphic plane
(respectively a totally real plane). In the specific case of the complex hyperbolic
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space, R0 coincides with the curvature tensor of the complex hyperbolic metric (see
[13, Section IX.7]).

CRmanifolds

A CR manifold (for Cauchy-Riemann) is a triplet (M, H , J ) where H is a tangent
distribution of hyperplanes and J is an almost complex structure on H , such that the
distribution H1,0 = {X − i J X | X ∈ H} ⊂ T M ⊗R C is involutive (i.e. [X ,Y ]
is a section of H1,0 whenever X and Y are). In this case, J is said to be formally
integrable. A CRmanifold is called strictly pseudoconvex if there exists a contact form
η annihilating the distribution H (i.e. H = ker η and dη induces a non-degenerate
2-form on H ), and if the associated Levi form dη|H×H (·, J ·) is positive definite on
H .

2.2 The Asymptotic Conditions

Throughout the paper, (M, g, J ) will denote a complete, non-compact, almost Her-
mitian manifold of dimension 2n + 2 � 4, with an essential subset K . We define the
following asymptotic geometric conditions.

Definition 2.1 ((ALCH) and (AK) conditions) Let (M, g, J ) be a complete, non-
compact, almost Hermitian manifold. Let r be the distance function to a compact
subset.

1. We say that (M, g, J ) satisfies the (ALCH) condition of order a > 0, for asymp-
totically locally complex hyperbolic2, if ‖R − R0‖g = O(e−ar ).

2. We say that (M, g, J ) satisfies the (AK) condition of order a > 0, for asymptoti-
cally Kähler, if ‖∇ J‖g = O(e−ar ).

Remark 2.2 Note that ‖R0‖g � 3
2 , so that the (ALCH) condition of order a > 0

implies ‖R‖g = O(1).

One readily verifies that the (ALCH) condition implies that the sectional curvature
of M is bounded as follows:−1+O(e−ar ) � sec � − 1

4 +O(e−ar ). The lower bound
implies the following Lemma.

Lemma 2.3 ([14, Proposition 3.5]) Assume that (M, g, J ) is a complete, non-compact,
almost Hermitian manifold, admitting an essential subset K with sec(M \ K ) < 0,
and satisfying the (ALCH) condition of order a > 0. Let S = ∇∂r be the shape
operator of the level hypersurfaces above K . Then one has

‖S‖g � 1 +

⎧
⎪⎨

⎪⎩

O (
e−ar

)
if 0 < a < 2,

O (
(r + 1)e−2r

)
if a = 2,

O (
e−2r

)
if a > 2.

(2.4)

In any case, one has ‖S‖g = O(1), and exp(
∫ r
0 ‖S‖g − 1) = O(1).

2 For this condition implies that the local geometry at infinity resembles that of the complex hyperbolic
space.
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We also define the following analogous asymptotic conditions of higher order.

Definition 2.4 ((ALCH+) and (AK+) conditions) Let (M, g, J ) be a complete, non-
compact, almost Hermitian manifold. Let r be the distance function to a compact
subset.

1. We say that (M, g, J ) satisfies the (ALCH+) condition of order a > 0 if one has
the estimates ‖R − R0‖g = O(e−ar ) and ‖∇R‖g = O(e−ar ).

2. We say that (M, g, J ) satisfies the (AK+) condition of order a > 0 if one has the
estimates ‖∇ J‖g = O(e−ar ) and ‖∇2 J‖g = O(e−ar ).

Remark 2.5 Under the (AK) condition of order a > 0, one has ‖∇R0‖g = O(e−ar ).
Thus, under the (AK) condition of order a > 0, Kato’s inequality shows that the
(ALCH+) condition of order a > 0 is equivalent to the conditions ‖R − R0‖g −→

r→∞ 0

and ‖∇(R − R0)‖g = O(e−ar ).

In practice, r will be the distance function to the essential subset K . The constants
involved in the previous estimates are global; this will be the case for all claimed
estimates in this article. When built out of the choice of a reference frame (which
will soon be called an admissible frame, see Definition 3.2), these constants will be
independent of that choice. For instance, the expressions ‖Yu‖g = O(‖u‖g0er ) and
Yu = Og(‖u‖g0er ) mean that there exists C > 0 such that for any vector field u on
∂K , one has ‖(Yu)E(r ,p)‖g � C‖u p‖g0er for all p ∈ ∂K and r � 0.

2.3 Outline of the Proof

If (M, g, J ) is assumed to be Kähler (that is, if ∇ J = 0), the author showed in a
previous paper [14] the following result.

Theorem ([14, Theorems A,B,C and D]) Let (M, g, J ) be a complete, non-compact,
Kähler manifold admitting an essential subset K with sec(M \ K ) < 0. Assume that
there is a constant a > 1 such that the estimates ‖R − R0‖g, ‖∇R‖g = O(e−ar )

hold, where r is the distance function to any compact subset. Then on ∂K, there exist
a contact form η of class C1, and a continuous symmetric positive bilinear form γ ,
positive definite on the contact distribution H = ker η, such that

E∗g = dr2 + e2rη ⊗ η + erγ + lower order terms. (2.5)

If moreover a > 3
2 , then γ is of class C1, and there exists a C1 formally integrable

almost complex structure JH on H, such that γ |H×H = dη(·, JH ·). In particular,
(∂K , H , JH ) is a strictly pseudoconvex CR manifold.

Notice the similarity between equations (1.3) and (2.5) by setting ρ = e−r . This result
provides a compactification by a strictly pseudoconvex CR structure for a Kähler
manifold whose curvature is asymptotically close to that of the complex hyperbolic
space. The proof is quite long, but can be summarised as follows:
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1. For {Jν, e1, . . . , e2n} an orthonormal frame on ∂K , with ν the outward unit normal,
let {J∂r , E1, . . . , E2n} denotes its parallel transport along radial geodesics. Then
for r � 0 and j ∈ {1, . . . , 2n}, we define ηr = E∗

r (e−r g(·, J∂r )) and η
j
r =

E∗
r (e− r

2 g(·, E j )), which are local 1-forms on ∂K .
2. If ‖R − R0‖g = O(e−ar ), with a > 1

2 , then {ηr , η1r . . . , η2nr }r�0 converges to
continuous 1-forms {η, η1, . . . , η2n}. This implies that the metric reads as in equa-
tion (2.5), where γ = ∑2n

j=1 η j ⊗ η j . If moreover a > 1, volume comparison
techniques show that the limit is a coframe.

3. If in addition, ‖∇R‖g = O(e−ar ), then the family of 1-forms (ηr )r�0 converges
in C1 topology, the limit η is of class C1, and is contact. The proof uses several
estimates, and tedious computations involving many curvature terms.

4. If a > 3
2 , then (η

j
r )r�0 locally uniformly converges in C1 topology for j ∈

{1, . . . , 2n}. Hence, γ is of class C1.
5. If ϕr = E∗

r (J − g(·, ∂r ) ⊗ J∂r + g(·, J∂r ) ⊗ ∂r ), then (ϕr )r�0 uniformly con-
verges to a tensor ϕ of class C1. Its restriction to H = ker η gives the desired
formally integrable almost complex structure JH .

The very first step of the proof crucially relies on the fact that J∂r is parallel in the
radial direction, and in fact, the equality ∇ J = 0 is used many times. Note that the
Kähler assumption is rather rigid: for instance, one has ∇ J = 0 if and only if the
2-form g(J ·, ·) is closed and J is formally integrable.

In this paper, we extend and improve the results of [14]. First, the Kähler condition
is removed: in fact, neither the closedness of g(J ·, ·) nor the formal integrability of J
need to be met. We instead consider an almost Hermitian manifold (M, g, J ) whose
almost complex structure J is only parallel at infinity, by imposing the condition
‖∇k J‖g = O(e−ar ), k ∈ {1, 2}. Second, we show that the strict pseudoconvexity of
the boundary can be obtained with a > 1 instead of a > 3

2 . This sharper bound comes
from deriving sharp geometric estimates in the direction of the contact structure.

In this context of this paper, the vector field J∂r is not radially parallel, and one
cannot even initiate the above strategy as it stands. The main trick is to prove the
existence, under our assumptions, of a unit vector field E0 on M \ K that is radially
parallel, and that satisfies ‖E0 − J∂r‖g = O(e−ar ). This latter vector field is unique.
One can then consider a reference frame {E0, . . . , E2n} having nice properties, which
we call an admissible frame (see Definition 3.2 below), and try to mimic the above
proof. The counterpart is that the computations become longer and more involved;
one also needs to show numerous extra estimates.

3 Metric Estimates

This section is dedicated to the derivation of the expansion near infinity of the metric
g under the (ALCH) and (AK) conditions. We first define the notion of admissible
frames, which simplify future computations. We then derive estimates on the asymp-
totic expansion of normal Jacobi fields, which turns out to be the main ingredients to
show our results.
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3.1 Admissible Frames

We give a construction for some parallel orthonormal frames along radial geodesics in
which later computations will be easier. For v a vector field on ∂K , let V be the vector
field on M \ K obtained by the parallel transport of v along radial geodesics. Finally,
for r � 0, define βr (v) = g(J∂r , V )|∂Kr . This defines a family of 1-forms (βr )r�0 on
∂K .

Lemma 3.1 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (AK) condition
of order a > 0. Then there exists a continuous nowhere vanishing 1-form β on ∂K
such that

βr − β = Og0(e
−ar ). (3.1)

Proof Fix r � 0 and v a vector field on ∂K . Both ∂r and V are radially parallel, so that
one has βr (v)−β0(v) = ∫ r

0 ∂r g(J∂r , V ) = ∫ r
0 g((∇∂r J )∂r , V ). By the (AK) assump-

tion, there exists C > 0 such that ‖∇ J‖g � Ce−ar . The Cauchy-Schwarz inequality

now implies that
∫ r
0 |g((∇∂r J )∂r , V )| � C 1−e−ar

a ‖v‖g0 . Therefore, (βr (v))r�0 point-
wise converges: let β(v) be its pointwise limit. It defines a pointwise linear form on
the tangent spaces of ∂K , satisfying

|β(v) − βr (v)| �
∫ ∞

r

∣
∣g((∇∂r J )∂r , V )

∣
∣ � C

a
e−ar‖v‖g0 , (3.2)

from which is derived equation (3.1). The convergence is thus uniform, and β is
continuous.

We shall now show that β is nowhere vanishing. For all r � 0, one has ‖βr‖g0 = 1
pointwise. Indeed, Cauchy-Schwarz inequality implies that |βr (v)| � ‖V ‖g = ‖v‖g0
for any v. Equality is reached for v = ι−1

r (J∂r ), where ιr : T ∂K → T ∂Kr is induced
by the parallel transport along radial geodesics. It follows that ‖β‖g0 = 1 pointwise,
and that β is nowhere vanishing. ��
Definition 3.2 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K . Assume that it satisfies the (AK) con-
dition of order a > 0. Let U ⊂ ∂K be an open subset on which the continuous
distribution ker β is trivialisable. Let {e0, . . . , e2n} be an orthonormal frame on U
such that β(e0) > 0 and β(e j ) = 0 if j ∈ {1, . . . , 2n}. The associated admissible
frame {E0, . . . , E2n} on the cone E(R+ × U ) is defined as the parallel transport of
{e0, . . . , e2n} along the radial geodesics.

