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Abstract
In this paper, we generalize a Schwarz lemma to strongly pseudoconvex complex
Finsler manifolds and prove a Schwarz lemma between two strongly pseudoconvex
complex Finsler manifolds. As an application, we give a rigidity result.
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1 Introduction andMain Results

It is well known that the classical Schwarz lemma plays an important role in proving
the Riemannian mapping theorem and Liouville theorem in complex analysis ([7, 36,
38]). In 1915, Pick [36] re-interpreted this lemma in terms of the Poincaré metric and
distance, now known as the Schwarz-Pick lemma which states that any holomorphic
function from a unit disk into itself decreases the Poincaré metric and distance. It
establishes bridges the differential geometric ideas with the Schwarz lemma. Gen-
eralizations of the classical Schwarz lemma to higher dimensional spaces began in

Supported by the National Natural Science Foundation of China (Grant Nos. 12371081, 11901592 and
11971401).

B Chunhui Qiu
chqiu@xmu.edu.cn

Jinling Li
thankyouy@126.com

Qixin Zhang
brilliantcirno@outlook.com

1 School of Science, Jimei University, Xiamen 361021, China

2 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-024-01658-x&domain=pdf
http://orcid.org/0000-0003-4757-7782


204 Page 2 of 24 J. Li et al.

1921, with results for domains in C
2 by Reinhardt and were followed some years

later by Carathódory [8] and Cartan [9]. In 1938, Ahlfors [3] extended the Schwarz-
Pick lemma to the Riemannian surface from the viewpoint of differential geometry,
which states that any holomorphic map from a unit disk into a Riemannian surface
equipped with a Hermitian metric with the Gauss curvature bounded from above by
−4 decreases the Poincaré metric of the unit disk, and applied it to give an elementary
new proof of the Bloch theorem with an explicit lower bound for Bloch’s constant

B, namely B ≥
√
3
4 ([3]). Later, there are various generalizations and their applica-

tions of the classical Schwarz lemma and Schwarz-Pick lemma from the viewpoints of
both function theory and differential geometry (Bochner andMartin [6], Korányi [24],
Kobayashi [21–23], Chern [12], Lu [29], Lu [27, 28], Yau [49], Greene and Wu [17],
Royden [37], Chen, Cheng and Lu [11], Dineen [15], Siu andYeung [41, 42], Hidetaka
and Takashi [18], Takashi [43], Osserman [35], Kim and Lee [19], Mateljević [30],
Yang and Chen [48], Tosatti [44], Zuo [53], Ni [31, 32] etc.).

In 1978, Yau [49] used the almost maximum principle to generalize the Schwarz
lemma to a complete Kähler manifold and obtained the following Schwarz lemma.
The Schwarz lemma has become a powerful tool in complex geometric analysis since
then.

Theorem 1.1 ([49]) Let M be a complete Kähler manifold with Ricci curvature
bounded from below by K1. Let N be another Hermitian manifold with holomor-
phic bisectional curvature bounded from above by a negative constant K2. Then if
there is a non-constant holomorphic mapping f from M into N, we have K1 ≤ 0 and

f ∗d S2
N ≤ K1

K2
d S2

M .

In 1980, by using the special type of exhaustion functions of the manifolds, which
is different from the method of Yau, Royden [37] gave the following Schwarz lemma
for a Hermitian manifold.

For a Hermitian manifold (M, g), assume that M satisfies the following condition
(C).

(C) There exists a continuous proper non-negative function u on (M, g) with the
property that at each point p it has a smooth upper supporting functionwwith ||∇w|| ≤
1 and wαβ̄ ≤ gαβ̄ at p.

Theorem 1.2 ([37]) Let (M, g) and (N , h) be two Hermitian manifolds, and holo-
morphic sectional curvature of M bounded from below by a constant K1 ≤ 0 and the
holomorphic sectional curvature of N bounded from above by a constant K2 < 0.
Assume that M satisfies condition (C). Then any holomorphic map f : M → N
satisfies

f ∗h ≤ K1

K2
g.

Remark 1.1 It follows from Propositions 2 and 3 in [37] by Royden that M satisfies
condition (C) if it is a completeHermitianmanifoldwith the Riemannian sectional cur-
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vature bounded from below or it is a complete Kähler manifold with the holomorphic
bisectional curvature bounded from below.

Chern [13] pointed out that Finsler geometry is just Riemannian geometry without
the quadratic restriction, and that it is possible that Finsler geometry will be most
useful in the complex domain, because every complex manifold, with or without
boundary, has a Carathéodory pseudo-metric ([8]) and a Kobayashi pseudo-metric
([20]). Under favorable (though somewhat stringent) conditions they are C2 metrics,
and most importantly, they are naturally Finsler. He also pointed out that complex
Finsler geometry is extremely beautiful ([13]). Lempert [25] proved that any bounded
strongly convex domain D ⊂⊂ Cn with smooth boundary, the Carathéodory metric
and Kobayashi metric coincide, furthermore, they are weakly Kähler-Finsler metrics
with constant holomorphic sectional curvature−4. Therefore, a natural and interesting
equation is to generalize the Schwarz lemma in complex Finsler setting.

In 2013, Shen and Shen [39] generalized the Schwarz lemma to compact complex
Finsler manifolds. In 2019, Wan [45] gave the Schwarz lemma from a complete Rie-
mannian surface into a complex Finsler manifold. In 2022, Nie and Zhong [33, 34]
generalized the Schwarz lemma for strongly convex weakly Kähler Finsler manifolds.
However, the Schwarz lemma for general strongly pseudoconvex complex Finsler
manifolds is still open.

In this paper, by generalizing Royden’s method to find a proper function and its
upper supporting function, we obtain the Schwarz lemma for strongly pseudoconvex
complex Finsler manifolds.

For a strongly pseudoconvex complex Finsler manifold (M, G), we assume that M
satisfies the following condition (A).

