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Abstract

In this article, we consider a complete, non-compact almost Hermitian manifold whose
curvature is asymptotic to that of the complex hyperbolic space. Under natural geo-
metric conditions, we show that such a manifold arises as the interior of a compact
almost complex manifold whose boundary is a strictly pseudoconvex CR manifold.
Moreover, the geometric structure of the boundary can be recovered by analysing the
expansion of the metric near infinity.
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1 Introduction

The complex hyperbolic space is the unique simply connected, complete, Kéhler man-
ifold of constant negative holomorphic sectional curvature (we adopt the convention
that this constant is —1). It is the complex analogue of the real hyperbolic space, and
similarly to its real counterpart, the complex hyperbolic space can be compactified by
a sphere at infinity. This sphere at infinity carries a natural geometric structure, which
is closely related to the Riemannian geometry of the complex hyperbolic space: their
respective groups of automorphisms are in one-to-one correspondence. This structure
is that of a strictly pseudoconvex CR manifold, namely, the CR sphere (S, H, J). If
S is thought of as the unit sphere of CV, then H = (T'S) N (iTS) is the standard
contact distribution, and J is given by the multiplication by i in H. Set p = ¢~" with
r the distance function to a fixed point. Then p is a defining function for the boundary
of the above compactification, and as p — 0, the complex hyperbolic metric has the
asymptotic expansion
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—dp®dp+ —6®6 + ~y +o(l), (1.1)
o o P

with 6 the standard contact form of S, and y = d6|gx g (-, J-) the associated Levi-
form. The strict pseudoconvexity of the boundary means that the Levi-form is positive
definite on H.

The aim of this paper is to construct a similar compactification by a strictly
pseudoconvex CR structure for complete, non-compact, almost Hermitian manifolds
satisfying some natural geometric conditions. These conditions are the existence of a
convex core (called an essential subset) whose complement is negatively curved, the
convergence of the curvature tensor R to that of the complex hyperbolic space R” near
infinity, and the fact that the underlying almost complex structure J is asymptotically
Kabhler at infinity. More precisely, we show the following.

Main Theorem Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of real dimension at least 4, which admits an essential subset whose complement has
negative sectional curvature. Let r be the distance function to any compact subset.
Assume that there exists a > 1 such that

IR =Rl IVJlg. IVRIg. and [V2J]lg=0@™).  (12)

Then (M, J) is the interior of a compact almost complex manifold (M, J), whose
underlying almost complex structure J is continuous. The hyperplane distribution
Ho = (TOM) N (JTOM) and the restriction Jy = 7|H0 are of class C'. Moreover, Hy
is a contact distribution, and Jy is formally integrable, and (8M, Ho, Jo) is a strictly
pseudoconvex CR manifold.

In addition, the metric g is asymptotically complex hyperbolic: there exists a defining
function p for the boundary, a contact form n° of class C' annihilating Ho, and a
continuous Carnot metric y, with y° = V|HoxHy, > 0 of class C', such that

Oy (p“*l) if 1<ax< %,

1 1 1 : .
g = —zdp®dp+?n°®n°+;y+ O (p2np) if a=

. (1.3)
p—0 p
O, ,o%> if a>

[(S][SS I ST (8]

The contact form and the Carnot metric are related by d770|1.10X1.1O (-, Jor) = y°.

This result gives a geometric characterisation of complete, non-compact, almost
Hermitian manifolds that are asymptotically complex hyperbolic and admit a com-
pactification by a strictly pseudoconvex CR structure. Notice the similarity between
equations (1.1) and (1.3). The real analogue of this result, involving a compactifica-
tion by a conformal boundary for asymptotically locally real hyperbolic manifolds,
has been proven by E. Bahuaud, J. M. Lee, T. Marsh and R. Gicquaud [2-5, 12],
pursuing the seminal work of M. T. Anderson and R. Schoen [1]. Notice that, contrary
to the real hyperbolic setting, the independence of the compactification with respect
to the choice of the essential subset is not established in this article and would deserve
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further investigations. The techniques used in the real hyperbolic setting, which rely
on the smoothness of isometries, do not seem to extend per se to our context.

The proof of our main Theorem is divided into several main results for a better
exposition. We first derive an asymptotic expansion of the metric near infinity.

Theorem A Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K. Assume that M \ K has negative
sectional curvature and that there exists a > % such that

IR = ROllg. IVJllg = O™, (1.4)

where r is the distance function from K. Then on 0K, there exists a continuous 1-
form 1n° and a continuous positive semi-definite symmetric 2-tensor y such that the
Riemannian metric g reads in an appropriate chart M \ K >~ (0, +00) x oK

g=dr®dr+ ¢ n° @ n° + "y + lower order terms. (1.5)

If furthermore a > 1, then n° is nowhere vanishing and y is positive definite on the
distribution of hyperplanes Hy = ker n°.

See Section 3 for an explicit form of the remainder. Under the condition a > 1, we
build a natural almost complex structure on Hy which is compatible with y.

Theorem B Under the assumptions of Theorem A with a > 1, there exists a natural
almost-complex structure Jo on Hy, and in addition, yo = V| Hyx Hy IS Jo-invariant.

If furthermore we assume exponential decays for VR and V2J near infinity, we
show that no, yo, Jo and Hy, which are given by Theorems A and B , are of class c!
and define a strictly pseudoconvex CR structure.

Theorem C Assume furthermore that |V R||g, ||V2J||g = O(e~). Then 1° is a con-
tact form of class C' and satisfies d17(1)_10XH0 ¢, Jo-) = y°.

Theorem D Under the assumptions of Theorem C, the tangent distribution H® and
the bilinear form y° are of class C'.

Theorem E Under the assumptions of Theorem C, the almost-complex structure Jy
defined on the tangent distribution Hy is of class C' and is formally integrable. In
addition, (9K , Hy, Jo) is a strictly pseudoconvex CR manifold of class C'.

Our main Theorem is then obtained by constructing an explicit compactification
and by naturally identifying (0K, Hy, Jo) with the boundary at infinity. In a previous
paper [14], the author proved similar results in the Kihler setting. For other motivations
from complex analysis, see the references therein. The improvement here is twofold.
First, we are able to remove the Kéhler assumption, which was of great importance
in the previous proof. Here, the almost complex structure is no more assumed to be
parallel, and in fact, needs not even be formally integrable, nor the associated almost
symplectic form needs to be closed. In particular, the result applies to perturbations of
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asymptotically complex hyperbolic Kihler metrics which are only almost Hermitian.
Second, the strict pseudoconvexity of the boundary is obtained with an exponential
decay of order a > 1, while the earlier version of this result needed a decay of order
a > % Note that this has a cost: the Carnot metric can be shown to be C! only in
the direction of the contact distribution. This is the reason why the extended almost
complex structure J is only continuous in the transverse direction. Both improvements
imply that the set of examples to which the result applies is much increased.

A compactification by a CR structure for some complete, non-compact, Kihler
manifolds was already given by J. Bland [10, 11], under assumptions that are rather
analytic and not totally geometric. To obtain a continuous compactification with no
regularity on the CR structure, these assumptions imply the a posteriori estimates
IR — Rlg, IVR[, = O(e=*)!. A strictly pseudoconvex boundary of class C!
is similarly obtained under assumptions implying |R — R®|l,, [VR|lg, V>Rl =
O(e™>"). It was proven by O. Biquard and M. Herzlich [8] that for asymptotically
complex hyperbolic Kidhler-Einstein metrics in real dimension 4, the curvature tensor
has the form R = R® + Ce™ % + 0g (e=%"), where C is a non-zero multiple of the
Cartan tensor of the CR boundary. It is known that the Cartan tensor vanishes exactly
when the CR structure is locally equivalent to that of the sphere (such CR manifolds
are called spherical). Many examples are then not covered by J. Bland’s results.

The paper is organised as follows. In Section 2, we set up the notations and explain
the main idea of the proof of our main Theorem. In Section 3, we compute the expansion
of the metric near infinity and prove Theorem A. Section 4 is dedicated to the proof
of Theorem B. Section 5 is then devoted to proving Theorems C, D and E . Finally,
we prove our main Theorem in Section 6.

2 Preliminaries
2.1 Notations

Let (M, g) be a Riemannian manifold. Its Levi-Civita connection is denoted by V.
Our convention on the Riemann curvature tensor is Besse’s convention [6], namely

R(X,Y)Z =V[X’Y]Z—Vx(VYZ)-FVy(VXz), 2.1

for vector fields X, Y and Z. By abuse of notation, we still denote by R its four times
covariant version: we write R(X,Y,Z,T) = g(R(X,Y)Z, T) for vector fields X,
Y, Z and T. With this convention, the sectional curvature of a tangent plane P with
orthonormal basis {u, v} is sec(P) = sec(u, v) = R(u, v, u, v).

Essential subsets and normal exponential map

Following [2-5, 12], an essential subset K C M is a codimension 0 compact sub-
manifold, with smooth boundary dK which is convex with respect to its unit outward
vector field v, and such that the normal exponential map

1 One sees that these assumptions imply that ||R — Rollg = (’)(e_3’) and |[VR|g = (’)(e_4r). Since
VRO = 0 for Kihler manifolds, applying Kato’s inequality to R — RO yields the claimed estimate.
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E:Ry x0K — M\K
2.2)
(r.p) > exp,(rvp)
is a diffeomorphism. Recall that for dK to be convex with respect to v means that
v = g(Vyv, v) is non-negative. For instance, a compact totally convex (meaning that
any geodesic segment whose endpoints belong to the subset entirely lies within it)
codimension O submanifold with smooth boundary and whose complement is neg-
atively curved is an essential subset (see [2, Theorem 3.1]). The level hypersurface
at distance r above K is denoted by dK,. For r > 0, £ induces a diffeomorphism
&1 0K — 0K, givenby &,(p) = E(r, p); the induced Riemannian metric £ g on 0K
is denoted by g,. Gauss Lemma states that £*g = dr ® dr + g,. Note that gg = g|sx.

The gradient of the distance function » on M \ K, called the radial vector field, is
denoted by 9,. A radial geodesic is a unit speed geodesic ray of the form r — £(r, p)
with p € 0K. Note that the restriction of 9, to a radial geodesic is its tangent vector
field, and thus satisfies the equation of geodesics Vj, 9, = 0. More generally, a vector
field X on M \ K is called radially parallel if V3. X = 0. The shape operator §
is the field of symmetric endomorphisms on M \ K defined by SX = Vxo,. As a
consequence of the equation of geodesics, it satisfies S9, = 0. It moreover satisfies
the Riccati equation Vy S = —8% — R(3,, -)0,.

The normal Jacobi field on M \ K associated to a vector field v on 9K is defined
by Y, = &,v. Such vector fields are orthogonal to and commute with the radial vector
field 9. Normal Jacobi fields are related to the shape operator S by the first order linear
differential equation Vj Y, = SY,. As a consequence of the Riccati equation for §,
normal Jacobi fields satisfy the Jacobi field equation Vj, (V5. Yy) = —R(9,, Yy) 0.