If {E0, . . . , E2n} is an admissible frame, then {∂r , E0, . . . , E2n} is an orthonormal
frame on the cone E(R+ ×U ) whose elements are parallel in the radial direction even
though they need not be differentiable in the directions that are orthogonal to ∂r . In
the following, we will often refer to admissible frames without mentioning the open
subset U ⊂ ∂K used to define them.
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Lemma 3.3 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (AK) condition
of order a > 0. Let {E0, . . . , E2n} be an admissible frame. Then β(e0) = 1.

Proof One has 1 = ‖J∂r‖2g = ∑2n
j=0 βr (e j )2. The result follows by taking the limit

as r → ∞. ��
Corollary 3.4 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K . Assume that it satisfies the (AK) condi-
tion of order a > 0. Let {E0, . . . , E2n} be an admissible frame and δ be the Kronecker
symbol. Then

1. g(J∂r , E j ) − δ0 j = O(e−ar ) for j ∈ {0, . . . , 2n},
2. E0 − J∂r = Og(e−ar ).

Proof The first point is a consequence of the equality g(J∂r , E j ) = βr (e j ) and of
equation (3.2). For the second point, notice that

E0 − J∂r =
2n∑

j=0

g(E0 − J∂r , E j )E j =
2n∑

j=0

(δ0 j − g(J∂r , E j ))E j , (3.3)

from which is derived the claimed estimate. ��
Remark 3.5 One easily shows that the vector field E0 is the unique unit vector field
X on E(R+ × U ) such that ∇∂r X = 0 and g(X , J∂r ) = 1 + o(1). If (M, g, J ) is
Kähler (if ∇ J = 0), then ∇∂r J∂r = 0, and thus E0 = J∂r . In this specific case,
admissible frames can be chosen to be smooth, and correspond to the radially parallel
orthonormal frames defined in [14].

Proposition 3.6 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, with essential subset K . Assume that it satisfies the
(ALCH) and (AK) conditions of order a > 0. Let {E0, . . . , E2n} be an admissible
frame. Then

1. sec(∂r , E0) + 1 = O(e−ar ),
2. sec(∂r , E j ) + 1

4 = O(e−ar ) for j ∈ {1, . . . , 2n},
3. R(∂r , Ei , ∂r , E j ) = O(e−ar ) for any i �= j ∈ {0, . . . , 2n}.
Proof We prove the first point, the other being shown similarly. One readily verifies
from the definition of R0 that R0(∂r , J∂r , ∂r , J∂r ) = −1, and therefore, it holds that

sec(∂r , E0) = R0(∂r , J∂r + (E0 − J∂r ), ∂r , J∂r + (E0 − J∂r ))

+ (R − R0)(∂r , E0, ∂r , E0)

= −1 + 2R0(∂r , E0 − J∂r , E0, J∂r ) + R0(∂r , E0 − J∂r , ∂r , E0 − J∂r )

+ (R − R0)(∂r , E0, ∂r , E0).

(3.4)

The definition of R0 (see equation (2.3)) yields ‖R0‖g � 3
2 , and the result follows

from the (ALCH) assumption and from the second point of Corollary 3.4. ��
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3.2 Associated Coframes and Normal Jacobi Fields Estimates

Recall that for r � 0, Er : ∂K
∼−→ ∂Kr is defined by Er (p) = E(r , p).

Definition 3.7 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
with essential subset K . Assume that it satisfies the (AK) condition of order a > 0. Let
{E0, . . . , E2n} be an admissible frame defined on a cone E(R+ ×U ). The associated
coframe {η0r , . . . , η2nr }r�0 on U ⊂ ∂K is defined by

∀r � 0, η0r = e−rE∗
r (g(·, E0)) ,

and ∀ j ∈ {1, . . . , 2n},∀r � 0, η
j
r = e− r

2 E∗
r

(
g(·, E j )

)
.

(3.5)

In any admissible frame, the normal Jacobi field Yv associated to the vector field v on
∂K reads

Yv = η0r (v)er E0 +
2n∑

j=1

η
j
r (v)e

r
2 E j . (3.6)

Applying twice the differential operator ∇∂r to this last equality, one has

∇∂r (∇∂r Yv) =
(
∂2r η0r (v) + 2∂rη

0
r (v) + η0r (v)

)
er E0

+
2n∑

j=1

(

∂2r η
j
r (v) + ∂rη

j
r (v) + 1

4
η
j
r (v)

)

e
r
2 E j .

(3.7)

Recall that normal Jacobi fields are actual Jacobi fields, which means that they satisfy
∇∂r (∇∂r Yv) = −R(∂r ,Yv)∂r . An identification of the components of ∇∂r (∇∂r Yv) in
the given admissible frame shows that the coefficients {η j

r (v)} j∈{0,...,2n} satisfy the
differential system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2r η0r (v) + 2∂rη
0
r (v) =

2n∑

k=0

u0kη
k
r (v),

∂2r η
j
r (v) + ∂rη

j
r (v) =

2n∑

k=0

u j
kη

k
r (v), j ∈ {1, . . . , 2n},

(3.8)

where the functions {u j
k } j,k∈{0,...,2n} are defined by

u j
k = −

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sec(∂r , E0) + 1 if j = k = 0,

e− r
2 R(∂r , E0, ∂r , Ek) if j = 0, k �= 0,

e
r
2 R(∂r , E j , ∂r , E0) if j �= 0, k = 0,

R(∂r , E j , ∂r , Ek) if j, k ∈ {1, . . . , 2n}, j �= k,

sec(∂r , E j ) + 1
4 if j, k ∈ {1, . . . , 2n}, j = k.

(3.9)
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Proposition 3.6 implies that one has the uniform estimates |u j
k | = O(e−(a− 1

2 )r ). Com-
bining the proofs of [14, Propositions 4.7 & 4.14], relying on successive integrations,
an application of Grönwall’s Lemma, and a bootstrap argument, one obtains the fol-
lowing result. The last claim relies on estimates on the growth of the volume (see [14,
Propositions 3.7 & 4.13]).

Proposition 3.8 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, with essential subset K . Assume that it satisfies the
(ALCH) and (AK) conditions of order a > 1

2 and that sec(M \ K ) < 0. Let
{η0r , . . . , η2nr }r�0 be the coframes associated to an admissible frame on U ⊂ ∂K.
Then there exists continuous 1-forms {η0, . . . , η2n} on U such that

∂rη
0
r , η0r − η0 =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−ar

)
if 1

2 < a < 3
2 ,

Og0

(
(r + 1)e− 3

2 r
)

if a = 3
2 ,

Og0

(
e− 3

2 r
)

if a > 3
2 ,

∀ j ∈ {1, . . . , 2n}, ∂rη
j
r , η

j
r − η j =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1
2 < a < 3

2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 .

(3.10)

If furthermore a > 1, the family {η0, . . . , η2n} is a continuous coframe on U.

Proposition 3.8 serves as the starting point of our study. Notice that M \ K must
have negative sectional curvature (this was already required in Lemma 2.3). For this
reason, our results will most often require this assumption.

Corollary 3.9 If a > 1
2 , then η

j
r = Og0(1), independently of j and U.

Proof For j ∈ {0, . . . , 2n} and r � 0, write η
j
r = η

j
0 + ∫ r

0 ∂rη
j
r . Notice that ‖η j

0‖g0 =
1. Then by Proposition 3.8, ‖η j

r ‖g0 � ‖η j
0‖g0 + ∫ r

0 ‖∂rη j
r ‖g0 � 1 + ∫ ∞

0 ‖∂rη j
r ‖g0 =

O(1). ��
Recall that a normal Jacobi field Yv satisfies∇∂r Yv = SYv . The following Corollary

is an immediate consequence of Proposition 3.8.

Corollary 3.10 In any admissible frame, the normal Jacobi field Yv associated to a
vector field v on ∂K satisfies

Yv = η0(v)er E0 +
2n∑

j=1

η j (v)e
r
2 E j +

⎧
⎪⎪⎨

⎪⎪⎩

Og
(‖v‖g0e−(a−1)r

)
if 1

2 < a < 3
2 ,

Og

(
‖v‖g0(r + 1)e− r

2

)
if a = 3

2 ,

Og

(
‖v‖g0e− r

2

)
if a > 3

2 ,

(3.11)
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and

SYv = η0(v)er E0 +
2n∑

j=1

1

2
η j (v)e

r
2 E j +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Og

(
‖v‖g0e−(a−1)r

)
if 1

2 < a < 3
2 ,

Og

(
‖v‖g0 (r + 1)e− r

2

)
if a = 3

2 ,

Og

(
‖v‖g0e−

r
2

)
if a > 3

2 .

(3.12)

As a consequence, one has the global estimates Yv, SYv = Og(‖v‖g0er ). If moreover,
v is everywhere tangent to ker η0, then Yv, SYv = Og(‖v‖g0e

r
2 ).

Remark 3.11 Note that although the estimates of Proposition 3.8 are not uniform in
all directions, they contribute equally to the lower order term in equations (3.11) and
(3.12) thanks to the remaining exponential factors.

3.3 Global Consequences andMetric Estimates

We shall now highlight global consequences of the study conducted in Subsections 3.1
and 3.2 . We then prove the first of our main results.

Lemma 3.12 Assume that (M, g, J ) satisfies the (AK) condition of order a > 0. Then
the local vector field e0 defined in Definition 3.2 defines a global continuous vector
field on ∂K, independently of the construction of any admissible frame.

Proof The 1-form β defined in Lemma 3.1 is continuous and nowhere vanishing.
Hence, the distribution ker β ⊂ T ∂K is a continuous distribution of hyperplanes. It
follows that its g0-orthogonal complement L is a well-defined and continuous line
bundle. Notice that the restriction of β trivialises L . It follows that e0 is the unique
section of L that is positive for β, and of unit g0-norm. This concludes the proof. ��

The family of 1-forms {η0r }r�0 is then globally defined on ∂K , independently of
the choice of the admissible frame. As a consequence, one has the following global
version of Proposition 3.8.

Proposition 3.13 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, admitting an essential subset K . Assume that it satisfies
the (ALCH) and (AK) condition of order a > 1

2 with sec(M \ K ) < 0. Then there
exists a continuous 1-form η0 on ∂K such that

∂rη
0
r , η0r − η0 =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−ar

)
if 1

2 < a < 3
2 ,

Og0

(
(r + 1)e− 3

2 r
)

if a = 3
2 ,

Og0

(
e− 3

2 r
)

if a > 3
2 .

(3.13)

If furthermore a > 1, then η0 is nowhere vanishing.
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The following Corollary is a straightforward application of the triangle inequality
and of Corollary 3.9.

Corollary 3.14 One has the following estimates

η0r ⊗ η0r − η0 ⊗ η0 =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−ar

)
if 1

2 < a < 3
2 ,

Og0

(
(r + 1)e− 3

2 r
)

if a = 3
2 ,

Og0

(
e− 3

2 r
)

if a > 3
2 .

(3.14)

From Gauss’s Lemma, the Riemannian metric g reads as E∗g = dr ⊗ dr + gr ,
with (gr )r�0 the family of Riemannian metrics on ∂K defined by gr = E∗

r g. By
construction, the first term that appears in the asymptotic expansion of the metric g
near infinity is e2rη0 ⊗ η0.