(A) There exists a continuous proper non-negative function u on (M, G) with
the property that at each point p it has a smooth upper supporting function w with
|∂w(ξ)|2 ≤ 1 and ξαξβ ∂2w

∂zα∂zβ
≤ 1 for any unit vector ξ ∈ T 1,0

p M .

Remark 1.2 For a given complex Finsler metric G on M in condition (A), |∂w(ξ)|2 ≤
G(ξ) and ξαξβ ∂2w

∂zα∂zβ
≤ G(ξ) always hold for any vector ξ ∈ T 1,0

p M . When G(v) =
gαβ̄vαv̄β comes from a Hermitian metric, condition (A) is equivalent to condition (C).
Hence, condition (A) is a generalization of condition (C) in Royden [37].

We first give some strongly pseudoconvex complex Finsler manifolds satisfying
condition (A).

Theorem 1.3 Let (M, G) be a complete strongly convex uniform complex Finsler man-
ifold, the first holomorphic bisectional curvature bounded from below by −k2(k > 0),
the mixed part of the (1, 1)-torsion bounded from above by τ(τ > 0), and the hori-
zontal part of the (2, 0)-torsion bounded from above by θ(θ > 0). Then M satisfies
condition (A).

In particular, if M is a Kähler-Finsler manifold, then the horizontal part of (2, 0)-
torsion term vanishes.
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Corollary 1.1 Let (M, G) be a complete strongly convex uniform Kähler-Finsler man-
ifold, the first holomorphic bisectional curvature bounded from below by −k2(k > 0),
and the mixed part of the (1, 1)-torsion bounded from above by τ(τ > 0). Then M
satisfies condition (A).

For a Kähler-Finsler manifold M , we use the horizontal flag curvature instead of
bisectional curvature.

Theorem 1.4 Let (M, G) be a complete strongly convex uniform Kähler-Finsler man-
ifold, the horizontal flag curvature bounded from below by −k2(k > 0). Then M
satisfies condition (A).

Remark 1.3 From Theorems 1.3, 1.4, Corollary 1.1 and the results in [34] by Nie and
Zhong, it follows that M satisfies condition (A) if it is a complete strongly convex
uniform complex Finsler manifold with the first holomorphic bisectional curvature
bounded from below, the horizontal part of (2, 0)-torsion bounded from above and the
mixed part of the (1, 1)-torsion bounded from above; or if it is a complete strongly
convex uniform Kähler-Finsler manifold with the first holomorphic bisectional cur-
vature bounded from below, and the mixed part of the (1, 1)-torsion bounded from
above; or if it is a complete strongly convex uniform Kähler-Finsler manifold with
the horizontal flag curvature bounded from below; or if is a complete strongly convex
uniform weakly Kähler-Finsler manifold with the flag curvature bounded from below.

Now we give the following main theorem in this paper.

Theorem 1.5 Let (M, G) be a strongly pseudoconvex complex Finsler manifold with
the holomorphic sectional curvature bounded from below by a constant K1 ≤ 0,
and let (N , H) be another strongly pseudoconvex complex Finsler manifold with the
holomorphic sectional curvature bounded from above by a constant K2 < 0. Suppose
that M satisfies condition (A), then for any holomorphic map f : M → N, we have

f ∗ H ≤ K1

K2
G.

A rigidity result can be obtained directly from Theorem 1.5.

Corollary 1.2 Let (M, G) be a strongly pseudoconvex complex Finsler manifold with
non-negative holomorphic sectional curvature, and let (N , H) be another strongly
pseudoconvex complex Finsler manifold with negative holomorphic sectional cur-
vature. Suppose that M satisfies condition (A), then for any holomorphic map
f : M → N is a constant.

2 Preliminaries

2.1 Real Finsler Geometry

Definition 2.1 [1] A real Finsler metric on a manifold M is a continuous function
G : T M → [0,+∞) with the following properties:
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(i) G is smooth on M̃ = T M\{0};
(ii) G(u) > 0 for all u ∈ M̃ ;
(iii) G(λu) = |λ|2 G(u) for all u ∈ T M and λ ∈ R;
(iv) The fundamental tensor g, defined locally by its components

gab := 1

2
Gab = 1

2

∂2G

∂ua∂ub
,

is positive definite.

The pair (M, G) is called a real Finsler manifold. A real Finsler metric G comes from
a Riemannian metric iff it is smooth on the whole tangent bundle T M .

Let π : M̃ → M be the natural projective map, and denote the vertical bundle
V = ker dπ . We can introduce a Riemannian structure 〈·|·〉 on V by setting

∀V , W ∈ Vu, 〈V |W 〉u = gi j (u)V i W j .

A local frame of V is {∂̇1, . . . , ∂̇n}, where ∂̇a = ∂
∂ua . One can define the Cartan

connection D : X (V) → X (T ∗M̃ ⊗ V) that is compatible with 〈·|·〉 on V . The
connection form is given by

ωa
b = �a

b;i dxi + �a
bcψ

c,

where

�a
b;i = 1

2
Gac [δi (Gcb) + δb(Gci ) − δc(Gbi )] , �

a
bc = 1

2
Gak Gbck,

and δi = ∂i − �b
i ∂̇b, �b

i = �b
k;i u

k . {δ1, . . . δn} forms a local frame of the horizontal

bundle H, and {dxi , ψa = dua + �a
i dxi } is the dual frame of T M̃ with respect to

{δi , ∂̇a}. By defining the horizontal map � : V → H corresponding to H, locally
given by �(∂̇i ) = δi , we can induce a Riemannian structure on H by setting

∀H , K ∈ H, 〈H |K 〉 =
〈
�−1(H)|�−1(K )

〉
,

and define a linear connection onH (still denoted by D) by setting

∀H ∈ X (H), DH = �(D�−1(H)).