Almost Hermitian manifolds

An almost Hermitian manifold (M, g, J) is a Riemannian manifold (M, g) together
with an almost complex structure J which is compatible with the metric, in the sense
that it induces linear isometries in the tangent spaces: one has g(J X, JY) = g(X,Y)
for all vector fields X and Y. Note that this implies that J is skew-symmetric (in fact,
these two properties are equivalent). A tangent plane P C T M is called J-holomorphic
(respectively totally real) if JP = P (respectively JP L P). The constant —1 J-
holomorphic sectional curvature tensor R on (M, g, J) is defined by the equality

RUX,Y)Z = %(g(Y, )X —g(X,2)Y +g(JY,Z)JX —g(JX, Z)JY 03

+2¢(X,JY)J Z)

for X, Y and Z vector fields on M. We still denote by RY its fully covariant version,
meaning that RO(X, Y, Z, T) = g(R%(X, Y)Z, T) for all vector fields X, Y, Z and
T. Note that ||R|| ¢ < % For any pair of orthogonal unit tangent vectors u and
v, RO(u,v,u,v) = —i(l + 3g(Ju, v)?); the minimal value —1 (respectively the
maximal value —%) is achieved precisely when {u, v} spans a J-holomorphic plane
(respectively a totally real plane). In the specific case of the complex hyperbolic
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space, R coincides with the curvature tensor of the complex hyperbolic metric (see
[13, Section IX.7]).

CR manifolds

A CR manifold (for Cauchy-Riemann) is a triplet (M, H, J) where H is a tangent
distribution of hyperplanes and J is an almost complex structure on H, such that the
distribution H'"0 = {X —iJX | X € H} ¢ TM ®g C is involutive (i.e. [X, Y]
is a section of H'¥ whenever X and Y are). In this case, J is said to be formally
integrable. A CR manifold is called strictly pseudoconvex if there exists a contact form
n annihilating the distribution H (i.e. H = ker n and d7n induces a non-degenerate
2-form on H), and if the associated Levi form dn|g«q (-, J-) is positive definite on
H.

2.2 The Asymptotic Conditions

Throughout the paper, (M, g, J) will denote a complete, non-compact, almost Her-
mitian manifold of dimension 2n + 2 > 4, with an essential subset K. We define the
following asymptotic geometric conditions.

Definition 2.1 ((ALCH) and (AK) conditions) Let (M, g, J) be a complete, non-

compact, almost Hermitian manifold. Let r be the distance function to a compact

subset.

1. We say that (M, g, J) satisfies the (ALCH) condition of order a > 0, for asymp-
totically locally complex hyperbolic?, if | R — RO||g = O(e ).

2. We say that (M, g, J) satisfies the (AK) condition of order a > 0, for asymptoti-
cally Kdhler, if |[VJ || = O(e™").

Remark 2.2 Note that ||R0|| ¢ S % so that the (ALCH) condition of order a > 0
implies || R, = O(1).
One readily verifies that the (ALCH) condition implies that the sectional curvature

of M is bounded as follows: —1 +O(e™ ") < sec < —;11 + O(e™%"). The lower bound
implies the following Lemma.

Lemma 2.3 ([14, Proposition 3.5]) Assume that (M, g, J) is a complete, non-compact,
almost Hermitian manifold, admitting an essential subset K with sec(M \ K) < 0,
and satisfying the (ALCH) condition of order a > 0. Let S = V0, be the shape
operator of the level hypersurfaces above K. Then one has

O (e ) if 0<a<?2,
ISl <14+ {0 (¢ +De) if a=2, (2.4)
(’)(e’zr) if a>?2.

In any case, one has ||S|; = O(1), and exp(for ISllg — 1) = O().

2 For this condition implies that the local geometry at infinity resembles that of the complex hyperbolic
space.
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We also define the following analogous asymptotic conditions of higher order.

Definition 2.4 ((ALCH+) and (AK+) conditions) Let (M, g, J) be a complete, non-
compact, almost Hermitian manifold. Let r be the distance function to a compact
subset.

1. We say that (M, g, J) satisfies the (ALCH+) condition of order a > 0 if one has
the estimates | R — R0||g =0 ) and |[VR|g = O(e™ ).

2. We say that (M, g, J) satisfies the (AK+) condition of order @ > 0 if one has the
estimates |[VJ (g = O(e™*") and ||V2J||g = O ).

Remark 2.5 Under the (AK) condition of order a > 0, one has ||[VRY|| ¢ =0(™).

Thus, under the (AK) condition of order a > 0, Kato’s inequality shows that the

(ALCH+) condition of order a > 0 is equivalent to the conditions ||R — RO ¢ — 0
r—0o0

and [|[V(R — RO)||g = O(e™4").

In practice, r will be the distance function to the essential subset K. The constants
involved in the previous estimates are global; this will be the case for all claimed
estimates in this article. When built out of the choice of a reference frame (which
will soon be called an admissible frame, see Definition 3.2), these constants will be
independent of that choice. For instance, the expressions ||V, [l = O(Jlu|lg,e") and
Y, = Og(llullgye”) mean that there exists C > 0 such that for any vector field # on
oK, one has [|(Y) e, pllg < Cllupllge” forall p € 9K and r 2 0.

2.3 Outline of the Proof

If (M, g, J) is assumed to be Kihler (that is, if VJ = 0), the author showed in a
previous paper [14] the following result.

Theorem ([14, Theorems A,B,C and D]) Let (M, g, J) be a complete, non-compact,
Kdihler manifold admitting an essential subset K with sec(M \ K) < 0. Assume that
there is a constant a > 1 such that the estimates |R — R0||g, IVRIg = O(e™)
hold, where r is the distance function to any compact subset. Then on oK, there exist
a contact form n of class C, and a continuous symmetric positive bilinear form v,
positive definite on the contact distribution H = ker n, such that

E*¢ =dr’ + ¥ n @ n+ €'y + lower order terms. (2.5)

If moreover a > % then y is of class C', and there exists a C' formally integrable
almost complex structure Jy on H, such that y|pxy = dn(-, Jg-). In particular,
(0K, H, Jg) is a strictly pseudoconvex CR manifold.

Notice the similarity between equations (1.3) and (2.5) by setting p = e~". This result
provides a compactification by a strictly pseudoconvex CR structure for a Kéhler
manifold whose curvature is asymptotically close to that of the complex hyperbolic
space. The proof is quite long, but can be summarised as follows:
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1. For{Jv, ey, ..., e,} anorthonormal frame on oK, with v the outward unit normal,
let {Jo,, Eq, ..., E»,} denotes its parallel transport along radial geodesics. Then
forr > O0and j € {1,...,2n}, we define n, = E (e "g(-, Jd,)) and 1} =
&y (e_%g(~, E;)), which are local 1-forms on oK.

2. If |R — R0||g = O(e™¥), with a > %, then {7, n,l ...,nrzn}r>o converges to
continuous 1-forms {5, n', ..., n>*}. This implies that the metric reads as in equa-
tion (2.5), where y = 23’;1 n/ ® n/. If moreover @ > 1, volume comparison
techniques show that the limit is a coframe.

3. If in addition, [|[VR||, = O(e™%"), then the family of 1-forms (#,),>0 converges
in C! topology, the limit 7 is of class C', and is contact. The proof uses several
estimates, and tedious computations involving many curvature terms.

4. If a > % then (5] )r>0 locally uniformly converges in C' topology for j €
{1,...,2n}. Hence, y is of class cl.

5 fg = &5 —g(,9,) @ Jo +g(-, JO,) ® 9,), then (¢,),>0 uniformly con-
verges to a tensor ¢ of class C!. Its restriction to H = ker 5 gives the desired
formally integrable almost complex structure Jg .

The very first step of the proof crucially relies on the fact that Jo, is parallel in the
radial direction, and in fact, the equality VJ = 0 is used many times. Note that the
Kéhler assumption is rather rigid: for instance, one has VJ = 0 if and only if the
2-form g(J-, -) is closed and J is formally integrable.

In this paper, we extend and improve the results of [14]. First, the Kdhler condition
is removed: in fact, neither the closedness of g(J-, -) nor the formal integrability of J
need to be met. We instead consider an almost Hermitian manifold (M, g, J) whose
almost complex structure J is only parallel at infinity, by imposing the condition
N4 ¢ = 0(™), k € {1,2}. Second, we show that the strict pseudoconvexity of
the boundary can be obtained with @ > 1 instead of a > % This sharper bound comes
from deriving sharp geometric estimates in the direction of the contact structure.

In this context of this paper, the vector field Jo, is not radially parallel, and one
cannot even initiate the above strategy as it stands. The main trick is to prove the
existence, under our assumptions, of a unit vector field Eg on M \ K that is radially
parallel, and that satisfies || Eg — Jo,|; = O(e™"). This latter vector field is unique.
One can then consider a reference frame {Ey, . .., E2,} having nice properties, which
we call an admissible frame (see Definition 3.2 below), and try to mimic the above
proof. The counterpart is that the computations become longer and more involved;
one also needs to show numerous extra estimates.

3 Metric Estimates

This section is dedicated to the derivation of the expansion near infinity of the metric
g under the (ALCH) and (AK) conditions. We first define the notion of admissible
frames, which simplify future computations. We then derive estimates on the asymp-
totic expansion of normal Jacobi fields, which turns out to be the main ingredients to
show our results.
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3.1 Admissible Frames

We give a construction for some parallel orthonormal frames along radial geodesics in
which later computations will be easier. For v a vector field on 0K, let V be the vector
field on M \ K obtained by the parallel transport of v along radial geodesics. Finally,
forr > 0, define B, (v) = g(Jo,, V)|, . This defines a family of 1-forms (8,),>0 on
oK.

Lemma 3.1 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K. Assume that it satisfies the (AK) condition
of order a > 0. Then there exists a continuous nowhere vanishing 1-form B on 0K
such that

Br — B = 0Ogy(e™). 3.1

Proof Fix r > 0 and v a vector field on 9K . Both 9, and V are radially parallel, so that
one has B, (v) — Bo(v) = [y 3,8(J3,, V) = [5 §((V3, )0, V). By the (AK) assump-
tion, there exists C > 0 such that [V /] < Ce™*". The Cauchy-Schwarz inequality
now implies that [j |g((Vy, J)d:, V)| < C 4 ||v||4,. Therefore, (B, (v)),>0 point-
wise converges: let 8(v) be its pointwise limit. It defines a pointwise linear form on
the tangent spaces of 0K, satisfying

*© C
BO) — ) </ 5V, 102, V)| < &

r

e vllgy. (3.2)

from which is derived equation (3.1). The convergence is thus uniform, and f is
continuous.