Definition 3.15 For r � 0, γr is defined as γr = e−r (gr − e2rη0r ⊗ η0r ).

By definition, (γr )r�0 is a family of symmetric 2-tensors on ∂K . Let
{η0r , . . . , η2nr }r�0 be the coframes associated to an admissible frame {E0, . . . , E2n}.
Then locally, γr = ∑2n

j=1 η
j
r ⊗ η

j
r . Consequently, γr is positive semi-definite, and is

positive definite on ker η0r , for any r � 0. The following result shows that (γr )r�0
converges to some tensor that shares similar properties.

Proposition 3.16 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, and admitting an essential subset K . Assume that it
satisfies the (ALCH) and (AK) conditions of order a > 1

2 such that sec(M \ K ) < 0.
Then there exists a continuous positive semi-definite symmetric 2-tensor γ on ∂K,
which we call the Carnot metric, such that

γr − γ =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1
2 < a < 3

2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 .

(3.15)

If furthermore a > 1, then γ is positive definite on the hyperplane distribution ker η0.

Proof For r � 0, one has gr = e2rη0r ⊗ η0r + erγr . Let {η0r , . . . , η2n}r�0 be the

coframes associated with an admissible frame. Locally, one has γr = ∑2n
j=1 η

j
r ⊗ η

j
r .

Therefore, (γr )r�0 converges pointwise to a limit we call γ which is locally given by
∑2n

j=1 η j ⊗ η j . Hence, one has γr − γ = ∑2n
j=1 η

j
r ⊗ (η

j
r − η j ) + (η

j
r − η j ) ⊗ η j

locally. The global estimates (3.15) now follow from the triangle inequality and froman
application of Proposition 3.8 and Corollary 3.9. As a consequence, γ is a continuous
symmetric positive semi-definite 2-tensor. If a > 1, then {η0, . . . , η2n} is a coframe
(Proposition 3.8), and γ is hence positive definite on ker η0. ��

As a consequence, one has the following comparison between quadratic forms.
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Corollary 3.17 If a > 1, then there exists a constant λ > 1 such that for all r � 0,
1
λ
er g0 � gr � λe2r g0.

Proof For r � 0, η0r ⊗ η0r and γr are positive symmetric 2-tensors. Consider the
Riemannian metric qr = η0r ⊗ η0r + γr on ∂K . From gr = e2rη0r ⊗ η0r + erγr , one
readily checks that

∀r � 0, erqr � gr � e2r qr . (3.16)

According to Propositions 3.13 and 3.16 , qr uniformly converges to the continuous
positive semi-definite bilinear form q∞ = η0 ⊗ η0 + γ as r → ∞. Let Sg0∂K be the
unit sphere bundle of (∂K , g0), which is compact by compactness of ∂K . Then [0,∞]×
Sg0∂K is compact, and the map (r , v) ∈ [0,∞] × Sg0∂K 
→ qr (v, v) ∈ (0,∞) is
continuous. Therefore, there exists λ > 1 such that for all (r , v) ∈ [0,∞] × Sg0∂K ,
it holds that 1

λ
� qr (v, v) � λ. The result now follows from equation (3.16) and from

the homogeneity of quadratic forms. ��
We shall now show the first of our main results.

Theorem A Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (ALCH) and
(AK) assumptions of order a > 1

2 and that M \ K has negative sectional curvature.
Then on ∂K, there exists a continuous 1-formη0 and a continuous positive semi-definite
symmetric 2-tensor γ , such that in the normal exponential map E , the Riemannian
metric g reads

g = dr ⊗ dr + e2rη0 ⊗ η0 + erγ +

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e(2−a)r

)
if 1

2 < a < 3
2 ,

Og0

(
(r + 1)e

r
2

)
if a = 3

2 ,

Og0

(
e
r
2

)
if a > 3

2 .

(3.17)

If furthermore a > 1, then η0 is nowhere vanishing, and γ is positive definite on the
distribution of hyperplanes ker η0.

Proof Let (η0r )r�0, (γr )r�0 and their limits η0 and γ be given by Propositions 3.13
and 3.16 . By construction, one has

E∗g = dr ⊗ dr + e2rη0r ⊗ η0r + erγr
= dr ⊗ dr + e2rη0 ⊗ η0 + erγ + εr , (3.18)

with εr = e2r
(
η0r ⊗ η0r − η0 ⊗ η0

) + er (γr − γ ). Estimates (3.17) now follow from
Corollary 3.14 (estimates on η0r ⊗ η0r − η0 ⊗ η0) and Proposition 3.16 (estimates on
γr − γ ). Ultimately, if a > 1, the last claim follows from Propositions 3.13 (η0 is
nowhere vanishing) and 3.16 (γ is positive semi-definite, positive definite on ker η0).

��
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Remark 3.18 Setting ĝ = E∗(dr ⊗ dr + e2rη0 ⊗ η0 + erγ ) on M \ K , Corollary 3.17
shows that estimates (3.17) read

g − ĝ =

⎧
⎪⎪⎨

⎪⎪⎩

Og
(
e−(a−1)r

)
if 1 < a < 3

2 ,

Og

(
(r + 1)e− r

2

)
if a = 3

2 ,

Og

(
e− r

2

)
if a > 3

2 .

(3.19)

If η0 were a contact form and γ a Carnot metric on its kernel distribution, then g would
be asymptotically complex hyperbolic in the sense of [7, 8].

3.4 Estimates on the Shape Operator

Before we conclude this section, we give another consequence of the previous study:
we derive asymptotic estimates on the shape operator S. First, we introduce a natural
vector field ξ0, which is closely related to S.

Definition 3.19 The vector fields (ξ r0 )r�0 on ∂K are defined as ξ r0 = E∗
r (er E0).

Proposition 3.20 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, admitting an essential subset K . Assume that it satisfies
the (ALCH) and (AK) conditions of order a > 1 with sec(M \ K ) < 0. Then there
exists a continuous vector field ξ0 on ∂K such that

ξ r0 − ξ0 =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1 < a < 3
2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 .

(3.20)

It is uniquely characterised by the fact that η0(ξ0) = 1 and γ (ξ0, ξ0) = 0.

Proof Define g0 = η0 ⊗ η0 + γ , which is a continuous Riemannian metric on ∂K
according to Theorem A. Consider the continuous line bundle L = (ker η0)⊥g0 on
∂K . The restriction of η0 trivialises L , which thus has a continuous nowhere vanishing
section ξ . Define ξ0 = ξ

η0(ξ)
, which is continuous by construction. Let {η0, . . . , η2n} be

the limit coframe associatedwith any admissible frame. Thenη0(ξ0) = 1 andη j (ξ0) =
0 for j ∈ {1, . . . , 2n}. In particular, ξ0 is uniquely characterised by the relations
η0(ξ0) = 1 and γ (ξ0, ξ0) = ∑2n

j=1 η j (ξ0)
2 = 0. Notice that for j ∈ {1, . . . , 2n} and

r � 0, one has

η
j
r (ξ0 − ξ r0 )=η

j
r (ξ

r
0 ) − η

j
r (ξ0)=δ

j
0 − η

j
r (ξ0)=η j (ξ0) − η

j
r (ξ0)=(η j − η

j
r )(ξ0),

(3.21)

where δ stands for the Kronecker symbol. Corollary 3.17 yields the existence of a
constant c > 0 such that ‖ξ r0 − ξ0‖g0 � ce− r

2 ‖Y(ξ r0−ξ0)‖g for all r � 0. The triangle
inequality together with equation (3.21) now yield
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‖Y(ξ r0−ξ0)‖g �
(
er‖η0 − η0r ‖g0 + e

r
2

2n∑

j=1

‖η j − η
j
r ‖g0

)‖ξ0‖g0 . (3.22)

Estimates (3.20) now follow from the estimates of Proposition 3.8, together with the
fact that ‖ξ0‖g0 is uniformly bounded by continuity of ξ0 and compactness of ∂K . ��

Remark 3.21 Fix an admissible frame {E0, . . . , E2n}. If ξ rj = E∗
r (e

r
2 E j ) and if

{ξ0, . . . , ξ2n} is the dual frame of {η0, . . . , η2n}, a similar study shows that

∀ j ∈ {1, . . . , 2n}, ξ j − ξ rj =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1 < a < 3
2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 .

(3.23)

The constants involved in the upper bounds are independent of the choice of the
admissible frame. It relies on the fact that one can uniformly bound ‖ξ j‖g0 if j ∈
{1, . . . , 2n}, for instance, as an application of Corollary 3.17.

For v a vector field on ∂K , recall that the associated normal Jacobi fields Yv satisfies
∇∂r Yv = SYv . It follows from equation (3.6) that in an admissible frame, one has

SYv =
(
∂rη

0
r (v) + η0r (v)

)
er E0 +

2n∑

j=1

(

∂rη
j
r (v) + 1

2
η
j
r (v)

)

e
r
2 E j . (3.24)

Recall that S is symmetric and satisfies S∂r = 0. Consequently, S leaves stable the
tangent distribution {∂r }⊥. Hence, for r � 0, one can consider Sr = E∗

r (S), its pull-
back through the diffeomorphism Er : ∂K → ∂Kr .

Proposition 3.22 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, admitting an essential subset K . Assume that it satisfies
the (ALCH) and (AK) conditions of order a > 1 and that sec(M \ K ) < 0. Then the
family (Sr )r�0 satisfies the estimates

Sr − 1

2
(Id+η0r ⊗ ξ r0 ) =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1 < a < 3
2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 ,

(3.25)

In particular, Sr −→
r→∞

1
2 (Id+η0 ⊗ ξ0), and one can substitute η0r ⊗ ξ r0 with η0 ⊗ ξ0

in estimates (3.25).
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Proof Let v be a vector field on ∂K . It follows from Proposition 3.8 and from Corol-
lary 3.10 that

SYv − 1

2
(Yv + η0r (v)er E0) =

⎧
⎪⎪⎨

⎪⎪⎩

Og
(‖v‖g0e−(a−1)r

)
if 1

2 < a < 3
2 ,

Og

(
‖v‖g0(r + 1)e− r

2

)
if a = 3

2 ,

Og

(
‖v‖g0e− r

2

)
if a > 3

2 .

(3.26)

By the very definition of Sr , ξ r0 and gr , it follows that

∥
∥Sr − 1

2

(
Id+η0r ⊗ ξ r0

) ∥
∥
gr

=

⎧
⎪⎪⎨

⎪⎪⎩

O (
e−(a−1)r

)
if 1

2 < a < 3
2 ,

O
(
(r + 1)e− r

2

)
if a = 3

2 ,

O
(
e− r

2

)
if a > 3

2 .

(3.27)

Now, Corollary 3.17 shows that if a > 1, then

Sr − 1

2
(Id+η0r ⊗ ξ r0 ) = Og0

(

e− r
2
∥
∥Sr − 1

2
(Id+η0r ⊗ ξ r0 )‖gr

)

, (3.28)

and estimates (3.25) now follow. Finally, estimates on ‖η0 − η0r ‖g0 (Proposition 3.13)
and on ‖ξ0 − ξ r0‖g0 (Proposition 3.20), together with the triangle inequality, show that
one can substitute η0r ⊗ ξ r0 with η0 ⊗ ξ0 in estimates (3.25). This concludes the proof.