Hence we obtain a good linear connection on T M̃ , still called Cartan connection, that
is, compatible with a Riemannian structure 〈·|·〉 on T M̃ ,

∀X , Y , Z ∈ T M̃, X 〈Y |Z〉 = 〈DX Y |Z〉 + 〈Y |DX Z〉 .
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Let ∇ : X (T M̃) × X (T M̃) → X (T M̃) be a covariant differentiation associated to
the Cartan connection D. The torsion θ and the curvature R are given by

θ(X , Y ) = ∇X Y − ∇Y X − [X , Y ],
RZ (X , Y ) = ∇X∇Y Z − ∇Y ∇X Z − ∇[X ,Y ]Z

for all X , Y , Z ∈ X (T M̃). Let� be the curvature operator of D, we have�(X , Y )Z =
RZ (X , Y ). The horizontal flag curvature in real Finsler geometry is the extension of
the sectional curvature in Riemannian geometry. For a fixed point x ∈ M , taking a
pair (P; u), where u ∈ Tx M and P ⊂ Tx M is a two-plane such that u ∈ P , we call it
a flag at x and define the flag curvature K F (P, u) by

K F (P, u) = K F (u, X) =
〈
�(X H , χ(u))χ(u)|X H

〉
u

〈χ(u)|χ(u)〉u
〈
X H |X H

〉
u − 〈χ(u)|X H

〉2
u

=
〈
�(χ(u), X H )X H |χ(u)

〉
u

〈χ(u)|χ(u)〉u
〈
X H |X H

〉
u − 〈χ(u)|X H

〉2
u

,

where P = span{u, X} and X H is the horizontal lifting of X .

2.2 Complex Finsler Geometry

Let M be a complex manifold with dimCM = n, and let {z1, . . . , zn} be the local
complex coordinates, with zα = xα + i xn+α , such that {x1, . . . , x2n} is the local
real coordinates. Let TRM be the real tangent bundle of M , which is a real bundle
of rank 2n equipped with a complex structure J , and let TCM = TRM ⊗R C be the
complexified tangent bundle. Set

∂

∂zα
= 1

2

(
∂

∂xα
− i

∂

∂xα+n

)
and

∂

∂zα
= 1

2

(
∂

∂xα
+ i

∂

∂xα+n

)
.

Then
{

∂
∂z1

, . . . , ∂
∂zn , ∂

∂z1
, . . . , ∂

∂zn

}
is a local frame of TCM . TCM splits as the sum

of two eigenbundles

TCM = T 1,0M ⊕ T 0,1M,

where T 1,0M = {v ∈ TCM |Jv = iv} and T 0,1M = {v ∈ TCM |Jv = −iv}. The
local frames of T 1,0M and T 0,1M are { ∂

∂z1
, . . . , ∂

∂zn } and { ∂

∂z1
, . . . , ∂

∂zn }, respectively.
T 1,0M is called the holomorphic tangent bundle of M .

Since the holomorphic tangent bundle T 1,0M is isomorphic to TRM , we can take
a bundle isomorphism ◦ : T 1,0M → TRM by

∀v ∈ T 1,0M, v◦ = v + v̄.
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It preserves the complex structure J , that is Jv◦ = (Jv)◦. And we denote the inverse
◦ : TRM → T 1,0 by

∀u ∈ TRM, u◦ = 1

2
(u − i Ju).

From the definition, we know that if

v = vα ∂

∂zα
,

then

u = v◦ = ua ∂

∂xa
,

where vα = uα + iuα+n , and the Roman indices run from 1 to 2n, while the Greek
indices run from 1 to n. Conversely, u◦ = (uα + iuα+n) ∂

∂zα . In particular, we denote

M̃ either T 1,0M or TRM minus the zero section. The local coordinates of TRM and
T 1,0M are {xa, ua} and {zα, vα}, respectively.
Definition 2.2 ([1]) A complex Finsler metric on a complex manifold M is a contin-
uous function G : T 1,0M → [0,+∞) with the following properties:

(i) G is smooth on M̃ = T 1,0M\{0};
(ii) G(v) > 0 for all v ∈ M̃ ;
(iii) G(ζv) = |ζ |2 G(v) for all v ∈ T 1,0M and ζ ∈ C.

The pair (M, G) is called a complex Finsler manifold.

Definition 2.3 ([1]) A complex Finsler manifold (M, G) is called strongly pseudo-
convex if the Levi matrix

(
Gαβ̄

)
=
(

∂2G

∂vα∂vβ

)

is positive definite on M̃ .

This is equivalent to requiring that the indicatrix IG(p) = {v ∈ T 1,0
p M |G(v) < 1} is

strongly pseudoconvex. Note that it is important to ask for the smoothness of G only
on M̃ , and if G is smooth on the whole of T 1,0M , we shall say that F comes from a
Hermitian metric.

Different from the Hermitian case, a complex Finsler metric is not necessary a real
Finsler metric, even if it is strongly pseudoconvex.

Definition 2.4 ([1])A complex FinslermetricG is called strongly convex ifG◦ is a real
Finsler metric, where G◦(u) = G(u◦) for u ∈ TRM and u◦ = 1

2 (u − i Ju) ∈ T 1,0M .
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Let π : M̃ → M be the natural projective map. The differential map dπ : TCM̃ →
TCM defines the (complex) vertical bundle V over T 1,0M̃ by

V = ker dπ ∩ T 1,0M̃ .

T 1,0M̃ splits as T 1,0M̃ = V ⊕ H, here H is the horizontal bundle. A local frame of
V is given by {∂̇1, . . . , ∂̇n} and a local frame of H is given by {δ̇1, . . . , δ̇n}, where

δα = ∂α − �
β

;α∂̇β, �
β

;α = Gβτ̄ G τ̄ ;α.

Clearly {δμ, ∂̇α} gives a local frame field of T 1,0M̃ . We denote the dual frame by
{dzμ, δvα}.