We shall now show that 8 is nowhere vanishing. For all » > 0, one has || 8, |lg, = 1
pointwise. Indeed, Cauchy-Schwarz inequality implies that |8, (V)| < [V Ilg = [[vllg
for any v. Equality is reached for v = L,‘l (J9o,), where t,: ToOK — T 0K, is induced
by the parallel transport along radial geodesics. It follows that [|8]l;, = 1 pointwise,
and that 8 is nowhere vanishing. O

Definition 3.2 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K. Assume that it satisfies the (AK) con-
dition of order ¢ > 0. Let U C 0K be an open subset on which the continuous
distribution ker 8 is trivialisable. Let {eg, ..., €2,} be an orthonormal frame on U
such that B(ep) > 0 and B(e;) = 01if j € {1,...,2n}. The associated admissible
frame {Ey, ..., Ey,} on the cone £(R; x U) is defined as the parallel transport of
{eo, ..., ez} along the radial geodesics.

If {Eyp, ..., E>,} is an admissible frame, then {0,, Ey, ..., E7,} is an orthonormal
frame on the cone £(R1 x U) whose elements are parallel in the radial direction even
though they need not be differentiable in the directions that are orthogonal to 9,. In
the following, we will often refer to admissible frames without mentioning the open
subset U C 0K used to define them.
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Lemma 3.3 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (AK) condition
of order a > 0. Let {Ey, . .., Ez,} be an admissible frame. Then B(ep) = 1.

Proof One has 1 = [|J3,[|3 = Zf’éo Br(ej)?. The result follows by taking the limit
asr — OQ. O

Corollary 3.4 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K . Assume that it satisfies the (AK) condi-
tion of ordera > 0. Let {Ey, . .., E2,} be an admissible frame and § be the Kronecker
symbol. Then

1. g(Jor, Ej) —é0; = O(e™) for j € {0, ..., 2n},

2. Eg— Jo, = Og(e™ ).

Proof The first point is a consequence of the equality g(Jo,, E;) = B,(e;) and of
equation (3.2). For the second point, notice that

2n 2n
Eo—Jd, =Y g(Eo— Jo,, E)Ej =Y (80j — g(Jo-, ED)Ej,  (3.3)
j=0 j=0
from which is derived the claimed estimate. |

Remark 3.5 One easily shows that the vector field Ep is the unique unit vector field
X on E(R4 x U) such that V3. X = 0 and g(X, J3,) = 1 +o(1). If (M, g, J) is
Kihler (if VJ = 0), then V, Jo, = 0, and thus Ey = Jo,. In this specific case,
admissible frames can be chosen to be smooth, and correspond to the radially parallel
orthonormal frames defined in [14].

Proposition 3.6 Let (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, with essential subset K. Assume that it satisfies the
(ALCH) and (AK) conditions of order a > 0. Let {Ey, ..., E2,} be an admissible
frame. Then

1. sec(0y, Eg) + 1 =0O(e ™),
2. sec(dy, Ej) + 3 = O(e™) for j € {1,...,2n},
3. R, E;i, 0, Ej) =0(e™ ) foranyi # j € {0, ..., 2n}.

Proof We prove the first point, the other being shown similarly. One readily verifies
from the definition of R® that R*(d,, J9,, 9, J3,) = —1, and therefore, it holds that
sec(0,, Eo) = Ro(arv Jo, + (Eo — JO,), 0y, JO, + (Eo — JO,))
+ (R — R%)(3y, Eo. d;, Eo)
= —1+42R%@®,, Eo — Jd,, Eq, J3,) + R°(d,, Eg — Jd,, 8., Eog — J3,)

+ (R — R%)(d,, Eo, 8y, Eo).
(3.4

The definition of R? (see equation (2.3)) yields || R|| ¢ < %, and the result follows
from the (ALCH) assumption and from the second point of Corollary 3.4. O
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3.2 Associated Coframes and Normal Jacobi Fields Estimates

Recall that for r > 0, & : 0K —> 0K, is defined by &,(p) = E(r, p).

Definition 3.7 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
with essential subset K. Assume that it satisfies the (AK) condition of order a > 0. Let
{Eo, ..., Ez,} be an admissible frame defined on a cone £(R4. x U). The associated
coframe {179, ey nf"}r>0 on U C dK is defined by

Vr >

0 —r o%
) nr e gr ( (" E )) )
' & 0 (3.5)

0
and Vjef{l,...,2n},¥r >0, nl =e 28 (3. Ep).
In any admissible frame, the normal Jacobi field Y, associated to the vector field v on
0K reads

2n
Yy =nl()e Eo+ Y nl(v)e?E;. (3.6)
j=1

Applying twice the differential operator V;, to this last equality, one has

Vi, (Va, Yo) = (8200() +20,70) + (@) ) €' Eg

oo N 3.7)
+ 3 (@@ ol + ilw) s,
j=1

Recall that normal Jacobi fields are actual Jacobi fields, which means that they satisfy
Vo, (V. Yy) = —R(9,, Yy)0,. An identification of the components of Vj (Vj, Yy) in
the given admissible frame shows that the coefficients {(nl (v)} jel0,...,2n) satisfy the
differential system

2n
070 (W) + 20,72 (W) = Y upnf(v),
;=0 (3.8)
ornl () +0,n) () =) uni ), jefl,....2n},
k=0

where the functions {u,];} j.kelo,...,2n} are defined by

sec(ay, Eg) + 1 if j=k=0,
e IR, Eo, 9, Ex) if j=0,k#0,
ul = — Y eR(®,, Ej. 0, Eo) if j#0.k=0, (3.9)
R, E}, 8, Ey) it jokefl,...,2n},j #k,
sec(dy, Ej) + & if j,ke{l,...,2n},j=k.
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Proposition 3.6 implies that one has the uniform estimates |u,J(| = (’)(e’(“’%)r). Com-
bining the proofs of [14, Propositions 4.7 & 4.14], relying on successive integrations,
an application of Gronwall’s Lemma, and a bootstrap argument, one obtains the fol-
lowing result. The last claim relies on estimates on the growth of the volume (see [14,
Propositions 3.7 & 4.13]).

Proposition3.8 Ler (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, with essential subset K. Assume that it satisfies the
(ALCH) and (AK) conditions of order a > % and that sec(M \ K) < 0. Let

{779, R T)%"}r)O be the coframes associated to an admissible frame on U C oK.
Then there exists continuous 1-forms {n°, ..., n*"} on U such that
Og (e7) lf sa= %’
3, =" =104 ((r+De” Zr) if a=3,
O e_%r) if a> %,
Oy, (ef(‘“%)’) if 5<a< %,
Viell.....2n}, i, ul —n) =30, (r+ De™) lfa—%
Oy, (e_’) if a> %
(3.10)
If furthermore a > 1, the family {n°, ..., n*"} is a continuous coframe on U.

Proposition 3.8 serves as the starting point of our study. Notice that M \ K must
have negative sectional curvature (this was already required in Lemma 2.3). For this
reason, our results will most often require this assumption.

Corollary 3.9 Ifa > %, then n[ = Oy (1), independently of j and U.

Proof For j € {0, ...,2n}and r > 0, write n] = ny —l—fo ... Notice that ||n0||g0 =
1. Then by Proposmon 3.8, ”nr llgo < ”77() llgo + fo ||8r77r lgo < 1+ fo ||8r77r llgo =
o). 0

Recall that a normal Jacobi field Y, satisfies Vj, Y, = SY,. The following Corollary
is an immediate consequence of Proposition 3.8.

Corollary 3.10 In any admissible frame, the normal Jacobi field Y, associated to a
vector field v on oK satisfies

n O, (||U||goe_(“_1)r) if % <a< %,
Yy =0 Eo+ Y et Ej + { O (Il + De™?) i a =13,
= O (Ivllgpe ) if a> 3,
(3.11)
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and

. Og (Ivlge=@ D) if §<a<3,
0T Uit o De=5) i a= 2
S¥o ='W Eg+ ) 307 e Ej 41 Oy (Ivllgg  + e %) if a =3,
i=1 _r .
J O (Ivllgee™?) if a>3.
(3.12)

As a consequence, one has the global estimates Y, SY, = O, (|[v|lg,€"). If moreover,
v is everywhere tangent to ker n°, then Y,, SY, = Og(||v||goe'7).

Remark 3.11 Note that although the estimates of Proposition 3.8 are not uniform in
all directions, they contribute equally to the lower order term in equations (3.11) and
(3.12) thanks to the remaining exponential factors.

3.3 Global Consequences and Metric Estimates

We shall now highlight global consequences of the study conducted in Subsections 3.1
and 3.2 . We then prove the first of our main results.

Lemma 3.12 Assume that (M, g, J) satisfies the (AK) condition of order a > 0. Then
the local vector field ey defined in Definition 3.2 defines a global continuous vector
field on 0K, independently of the construction of any admissible frame.

Proof The 1-form g defined in Lemma 3.1 is continuous and nowhere vanishing.
Hence, the distribution ker 8 C T 9K is a continuous distribution of hyperplanes. It
follows that its gg-orthogonal complement L is a well-defined and continuous line
bundle. Notice that the restriction of § trivialises L. It follows that e is the unique
section of L that is positive for 8, and of unit gg-norm. This concludes the proof. O

The family of 1-forms {r;?},>o is then globally defined on 0K, independently of
the choice of the admissible frame. As a consequence, one has the following global
version of Proposition 3.8.

Proposition 3.13 Let (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, admitting an essential subset K. Assume that it satisfies
the (ALCH) and (AK) condition of order a > % with sec(M \ K) < 0. Then there

exists a continuous 1-form n° on 9K such that

Ole™) i h<a<i
3 .
00, =0 = { O (¢ +De™?) if a=3, (3.13)
Oy, e_%r) if a>3.

If furthermore a > 1, then n° is nowhere vanishing.
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The following Corollary is a straightforward application of the triangle inequality
and of Corollary 3.9.

Corollary 3.14 One has the following estimates

Ogo (e7") if y<a<3,
3 .
n@nd —n° @5’ = 10g <(V+1)e 2’) if a=3, (3.14)
Oy, (e*%’> if a> %

From Gauss’s Lemma, the Riemannian metric g reads as £*¢g = dr ® dr + g,
with (g,)r>0 the family of Riemannian metrics on 9K defined by g, = &' g. By
construction, the first term that appears in the asymptotic expansion of the metric g
near infinity is > 7° ® n°.

Definition 3.15 For r > 0, y, is defined as y, = ¢ " (g, — 62’179 ® 179).

By definition, (y;),»0 is a family of symmetric 2-tensors on 0K. Let
{n(r), R 773"},20 be the coframes associated to an admissible frame {Ey, ..., Ey,}.

Then locally, y = Z?’; 1 nf ® n{ . Consequently, y; is positive semi-definite, and is

positive definite on ker 779, for any r > 0. The following result shows that (y;),>0
converges to some tensor that shares similar properties.