��
Remark 3.23 In the complex hyperbolic space, the shape operator of a horosphere is
given by S = IdRJν + 1

2 Id{ν,Jν}⊥ , where ν is the a unit normal. Proposition 3.22 states
that the local extrinsic geometry of the level hypersurfaces ∂Kr is asymptotic to that
of horospheres in the complex hyperbolic space.

4 The Almost Complex Structure

This section is dedicated to prove the existence of a natural almost complex structure
J0 on the distribution of hyperplanes H0 = ker η0, obtained as the restriction of a
naturally defined tensor ϕ on ∂K .

The ambient almost complex structure J does not leave stable the ambient dis-
tribution of hyperplanes {∂r }⊥. Let π : T M \ K → T M \ K be the orthogonal
projection onto {∂r }⊥. Define � to be the field of endomorphisms on M \ K defined
by � = π Jπ . Since π and J have unit norms, then ‖�‖g � 1. Formally, one has
π = Id−g(∂r , ·) ⊗ ∂r , and � then reads � = J + g(·, J∂r ) ⊗ ∂r − g(·, ∂r ) ⊗ J∂r .

Lemma 4.1 Assume that (M, g, J ) satisfies the (AK) condition of order a > 0. For
any admissible frame {E0, . . . , E2n} and any vector fields X and Y , one has:

1. g(�X ,�Y ) = g(X ,Y ) − g(X , ∂r )g(Y , ∂r ) − g(X , J∂r )g(Y , J∂r ),
2. �(E0) = Og(e−ar ),
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3. �(E j ) − JE j = Og(e−ar ) if j ∈ {1, . . . , 2n}.
If moreover the (ALCH) and (AK) conditions of order a > 1

2 are satisfied and if
sec(M \ K ) < 0, then for any vector field v on ∂K, one has

(4) ‖�(Yv)‖g = O(‖v‖g0e
r
2 ).

Proof The first point is a straightforward computation. To prove the second point,
note that �(J∂r ) = 0, so that ‖�(E0)‖g = ‖�(E0 − J∂r )‖g � ‖E0 − J∂r‖g .
The result follows from Corollary 3.4. The third point follows from the the fact that
�(E j ) = JE j − g(E j , J∂r ) and from Corollary 3.4. Finally, Corollary 3.10 yields
�(Yv) = η0(v)er�(E0) + ∑2n

j=1 η j (v)e
r
2 �(E j ) + Og(‖v‖g0e−(a−1)r ) whenever v

is tangent to ∂K . The final point is then a consequence of Corollary 3.9, of the second
point, and of the inequality ‖�‖g � 1. ��

The tensor � leaves stable the tangent distribution {∂r }⊥. Therefore, one can pull
it back through the family of diffeomorphisms (Er )r�0.

Definition 4.2 The family of fields of endomorphisms (ϕr )r�0 on ∂K is defined by
ϕr = E∗

r (�).

Recall that (Sr )r�0 is the family of endomorphisms E∗
r (S) induced by the shape

operator.

Lemma 4.3 Assume that (M, g, J ) satisfies the (ALCH) and (AK) assumption of order
a > 1 with sec(M \ K ) < 0. Then the following estimates hold:

1. ϕr ξ
r
0 = Og0

(
e−(a− 1

2 )r
)
.

2. ϕr = Og0(1),
3. η0r ◦ ϕr = Og0(e

−ar ),
4. γr (ϕr ·, ϕr ·) − γr = Og0(e

−(a−1)r ),

5. ϕr Sr − Srϕr =

⎧
⎪⎨

⎪⎩

Og0(e
−(a− 1

2 )r ) if 1 < a < 3
2 ,

Og0((r + 1)e−r ) if a = 3
2 ,

Og0(e
−r ) if a > 3

2 .

Proof We first show the first point. From Corollary 3.17, there exists c > 0 such that
for r � 0, ‖ϕrξ r0‖g0 � c‖�(er E0)‖ge− r

2 = c‖�(E0)‖ge r
2 . The result now follows

from Lemma 4.1
Let us now focus on the second point. Let v be a vector field on ∂K . Corollary 3.17

states that there exists c > 0 such that ‖ϕrv‖g0 � c‖�(Yv)‖ge− r
2 , for all r � 0. The

result follows from the fourth point of Lemma 4.1.
For the third point, let v be a vector field on ∂K . In an admissible frame, one has

�(Yv) = η0r (v)er�(E0) + e
r
2
∑2n

j=1 η
j
r (v)�(E j ). It then follows that

(η0r ◦ ϕr )(v) = η0r (v)g(�(E0), E0) + e− r
2

2n∑

j=1

η
j
r (v)g(�(E j ), E0). (4.1)
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Notice that � has range in {J∂r }⊥, so that g(�(E j ), E0)) = g(�(E j ), E0 − J∂r ) for
all j ∈ {0, . . . , 2n}. Recall that ‖�‖g � 1 and that ‖E j‖g = 1 for all j ∈ {0, . . . , 2n}.
Note that ‖η0r ◦ϕr‖g0 � (‖η0r ‖g0 +e− r

2
∑2n

j=1 ‖η j
r ‖g0)‖E0− J∂r‖g for all r � 0, as an

application of the triangle inequality. The result follows from Corollary 3.4 (estimates
on E0 − J∂r ) and from Corollary 3.9 (uniform bounds on {‖η j

r ‖g0} j∈{0,...,2n}).
Let us now consider the fourth point. Let u and v be vector fields on ∂K , and fix

r � 0. By Lemma 4.1, one has gr (ϕr u, ϕrv) = g(Yu,Yv) − g(Yu, J∂r )g(Yv, J∂r ).
Cauchy-Schwarz inequality now yields

gr (ϕr u, ϕrv) = gr (u, v) − e2rη0r (u)η0r (v) + O(‖Yu‖g‖Yv‖g‖E0 − J∂r‖g). (4.2)

It follows from Corollaries 3.4 and 3.10 , and from the very definition of γr , that

gr (ϕr ·, ϕr ·) = erγr + Og0(e
(2−a)r ). (4.3)

Therefore, e2r (η0r ◦ ϕr ) ⊗ (η0r ◦ ϕr ) + erγr (ϕr ·, ϕr ·) = erγr + Og0(e
(2−a)r ). From

the preceding point, one has e2r (η0r ◦ ϕr ) ⊗ (η0r ◦ ϕr ) = Og0(e
(2−2a)r ), from which

is deduced that γr (ϕr ·, ϕr ·) = γr + Og0(e
−(a−1)r ) This concludes the proof of the

fourth point.
Finally, let us prove the last point.Write Sr = Sr− 1

2 (Id+η0r ⊗ξ r0 )+ 1
2 (Id+η0r ⊗ξ r0 ),

for r � 0. By the triangle inequality, one has

‖ϕr Sr − Srϕr‖g0 � 2‖ϕr‖g0‖Sr − 1

2
(Id+η0r ⊗ ξ r0 )‖g0

+ 1

2
(‖η0r ‖g0‖ϕrξ r0‖g0 + ‖η0r ◦ ϕr‖g0‖ξ r0‖g0).

(4.4)

The result now follows from uniform bounds on ‖η0r ‖g0 and ‖ξ r0‖g0 (by uniform con-
vergence), the estimates on Sr − 1

2 (Id+η0r ⊗ ξ r0 ) (Proposition 3.22), and the estimates
on ϕr , η0r ◦ ϕr , and ϕrξ

r
0 , given by the three first points. ��

We are now able to prove that the family (ϕr )r�0 converges to a continuous field
of endomorphisms, provided that a > 1.

Proposition 4.4 Let (M, g, J ) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, with essential subset K . Assume that it satisfies the
(ALCH) and (AK) conditions of order a > 1 with sec(M \ K ) < 0. Then there exists
a continuous field of endomorphisms ϕ on ∂K such that

ϕr − ϕ =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1 < a < 3
2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 .

(4.5)

In addition, ϕ satisfies:

1. η0 ◦ ϕ = 0 and ϕξ0 = 0,

123



CR compactification for Asymptotically Locally Complex... Page 21 of 35 238

2. γ (ϕ·, ϕ·) = γ ,
3. ϕ2 = − Id+η0 ⊗ ξ0 and ϕ3 = −ϕ.

Proof Let us first show the existence of ϕ. The proof goes in two steps. We first derive
a differential equation for (ϕr )r�0. Let X be a vector field on M \ K . Then

(L∂r J )X = [∂r , J X ] − J [∂r , X ]
= (∇∂r (J X) − ∇J X∂r ) − J (∇∂r X − ∇X∂r )

= (∇∂r J )X + J∇∂r X − S(J X) − J∇∂r X + J (SX)

= J SX − SJ X + (∇∂r J )X .

(4.6)

Hence L∂r J = J S− SJ +∇∂r J . Recall that � = π Jπ , where π = Id−g(∂r , ·)⊗ ∂r
is the orthogonal projection onto {∂r }⊥. It is a standard fact that L∂r g = 2g(S·, ·).
Moreover, S∂r = ∇∂r ∂r = 0. It follows that L∂r π = 0, and thus that L∂r � =
π(J S − SJ + ∇∂r J )π . The eigenspaces of the projector π are ker π = R∂r and
ker(π − Id) = {∂r }⊥, which are both left stable by the shape operator S. Hence, S
commutes with π , fromwhich is derived the equalityL∂r � = �S− S�+π(∇∂r J )π .
Define now ψr = E∗

r (π(∇∂r J )π), so that one has ∂rϕr = ϕr Sr − Srϕr + ψr . A direct

application of the (AK) assumption and of Corollary 3.17 yieldsψr = Og0(e
−(a− 1

2 )r ).
Therefore, it follows from Lemma 4.3 that

∂rϕr =

⎧
⎪⎪⎨

⎪⎪⎩

Og0

(
e−(a− 1

2 )r
)

if 1 < a < 3
2 ,

Og0

(
(r + 1)e−r

)
if a = 3

2 ,

Og0

(
e−r

)
if a > 3

2 .

(4.7)

Consequently, (ϕr )r�0 uniformly converges to some continuous tensor ϕ, which sat-
isfies the inequality ‖ϕr − ϕ‖g0 = ‖ ∫ ∞

r ∂rϕr‖g0 �
∫ ∞
r ‖∂rϕr‖g0 for all r � 0. This

implies estimates (4.5).
Let us now establish the claimed properties satisfied by ϕ. The first two points

are immediate consequences of Lemma 4.3. We thus focus on the last claim. One
easily checks that � satisfies the equality �2 = − Id+g(·, J∂r )⊗ J∂r + g(·, ∂r )⊗ ∂r .
Hence, one has ϕr

2 = − Id+η0r ⊗ ξ r0 + εr , for all r � 0, where the last term is
εr = E∗

r (g(·, J∂r − E0) ⊗ J∂r + g(·, E0) ⊗ (J∂r − E0)). As usual, Corollary 3.17

yields that ‖εr‖g0 = O(e
r
2 ‖E0 − J∂r‖g) = O(e−(a− 1

2 )r ), where the last equality is
due to Corollary 3.4. The first part of the result now follows from the convergence of
(η0r )r�0 and of (ξ r0 )r�0 when a > 1. The second part of the claim is a consequence
of the first point. ��

Proposition 4.4 implies that (∂K , η0, ϕ, ξ0) is an almost contact manifold (see [9]
for an introduction to this notion). In particular, ϕ induces an almost complex structure
on the distribution of hyperplanes H0 = ker η0. The study conducted in this section
finally implies the second of our main results.