Let (M, G) be a strongly pseudoconvex complex Finsler manifold. Then G defines
a Hermitian metric 〈 , 〉 on the vertical bundle V . Indeed, if v ∈ M̃ and Z , W ∈ Vv

with Z = Zα∂̇α and W = W β ∂̇β , we set

〈Z , W 〉v = Gαβ̄(v)ZαW β.

There exists a unique complex vertical connection D : X (V) → X (T ∗
C

M̃ ⊗ V) such
that

X〈Z , W 〉 = 〈∇X Z , W 〉 + 〈X ,∇X W 〉
for all X ∈ T 1,0M̃ and Z , W ∈ X (V). Furthermore, this connection is good. The
unique good complex vertical connection D is called Chern-Finsler connection. Its
connection (1,0)-forms are given by

ωα
β = G τ̄ α∂Gβτ̄ = �α

β;μdzμ + �α
βγ δvγ , (2.1)

where
�α

β;μ = G τ̄ αδμ(Gβτ̄ ), �α
βγ = G τ̄ αGβτ̄γ , (2.2)

and (G β̄α) = (Gαβ̄)−1. In particular,

�α
;μ = �α

β;μvβ = G τ̄ αG τ̄ ;μ. (2.3)

Definition 2.5 ([1]) A complex Finsler metric G is called strongly Kähler if �α
β;μ =

�α
μ;β ; called Kähler if (�α

β;μ − �α
μ;β)vβ = 0; called weakly Kähler if Gα(�α

β;μ −
�α

μ;β)vβ = 0.
By Chen-Shen’s observation in [10], a Kähler-Finsler metric is actually strongly

Kähler. Then G is Kähler-Finsler metric if and only if �α
β;μ = �α

μ;β , if and only if

δμ(Gβγ̄ ) = δβ(Gμγ̄ )
(
or δμ̄(Gγ β̄ ) = δβ̄(Gγ μ̄)

)
, 1 ≤ γ ≤ n.
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Remark 2.1 There are lots of strongly convex Kähler-Finsler metrics which are not
Hermitian quadratic ([46]); there are also weakly Kähler-Finsler metrics which are
not Kähler-Finsler metrics ([14]); there are also holomorphic invariant Kähler-Finsler
metrics on a polydisk in Cn(n ≥ 2) which are non-Hermitian quadratic ( [52]).

The curvature tensor � of the Chern-Finsler connection is given by �α
β = ∂̄ωα

β . In
local coordinates, it can be decomposed as

�α
β =Rα

β;μν̄dzμ ∧ dzν + Rα
βδ;ν̄ δv

δ ∧ dzν + Rα
βγ̄ ;μdzμ ∧ δvγ + Rα

βδγ̄ δvδ ∧ δvγ ,

(2.4)
where

Rα
β;μν̄ = −δν̄(�

α
β;μ) − �α

βσ δν̄(�
σ
;μ), Rα

βδ;ν̄ = −δν̄(�
α
βδ),

Rα
βγ̄ ;μ = −∂̇γ̄ (�α

β;μ) − �α
βσ ∂̇γ̄ (�σ

;μ), Rα
βδγ̄ = −∂̇γ̄ (�α

βδ).
(2.5)

For a strongly pseudoconvex complex Finsler metric G, one can define a complex
Rund connection ∇ R on M̃ , with its connection form ω̃α

β given by

ω̃α
β = �α

β;μdzμ,

where �α
β;μ = G τ̄ αδμGβτ̄ . The (2, 0)-torsion θ and (1, 1)-torsion τ for the Rund

connection are given by ([4, 5, 51])

θ = θσ ⊗ δσ and τ = τα ⊗ ∂̇α, (2.6)

, respectively, where θσ = 1
2 [�σ

ν;μ − �σ
μ;ν]dzμ ∧ dzν , and τα = −δν̄(�

α
;μ)dzμ ∧

dz̄ν − ∂̇β̄ (�α
;μ)dzμ ∧ δv̄β . Moreover, we denote by τH = −δν̄(�

α
;μ)dzμ ∧ dz̄ν ⊗ ∂̇α

and τM = τ − τH the horizontal part and mixed part of τ , respectively.
The curvature operator �̃ = �̃α

βδvβ⊗∂̇α associated to theRund connection satisfies
([47])

�̃α
β = R̃α

β;μν̄dzμ ∧ dzν + P̃α
βγ̄ ;μdzμ ∧ δvγ + S̃α

βγ ;μdzμ ∧ δvγ ,

where

R̃α
β;μν̄ = −δν̄(�

α
β;μ), P̃α

βγ̄ ;μ = −∂̇γ̄ (�α
β;μ), S̃α

βγ ;μ = −∂̇γ (�α
β;μ). (2.7)

Definition 2.6 ([1]) The (horizontal) holomorphic sectional curvature of a strongly
pseudoconvex complex Finsler metric G along v is given by

KG(v) = 2

G(v)2
〈�(χ, χ)χ, χ〉v,

here v ∈ T 1,0M\{0} and χ : T 1,0M → H is the horizontal lifting.

The holomorphic sectional curvature is indeed independent of the length of v, for any
ζ ∈ C

∗, we have KG(v) = KG(ζv). Hence we sometimes denote it by KG([v]),

123
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such notation can be found in [45], in which the holomorphic sectional curvature is
directly defined on PT 1,0M . Abate and Patrizio [1] proved an important theorem that
the holomorphic sectional curvature of a complex Finsler metric G is the supremum
of the Gauss curvature of the induced metric through a family of holomorphic maps.

Lemma 2.1 ([1]) Let (M, G) be a strongly pseudoconvex complex Finsler manifold,
and take p ∈ M and v ∈ M̃p. Then

KG(v) = sup{K (ϕ∗G)(0)}, (2.8)

where the supremum is taken with respect to the family of all holomorphic maps
ϕ : � → M with ϕ(0) = p and ϕ′(0) = λv for some λ ∈ C

∗, and K (ϕ∗G)(0) is the
Gauss curvature of ϕ∗G at the origin 0.