Proposition 3.16 Let (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, and admitting an essential subset K. Assume that it
satisfies the (ALCH) and (AK) conditions of order a > % such that sec(M \ K) < 0.
Then there exists a continuous positive semi-definite symmetric 2-tensor y on oK,
which we call the Carnot metric, such that

Ogo(e (@= 2)’> if 3<a<3,
Ve =V =10 (r+De™™) if a=3, (3.15)
Ogo( ) if a>%

If furthermore a > 1, then y is positive definite on the hyperplane distribution ker n°.

Proof For r > 0, one has g, = e 1’ ® n® + ¢"y,. Let {n%, ..., nzn}r>0 be the

coframes associated with an admissible frame. Locally, one has y, = Z =1 77r ®nil.

Therefore, (y,),>0 converges pointwise to a limit we call Y which is locally given by

Y2 0/ ® n/. Hence, one has y, — y = Y72 0l @ (nf — n/) + (gl — n/) @ 0/

locally The global estimates (3.15) now follow from the triangle inequality and from an
application of Proposition 3.8 and Corollary 3.9. As a consequence, y is a continuous
symmetric positive semi-definite 2-tensor. If @ > 1, then {7°, ..., n*"} is a coframe
(Proposition 3.8), and y is hence positive definite on ker 1. O

As a consequence, one has the following comparison between quadratic forms.
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Corollary 3.17 If a > 1, then there exists a constant A > 1 such that for all r > 0,
Lergo < g < ne¥ g0

Proof For r > 0, n? ® ’79 and y, are positive symmetric 2-tensors. Consider the
Riemannian metric ¢, = 7% ® n° + y, on aK. From g, = ¢* 1% ® n° + ¢y, one

readily checks that
Vr >0, ¢q <g <e¥gr (3.16)

According to Propositions 3.13 and 3.16 , g, uniformly converges to the continuous
positive semi-definite bilinear form go = 7n° ® n° + y as r — oo. Let S209K be the
unit sphere bundle of (9K, g¢), which is compact by compactness of dK . Then [0, co] x
S809K is compact, and the map (r, v) € [0, co] x S89K +— ¢,(v,v) € (0, 00) is
continuous. Therefore, there exists A > 1 such that for all (r, v) € [0, co] x S8°0K,
it holds that % < ¢gr (v, v) < A. The result now follows from equation (3.16) and from
the homogeneity of quadratic forms. O

We shall now show the first of our main results.

Theorem A Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K. Assume that it satisfies the (ALCH) and
(AK) assumptions of order a > % and that M \ K has negative sectional curvature.

Then on 9K , there exists a continuous 1-form n° and a continuous positive semi-definite
symmetric 2-tensor y, such that in the normal exponential map &, the Riemannian
metric g reads

Ogo (6(27“)’) if % <a< %,
g=dr@dr+ '@+ ey +{On (4 et) if a=3. @)
O, e%> if a> %

If furthermore a > 1, then n° is nowhere vanishing, and vy is positive definite on the
distribution of hyperplanes ker n°.

Proof Let (179),20, (¥r)r>0 and their limits n° and y be given by Propositions 3.13
and 3.16 . By construction, one has

E'g=drdr+e "’ @n’+¢y,
=dr@dr+en°@n’ +e'y +er, (3.18)

with &, = " (n9 ® 179 - ' ® no) + " (y, — v). Estimates (3.17) now follow from
Corollary 3.14 (estimates on 179 ® 179 — 1% ® 1°) and Proposition 3.16 (estimates on
¥ — ). Ultimately, if ¢ > 1, the last claim follows from Propositions 3.13 (° is
nowhere vanishing) and 3.16 (y is positive semi-definite, positive definite on ker ).

O
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Remark 3.18 Setting g = & (dr @ dr + e n"° @ n° +¢"y) on M \ K, Corollary 3.17
shows that estimates (3.17) read

O, (e*(“*l)’) if 1<a< %,
c—z=10, ((r 4 l)e_f) if a=3, (3.19)
O, (e—%) if a>3.

If n° were a contact form and y a Carnot metric on its kernel distribution, then g would
be asymptotically complex hyperbolic in the sense of [7, §].

3.4 Estimates on the Shape Operator

Before we conclude this section, we give another consequence of the previous study:
we derive asymptotic estimates on the shape operator S. First, we introduce a natural
vector field &y, which is closely related to S.

Definition 3.19 The vector fields (§),>0 on 9K are defined as &) = £ (e" Ep).

Proposition 3.20 Let (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, admitting an essential subset K. Assume that it satisfies
the (ALCH) and (AK) conditions of order a > 1 with sec(M \ K) < 0. Then there
exists a continuous vector field &) on 0K such that

Oy, (e_(“_%)’> if l<ax< %
§0 =50 =104 (r+De™) if a=3, (3.20)
Ogo (€7") if a> %

It is uniquely characterised by the fact that n°(&y) = 1 and y (&9, &) = 0.

Proof Define g, = n° ® n° + y, which is a continuous Riemannian metric on 9K
according to Theorem A. Consider the continuous line bundle L = (ker n%)+% on
0K . The restriction of no trivialises L, which thus has a continuous nowhere vanishing
section &. Define &y = %, which is continuous by construction. Let {1°, ..., n*"} be

the limit coframe associated with any admissible frame. Then n° (&) = 1and /(&) =
0 for j € {1,...,2n}. In particular, &y is uniquely characterised by the relations
n%(&) = 1 and y (&0, &) = 2?’;1 1n’/ (£9)> = 0. Notice that for j € {1, ...,2n} and
r > 0, one has

07 (B0 — £0)=n (§)) — ni (E0)=8} — n} (Eo)=n’ (%0) — n} E0)=(n’ — n})(€0).
(3.21)
where § stands for the Kronecker symbol. Corollary 3.17 yields the existence of a
constant ¢ > 0 such that [|§) — &pll4, < ce™ 2 ||Y(§5_§0)||g for all > 0. The triangle
inequality together with equation (3.21) now yield
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2n
1Yes —enlle < (¢"lIn° = nlllgy + €2 Y I/ = mlllgo) lE0llgo-  (3.22)
j=1

Estimates (3.20) now follow from the estimates of Proposition 3.8, together with the
fact that [|&pll, is uniformly bounded by continuity of &y and compactness of 0K. O

Remark 3.21 Fix an admissible frame {Ey,..., Ez,}. If éj’. = Er*(e%Ej) and if
(€0, ..., £2,) is the dual frame of {5°, ..., n>"}, a similar study shows that

Oy, e‘““%”) if 1<acx< %,
Viell,....2n), & =& =104 ((r + De™") if a=3, (3.23)
Og (e7) if a> %

The constants involved in the upper bounds are independent of the choice of the
admissible frame. It relies on the fact that one can uniformly bound ||§;]l, if j €
{1, ..., 2n}, for instance, as an application of Corollary 3.17.

For v a vector field on 0K, recall that the associated normal Jacobi fields Y, satisfies
Vi, Yy = SY,. It follows from equation (3.6) that in an admissible frame, one has

2n
. 1 ,
SY, = (&n?(v) + n?(v)) ¢"Eo+ Zl (arnz W) + 57 (v)) e Ej.  (3.24)
]=

Recall that S is symmetric and satisfies S9, = 0. Consequently, S leaves stable the
tangent distribution {3, }. Hence, for r > 0, one can consider S, = EX(S), its pull-
back through the diffeomorphism &, : 9K — 0K..

Proposition 3.22 Let (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, admitting an essential subset K. Assume that it satisfies
the (ALCH) and (AK) conditions of order a > 1 and that sec(M \ K) < 0. Then the
Sfamily (S;),>0 satisfies the estimates

)

| . % e_(“_%)’) if 1<a<3,
Sy — E(Id +n; ® &) = Oy ((r+De™) if a= %, (3.25)
Ogo (e") if a> %

In particular, S, —> %(Id +1° ® &), and one can substitute 179 ® &) with "’ ® &
r—00
in estimates (3.25).
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Proof Let v be a vector field on 9K . It follows from Proposition 3.8 and from Corol-
lary 3.10 that

1 O, (”U”goei(ail)r) if % <a< %,
$Y, — 50+ 01 Egy = 1 O (Il De72) i a=3. 3.26)
O, ||v||g0e—%) it a> 3.
By the very definition of S, 56 and g,, it follows that
| O(e_(“_l)’) if % <a< %,
Isr =3 (Id +n) ®§5) l, =19 ((r + l)e‘f) if a=3, (3.27)
O (e*%> if a> %

Now, Corollary 3.17 shows that if a > 1, then
1 0 r _r 1 0 r
S, — E(Id 1) ®E)) = Oy | €7 2| S, — E(Id +n, @EDIe, ), (3.28)

and estimates (3.25) now follow. Finally, estimates on || — n? lg, (Proposition 3.13)
and on [|&y — & ||, (Proposition 3.20), together with the triangle inequality, show that
one can substitute n? ® &) with n° ® & in estimates (3.25). This concludes the proof.

O

Remark 3.23 In the complex hyperbolic space, the shape operator of a horosphere is
givenby S = Idr, +% Idy, jyy1, where v is the a unit normal. Proposition 3.22 states
that the local extrinsic geometry of the level hypersurfaces dK, is asymptotic to that
of horospheres in the complex hyperbolic space.

4 The Almost Complex Structure

This section is dedicated to prove the existence of a natural almost complex structure
Jo on the distribution of hyperplanes Hy = ker °, obtained as the restriction of a
naturally defined tensor ¢ on 9K .

The ambient almost complex structure J does not leave stable the ambient dis-
tribution of hyperplanes {d,}-. Let 7: TM \ K — TM \ K be the orthogonal
projection onto {9, }. Define ® to be the field of endomorphisms on M \ K defined
by ® = mJm. Since w and J have unit norms, then ||®||, < 1. Formally, one has
7 =1d—g(,,) ® 9, and ® then reads ® = J + g(-, J9,) ® 0, — g(-, 0r) ® JO,.

Lemma 4.1 Assume that (M, g, J) satisfies the (AK) condition of order a > 0. For
any admissible frame {Ey, . .., E2,} and any vector fields X and Y, one has:

1 g(@X,Y) = g(X,Y) — g(X.8)8(Y. 8) — g(X. J)g(Y. Jdy),
2. D(Eg) = Og(e™),
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3. O(E;) — JEj = Og(e ) if j € {1,...,2n).

If moreover the (ALCH) and (AK) conditions of order a > % are satisfied and if
sec(M \ K) < 0, then for any vector field v on 0K, one has

(4) 1Dp)llg = O(v]lge?).