Theorem B Let (M, g, J ) be a complete, non-compact almost Hermitian manifold
of dimension greater than or equal to 4 Assume that M satisfies the (ALCH) and
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(AK) conditions of order a > 1 and that M \ K has negative sectional curvature.
Let η0 and γ be given by Theorem A, and let ϕ be defined as in Proposition 4.4. The
restriction J0 = ϕ|H0 of ϕ to the hyperplane distribution H0 = ker η0 then induces
an almost complex structure, and γ 0 = γ |H0×H0 is J0-invariant.

5 Higher Regularity

This section is dedicated to show that under the stronger conditions (ALCH+) and
(AK+) of order a > 1, the tensors η0, γ , and ϕ previously defined gain in regularity.
As a consequence, we highlight a strictly pseudoconvex CR structure related to the
expansion of the metric near infinity.

5.1 Order one Estimates

We first provide asymptotic estimates that will be useful later.

Lemma 5.1 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, admitting an essential subset K . Assume that it satisfies the
(ALCH) condition of order a > 1

2 with sec(M \ K ) < 0. Let u and v be vector fields
on ∂K and consider V be the parallel transport of v along radial geodesics. Then
∇Yu V = Og(‖u‖g0‖v‖g0er ).
Proof Since∇∂r V = 0 and [∂r ,Yu] = 0, one has∇∂r (∇Yu V ) = −R(∂r ,Yu)V . Hence,
Kato’s inequality yields

∣
∣∂r‖∇Yu V ‖g

∣
∣ � ‖R‖g‖Yu‖g‖V ‖g almost everywhere. Recall

that ‖R‖g = O(1) (Remark 2.2) and that ‖V ‖g = ‖v‖g0 . Under the (ALCH) condition
of order a > 1

2 , one has ‖Yu‖g = O(‖u‖g0er ) (Corollary 3.10). The result follows
from a straightforward integration. ��
Lemma 5.2 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, admitting an essential subset K . Assume that it satisfies the
(ALCH) and (AK) conditions of order a > 1

2 with sec(M \ K ) < 0. Then one has
∇Yu J∂r = Og(‖u‖g0er ).
Proof Write ∇Yu J∂r = (∇Yu J )∂r + J SYu . The triangle inequality now yields
‖∇Yu J∂r‖g � (‖∇ J‖g + ‖S‖g)‖Yu‖g , and the result follows from Lemma 2.3, the
(AK) assumption and the estimates of Corollary 3.10. ��
Lemma 5.3 Assume that (M, g, J ) satisfies the (ALCH) and (AK+) conditions of order
a > 1

2 with sec(M \ K ) < 0. Then ∇Yu (∇∂r J∂r ) = Og(‖u‖g0e−(a−1)r ).

Proof Since ∇∂r ∂r = 0 and ∇Yu∂r = SYu , it follows that

∇Yu (∇∂r (J∂r )) = ∇Yu

(
(∇∂r J )∂r

)

= (∇Yu (∇∂r J )
)
∂r + (∇∂r J )∇Yu∂r

= (∇2
Yu ,∂r J )∂r + (∇∇Yu ∂r J )∂r + (∇∂r J )∇Yu∂r

= (∇2
Yu ,∂r J )∂r + (∇SYu J )∂r + (∇∂r J )SYu .

(5.1)
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The result follows fromCorollary 3.10 (estimates on SYu) and from the (AK+) assump-
tion. ��
Lemma 5.4 Assume that (M, g, J ) satisfies the (ALCH+) and (AK) conditions of order
a > 1

2 with sec(M \ K ) < 0. Let π be the orthogonal projection onto {∂r }⊥. For u
and v vector fields on ∂K, one has:

1. π((∇Yu S)Yv) = Og(‖u‖g0‖v‖g0e
3
2 r ).

2. π(∇YuYv) = Og

(
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e

3
2 r

)
.

Proof We first consider the first point. By Kato’s inequality, and noticing that ∇∂r π =
0, one has ∂r‖π(∇Yu S)Yv)‖g � ‖π(∇∂r ((∇Yu S)Yu))‖g almost everywhere. The shape
operator S satisfies the Riccati equation ∇∂r S = −S2 − R(∂r , ·)∂r . Moreover, one has
π S = Sπ . Direct computations using the equalities ∇∂r Yv = SYv and ∇∂r (SYv) =
−R(∂r ,Yv)∂r now yield

∇∂r (π((∇Yu S)Yv))) = π SR(∂r ,Yu)Yv − πR(∂r ,Yu)SYv − πR(SYu,Yv)∂r

− πR(∂r ,Yv)SYu − π(∇Yu R)(∂r ,Yv)∂r

− Sπ(∇Yu S)Yv

= R − S(π((∇Yu S)Yv))),

(5.2)

where R contains all the curvature terms. Hence, one has the almost-everywhere
inequality ∂r (e−r‖π((∇Yu S)Yv))‖g) � e−r‖R‖g + (‖S‖g −1)e−r‖π((∇Yu S)Yv))‖g .
After a straightforward integration, Grönwall’s Lemma yields

e−r‖π((∇Yu S)Yv))‖g �
(

‖(∇g
u S)v‖g +

∫ r

0
e−s‖R‖g ds

)

exp

(∫ r

0
(‖S‖g − 1) ds

)

.

(5.3)

By compactness of ∂K , one has ‖(∇g
u S)v‖g = O(‖u‖g0‖v‖g0). Moreover, Lemma 2.3

yields the estimate exp
(∫ r

0 (‖S‖g − 1) ds
) = O(1). To conclude, it suffices to show

that R = Og(‖u‖g0‖v‖g0e
3
2 r ). The (ALCH+) assumption of order a > 1

2 yields

R = π SR0(∂r ,Yu)Yv − πR0(∂r ,Yu)SYv − πR0(SYu,Yv)∂r

− πR0(∂r ,Yv)SYu + Og

(
‖u‖g0‖v‖g0e−(a−2)r

)
.

(5.4)

A close look at the definition of R0 (see equation (2.3)) shows that the leading terms

in ‖R‖g are of the form cη0(u)η j (v)e
3
2 r or cη0(v)η j (u)e

3
2 r , for a constant c and with

j ∈ {1, . . . , 2n}. The result follows.
Let us now show the second point. Similarly, Kato’s inequality yields the almost

everywhere inequality ∂r‖π(∇YuYv)‖g � ‖∇∂r (π(∇YuYv))‖g . Straightforward com-
putations, using that ∇∂r π = 0, that π and S commute, and that ∇∂r Yv = SYv , now
yield the equality ∇∂r (π(∇YuYv)) = −πR(Yu,Yv)∂r + π((∇Yu S)Yu) + Sπ(∇YuYv).
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Hence, one has

∂r (e
−r‖π(∇YuYv)‖g) � e−r‖πR(Yu,Yv)∂r‖g + e−r‖π((∇Yu S)Yv)‖g

+ (‖S‖g − 1)(e−r‖π(∇YuYv)‖g) a.e.
(5.5)

The rest of the proof goes similarly to that of the first point, using the estimates derived
on ‖π((∇Yu S)Yv)‖g . The main difference is that the initial data here is not tensorial
in v, but instead is ‖π(∇uv)‖g = ‖∇g0

u v‖g0 � ‖∇g0v‖g0‖u‖g0 . ��
Remark 5.5 If one considers thewhole vector field∇YuYv instead, then one only has the
estimates ‖∇YuYv‖g = O((‖v‖g0 +‖∇gv‖g)‖u‖g0e2r ). Indeed, the radial component
is given by g(∇YuYv, ∂r ) = −g(SYu,Yv) � −η0(u)η0(v)e2r when η0(u) and η0(v)

do not vanish.

5.2 Regularity of the Admissible Frames

We shall now show that under the (ALCH) and (AK+) conditions of order a > 1, the
vector field e0, defined in Definition 3.2, is actually of class C1.
Proposition 5.6 Let (M, g, J ) be a complete, non-compact, almost Hermitian mani-
fold of dimension at least 4, admitting an essential subset K . Assume that it satisfies the
(ALCH) and (AK+) conditions of order a > 1 with sec(M \ K ) < 0. Then the vector
field e0 is of class C1; admissible frames can be chosen to have the same regularity.

Proof It suffices to show that the 1-form β defined in Section 3.1 is of class C1.
To do so, we shall show that β(v) is a C1 function for any C1 vector field v. We
prove this later fact by showing that (u(βr (v)))r�0 uniformly converges for any C1
vector fields u and v on ∂K . Let u and v be such vector fields, and r � 0. Then
u(βr (v)) = Yu(g(J∂r , V )) = ∇Yu (g(J∂r , V )), where V is the parallel transport of v

along radial geodesics. Since [∂r ,Yu] = 0 and ∇∂r V = 0, one has

∂r (u(βr (v))) = ∇∂r (∇Yu (g(J∂r , V ))) = ∇Yu (∇∂r (g(J∂r , V ))), (5.6)

so that ∂r (u(βr (v))) = g(∇Yu (∇∂r (J∂r )), V )+g(∇∂r (J∂r ),∇Yu V ). It now follows that
one has |∂r (u(βr (v)))| � ‖∇Yu V ‖g‖∇∂r (J∂r )‖g + ‖V ‖g‖∇Yu (∇∂r (J∂r ))‖g . Recall
that ‖S‖g = O(1) (Lemma 2.3), ‖V ‖g = ‖v‖g0 , and ‖Yu‖g = O(‖u‖g0er ) (Corol-
lary 3.10). It now follows from Lemma 5.1, Lemma 5.3, and the (AK) assumption,
that

∂r (u(βr (v))) = O
(
‖u‖g0‖v‖g0e−(a−1)r

)
. (5.7)

Consequently, ∂r (u(βr (v))) uniformly converges for any vector fields u and v. This
concludes the proof. ��

It what follows, we will need to differentiate expressions involving ∇Yu E j in the
radial direction, with Yu a normal Jacobi field and E j an element of an admissible
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frame. At a first glance, this is a priori justified only if E j is of class C2. One could
prove such regularity by requiring the stronger condition ‖∇3 J‖g = O(e−ar ). It
turns out that one needs not assume this last condition, as a consequence of the fact
that E j is solution to the first order linear differential equation ∇∂r E j = 0. Indeed, let
{r , x1, . . . , x2n+1} beFermi coordinates3, andwrite E j = ∑2n+1

i=1 Ei
j∂i . Then {Ei

j } are
solutions to the ODE (Ei

j )
′+∑2n+1

k=1 Ek
j S

i
k = 0, with (Sik) the components of the shape

operator S. As a consequence, one can consider elements of the form∇∂r (∇Yu E j ) even
though E j is only of class C1. In fact, one has ∇∂r (∇Yu E j ) = −R(∂r ,Yu)E j .