Inmore detail, Abate andPatrizio [1] gave the following formula between holomorphic
sectional curvature and the induced Gauss curvature.

Lemma 2.2 ([1]) Let (M, G) be a strongly pseudoconvex complex Finsler manifold,
and let ϕ : � → M be a holomorphic map. Set p = ϕ(0) and v = ϕ′(0), with v �= op,
then

K (ϕ∗G)(0) = KG(v) − 2

G(v)2

∥∥∥∥∥∥∥
∇

(ϕ′)H (ϕ′)H −
〈
∇

(ϕ′)H (ϕ′)H
, χ
〉
v

〈χ, χ〉v
χ

∥∥∥∥∥∥∥

2

v

. (2.9)

The supremum in (2.8) is achieved by the maps ϕ such that

∇
(ϕ′)H (ϕ′)H (ϕ′(0)

) = aχ
(
ϕ′(0)

)
, (2.10)

for some a ∈ C.

Definition 2.7 ([2, 47]) The first and second (horizonal) holomorphic bisectional cur-
vatures of a strongly pseudoconvex complex Finsler metric G are defined by ([47])

B1
G(v, X) =

〈
�(χ(X), χ(X))χ(v), χ(v)

〉
v

G(v)〈X H , X H 〉v , (2.11)

B2
G(v, X) =

〈
�(χ(v), χ(v))χ(X), χ(X)

〉
v

G(v)〈X H , X H 〉v , (2.12)

here v, X ∈ T 1,0M\{0}, and χ : T 1,0M → H is the horizontal lifting.
The (horizontal) holomorphic bisectional curvature of a strongly pseudoconvex

complex Finsler metric G is defined by ([2])

BG(v, X) = B1
G(v, X) + B2

G(v, X). (2.13)
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Here we use the curvature operator associated to the Chern-Finsler connection, and
it is the same to use the one associated to the complex Rund connection. Note that
by definition of the Hermitian structure 〈 , 〉 on H and V , for any v ∈ T 1,0

p M , the
horizontal lifting of v through χ and the vertical lifting of v through ι satisfies

〈χ(v), χ(v)〉v = 〈ι(v), ι(v)〉v ,

while we choose X to be equal to v, B1
G(v, v) is indeed 1

2 KG(v).

Definition 2.8 ([26]) The horizontal flag curvature RG
v of a strongly pseudoconvex

complex Finsler metric G at v is given by

RG
v (H , K ) : = Re

〈
�̃(χ + χ, H + H)K , χ

〉
v

= 1

2

〈
�̃(χ + χ, H + H)(K + K ), χ + χ

〉
v

(2.14)

for any H , K ∈ Hv . And for a flag (v, X), the flag curvature of a strongly pseudocon-
vex complex Finsler metric G can be defined by

K G(v, X) = RG
v (X H , X H )

〈χ(v), χ(v)〉v
〈
X H , X H

〉
v

− [Re 〈χ(v), X H
〉
v
]2 , (2.15)

where X H = χ(X) is the horizontal lifting of X .

Definition 2.9 ([26]) For any V , W ∈ X (T 1,0M), the tangent curvature of a strongly
pseudoconvex complex Finsler metric G is defined by

TV (W ) = 2 Re
[〈

∇
W H +W H W H |W , V H

〉
v

−
〈
∇

W H +W H W H , V H
〉
v

]
.

Without specification, the curvature operator we consider in the rest of the paper is
the one that associated to the Rund connection ∇ R which has been defined above. In
[26], Li and Qiu expressed the complex second variation formula with the horizontal
flag curvature term for a Kähler-Finsler metric G.

Theorem 2.1 ([26]) Let G be a Kähler-Finsler metric on M. Take a geodesic σ0 :
[a, b] → M with G(σ̇0) = 1, and a regular variation � : (−ε, ε) × [a, b] → M of
σ0, then

d2��

ds2
(0) = Re

〈
∇ R

U H +U H
U H , T H

〉
σ̇0

∣∣∣∣
b

a

+
∫ b

a

{∥∥∥∇ R
T H +T H

U H
∥∥∥
2

σ̇0
−
∣∣∣∣
∂

∂t
Re
〈
U H , T H

〉
σ̇0

∣∣∣∣
2

− RG
σ̇0

(U H , U H )

}
dt,

(2.16)

where ��(s) is the length of the curve σs(t), T = ∂�α

∂t
∂

∂zα and U = ∂�α

∂s
∂

∂zα . The

connection ∇ R here is the complex Rund connection.
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204 Page 12 of 24 J. Li et al.

Wecan define a complex gradient of a smooth function in complexmanifolds ([50]).
Let G be a strongly convex complex Finsler metric on M and we denote by G∗ the
dual metric of G, that is, for any given (1, 0)-form ω = ωαdzα ∈ (T 1,0

z M)∗,

G∗(ω) := sup
v∈M̃

|ω(v)|2
G(v)

,

then G∗(ω) = G∗β̄α(ω)ωαωβ. The Legendre transform L1 : T 1,0
z M → (T 1,0

z M)∗ is
defined by

L1(v) :=
{

Gα(v)dzβ, if v �= 0;
0, if v = 0.

This is equivalent to L1(v) = 〈·, ι(v)〉v , we can see that for any λ ∈ C, L1(λv) =
λ̄L1(v). We should note that L1 is a norm preserving diffeomorphism for non-zero
vectors.

For a real function f on M , the complex (1, 0)-gradient ∇1 f is defined by ([26])

∇1 f := L−1
1 (∂ f ).

Since Go is a real Finsler metric, there exits the Legendre transform LR : TRM →
T ∗
R

M for Go. Recall that for any V ∈ X (V), we have ([1])

〈V o|(ι(v))o〉vo = Re〈V , ι(v)〉v,

where ι is the vertical lifting. It follows that

LR(vo) = 〈·|(ι(v))o〉vo = Re〈·, ι(v)〉v = Re(L1(v)) = 1

2
[L1(v)]o. (2.17)

Hence, we get from (2.17) that the real gradient of f can be given by

∇ f := L−1
R

(d f ) = 2(∇1 f )o.