Proof The first point is a straightforward computation. To prove the second point,
note that ®(Jo,) = 0, so that |[®(Eo)|lg = [IP(Eo — Jo)llg < 1Eo — Jo I,
The result follows from Corollary 3.4. The third point follows from the the fact that
®(E;j) = JE; — g(E}, J3,) and from Corollary 3.4. Finally, Corollary 3.10 yields
O (Yy) = n°(v)e" D(Ep) + Zﬁ’; 1 (V)e2®(E;) + Og(v]lgoe~@1") whenever v
is tangent to 0K . The final point is then a consequence of Corollary 3.9, of the second
point, and of the inequality || ®[, < 1. m]

The tensor ® leaves stable the tangent distribution {3, }. Therefore, one can pull
it back through the family of diffeomorphisms (&), -

Definition 4.2 The family of fields of endomorphisms (¢,),>¢ on dK is defined by
¢r = EF(D).

Recall that (S;),>¢ is the family of endomorphisms &7 (S) induced by the shape
operator.

Lemma 4.3 Assume that (M, g, J) satisfies the (ALCH) and (AK) assumption of order
a > 1 withsec(M \ K) < 0. Then the following estimates hold:

%%'6 = Ogo (e—(a—%)r).
Yr = Ogo(l),
779 oY = Ogo(e
Ve @res @r) — Vr = Ogo (e—(a—l)r),
1

Ogo(e_(“_i)’) if 1<a< %,
5. 0rSr = Srpr = { Ogo (r + De™) if a=3,
Ogole™) if a> %

—ar)
’

Ao~

Proof We first show the first point. From Corollary 3.17, there exists ¢ > 0 such that
forr = 0, 9,8 llgy < cl®(e" Eo)llge™2 = cl|®(Ep)llge?. The result now follows
from Lemma 4.1

Let us now focus on the second point. Let v be a vector field on 0K . Corollary 3.17
states that there exists ¢ > 0 such that [, v|lg, < c||<1>(Yv)||ge_%, for all » > 0. The
result follows from the fourth point of Lemma 4.1.

For the third point, let v be a vector field on dK. In an admissible frame, one has

O(Y,) = n2(v)e’ (Eo) + e Y3 nf (v) ®(E;). It then follows that
2n )
(1 0 ) (V) = 1) (W)g(P(E0), Eo) + €72 Y 1/ (v)g(P(E)), Ep).  (4.1)

J=1
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Notice that ® has range in {J3,}+, so that g(®(Ej), Ey)) = g(P(E)), Eo — Jo,) for
all j € {0, ..., 2n}.Recall that |®||, < 1andthat || E;| ¢ = 1 forall j € {0, ..., 2n}.
Note that |70 ¢rllgy < (I10llgo+e™2 3721 10 o) | Eo — Jo, Il forall 7 > 0, as an
application of the triangle inequality. The result follows from Corollary 3.4 (estimates
on Eo — Jd,) and from Corollary 3.9 (uniform bounds on {||5; lgo} jet0,....2n))-

Let us now consider the fourth point. Let # and v be vector fields on 9K, and fix
r > 0. By Lemma 4.1, one has g,(¢ru, o,v) = g(Yy,, Yy) — g(Yy, J0,)g(Yy, JO,).
Cauchy-Schwarz inequality now yields

g (@ru, @) = gr(u, v) — 2 2N’ (W) + OUYullg 1Yy llg Il Eo — Jor llg). (4.2)

It follows from Corollaries 3.4 and 3.10 , and from the very definition of y,, that
& (@r ) = €y + Ogy (P77, (4.3)

Therefore, ezr(n(r) o) ® (779 o)+ ey (o, o) =¢€ey +0 0(6(2_“)’). From
the preceding point, one has e (779 o) ® (779 o ¢r) = Oy, (=207 from which
is deduced that v, (¢r-, @) = yr + O, (e~@=Dr) This concludes the proof of the
fourth point.

Finally, let us prove the last point. Write S, = S, — % (Id +n9®§6 )+ % (Id +n9®§6 ),
for r > 0. By the triangle inequality, one has

1
lorSr = Srrllgy < 2ligrllg ISy — 5 d +n, @ E)llgo
4.4)

l 0 r 0 r
+ 2(IIanI;,vOIIgl)rSoIIgO + 117y 0 @rligollén llgo)-

The result now follows from uniform bounds on ||179|| ¢ and [|&)|l¢, (by uniform con-
vergence), the estimates on S, — %(Id —H]? ® &) (Proposition 3.22), and the estimates
on ¢,, n° o ¢, and @&}, given by the three first points. O

We are now able to prove that the family (¢;), >0 converges to a continuous field
of endomorphisms, provided that a > 1.

Proposition 4.4 Let (M, g, J) be a complete, non-compact, almost Hermitian man-
ifold of dimension at least 4, with essential subset K. Assume that it satisfies the
(ALCH) and (AK) conditions of order a > 1 with sec(M \ K) < 0. Then there exists
a continuous field of endomorphisms ¢ on 0K such that

Oy, (ef(“’%)r> if 1<a< %,
Pr=¢=10g (r+De™") if a=
Oy (¢7) if a>

4.5)

[[S]LOS]S][ON]

In addition, ¢ satisfies:

1. 1° 0 ¢ =0 and p&; =0,
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2. y(p9)=v,
3. 9> =—Id4+n° ® & and 9> = —¢.

Proof Let us first show the existence of ¢. The proof goes in two steps. We first derive
a differential equation for (¢,),>0. Let X be a vector field on M \ K. Then

(Lo, )X =10, JX]— JI[0r, X]
= (Vo,(JX) = Vyxdr) — J(Vg, X — Vx0,)
=(Vo, NX+JVy X —S(UX)—JVy X+ J(SX)
=JSX -SJX + (Vy, ))X.

(4.6)

Hence £y, J = JS—8J +V,, J.Recall that & = nJm, where 7 = 1d —g(9,, -) ® 9,
is the orthogonal projection onto {9,}*. It is a standard fact that Ly g = 2g(S-, ).
Moreover, S0, = V3,0, = 0. It follows that £3, 7 = 0, and thus that £5 ® =
w(JS§S — §J 4 Vy, J)m. The eigenspaces of the projector 7 are kerm = Rod, and
ker(w — Id) = {d,}*, which are both left stable by the shape operator S. Hence, §
commutes with 7, from which is derived the equality £y ® = &S — SO+ (Vy, J)7.
Define now v, = &7 (1 (Vy, J)m), so that one has 9, ¢, = ¢S, — Sy, + ¥, A direct

application of the (AK) assumption and of Corollary 3.17 yields ¥, = Oy, (e_(“_%)’).
Therefore, it follows from Lemma 4.3 that

Oy, (ef(”f%)r) if l<a<?3

27
Ir¢r =1 O ((r + De™") if a=3, 4.7
Oy (¢7") if a> %

Consequently, (¢,),>0 uniformly converges to some continuous tensor ¢, which sat-
isfies the inequality [|@, — @llg, = || froo 0 rllgy < froo 10, @rll g, for all ¥ > 0. This
implies estimates (4.5).

Let us now establish the claimed properties satisfied by ¢. The first two points
are immediate consequences of Lemma 4.3. We thus focus on the last claim. One
easily checks that ® satisfies the equality d?=—-1d +g(-, JO,) ® Jo, + g(-, 0;) ® 0y.
Hence, one has (pr2 = —-1Id —l—n? ® Eor + €., for all » > 0, where the last term is
€ = EXg(-, Jo, — Eg) ® Jo, + g(-, Ep) ® (JO, — Ep)). As usual, Corollary 3.17
yields that ||e/||g, = O(e? lEo — Jorllg) = (’)(e’(“’%)’), where the last equality is
due to Corollary 3.4. The first part of the result now follows from the convergence of
(n(r))r>0 and of (§)),>0 when @ > 1. The second part of the claim is a consequence
of the first point. O

Proposition 4.4 implies that (0K, no, @, &) is an almost contact manifold (see [9]
for an introduction to this notion). In particular, ¢ induces an almost complex structure
on the distribution of hyperplanes Hy = ker n°. The study conducted in this section
finally implies the second of our main results.

TheoremB Let (M, g, J) be a complete, non-compact almost Hermitian manifold
of dimension greater than or equal to 4 Assume that M satisfies the (ALCH) and
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(AK) conditions of order a > 1 and that M \ K has negative sectional curvature.
Let 1° and y be given by Theorem A, and let ¢ be defined as in Proposition 4.4. The
restriction Jo = ¢|p, of ¢ to the hyperplane distribution Hy = ker n° then induces
an almost complex structure, and y° = y | Hox Hy 1S Jo-invariant.

5 Higher Regularity

This section is dedicated to show that under the stronger conditions (ALCH+) and
(AK+) of order a > 1, the tensors 7°, ¥, and ¢ previously defined gain in regularity.
As a consequence, we highlight a strictly pseudoconvex CR structure related to the
expansion of the metric near infinity.

5.1 Order one Estimates

We first provide asymptotic estimates that will be useful later.

Lemma5.1 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, admitting an essential subset K. Assume that it satisfies the
(ALCH) condition of order a > % with sec(M \ K) < 0. Let u and v be vector fields
on 0K and consider V be the parallel transport of v along radial geodesics. Then
Vy,V = Oyl g 0]l g0¢").

Proof Since V5, V = 0and [9,, Y,,] = 0,onehas Vy, (Vy, V) = —R(9,, Y,,) V. Hence,
Kato’s inequality yields |8r IVy, Vg | < IR|IglYullg IV |l almost everywhere. Recall
that || R||; = O(1) (Remark 2.2) and that ||V ||g = [lv]|g,. Under the (ALCH) condition
of order a > %, one has ||V, |l = O(llullgye") (Corollary 3.10). The result follows
from a straightforward integration. O

Lemma5.2 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, admitting an essential subset K. Assume that it satisfies the
(ALCH) and (AK) conditions of order a > % with sec(M \ K) < 0. Then one has
Vy, Jor = Og(”u”g()er)‘

Proof Write Vy,Jo, = (Vy,J)d, + JSY,. The triangle inequality now yields
IVy, Jorllg < (IIVJIllg + IS Yullg, and the result follows from Lemma 2.3, the
(AK) assumption and the estimates of Corollary 3.10. O

Lemma 5.3 Assume that (M, g, J) satisfies the (ALCH) and (AK+) conditions of order
a > 3 with sec(M \ K) < 0. Then Vy, (V5,Jd,;) = Og([lullgye=@~1").

Proof Since Vj, 0, = 0 and Vy, 9, = SY,,, it follows that

Vv, (Vs,(J8,)) = Vy, ((Va, ])0,)
= (Y7, (V5,)) 8 + (Va, /) Vy,
= (V5. 5 D + (Vyy, 5,08, + (Yo, J)Vy, 0,
= (V3 5, Do + (Vsy, Doy + (Vo J)SY,.