Corollary 5.7 Under the assumptions of Proposition 5.6, if u is a vector field on ∂K,
then

∇Yu (E0 − J∂r ) = Og(‖u‖g0e−(a−1)r ). (5.8)

Proof Let u be a vector field on ∂K , and {E0, . . . , E2n} be a C1 admissible frame.
Equation (3.3) yields

∇Yu (E0 − J∂r ) = −
2n∑

j=0

u(βr (e j ))E j +
2n∑

j=0

(δ0 j − βr (e j ))∇Yu E j . (5.9)

During the proof of Proposition 5.6, we have shown that (βr )r�0 converges in C1
topology, so that for all j ∈ {0, . . . , 2n},

lim
r→∞ u(βr (e j )) = u

(
lim
r→∞ βr (e j )

)
= u(β(e j )) = u(δ0 j ) = 0. (5.10)

Therefore, one has |u(βr (e j ))| = | ∫ ∞
r ∂r (u(βr (e j )))| �

∫ ∞
r |∂r (u(βr (e j )))| for every

j ∈ {0, . . . , 2n} and r � 0. Equation (5.7) then yieldsu(βr (e j )) = O(‖u‖g0e−(a−1)r ).
Moreover, by Corollary 3.4, one has |δ0 j − βr (e j )| = O(e−ar ). Finally, Lemma 5.1
yields ∇Yu E j = Og(‖u‖ger ). The result now follows. ��

5.3 The Contact Form and the Carnot Metric

We shall now show that if the (ALCH+) and (AK+) conditions of order a > 1 are
satisfied, then η0 and γ |H0×H0 are of class C1 and that dη0(·, ϕ·) = γ . In particular,
η0 is contact. These results are analogous to [14, Theorems B & C], although we
give slightly different and considerably shorter proofs here. The main difference is
that we prove the C1 convergence of elements of the form (η

j
r (v))r�0, instead of C0

convergence of elements of the form (Luη
j
r )r�0.

Theorem C Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (ALCH+) and

3 That is, {x1, . . . , x2n+1} are coordinates on ∂K , and that if (x1, . . . , x2n+1) corresponds to p ∈ ∂K ,
then (r , x1, . . . , x2n+1) corresponds to E(r , p) ∈ M .
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(AK+) conditions of order a > 1 and that M \ K has negative sectional curvature.
Then η0 is a contact form of class C1. Moreover, dη0(·, ϕ·) = γ , and the Reeb vector
field of η0 is ξ0.

Proof The proof is divided in three parts. First, we show that η0 is of class C1. Then
we derive an expression for dη0(·, ϕ·), and deduce that η0 is contact. Finally, we show
that ξ0 is the Reeb vector field of η0.

To show that η0 is of class C1, we show that for any vector field v, the function
η0(v) is of class C1. To do so, we show that for any other vector field u, (u(η0r (v)))r�0
uniformly converges on ∂K . Let u and v be vector fields on ∂K . Let f be the function
on M \ K defined by f = er

(
u(η0r (v)

) = Yu (g(Yv, E0)) = ∇Yu (g(Yu, E0)). Then
f is smooth in the radial direction. Since [∂r ,Yu] = 0 and ∇∂r E0 = 0, one has

∂r f = ∇∂r (∇Yu ((g(Yv, E0)))

= ∇Yu (∇∂r (g(Yv, E0)))

= ∇Yu (g(∇∂r Yv, E0)). (5.11)

Similarly, one has ∂2r f = ∇Yu (g(∇∂r (∇∂r Yv), E0)). For Yv is a Jacobi field, one has
the equality ∇∂r (∇∂r Yv) = −R(∂r ,Yv)∂r , and thus ∂2r f = −∇Yu (R(∂r ,Yv, ∂r , E0)).
Notice that

R(∂r ,Yv, ∂r , E0) = R(∂r ,Yv, ∂r , J∂r ) + R(∂r ,Yv, ∂r , E0 − J∂r )

= R0(∂r ,Yv, ∂r , J∂r ) + R(∂r ,Yv, ∂r , E0 − J∂r )

+ (R − R0)(∂r ,Yv, ∂r , J∂r ).

(5.12)

One readily checks from the definition of R0 that R0(∂r ,Yv, ∂r , J∂r ) = −g(Yv, J∂r ),
so that R0(∂r ,Yv, ∂r , J∂r ) = −g(Yv, E0) − g(Yv, J∂r − E0). Hence, it follows that

∂2r f − f = g(∇YuYv, J∂r − E0) + g(Yv,∇Yu (J∂r − E0))

− (∇Yu R)(∂r ,Yv, ∂r , E0 − J∂r ) − R(SYu,Yv, ∂r , E0 − J∂r )

− R(∂r ,∇YuYu, ∂r , E0 − J∂r ) − R(∂r ,Yv, SYu, E0 − J∂r )

− R(∂r ,Yv, ∂r ,∇Yu (E0 − J∂r )) − (∇Yu (R − R0))(∂r ,Yv, ∂r , J∂r )

− (R − R0)(SYu,Yv, ∂r , J∂r ) − (R − R0)(∂r ,∇YuYv, ∂r , J∂r )

− (R − R0)(∂r ,Yv, SYu, J∂r ) − (R − R0)(∂r ,Yv, ∂r ,∇Yu J∂r ).

(5.13)

Note that the radial part of ∇YuYv plays no role here due to the symmetries of the
Riemann curvature tensor, so that one can substitute ∇YuYv with π(∇YuYv) in this
latter expression. Recall that one has the following estimates:

• R, S = Og(1) (Remark 2.2 and Lemma 2.3),
• R − R0,∇R,∇(R − R0) = Og(e−ar ) ((ALCH+) condition and Remark 2.5),
• E0 − J∂r = Og(e−ar ) (Corollary 3.4),
• Yu,Yv = Og(‖u‖g0er ) (Corollary 3.10),

123



CR compactification for Asymptotically Locally Complex... Page 27 of 35 238

• ∇Yu J∂r = Og(‖u‖g0er ) (Lemma 5.2),

• π(∇YuYv) = Og((‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e
3
2 r ) (Lemma 5.4),

• ∇Yu (E0 − J∂r ) = Og(‖u‖g0e−(a−1)r ) (Corollary 5.7).

Hence, the triangle inequality yields

∂2r f − f = O
(
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e(2−a)r

)
. (5.14)

Define h = ∂r f − f , and notice that ∂r h+h = ∂2r f − f . It now follows from equation
(5.14) that ∂r (er h) = O (

(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e(3−a)r
)
. Therefore, one has

er h =

⎧
⎪⎨

⎪⎩

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e(3−a)r

)
if 1 < a < 3,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0(r + 1)

)
if a = 3,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0

)
if a > 3.

(5.15)

Notice that e−r h = ∂r (e−r f ) = ∂r
(
u

(
η0r (v)

))
. Hence,

∂r

(
u

(
η0r (v)

))
=

⎧
⎪⎨

⎪⎩

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e−(a−1)r

)
if 1 < a < 3,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0(r + 1)e−2r

)
if a = 3,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e−2r

)
if a > 3.

(5.16)

Consequently,
(
u(η0r (v))

)

r�0 uniformly converges as r → ∞, and η0 is then of class

C1.
We shall now derive an expression for dη0(·, ϕ·), by computing the limit of

dη0r (·, ϕr ·) as r → ∞. Let u and v be vector fields on ∂K . For r � 0, it holds
that

dη0r (u, ϕrv) = u
(
η0r (ϕrv)

)
− (ϕrv)

(
η0r (u)

)
− η0r ([u, ϕrv])

= e−r (Yug(�Yv, E0) − (�Yv)g(Yu, E0) − g([Yu,�Yv], E0))

= e−r (
g(�Yv,∇Yu E0) − g(Yu,∇�Yv E0)

)
.

(5.17)

On the one hand, it holds that

g(�Yv,∇Yu E0) = g(�Yv,∇Yu J∂r ) + g(�Yv,∇Yu (E0 − J∂r ))

= g(�Yv, J SYu) + g(�Yv, (∇Yu J )∂r ) + g(�Yv,∇Yu (E0 − J∂r ))

= −g(J�Yv, SYu) + g(�Yv, (∇Yu J )∂r ) + g(�Yv,∇Yu (E0 − J∂r )).

(5.18)
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On the other hand, one has

g(Yu,∇�Yv E0) = g(Yu,∇�Yv J∂r ) + g(Yu,∇�Yv (E0 − J∂r ))

= g(Yu, J S�Yv) + g(Yu, (∇�Yv J )∂r ) + g(Yu,∇�Yv (E0 − J∂r ))

= −g(JYu, S�Yv) + g(Yu, (∇�Yv J )∂r ) + g(Yu,∇�Yv (E0 − J∂r )).

(5.19)

It then follows from the (AK) assumption, Corollary 3.10 and Corollary 5.7 that

dη0r (u, ϕrv) = e−r (g(JYu, S�Yv) − g(J�Yv, SYu)) + O
(
‖u‖g0‖v‖g0e−(a−1)r

)
.

(5.20)

Fix {E0, . . . , E2n} an admissible frame. From Corollary 3.4 and Corollary 3.10, one
has the estimate Yv = η0(v)er J∂r + ∑2n

j=1 η j (v)e
r
2 E j + Og(‖v‖g0e−(a−1)r ). It now

follows from Lemma 4.1 that J�Yv = −∑2n
j=1 η j (v)e

r
2 E j + Og(‖v‖g0e−(a−1)r ).

Corollary 3.10 now yields

g(J�Yv, SYu) = −er

2

2n∑

j=1

η j (v)η j (u) + O(‖u‖g0‖v‖g0e−(a−2)r ). (5.21)

Similarly, one shows that

g(JYu, S�Yv) = er

2

2n∑

j=1

η j (u)η j (v) + O(‖u‖g0‖v‖g0e−(a−2)r ). (5.22)

Recall the local expression γ = ∑2n
j=1 η j ⊗ η j . Equations (5.20), (5.21) and (5.22)

now yield

dη0r (u, ϕrv) = γ (u, v) + O(‖u‖g0‖v‖g0e−(a−1)r ). (5.23)

The uniform convergence of the first derivatives of (η0r )r�0 yields dη0(·, ϕ·) = γ .
Proposition 3.16 hence shows that dη0 is non-degenerate on ker η0. In particular, η0

is a contact form.
To conclude, let us show that ξ0 is the Reeb vector field of η0. Since η0(ξ0) = 1,

it remains to show that dη0(ξ0, v) = 0 for all vector field v tangent to H0. Let v be
such a vector field. The image of ϕ being exactly H0, there exists a vector field u on
∂K such that v = ϕu. By Proposition 4.4, γ is ϕ-invariant and ϕξ0 = 0. From the
preceding point, dη0(·, ϕ·) = γ . It finally follows that one has the equality

dη0(ξ0, v) = dη0(ξ0, ϕu) = γ (ξ0, u) = γ (ϕξ0, ϕu) = γ (0, ϕu) = 0, (5.24)

which concludes the proof. ��
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Corollary 5.8 Under the assumptions of Theorem C, the distribution H0 = ker η0 is a
contact distribution of class C1.

The next result shows that under the assumptions of Theorem C, the Carnot metric
γ 0 on H0 is of the same regularity. The proof is very similar.