In fact, Yin and Zhang [50] have showed that ∇ f = 2L−1
1 (∂ f ) + 2L−1

1 (∂̄ f ). Hence,
we have

Go(∇ f ) = G((∇ f )o) = G(2∇1 f ) = 4G(∇1 f ).

We give a briefly introduction of two Hessian of a smooth function f . Let f be a
smooth function on a strongly pseudoconvex complex Finsler manifold (M, G), the
first Hessian of f is a map D2 f : T 1,0

z M → R defined by ([26])

D2 f (v) := d2

ds2
( f ◦ c)

∣∣∣∣
s=0

, v ∈ T 1,0
z M .

where c : (−ε, ε) → M is the geodesic with ċ(0) = v ∈ T 1,0
z M .
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Definition 2.10 ([26]) For any X , Y ∈ T 1,0
z M and a smooth function f whose complex

(1, 0)-gradient ∇1 f |z �= 0, the second Hessian is defined by

H f (X , Y ) := (X̃ + X̃)(Ỹ + Ỹ ) f − ∇∇1 f

X̃ H +X̃ H
(Ỹ H + Ỹ H ) f , (2.18)

where X̃ , Ỹ are any extensions of X and Y , respectively, and ∇∇1 f

X̃ H +X̃ H
(Ỹ H + Ỹ H ) :=

∇
X̃ H +X̃ H (Ỹ H + Ỹ H )

∣∣∣∇1 f
.

We have the following relations among D2, H and ∂∂̄ for a weakly Kähler-Finsler
metric G.

Lemma 2.3 ([26]) Let f be a smooth real-valued function on a weakly Kähler-Finsler
manifold (M, G). Then for every z ∈ M and for every X ∈ T 1,0

z M, we have

4∂∂̄ f (X , X) = D2 f (X) + D2 f (i X).

Furthermore, if G is strongly convex, we have

D2 f (X) = H f (X , X) − T∇1 f (X),

4∂∂̄ f (X , X) = H f (X , X) + H f (i X , i X).

3 Strongly Pseudoconvex Complex Finsler Manifolds Satisfying
Condition (A)

In this subsection, we will find the strongly pseudoconvex complex Finsler manifolds
satisfying condition (A). Let (M, G) be a strongly pseudoconvex complex Finsler
manifold of dimCM = n. Fixing o ∈ M , we denote by ρ(p) = d(o, p) the distance
function from o to p. The Levi form of distance function is defined by

L(ρ)(ξ, ξ̄ ) = ∂2ρ

∂zα∂zβ
ξαξβ, ξ = ξα ∂

∂zα
∈ T 1,0M, (3.1)

where ξ is a unit vector. Let σ : [a, b] → M be a regular curve, we define σ̇ : [a, b] →
M̃ by setting

σ̇ (t) = dσα

dt
(t)

∂

∂zα

∣∣∣∣
σ(t)

.

Definition 3.1 ([47]) Let σ0 : [a, b] → M be a regular curve with G (σ̇0) ≡ 1 and
�ε = {z ∈ C| |z| < ε}. A holomorphic variation of σ0 is a map � : [a, b]×�ε → M
such that

(1) σ0(t) = �(t, 0) for all t ∈ [a, b];
(2) for every ω ∈ �ε, σω(t) = �(t, ω) is a curve in M ;
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204 Page 14 of 24 J. Li et al.

(3) for all fixed t , the map �(t, ω) : �ε → M is a holomorphic map for all ω ∈ �ε.

By using the holomorphic variation, Xiao, Qiu, He, and Chen [47] proved a complex
second variation formula for a strongly pseudoconvex complex Finsler metric.

Theorem 3.1 ([47]) Let (M, G) be a strongly pseudoconvex complex Finsler manifold,
and �ε = {z ∈ C| |z| < ε}. Take a regular geodesic σ0 : [a, b] → M with G (σ̇0) ≡ 1
(select arc length as parameter) and a holomorphic variation � : [a, b] × �ε → M
of σ0. Then

∂2��

∂ω∂ω̄

∣∣∣∣
ω=0

=1

2

∫ b

a

{
−1

2

∣∣∣∣
〈
ψH, T H

〉
σ̇0

∣∣∣∣
2

+
〈
ψH, ψH〉

σ̇0

−
〈
�
(

U H , U H
)

ι(T ), ι(T )
〉
σ̇0

−
〈
τ H
M
(

U H , ψV
)

, T H
〉
σ̇0

}
dt, (3.2)

where ��(ω) is the length of the curve σω(t), and T = σ̇0(t), ψH = ∇ R
T H +T H

U H +
θ
(
U H , T H

) =
(
�α

γ ;μ
∂zμ

∂ω
vγ + ∂vα

∂ω

)∣∣∣
ω=0

δα and ψV =
(
�α

γ ;μ
∂zμ

∂ω
vγ + ∂vα

∂ω

)∣∣∣
ω=0

∂̇α.

By taking a special holomorphic variation, one can obtain an estimate of the Levi form
of ρ through this variation formula.

Theorem 3.2 ([47]) Let (M, G) be a complete strongly pseudoconvex complex Finsler
manifold with the first holomorphic bisectional curvature bounded from below
by −k2(k > 0), the horizontal part of (2, 0)-torsion bounded from above by(√

2 − 1
)

θ(θ > 0) and the mixed part of the (1, 1)-torsion bounded from above

by τ(τ > 0). Then
∂2ρ

∂zα∂zβ
ξαξβ ≤ 1

2

(
1

ρ
+ θ + k + τ

)
(3.3)

for any vector ξ ∈ T 1,0
p M with 〈ξ H , ξ H 〉∇ρ = 1.