(5.1)
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The result follows from Corollary 3.10 (estimates on SY,,) and from the (AK+) assump-
tion. O

Lemma 5.4 Assume that (M, g, J) satisfies the (ALCH+ ) and (AK) conditions of order
a > % with sec(M \ K) < 0. Let w be the orthogonal projection onto {(8,)L. Foru
and v vector fields on oK, one has:

3
1. 7(Vy,9)Ys) = Og (lullgy V] gp€3").
3
2. 7V, Ya) = O ((vllgy + VSVl gp) lullgpe ).

Proof We first consider the first point. By Kato’s inequality, and noticing that V5 7w =
0, one has 9, |7 (Vy, )Y llg < 7 (Vs (Vy, S)YW)) |l almost everywhere. The shape
operator S satisfies the Riccati equation V. § = —S% — R(,, -)d,. Moreover, one has
S = Sm. Direct computations using the equalities Vj, Y, = SY;, and V, (SY,) =
—R(9;, Yy)0, now yield

Vs, (T(Vy, $)Yo))) = mSR@y. Y)Yy — 7 R(@y, Y)Yy — T R(SY,, Y2)d,
— Ry, Yo)SYy — 1(Vy, R) 3y Yo)d,
— S7(Vy, )Y,
=R — S@((Ty,S)Y))).

(5.2)

where R contains all the curvature terms. Hence, one has the almost-everywhere
inequality 9, (e ™" |7 ((Vy, ) Yu)llg) < e " [Rlg+ (ISllg — De " |7 ((Vy, HYu))llg-
After a straightforward integration, Gronwall’s Lemma yields

e 1 (Vy, ) Yol < (n(vs'swng 4 /0 e*fn%ugds) exp ( /0 (ISl 1>ds).
(5.3)

By compactness of 9K, one has || (V5 S)v le = Olullgyllvllg,)- Moreover, Lemma 2.3
yields the estimate exp (for(||S||g —1) ds) = O(1). To conclude, it suffices to show

that R = O, (Jlu|lg, ||v||goe%r). The (ALCH+) assumption of order a > % yields

R =7SR3,, Y)Y, — 7R, Y,)SY, — wRO(SYy, Yy)0,
o (5.4)
— RO, Yo)SY + O (Il IVl cge™“72")

A close look at the definition of R? (see equation (2.3)) shows that the leading terms
in |||, are of the form en®w)n’ (v)e%r or cn®(v)n’ (u)e%’, for a constant ¢ and with
j e {l,...,2n}. The result follows.

Let us now show the second point. Similarly, Kato’s inequality yields the almost
everywhere inequality o, |7 (Vy, Yy) s < Vs, (m(Vy, Yu)lg. Straightforward com-
putations, using that Vy w = 0, that 7 and S commute, and that V ¥, = SY,, now
yield the equality Vy (7t (Vy,Yy)) = —w R(Yy, ¥y)0, + 7((Vy,S)Y,) + Sn(Vy, Yy).
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Hence, one has

O (e " lm(Vy, Yo)llg) < e "llmR(Yu, Yo)drllg + e " I ((Vy, HY) g

_, (5.5)

+ ISllg — D(e ™ Im(Vy, Yo)llg) a.e.
The rest of the proof goes similarly to that of the first point, using the estimates derived
on [ ((Vy,$)Yy)llg. The main difference is that the initial data here is not tensorial
in v, but instead is |7 (V,0)llg = Vi vllgy < [IVE0]|go 1l gp - O

Remark 5.5 If one considers the whole vector field Vy, Y, instead, then one only has the
estimates || Vy, Yy llg = O((Jlvllg, + IIngIIg)|Iu||6,Oe‘2’). Indeed, the radial component
is given by g(Vy, Yy, 0,) = —g(8Y,, Yy) = —n ()n°(v)e? when n°(u) and n°(v)
do not vanish.

5.2 Regularity of the Admissible Frames

We shall now show that under the (ALCH) and (AK+) conditions of order a > 1, the
vector field eg, defined in Definition 3.2, is actually of class C I

Proposition 5.6 Let (M, g, J) be a complete, non-compact, almost Hermitian mani-
fold of dimension at least 4, admitting an essential subset K. Assume that it satisfies the
(ALCH) and (AK+) conditions of order a > 1 with sec(M \ K) < 0. Then the vector
field eq is of class C'; admissible frames can be chosen to have the same regularity.

Proof 1t suffices to show that the 1-form g defined in Section 3.1 is of class C'.
To do so, we shall show that B(v) is a C' function for any C! vector field v. We
prove this later fact by showing that (u(8,(v))),>0 uniformly converges for any C !
vector fields u and v on 0K. Let u and v be such vector fields, and » > 0. Then
u(Br(v)) =Y, (g(Jo,, V)) = Vy,(g(Jo,, V)), where V is the parallel transport of v
along radial geodesics. Since [9,, Y;,] = 0 and V5,V = 0, one has

O (u(Br(v))) = Vo, (Vy, (8(J3,, V))) = Vy, (Vs (g(J0r, V))), (5.6)

sothat 9, (u(B,(v))) = g(Vy,(Vy, (J93,)), V)+g(Vs,(J3,), Vy, V). It now follows that
one has |9, (u(B (V)| < IVy, VIgVa, (J) g + Vg Vy, (Vs (J3:))lg- Recall
that [|S]l; = O(1) (Lemma 2.3), [|V|l; = [[vllg,, and [|Yy|lg = O([lullg,e") (Corol-
lary 3.10). It now follows from Lemma 5.1, Lemma 5.3, and the (AK) assumption,
that

0, (B ) = O (lullg 0l goe™ ") (5.7)

Consequently, 9, (u#(B,-(v))) uniformly converges for any vector fields u and v. This
concludes the proof. O

It what follows, we will need to differentiate expressions involving Vy, E; in the
radial direction, with ¥, a normal Jacobi field and E; an element of an admissible
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frame. At a first glance, this is a priori justified only if E; is of class C?. One could
prove such regularity by requiring the stronger condition ||V3J || ¢ = O(e™). It
turns out that one needs not assume this last condition, as a consequence of the fact
that E is solution to the first order linear differential equation V3 E; = 0. Indeed, let

{r,x', ..., x*"*1} be Fermi coordinates®, and write E ; = Zan E; ! 9;. Then {E } are
solutions to the ODE (E’ )+ Zan EkS,’c = 0, with (S}) the components of the shape

operator S. Asa consequence one can cons1der elements of the form Vj (Vy, E;) even
though E; is only of class C!. In fact, one has Vo, (Vy,Ej) = —R(0,, Y, E;.

Corollary 5.7 Under the assumptions of Proposition 5.6, if u is a vector field on 9K,
then

Vy, (Eo — J3,) = Og(Jlullge™“~1"). (5.8)

Proof Let u be a vector field on 9K, and {Ey, ..., E2,} be a C I admissible frame.
Equation (3.3) yields

2n

2n
Vy,(Eo — Jo) = =Y u(B(e;NEj + Y (80j — Br(e;)Vy,Ej.  (5.9)

j=0 j=0

During the proof of Proposition 5.6, we have shown that (B,),>0 converges in C 1
topology, so that for all j € {0, ..., 2n},

Tim u(y(e) =u (lim fr(e)) =u(Ble) =u() =0.  (5.10)

Therefore, one has [u(B, (¢/))| = | [ 8- (u(Br ()] < [ 18, (B (e)))| forevery
j €10, ...,2n}andr > 0.Equation (5.7) thenyields u(B, (e;)) = O([lullge~@~Dr).
Moreover, by Corollary 3.4, one has [8o; — B:(e;)| = O(e™*"). Finally, Lemma 5.1
yields Vy, E; = Og4(|lullge"). The result now follows. O

5.3 The Contact Form and the Carnot Metric

We shall now show that if the (ALCH+) and (AK+) conditions of order a > 1 are
satisfied, then 7° and y| Hox H, are of class C Iand that dn°(-, ¢-) = y. In particular,
770 is contact. These results are analogous to [14, Theorems B & C], although we
give slightly different and considerably shorter proofs here. The main difference is
that we prove the C! convergence of elements of the form (1} (v))r>0, instead of co

convergence of elements of the form (£, 77{ )r>0-

Theorem C Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (ALCH+) and

3 That is, {xl ,,,,, x2"+1} are coordinates on 0K, and that if (xl ..... x2"+1) corresponds to p € K,
then (r, x!, ..., x2n+ly corresponds to E(r, p) € M.
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(AK+) conditions of order a > 1 and that M \ K has negative sectional curvature.
Then n° is a contact form of class C'. Moreover, dn°(-, ¢-) = y, and the Reeb vector

field of n° is &.

Proof The proof is divided in three parts. First, we show that 7° is of class C'. Then
we derive an expression for dno (-, ¢+), and deduce that no is contact. Finally, we show
that & is the Reeb vector field of 1°.

To show that no is of class C!, we show that for any vector field v, the function
no(v) is of class C!. To do so, we show that for any other vector field u, (u(n(r)(v)))r>o
uniformly converges on dK . Let u and v be vector fields on 9K . Let f be the function
on M \ K defined by f = e" (u(n?(v)) =Y, (g(Yy, Eo)) = Vy, (g(Yy, Ep)). Then
f is smooth in the radial direction. Since [9,, ¥,] = 0 and Vj, Ey = 0, one has

o f = Va,(Vy, ((g(Yy, Ep)))
= Vy, (Vs (g(Yy, Ep)))
= Vy, (g(Vy, Yy, Ep)). (5.11)

Similarly, one has 8,2f = Vy,(8(V5,(Vy,Yy), Ep)). For Y, is a Jacobi field, one has
the equality Vj, (Vy, Yy) = —R(9,, ¥,,)0,, and thus Brzf = —Vy,(R(9,, Yy, 0r, Ep)).
Notice that
R(ar’ YU? ar’ EO) = R(aI’7 YU’ arv Jar) + R(ar’ YU? ar’ EO - Ja}’)
= R, Yy, 0. JO;) + R(3y. Yo, 0. Eo — JO,)  (5.12)
+ (R = R%) (3. Yy, By, JO,).