Theorem D Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (ALCH+) and
(AK+) conditions of order a > 1 and that M \ K has negative sectional curvature.
Then the restriction γ 0 = γ |H0×H0 is of class C1.
Proof Let {E0, . . . , E2n} be a C1 admissible frame defined on a cone E(R+ ×U ), and
fix j ∈ {1, . . . , 2n}. Let us first show that η j is of class C1 on the distribution H0|U .
To do so, we shall prove that

(
u

(
η
j
r (v)

))

r�0
locally uniformly converges on U for

v tangent to H0|U and u any vector field on U .
Let u and v be such vector fields, and r � 0 be a fixed non-negative number. Let

f j = e
r
2 u

(
η
j
r (v)

)
= ∇Yu

(
g(Yv, E j )

)
, which is smooth in the radial direction. Since

[∂r ,Yu] = 0 and ∇∂r E j = 0, one has

∂2r f j = ∇∂r (∇∂r (∇Yu

(
g(Yv, E j )

)
)) = ∇Yu g(∇∂r (∇∂r Yv), E j ), (5.25)

and, for Yv is a Jacobi field, one has ∂2r f j = −∇Yu (R(∂r ,Yv, ∂r , E j )). One readily
checks that R0(∂r ,Yv, ∂r , E j ) = − 1

4g(Yv, E j ) − 3
4g(Yv, J∂r )g(E j , J∂r ). Therefore,

one has the equality

∂2r f j − 1

4
f j = 3

4
g(∇YuYv, J∂r )g(E j , J∂r ) + 3

4
g(Yv,∇Yu J∂r )g(E j , J∂r )

+ 3

4
g(Yv, J∂r )g(∇Yu E j , J∂r ) + 3

4
g(Yv, J∂r )g(E j ,∇Yu J∂r )

− ∇Yu (R − R0)(∂r ,Yv, ∂r , E j ) − (R − R0)(SYu,Yv, ∂r , E j )

− (R − R0)(∂r ,∇YuYv, ∂r , E j ) − (R − R0)(∂r ,Yv, SYu, E j )

− (R − R0)(∂r ,Yv, ∂r ,∇Yu E j ).

(5.26)

As in the proof of Theorem B, the radial component of ∇YuYv plays no role due to
the symmetries of R, so that one can substitute this term with π(∇YuYv). Moreover,
g(E j , J∂r ) = βr (e j ), where (βr )r�0 is the family defined in Section 3.1. Recall that
one has the following estimates:

• R, S = Og(1) (Remark 2.2 and Lemma 2.3),
• R − R0,∇(R − R0) = Og(e−ar ), ((ALCH+) condition and Remark 2.5),
• βr (e j ) = O(e−ar ) (Corollary 3.4),
• Yu = Og(‖u‖g0er ) and Yv = Og(‖v‖g0e

r
2 ) (Corollary 3.10),

• ∇Yu E j = Og(‖u‖g0er ) (Lemma 5.1),
• ∇Yu J∂r = Og(‖u‖g0er ) (Lemma 5.2),
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• π(∇YuYv) = Og((‖∇g0u‖g0 + ‖u‖g0)‖v‖g0e
3
2 r ) (Lemma 5.4).

Thus, ∂2r f j − 1
4 f j = O((‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e−(a− 3

2 )r ). Let h j be defined by
the relation h j = ∂r f j − 1

2 f j . Then ∂r h j + 1
2h

j = ∂2r f j − 1
4 f

j , from which is

derived that ∂r (e
r
2 h j ) = O((‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e−(a−2)r ). A straightforward

integration now yields

e
r
2 h j =

⎧
⎪⎨

⎪⎩

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e(2−a)r

)
if 1 < a < 2,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0(r + 1)

)
if a = 2,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0

)
if a > 2.

(5.27)

Notice that e− r
2 h j = ∂r (e− r

2 f j ) = ∂r

(
u(η

j
r (v))

)
, from which is deduced that

∂r

(
u(η

j
r (v))

)
=

⎧
⎪⎨

⎪⎩

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e−(a−1)r

)
if 1 < a < 2,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0(r + 1)e−r

)
if a = 2,

O (
(‖v‖g0 + ‖∇g0v‖g0)‖u‖g0e−r

)
if a > 2.

(5.28)

In any case,
(
u(η

j
r (v))

)

r�0
locally uniformly converges. As a consequence, η j |H0|U

is of class C1. We immediately deduce from the local expression γ = ∑2n
j=1 η j ⊗ η j

that γ 0 = γ |H0×H0 is of class C1. This concludes the proof. ��
Remark 5.9 With the stronger assumption a > 3

2 , the same proof shows that for
j ∈ {1, . . . , 2n}, η j is of class C1 in all directions, and so is γ . Indeed, in this case,
one has to consider the estimate Yv = Og(‖v‖g0er ) instead.

5.4 The Almost Complex Structure

We shall now show that the almost complex structure J0 defined on the C1 distribution
H0 is of the same regularity, and that it is formally integrable. We first remark that
the local vector fields {ξ1, . . . , ξ2n} are of class C1, although the Reeb vector field ξ0
might only be continuous.

Lemma 5.10 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K . Assume that (M, g, J ) satisfies
the (ALCH+) and (AK+) conditions of order a > 1 with sec(M \ K ) < 0. Let
{η0, . . . , η2n} be the local coframe associated to any admissible frame {E0, . . . , E2n}.
Let {ξ0, ξ1, . . . , ξ2n} be its dual frame. Then for j ∈ {1, . . . , 2n}, ξ j is a vector field
of class C1.
Proof Throughout the proof of Theorem C, we have shown that {η1, . . . , η2n} is a C1
trivialisation of the C1 vector bundle Hom(H0,R). Consequently, {ξ1, . . . , ξ2n} is a
C1 trivialisation of the vector bundle H0. ��

We now show that under the (AK+) condition of order a > 0, admissible frames
can almost be chosen to be J -frames, in the following sense.

123



CR compactification for Asymptotically Locally Complex... Page 31 of 35 238

Lemma 5.11 Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, and with essential subset K . Assume that it satisfies the
(AK+) condition of order a > 0. Then there exists an admissible frame {E0, . . . , E2n}
such that

∀ j ∈ {1, . . . , n}, JE2 j−1 − E2 j = Og(e
−ar ). (5.29)

Proof Let U ⊂ ∂K be an open domain on which H0 is trivialisable. Let e1 be a unit
section of H0|U of class C1, and let E1 be its parallel transport along radial geodesics.
Consider the family of 1-forms β1

r : H0|U → R defined by β1
r (v) = g(V , JE1)|∂Kr ,

where V is the parallel transport of v along radial geodesics. The same study than
that conducted for the proofs of Lemma 3.1 and Proposition 5.6 shows that under the
(AK+) condition of order a > 1, there exists a nowhere vanishing 1-form β1 on U ,
which is of class C1, such that β1

r − β1 = Og0(e
−ar ). Let e2 be the unique C1 section

of H0|U such that e2 ⊥g0 ker β1, ‖e2‖g0 = 1 and β1(e2) > 0. Define E2 to be its
parallel transport along radial geodesics. Similarly to Corollary 3.4, one shows that
E2 − JE1 = Og(e−ar ). The rest of the proof follows by induction. ��

We refer to such an admissible frame as a J -admissible frame. We are now able to
show the last Theorem of this Section, exhibiting a strictly pseudoconvex CR structure
at infinity.

Theorem E Let (M, g, J ) be a complete, non-compact, almost Hermitian manifold of
dimension at last 4, with essential subset K . Assume that it satisfies the (ALCH+) and
(AK+) condition of order a > 1 and that M \ K has negative sectional curvature.
Let J0 be the almost complex structure on H0 induced by ϕ. Then J0 is of class C1,
and is formally integrable. In particular, (∂K , H0, J0) is a strictly pseudoconvex CR
manifold of class C1.
Proof Let {E0, . . . , E2n} be a J -admissible frame of class C1, and {η1, . . . , η2n} and
{ξ1, . . . , ξ2n} be the associated C1 coframe and frame. Then {∂r , E0, . . . , E2n} is an
orthonormal frame. Since �(∂r ) = �(J∂r ) = 0, one has � = ∑2n

j=0 g(·, E j ) ⊗
�(E j ). Lemmata 4.1 and 5.11 yield

� =
n∑

j=1

g(·, E2 j−1) ⊗ E2 j − g(·, E2 j ) ⊗ E2 j−1 + Og(e
−ar ). (5.30)

Corollary 3.17 now yields ϕr = ∑n
j=1 η

2 j−1
r ⊗ ξ r2 j − η

2 j
r ⊗ ξ r2 j−1 + Og0(e

−(a− 1
2 )r ).

Taking the limit as r → ∞ shows thatϕ = ∑n
j=1 η2 j−1⊗ξ2 j−η2 j⊗ξ2 j−1. Therefore,

the restriction J0 = ϕ|H0 has at least the same regularity as {η1|H0 , . . . , η
2n|H0} and

{ξ1, . . . , ξ2n}. It follows from Theorem C and Lemma 5.10 that J0 is of class C1.
Let us now show that J0 is formally integrable. Recall that γ |H0×H0 is J0-invariant,

so that by [14, Proposition 5.10], it suffices to show that Nϕ |H0×H0 = dη0|H0×H0 ⊗ξ0,
where NA stands for the Nijenhuis tensor of the field of endomorphisms A, defined
by

NA(X ,Y ) = −A2[X ,Y ] − [AX , AY ] + A[AX ,Y ] + A[X , AY ]. (5.31)

123



238 Page 32 of 35 A. Pinoy

Let u and v be any vector fields on ∂K . Using the fact that ∇ is torsion-free, one
first obtains N�(Yu, Yv) = �(∇Yu�)Yv − (∇�Yu�)Yv − �(∇Yv�)Yu + (∇�Yv�)Yu .
Recall that � = J − g(·, ∂r ) ⊗ J∂r + g(·, J∂r ) ⊗ ∂r . Since ∇g = 0, ∇∂r = S,
�(∂r ) = �(J∂r ) = 0 and Yu,Yv ⊥ ∂r , one has

�(∇Yu�)Yv = g(Yv, J∂r )�(SYu) + �(∇Yu J )Yv,

(∇�Yu�)Yv = −g(Yv, S�Yu)J∂r + g(Yv, J S�Yu)∂r + g(Yv, J∂r )S�Yu
+ (∇�Yu J )Yv − g(Yv, (∇�Yu J )∂r )∂r ,

�(∇Yv�)Yu = g(Yu, J∂r )�(SYv) + �(∇Yv J )Yu, and

(∇�Yv�)Yu = −g(Yu, S�Yv)J∂r + g(Yu, J S�Yv)∂r + g(Yu, J∂r )S�Yv

+ (∇�Yv J )Yu − g(Yu, (∇�Yv J )∂r )∂r .