In particular, if M is a Kähler-Finsler manifold, then the horizontal part of (2, 0)-
torsion term vanishes. So we have

Corollary 3.1 [47] Let (M, G) be a complete Kähler-Finsler manifold with the first
holomorphic bisectional curvature bounded from below by −k2(k ≥ 0), and the mixed
part of the (1, 1)-torsion bounded from above by τ(τ > 0). Then

∂2ρ

∂zα∂zβ
ξαξβ ≤ 1

2

(
1

ρ
+ k + τ

)
(3.4)

for any vector ξ ∈ T 1,0
p M with 〈ξ H , ξ H 〉∇ρ = 1.
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Definition 3.2 [37] A non-negative real-valued function u on M is said to be proper if
the sets {p : u(p) ≤ c} are compact for each real constant c. A functionw defined in a
neighborhoodU of p is called an upper supporting function for u at p ifw(p) = u(p)

and w(q) ≥ u(q) for q ∈ U .

A complex Finsler manifold is called uniform with uniformity constant C0 ([16])
if there exists a positive constant C0 such that

1

C0
G(ξ) ≤ 〈ξ H , ξ H 〉v ≤ C0G(ξ)

for any p ∈ M and v, ξ ∈ T 1,0
p M .

Nowwe consider the strongly convex complex Finsler metrics.We have the follow-
ing complete strongly convex uniform complex Finsler manifold satisfying condition
(A).

Theorem 3.3 (i.e., Theorem 1.3) Let (M, G) be a complete strongly convex uniform
complex Finsler manifold with the first holomorphic bisectional curvature bounded
from below by −k2(k > 0), the horizontal part of (2, 0)-torsion bounded from above
by θ(θ > 0) and the mixed part of the (1, 1)-torsion bounded from above by τ(τ > 0).
Then M satisfies condition (A).

Proof Since we may always divide u (and w) by a given positive constant, it suffices
to show that there is a constant C and a non-negative proper function u on M which
has a smooth upper supporting function w at each point with |∂w(ξ)|2 ≤ C and
ξαξβ ∂2w

∂zα∂zβ
≤ C .

Since (M, G) is strongly convex and complete, the generalized Hopf-Rinow theo-
rem for a real Finslermanifold ([1]) can be adapted here. Fixing o ∈ M , let the distance
function ρ(p) = d(o, p), then the closed sets {z ∈ M |ρ(z) ≤ c} are compact, hence
ρ is proper. Moreover, ρ(p) is smooth outside o and the cut points of o. Denote by 2a
the distance from o to the nearest cut point. Then Ba = {p ∈ M |ρ(p) ≤ a} is a ball
that contains no cut point of o.

Let u be a smooth non-negative function inside B2a and equals to ρ outside Ba .
For the points inside Ba , since Ba is compact, we can choose a constant C1 to satisfy
|∂u(ξ)|2 ≤ C1 and ξαξβ ∂2u

∂zα∂zβ
≤ C1 in Ba . For the points outside Ba and not the cut

points, since u is just the distance function ρ, we have

|∂u(ξ)|2 ≤ G∗(∂u)G(ξ)

≤ G(L−1
1 (∂u))

= G(∇1u)

= 1

4
Go(∇u) = 1

4
,

where we use the fact that the distance function ρ = u satisfies Go(∇ρ) = 1. On
uniform complex Finsler manifolds, 〈ξ H , ξ H 〉�ρ is uniform bounded from above by
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C0 for any unit vector ξ ∈ T 1,0M . Hence, by the assumption and Theorem 3.2, we
have

ξαξβ
∂2ρ

∂zα∂zβ
≤ 1

2

(
1

ρ
+ θ1 + k + τ

)
〈ξ H , ξ H 〉∇ρ ≤ C0

2

(
1

ρ
+ θ1 + k + τ

)

for any non-cut points outside Ba and any unit vector ξ ∈ T 1,0
p M , where θ1 =

(
√
2 + 1)θ . Now we set

C = max

{
1

4
, C1,

C0

2

(
1

a
+ θ1 + k + τ

)}
,

then |∂u(ξ)|2 ≤ C and ξαξβ ∂2u
∂zα∂zβ

≤ C at p for all ordinary points. In this case, we

just let w = u.
If p is a cut point of o, take o′ ∈ Ba on the minimal geodesic joining o and p. Let

ρ′(p) = d(o′, p), then ρ′ is smooth in a neighborhood of p. And setw = d(o, o′)+ρ′,
then w is smooth in a neighborhood of p, u(p) = w(p), u(q) ≤ w(q), |∂w(ξ)|2 ≤
1;moreover, at p, we have

ξαξβ
∂2w

∂zα∂zβ
≤ C0

2

(
1

a
+ θ1 + k + τ

)
≤ C

for any unit vector ξ ∈ T 1,0
p M . The function w is the one we desired. ��

Now we consider the case that M is a Kähler-Finsler manifold, and we use the
horizontal flag curvature instead of the holomorphic bisectional curvature. Let (M, G)

be a complete strongly convex Kähler-Finsler manifold. Fixing o ∈ M , let p ∈ M be
a non-cutting point of o, and take a vector X ∈ T 1,0

p M , then there exists a geodesic
γ (s) : (−ε, ε) → M such that γ (0) = p and γ̇ (0) = X . Taking a shortest geodesic
σ0(t) connecting o and p, we consider two variations of this geodesic.