One readily checks from the definition of R? that R°(9,, Y, 8,, J9,) = —g (Y, J3,),
so that R°(3,, Yy, 9, Jo,) = —g(Yy, Eo) — g(Yy, JO, — Ep). Hence, it follows that

R f — f =8(Vy, Yy, Jd — Eg) + g(Yy, Vy, (Jd, — Ep))
— (Vy,R)(®,. Yy, 8y, Eo — J3,) — R(SYy, Yy, 8,, Eg — JO,)
— R, Vy,Y,. 8y, Eo — J3,) — R(3,., Yy, SY,,. Eg — Jo,)
— Ry, Yy, 3y, Vy,(Eo — J3,)) — (Vy, (R — R®)) (3. Yy, ;. Jd,)
— (R — RY(SYy, Yy, 8y, J3,) — (R — R%)(9,, Vy, Yy, 8, JO,)
— (R = R%(®,, Yy, SYy, J3,) — (R — R®)(3,, Yy, 8-, Vy, J3,).
(5.13)

Note that the radial part of Vy,Y, plays no role here due to the symmetries of the
Riemann curvature tensor, so that one can substitute Vy, Y, with w(Vy,Y,) in this
latter expression. Recall that one has the following estimates:

R, S = O4(1) (Remark 2.2 and Lemma 2.3),

R — R VR, V(R — R%) = Og4(e~*") ((ALCH+) condition and Remark 2.5),
Eo — Jo, = Og(e™") (Corollary 3.4),

Yy, Yy = Og(Jlullgye”) (Corollary 3.10),
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o Vy, Jo, = Og(Jlullge”) (Lemma 5.2),

3
o 1(Vy,Yy) = Og((lvllgy + IVE [ go) lullgye2") (Lemma 5.4),
o Vy,(Eo — J3,) = Og(ullgge~“@~P") (Corollary 5.7).

Hence, the triangle inequality yields
02f = £ = O ((vllgy + V00l ullgpe ") (5.14)

Define h = 9, f — f, and notice that 9, h +h = 3,2 f — f.Itnow follows from equation
(5.14) that 8, (e"h) = O ((|[vllgo + IVEV|lg) It |l gge 3 ~@"). Therefore, one has

O ((lvllgo + 1VE V]I go) ullgeC~7) if 1 <a <3,
€'h =130 ((Ivllgy + IVEV[ ) llullg(r + 1)) if a =3, (5.15)
O (Ulvllgo + 1VE vl go) 1]l g ) if a>3.

Notice that e™"h = 8, (e ™" f) = 8, (u (n2(v))). Hence,

O ((Ivllgy + 19500lg)lullgge™ @) if 1<a <3,
0 (u (1)) = 1O (Uvllgy + 170Nl gy (r + De™) i a =3,
O ((I1vllgy + 750 vllgy)ulgye ™) if a>3.
(5.16)

Consequently, (“(’79(“))),>0 uniformly converges as r — oo, and 7 is then of class
c'. :

We shall now derive an expression for dn’(-, ¢-), by computing the limit of
dr](,)(-, ¢r) as r — oo. Let u and v be vector fields on 0K. For » > 0, it holds
that

dnf . grv) = u (n2erw)) = (o) (nfw)) = 0, groD
= ¢ (Yug(®Y,, Eo) = (®Y.)g(Yu, E0) — g([Ys OV, E0))

=e " (g(CDYv, Vy, Ey) — g(Yy, Vaoy, E())) .
(5.17)

On the one hand, it holds that

g(®@Yy, Vy, Eo) = g(®Yy, Vy, J0;) + g(PYy, Vy, (Eo — Jo,))
= g(®Y,, JSY,) + g(PY,, (quj)ar) + g(®Yy, vYM(EO — Jo,))
= —g(J DYy, §Yy) + g(@Yy, (Vy,J)3)) + g(PYy, Vy, (Eo — Jo,)).
(5.18)
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On the other hand, one has

gYy, Voy,Eo) = g(Yy, Voy, JO,) + §(Yu, Voy, (Eo — J0,))
=g, JSPY,) + gy, (Vq)YUJ)ar) +g(Yy, V<1>YU (Eo — Jo,))
=—g(JY,, SOY,) + g(¥,, (VQYU-,)ar) +g(Yy, V<I>YU(E0 — Jo,)).
(5.19)

It then follows from the (AK) assumption, Corollary 3.10 and Corollary 5.7 that

A, @rv) = €77 (I Y, SOY,) = g(I DY, SY)) + O (Il [0l gpe™ ")

(5.20)
Fix {Eo, ..., Ez} an admissible frame. From Corollary 3.4 and Corollary 3.10, one
has the estimate ¥, = n°(v)e" Jo, + 25": 1 (e Ej + Og(|lv] g€~ @), Tt now
follows from Lemma 4.1 that J®Y, = — 23":1 n’ (v)e'ij + Og(llvllgoe_(“_l)r).
Corollary 3.10 now yields
o 2n ) )
g Yy, SYy) = == 3 0’ Wn’ @) + Olullgy [vllgee™ 72" (521)
j=l1
Similarly, one shows that
F 2n

e . .
g Y, SOY) = = 3 0’ @0’ @) + Olllullgy Ivllgye™ 7). (5:22)
j=1

Recall the local expression y = Z?’; n/ ® n/. Equations (5.20), (5.21) and (5.22)
now yield

dn®(u, rv) = ¥, v) + Ollullg vl goe ™~ "). (5.23)

The uniform convergence of the first derivatives of (n?),>0 yields dno(-, @) =y.
Proposition 3.16 hence shows that dn” is non-degenerate on ker n°. In particular, n°
is a contact form.

To conclude, let us show that & is the Reeb vector field of 7°. Since n°(&) = 1,
it remains to show that dn®(&, v) = 0 for all vector field v tangent to Ho. Let v be
such a vector field. The image of ¢ being exactly Hy, there exists a vector field u on
oK such that v = gu. By Proposition 4.4, y is g-invariant and ¢&) = 0. From the
preceding point, dn°(-, ¢-) = y. It finally follows that one has the equality

dn® (o, v) = dn’ (&0, pu) = y (§o, u) = v (9&o, pu) = (0, pu) = 0, (5.24)

which concludes the proof. O
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Corollary 5.8 Under the assumptions of Theorem C, the distribution Hy = ker n° is a
contact distribution of class C'.

The next result shows that under the assumptions of Theorem C, the Carnot metric
y% on Hy is of the same regularity. The proof is very similar.

Theorem D Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of
dimension at least 4, with essential subset K . Assume that it satisfies the (ALCH+) and
(AK+) conditions of order a > 1 and that M \ K has negative sectional curvature.
Then the restriction y° = y| Hox Hy is of class C L

Proof Let {E, ..., E»,} be aC' admissible _frame defined on a cone £(R4+ x U), and
fix j € {1,...,2n}. Let us first show that 7/ is of class C! on the distribution Ho|y .

To do so, we shall prove that (u (nﬁ (v))) - locally uniformly converges on U for
rz

v tangent to Hy|y and u any vector field on U.

Let u and v be such vector fields, and » > 0 be a fixed non-negative number. Let
fi=etu (n{(v)) = Vy, (g(Yy, E})), which is smooth in the radial direction. Since
[0;, Yy] =0and V5, E; = 0, one has

O f1 =V, (Va,(Vy, (§(Yu, EN))) = Vy, 8(Va, (V3 Vo), E), (5.25)

and, for Y, is a Jacobi field, one has Bffj = —Vy, (R0, Yy, 9, E})). One readily
checks that RO(3,, Yy, 8., Ej) = —3g(Yy. Ej) — 38(Yy, Jd,)g(E;, Jo,). Therefore,
one has the equality

- 3
oy f! - Zf’ = Zg(VYqu, Jo-)g(Ej, Jor) + Zg(Y”’ Vy, Jo:)g(Ej. J3;)

3 3
+ Zg(YU» Jo,)g(Vy, Ej, Jo,) + é_lg(Yv’ Jo)g(Ej, Vy, Joy)
— Vy, (R — R (3, Yy, 8, Ej) — (R — RO)(SYy, Yy, 8, E;)
— (R = R%) (0, Vy, Yy, 0, Ej) = (R = RO)(3y, Yy, SYu, E})

— (R = R%(,, Yy, 8, Vv, E}).
(5.26)

As in the proof of Theorem B, the radial component of Vy, Y, plays no role due to
the symmetries of R, so that one can substitute this term with 7 (Vy,Y,). Moreover,
g(Ej, Jo,) = Br(ej), where (B;),>0 is the family defined in Section 3.1. Recall that
one has the following estimates:

R, S = O4(1) (Remark 2.2 and Lemma 2.3),

R — R% V(R — R% = O4(e~), (ALCH+) condition and Remark 2.5),
Br(ej) = O(e™") (Corollary 3.4),

Y, = Og(Jlullgee”) and ¥, = (’)g(||v||goe%) (Corollary 3.10),

Vy, Ej = Oy(llullgye”) (Lemma 5.1),

Vy, Jo, = Og(Jlullgoe”) (Lemma 5.2),
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3
o T(Vy,Y)) = Og((IV¥ullgy + lellg9) [0l goe3") (Lemma 5.4).

Thus, 327 — L7 = O((Ivllg, + ||vg0u||g0)||u||g0e*<a*%>r). Let 1/ be defined by
the relation h/ = 8, f/ — 3 f/. Then 9,h/ + $h/ = 82 f/ — } 7, from which is
derived that 9,(e2h/) = O((|[vllgy + IVl gy) |l gpe=@~2"). A straightforward
integration now yields

. O ((Ivllge + 1VE V]I go) | goe@~¥7) if 1 <a <2,
e2h! = 1O ((Ivllgy + IVE VI ) lullge r + 1)) if a =2, (5.27)
O ((Ivllgy + 1VE vl g) ullg,) it a>2.

Notice that e~ 5h/ = 8, (e~ f1) = o, (u(n{ (v))), from which is deduced that

| O (vl + 1900l ullgoe™ @) if 1<a <2,
o (! @) = { O ((Illgy + IVl g gy + De ™) if a=2, (5.28)
O (10l + 17500l 1l gye™") if a>2.

In any case, <u (n{ (v))) - locally uniformly converges. As a consequence, 7/ | Holuy
rz

is of class C!'. We immediately deduce from the local expression y = Z?’;l n’ ®n’
that yO = ¥|Hyx H, 1 of class C ! This concludes the proof. O

Remark 5.9 With the stronger assumption a > %, the same proof shows that for
jef{l,...,2n}, nj is of class C! in all directions, and so is y. Indeed, in this case,
one has to consider the estimate Y, = Og(||v]|4€") instead.

5.4 The Almost Complex Structure

We shall now show that the almost complex structure J defined on the C! distribution
Hj is of the same regularity, and that it is formally integrable. We first remark that
the local vector fields {1, . .., &, are of class C!, although the Reeb vector field &,
might only be continuous.

Lemma5.10 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, with essential subset K. Assume that (M, g, J) satisfies
the (ALCH+) and (AK+) conditions of order a > 1 with sec(M \ K) < 0. Let
n°, ..., n*"} be the local coframe associated to any admissible frame {Eq, . .., E2,)}.
Let {&), &1, ..., &} be its dual frame. Then for j € {1,...,2n}, &; is a vector field
of class C'.