(5.32)

Recall that � takes values in the distribution {∂r }⊥, which is involutive as the tangent
field to the foliation (∂Kr )r�0 of M \ K . The definition of the Nijenhuis tensor then
shows that N� has range in {∂r }⊥. Hence, the terms in the radial direction cancel out
each others, and the remaining terms yield

Nφ(Yu,Yv) = (g(Yv, S�Yu) − g(Yu, S�Yv)) J∂r
+ g(Yv, J∂r ) (�SYu − S�Yu) − g(Yu, J∂r ) (�SYv − S�Yv)

+ �
(
(∇Yu J )Yv − (∇Yv J )Yu

) − π((∇�Yu J )Yv) + π((∇�Yv J )Yu),

(5.33)

where π is the orthogonal projection onto {∂r }⊥. One can rewrite this latter equality
as

Nφ(Yu, Yv) = (g(Yv, S�Yu) − g(Yu, S�Yv)) E0

+ g(Yv, E0) (�SYu − S�Yu) − g(Yu, E0) (�SYv − S�Yv)

+ (g(Yv, S�Yu) − g(Yu, S�Yv)) (J∂r − E0)

+ g(Yv, J∂r − E0) (�SYu − S�Yu) − g(Yu, J∂r − E0) (�SYv − S�Yv)

+ �
(
(∇Yu J )Yv − (∇Yv J )Yu

) − π((∇�Yu J )Yv) + π((∇�Yv J )Yu).

(5.34)

From now, and until the rest of the proof, we assume that u and v are tangent to
H0. Let r � 0, and note that one has Nϕr = E∗

r (N�). The (AK) condition, the uni-
form bound on ‖S‖g (Lemma 2.3), estimates on E0 − J∂r (Corollary 3.4), estimates
on Yu and Yv (Corollary 3.10), comparison between g0 and gr (Corollary 3.17), and
estimates on ϕr Sr − Srϕr (Lemma 4.3), yield the existence of a constant α1 > 0,
depending on a only, such that Nϕr (u, v) = e−r (g(Yv, S�Yu) − g(Yu, S�Yv))ξ

r
0 +

Og0(‖u‖g0‖v‖g0e−α1r ). Similar calculations that the ones conducted to derive an
expression for dη0r (u, ϕrv) (see the proof of Theorem C) show that there exists α2 > 0
depending on a only, such that

e−r (g(Yv, S�Yu) − g(Yu, S�Yv)) = dη0(u, v) + O(‖u‖g0‖v‖g0e−α2r ). (5.35)
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The C1 convergence of (ϕr |H0)r�0 to ϕ|H0 , and the C0 convergence of (ξ r0 )r�0 to ξ0
finally imply that Nϕ |H0×H0 = limr→∞ Nϕr |H0×H0 = dη0|H0×H0 ⊗ξ0. Consequently,
J0 is formally integrable. The associated Levi-form dη0|H0×H0(·, J0·) coincides with
γ |H0×H0 , and is thus positive definite. Ultimately, (∂K , H0, J0) is a strictly pseudo-
convex CR manifold, which concludes the proof. ��

Remark 5.12 If M has dimension 4, then J0 is an almost complex structure of class C1
defined on a 2-dimensional vector bundle. Its integrability is automatic in this specific
case.

Remark 5.13 Similarly to Remark 5.9, under the stronger assumption a > 3
2 , one

shows that ϕ is of class C1 in all directions.

6 The Compactification

We conclude this paper by proving our main Theorem.

Proof of themain Theorem Wefirst give a construction forM . Fix K an essential subset
and E its normal exponential map. Let M(∞) be the visual boundary of (M, g), which
is the set of equivalent classes [σ ] of untrapped unit speed geodesic rays σ , where two
rays σ1 and σ2 are equivalent if and only if the function t � 0 
→ dg(σ1(t), σ2(t)) is
bounded. By [5, Propositions 4.1 & 4.4], ∂K is in bijection with M(∞) by the map
p 
→ [E(·, p)]. Define M = M ∪ M(∞). The following map

E : [0, 1) × ∂K −→ M \ K

(ρ, p) 
−→
{
E(− ln ρ, p) ∈ M \ K if ρ > 0,

[E(·, p)] ∈ M(∞) if ρ = 0,
(6.1)

is thus a bijection. We endow M with the structure of a compact manifold with bound-
ary through this latter bijection. This identifies M with the interior of M . Note that
if ρ > 0, then r = − ln ρ is the distance to K for g in M . A compactly supported
modification of ρ in a neighbourhood of K in M provides a smooth defining function
for the boundary ∂M = M(∞). By abuse of notation, we still denote it ρ.

Let η0 be the contact form and γ be the Carnot metric given by Theorem C.
Let H0 be the associated contact distribution, and let J0 be the integrable almost
complex structure on H0 given by Theorem E. We see these objects as defined on ∂M
through the diffeomorphism E(0, ·) : {0}×∂K → ∂M . Then (∂M, H0, J0) is a strictly
pseudoconvex CR manifold of class C1 by Theorem E. Theorem A and Remark 3.18
show that the metric g has the desired asymptotic expansion (1.3) near the boundary
∂M = ρ−1({0}).

Let us show that H0 and J0 are induced by a continuous ambient almost com-
plex structure J . To that end, we show that J extends continuously to the boundary.
Let {E0, . . . , E2n} be a J -admissible frame on a cone E(R+ × U ), and consider
the frame {−∂ρ, ξ0, . . . , ξ2n} on E((0, 1) × U ) defined by ξ0 = E∗

(ρ−1E0) and
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ξ j = E∗
(ρ− 1

2 E j ) for j ∈ {1, . . . , 2n}. Notice that −∂ρ = er∂r on M \ K . Propo-
sition 3.20 and Remark 3.21 show that {ξ0, . . . , ξ2n} extends continuously on the
boundary E({0} ×U ), with limit {ξ0, . . . , ξ2n}. Remark that the tangent bundle of M
at the boundary splits as T M |∂M = R∂ρ ⊕ T ∂M = R∂ρ ⊕Rξ0 ⊕ H0. From the very
definition of a J -admissible frame, one has

J (er∂r ) − er E0, J (er E0) + er∂r = Og(e
−(a−1)r ),

J (e
r
2 E2 j−1) − e

r
2 E2 j , J (e

r
2 E2 j ) + e

r
2 E2 j−1 = Og(e

−(a− 1
2 )r ), j ∈ {1, . . . , n}.

(6.2)

It follows that in the continuous frame {−∂ρ, ξ0, . . . , ξ2n}, the matrix of J reads

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1
1 0

0

0

. . .

0 −1
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

O (ρa)
O

(
ρa+ 1

2

)

O
(
ρa− 1

2

)
O (ρa)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.3)

where the top left and bottom right blocks are of size 2× 2 and 2n × 2n respectively.
Hence, J extends uniquely as a continuous almost complex structure J up to boundary.
In addition, J satisfies

J (−∂ρ) = ξ0, Jξ0 = ∂ρ, Jξ2 j−1 = ξ2 j , and Jξ2 j = −ξ2 j−1, (6.4)

for j ∈ {1, . . . , 2n}. It follows that J |H0 = J0, and that H0 = (T ∂M) ∩ (JT ∂M).
This concludes the proof. ��
Remark 6.1 1. When (M, g, J ) is Kähler, (that is, if ∇ J = 0), then (M, J ) is a

compact complex manifold with strictly pseudoconvex CR boundary.
2. Under the stronger assumption that a > 3

2 , one can show that J is of class C1 up
to the boundary in all directions (see Remark 5.9).

Funding Open access funding provided by Royal Institute of Technology.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson,M.T., Schoen, R.: Positive harmonic functions on complete manifolds of negative curvature.
Ann. Math. 121(2), 1429–461 (1985). https://doi.org/10.2307/1971181

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/1971181


CR compactification for Asymptotically Locally Complex... Page 35 of 35 238

2. Bahuaud, E.: Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics. Pac. J. Math.
239(2), 231–249 (2009). https://doi.org/10.2140/pjm.2009.239.231

3. Bahuaud, E., Gicquaud, R.: Conformal compactification of asymptotically locally hyperbolic metrics.
J. Geom. Anal. 21(4), 1085–1118 (2011). https://doi.org/10.1007/s12220-010-9179-3

4. Bahuaud, E., Lee, J.M.: Low regularity Poincaré-Einstein metrics. Proc. Am.Math. Soc. 461(5), 2239–
2252 (2018). https://doi.org/10.1090/proc/13903

5. Bahuaud, E., Marsh, T.: Hölder compactification for some manifolds with pinched negative curvature
near infinity. Can. J. Math. 60(6), 1201–1218 (2008). https://doi.org/10.4153/CJM-2008-051-6

6. Besse, A.L.: Einstein Manifolds. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-
74311-8

7. Biquard, O.: Métriques D’Einstein Asymptotiquement Symétriques. Astérisque, vol. 265. Société
mathématique de France, Paris (2000). https://doi.org/10.24033/ast.485

8. Biquard, O., Herzlich, M.: A Burns-Epstein invariant for ACHE 4-manifolds. Duke Math. J. 126(1),
53–100 (2005). https://doi.org/10.1215/S0012-7094-04-12612-0

9. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser, Boston (2010).
https://doi.org/10.1007/978-0-8176-4959-3

10. Bland, J.S.: On the existence of bounded holomorphic functions on complete Kähler manifolds. Invent.
Math. 81, 555–566 (1985). https://doi.org/10.1007/BF01388588

11. Bland, J.S.: Bounded imbeddings of open Kähler manifolds in C
N . Duke Math. J. 58(1), 173–203

(1989). https://doi.org/10.1215/S0012-7094-89-05810-9
12. Gicquaud, R.: Conformal compactification of asymptotically locally hyperbolic metrics II: weakly

ALH metrics. Commun. Partial Differ. Equ. 38(8), 1313–1367 (2013). https://doi.org/10.1080/
03605302.2013.795966

13. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2. Wiley, New York (1969)
14. Pinoy, A.: Asymptotic strictly pseudoconvex CR structure for asymptotically locally complex hyper-

bolic manifolds. Math. Z. 307, 8 (2024). https://doi.org/10.1007/s00209-024-03473-0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.2140/pjm.2009.239.231
https://doi.org/10.1007/s12220-010-9179-3
https://doi.org/10.1090/proc/13903
https://doi.org/10.4153/CJM-2008-051-6
https://doi.org/10.1007/978-3-540-74311-8
https://doi.org/10.1007/978-3-540-74311-8
https://doi.org/10.24033/ast.485
https://doi.org/10.1215/S0012-7094-04-12612-0
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/BF01388588
https://doi.org/10.1215/S0012-7094-89-05810-9
https://doi.org/10.1080/03605302.2013.795966
https://doi.org/10.1080/03605302.2013.795966
https://doi.org/10.1007/s00209-024-03473-0

	CR Compactification for Asymptotically Locally Complex Hyperbolic Almost Hermitian Manifolds
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	Essential subsets and normal exponential map
	Almost Hermitian manifolds
	CR manifolds

	2.2 The Asymptotic Conditions
	2.3 Outline of the Proof

	3 Metric Estimates
	3.1 Admissible Frames
	3.2 Associated Coframes and Normal Jacobi Fields Estimates
	3.3 Global Consequences and Metric Estimates
	3.4 Estimates on the Shape Operator

	4 The Almost Complex Structure
	5 Higher Regularity
	5.1 Order one Estimates
	5.2 Regularity of the Admissible Frames
	5.3 The Contact Form and the Carnot Metric
	5.4 The Almost Complex Structure

	6 The Compactification
	References