Proof Throughout the proof of Theorem C, we have shown that { 771, e, n2”} isaCl
trivialisation of the C! vector bundle Hom(Hy, R). Consequently, {£1,...,&,}isa
C! trivialisation of the vector bundle Hy. O

We now show that under the (AK+) condition of order @ > 0, admissible frames
can almost be chosen to be J-frames, in the following sense.
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Lemma5.11 Let (M, g, J) be a complete, non-compact, almost Hermitian manifold
of dimension at least 4, and with essential subset K. Assume that it satisfies the
(AK+) condition of order a > 0. Then there exists an admissible frame {Ey, . .., Eo,}
such that

Vjell,...,n}, JEyj_|—Ey; =Og(e™™). (5.29)

Proof Let U C 9K be an open domain on which Hj is trivialisable. Let e; be a unit
section of Hy|y of class C!, and let E7 be its parallel transport along radial geodesics.
Consider the family of 1-forms ﬂ,l : Holy — R defined by ,3,1 (v) = gV, JE1)|sk,,
where V is the parallel transport of v along radial geodesics. The same study than
that conducted for the proofs of Lemma 3.1 and Proposition 5.6 shows that under the
(AK+) condition of order @ > 1, there exists a nowhere vanishing 1-form ' on U,
which is of class C!, such that B! — B! = O, (e7"). Let e be the unique C' section
of Hy|y such that e; 180 ker B, lle2llgy = 1 and B'(ez2) > 0. Define E» to be its
parallel transport along radial geodesics. Similarly to Corollary 3.4, one shows that
Er — JE| = Og(e™"). The rest of the proof follows by induction. O

We refer to such an admissible frame as a J-admissible frame. We are now able to
show the last Theorem of this Section, exhibiting a strictly pseudoconvex CR structure
at infinity.

TheoremE Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of
dimension at last 4, with essential subset K. Assume that it satisfies the (ALCH+ ) and
(AK+) condition of order a > 1 and that M \ K has negative sectional curvature.
Let Jo be the almost complex structure on Hy induced by ¢. Then Jy is of class C,
and is formally integrable. In particular, (0K, Hy, Jo) is a strictly pseudoconvex CR
manifold of class C'.

Proof Let {Ey, ..., E»,} be a J-admissible frame of class C', and {', ..., n?"} and
{1, ..., &y} be the associated C! coframe and frame. Then {0, Eg, ..., Epy} is an
orthonormal frame. Since ®(9,) = ®(JJ,) = 0, one has & = Z?';O g, Ej) ®
®(E;). Lemmata 4.1 and 5.11 yield

n
®=Y"g(, Ezj-1) ® Ezj — g(-, E2j) ® Eaj_1+ Og(e™™).  (5.30)
j=1

Corollary 3.17 now yields ¢, = >}_, e £, - @ &1+ Og (e=@=2ry,
Taking the limitasr — oo shows thatp = le':l n2i=1 ®&; —n? ®&2j—1. Therefore,
the restriction Jo = ¢| g, has at least the same regularity as (n'| Hys « -+ » " Hoy) and

{€1, ..., &n). It follows from Theorem C and Lemma 5.10 that Jy is of class C'.
Let us now show that Jy is formally integrable. Recall that y | g, x H, is Jo-invariant,
so that by [14, Proposition 5.10], it suffices to show that Ny | gy« g, = d770|H0><H0 ®&o,

where N4 stands for the Nijenhuis tensor of the field of endomorphisms A, defined
by

Na(X,Y) = —A%[X,Y] — [AX, AY] + A[AX, Y]+ A[X, AY]. (5.3
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Let u and v be any vector fields on dK. Using the fact that V is torsion-free, one
first obtains N (Y, ¥y) = @ (Vy, @)Yy — (Voy, ©)Yy — @ (Vy, @)Y, + (Voy, )Y,
Recall that ® = J — g(+,9,) ® JO» + g(-, JO,) ® 9,. Since Vg = 0, Vo3, = S,
®(0,) =P(J9,) =0and Y, Y, L 0,, one has

O (Vy, @)Yy = g(Yy, J)P(SYy) + ©(Vy, /)Yy,

(Voy, @)Y, = —g(Yy, S®Y,)Jo, + g(Yy, JSPY,)d, + g(Yy, J3,)SPY,
+ Voy, Yy — g(Yv, Vo, J)3;)0r,

O (Vy, @)Y, = g(Yy, J3,)P(SY,) + ®(Vy,J)Y,, and

(Voy, @)Y, = —g(Yy, SOY,)Jo, + g(Yy, JSPY,)d, + g(Yy, J0,)SPY,
+ Voy, NYu — g(Yu, Voy, J)3,)0;.

(5.32)

Recall that ® takes values in the distribution {3, }*, which is involutive as the tangent
field to the foliation (0K, ),>0 of M \ K. The definition of the Nijenhuis tensor then
shows that No has range in {9, }*. Hence, the terms in the radial direction cancel out
each others, and the remaining terms yield

Ny Yy, Yy) = (g(Yy, S®Y,) — g(Yy, SOYy)) Jo,
+ g(Yy, JO,) (®SY, — S®Y,) — g(Yy, JO,) (®SY, — SPY,)
+ @ ((Vy, )Yy — (Vy,HYy) — 7(Voy, ))Yy) + 7((Voy, )Y,
(5.33)

where 7 is the orthogonal projection onto {3, }*-

as

. One can rewrite this latter equality

Ng(Yu, Yy) = (g(Yy, SOYy) — g(Yu, SPYy)) Eo
+ g(Yy, Eo) (®SY, — S®Y,) — g(Yy, Eo) (PSY, — SPY,)
+ (8(Yy, S®Y,) — g(Yy, SPYy)) (JO, — Ep)
+ g(Yy, J3, — Eo) (®SY, — S®Y,) — g(Yy, JO, — Eg) (PSY, — SPY,)
+ @ ((Vy, DYy = (Vy, NYs) = 7(Voy, DY) + 7 (Voy, ) Ya).
(5.34)

From now, and until the rest of the proof, we assume that # and v are tangent to
Hpy. Let r > 0, and note that one has N, = £(Ng). The (AK) condition, the uni-
form bound on || S| (Lemma 2.3), estimates on Eo — Jo, (Corollary 3.4), estimates
on Y, and Y, (Corollary 3.10), comparison between go and g, (Corollary 3.17), and
estimates on ¢S, — S,¢, (Lemma 4.3), yield the existence of a constant @1 > O,
depending on a only, such that Ny, (u, v) = e (g(¥y, S®Y,) — g(¥,, S®Y,))E; +
Ogo (lllgollvll gge™*'"). Similar calculations that the ones conducted to derive an
expression for dn9 (u, ¢rv) (see the proof of Theorem C) show that there exists ap > 0
depending on a only, such that

e (g(Yy, SOY,) — g(Yy, SPY,)) = dn°(u, v) + Ollullg, vl goe ). (5.35)
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The C! convergence of (¢, |Hy)r>0 10 @|H,, and the co convergence of (§)),>0 to &
finally imply that Ny | gy x gy = limy 00 Ny, | Hyx Hy = dnolHoxHo ®&o. Consequently,
Jo is formally integrable. The associated Levi-form dn°| Hox Ho (+» Jo+) coincides with
¥ | Hyx Hy» and is thus positive definite. Ultimately, (0K, Hp, Jo) is a strictly pseudo-
convex CR manifold, which concludes the proof. O

Remark 5.12 1If M has dimension 4, then Jj is an almost complex structure of class C 1
defined on a 2-dimensional vector bundle. Its integrability is automatic in this specific
case.

Remark 5.13 Similarly to Remark 5.9, under the stronger assumption a > %, one
shows that ¢ is of class C! in all directions.

6 The Compactification
We conclude this paper by proving our main Theorem.

Proof of the main Theorem We first give a construction for M. Fix K an essential subset
and & its normal exponential map. Let M (co) be the visual boundary of (M, g), which
is the set of equivalent classes [o'] of untrapped unit speed geodesic rays o, where two
rays o1 and o, are equivalent if and only if the function ¢ > 0 — d,(01(2), 02(1)) is
bounded. By [5, Propositions 4.1 & 4.4], dK is in bijection with M (co) by the map
p > [E(-, p)]. Define M = M U M (c0). The following map

£:[0,1) x 9K —> M\ K
E(—Inp,p)e M\ K if p>0, 6.1)

o) [E(¢. p)] € M(c0) if p=0,

is thus a bijection. We endow M with the structure of a compact manifold with bound-
ary through this latter bijection. This identifies M with the interior of M. Note that
if p > 0, then r = —In p is the distance to K for g in M. A compactly supported
modification of p in a neighbourhood of K in M provides a smooth defining function
for the boundary M = M(c0). By abuse of notation, we still denote it p.

Let n° be the contact form and y be the Carnot metric given by Theorem C.
Let Hy be the associated contact distribution, and let Jy be the integrable almost
complex structure on Hy given by Theorem E. We see these objects as defined on d M
through the diffeomorphism £(0,-): {0} x 9K — M. Then (M, Hy, Jo)isa strictly
pseudoconvex CR manifold of class C! by Theorem E. Theorem A and Remark 3.18
show that the metric g has the desired asymptotic expansion (1.3) near the boundary
IM = p~'({O}).

Let us show that Hy and Jy are induced by a continuous ambient almost com-
plex structure J. To that end, we show that J extends continuously to the boundary.
Let {Ep, ..., E2,} be a J-admissible frame on a cone £(R4 x U), and consider
the frame {—d,, &, ...,E»,} on £((0, 1) x U) defined by £, = £ (p~'Ep) and
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gj = E*(,o’%Ej) for j € {1,...,2n}. Notice that —d, = "9, on M \ K. Propo-
sition 3.20 and Remark 3.21 show that {&, ..., §,} extends continuously on the
boundary £({0} x U), With_limit {&0, ..., Egn}iiemark that the tangent bundle of M
at the boundary splits as TM|,7; = R0, ® ToM = Rd, & R&y & Hp. From the very
definition of a J-admissible frame, one has

J(€"3:) — e Eg, J(e"Eg) +e 8 = Og(e™ D),

r r r r (62)
J(e2Eyj—1) —e2Ey;, J(e2Epj)+e?Epj1 = Og(e_(a_%)r), jel{l,...,n}.
It follows that in the continuous frame {—9,,, ?0, e, Ezn}, the matrix of J reads

1
0 (6"+%)
oy |~ \P
+ , (6.3)

0 (p"3)| 0 (oY

where the top left and bottom right blocks are of size 2 x 2 and 2n x 2n respectively.
Hence, J extends uniquely as a continuous almost complex structure J up to boundary.
In addition, J satisfies

J(=dp) =&, Jéo=20,, J&j_1=6;, and J&j=—&j 1, (6.4)

for j € {1,...,2n)}. It follows that J|p, = Jo, and that Hy = (TdM) N (JTIM).
This concludes the proof. O

Remark 6.1 1. When (M, g, J) is Kibhler, (that is, if VJ = 0), then (M, J) is a
compact complex manifold with strictly pseudoconvex CR boundary.

2. Under the stronger assumption that a > %, one can show that J is of class C' up
to the boundary in all directions (see Remark 5.9).
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