Denote by �̃ : (−ε, ε)×[0, r ] → M the geodesic variation of σ0(t)whose starting
points are fixed and the ending points lie on the geodesic γ (s). More specifically, for
all s ∈ (−ε, ε), the curve σ̃s(t) = �̃(s, t) is a shortest geodesic joining o = σ̃s(0)
and σ̃s(r) = γ (s). We denote ��̃(s) by the length of σ̃s(t), and T̃ (t) = ∇1ρ(t),

Ũ (t) = ∂�̃α

∂s
∂

∂zα

∣∣∣
s=0

. If we take X ∈ T 1,0
p M with 〈X , T̃ (r)〉T̃ (r) = 0, then byTheorem

2.1 and the definition of the Hessian H , we have ([26])

Hρ(X , X) =
∫ r

0

{∥∥∥∇ R
T̃ H +T̃ H

Ũ H
∥∥∥
2

σ̇0
− RG

σ̇0
(Ũ H , Ũ H )

}
dt . (3.5)

We choose a vector field Y (t) along σ0(t) satisfying Y (0) = 0 and Y (t) = X , and
associate it with another regular variation � : (−ε, ε) × [0, r ] → M such that

(i) σ0(t) = �(0, t) for all t ∈ [0, r ];
(ii) σs(0) = �(s, 0) = o, ∀s ∈ (−ε, ε);
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(iii) for all s ∈ (−ε, ε), σs(t) is a regular curve on M ;
(iv) �∗( ∂

∂s )|s=0 = Y (t);
(v) for t = r , σs(r) = γ (s).

The associated regular variation can always be taken. Since σ0(t) is a regular curve,

which implies dσ0
dt (t) �= 0 for all t ∈ [0, r ], i.e., ∂σs

∂t

∣∣∣
s=0

�= 0, hence we can choose ε

sufficiently small so that ∂σs
∂t �= 0 for all s ∈ (−ε, ε). By Theorem 2.1, we have

d2��

ds2
(0) = Re

〈
∇ R

Y H +Y H
Y H , T H

〉
σ̇0

∣∣∣∣
r

0

+
∫ r

0

{∥∥∥∇ R
T H +T H

Y H
∥∥∥
2

σ̇0
−
∣∣∣∣
∂

∂t
Re
〈
Y H , T H

〉
σ̇0

∣∣∣∣
2

− RG
σ̇0

(Y H , Y H )

}
dt

≤ Re
〈
∇ R

Y H +Y H
Y H , T H

〉
σ̇0

∣∣∣∣
r

0
+
∫ r

0

{∥∥∥∇ R
T H +T H

Y H
∥∥∥
2

σ̇0
− RG

σ̇0
(Y H , Y H )

}
dt .

(3.6)

Since σ̃s(t) = �̃(s, t) is the shortest geodesic for all s ∈ (−ε, ε), we have

��̃(s) − ��(s) ≤ 0, ��̃(0) − ��(0) = 0.

By the maximum principle, at s = 0,we have

d2��̃

ds2
(0) ≤ d2��

ds2
(0)

≤ Re
〈
∇ R

Y H +Y H
Y H , T H

〉
σ̇0

∣∣∣∣
r

0
+
∫ r

0

{∥∥∥∇ R
T H +T H

Y H
∥∥∥
2

σ̇0
− RG

σ̇0
(Y H , Y H )

}
dt .

By Lemma 2.3, we conclude that

Hρ(X , X) = d2��̃

ds2
(0) − Re

〈
∇ R

Y H +Y H
Y H , T H

〉
σ̇0

∣∣∣∣
r

0

≤
∫ r

0

{∥∥∥∇ R
T H +T H

Y H
∥∥∥
2

σ̇0
− RG

σ̇0
(Y H , Y H )

}
dt . (3.7)

We can obtain better estimate of Hρ(X , X). Choose an adapt vector field f (t)Y (t)
instead of Y (t) in (3.7), where f : [0, r ] → R is a differentiable function satisfying
f (0) = 0, f (r) = 1, and assume that Y (t) is parallel along σ0(t), then we have

Hρ(X , X) ≤
∫ r

0

{
ḟ 2 − f 2RG

σ̇0
(Y H , Y H )

}
dt .
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Set f (t) = ( t
r

)α ,(α > 1) and assume that the horizontal flag curvature is bounded
from below by a negative constant −k2, then we get

Hρ(X , X) ≤
∫ r

0

α2

r2α
t2α−2 + k2

(
t

r

)2α

dt

= 1

r
+ (α − 1)2

(2α − 1) r
+ k2r

2α + 1
.

for any vector X ∈ T 1,0
p M with 〈X H , X H 〉T (r) = 1. We choose an α that satisfies

(α − 1)2

(2α − 1) r
= k2r

2α + 1
,

then

Hρ(X , X) ≤ 1

r
+ 2

√
(α − 1)2

(2α − 1) r
· k2r

2α + 1
≤ 1

r
+ k. (3.8)

Take ρ = r , and use the vector ξ instead of X , then we obtain

Theorem 3.4 Let (M, G) be a complete strongly convex Kähler-Finsler manifold with
the horizontal flag curvature bounded from below by −k2(k > 0), then

∂2ρ

∂zα∂zβ
ξαξβ ≤ 1

2

(
1

ρ
+ k

)
(3.9)

for any vector ξ ∈ T 1,0
p M with 〈ξ H , ξ H 〉∇ρ = 1.

Proof By Lemma 2.3, the Levi form of ρ at point z satisfies

∂2ρ

∂zα∂zβ
ξαξβ = 1

4
[Hρ(ξ, ξ) + Hρ(iξ, iξ)]

≤ 1

2

(
1

ρ
+ k

)
.

��
Just like Theorem 3.3, from Theorem 3.4, we have

Theorem 3.5 (i.e., Theorem 1.4) Let (M, G) be a complete strongly convex uniform
Kähler-Finsler manifold with the horizontal flag curvature bounded from below by
−k2(k > 0), then M satisfies condition (A).

Remark 3.1 We do not know if there is a strongly pseudoconvex complex Finsler
manifold satisfying condition (A) which is not strongly convex.
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4 Proof of the Schwarz Lemma

Theorem 4.1 (i.e., Theorem 1.5) Let (M, G) be a strongly pseudoconvex complex
Finsler manifold with the holomorphic sectional curvature bounded from below by a
constant K1 ≤ 0, and let (N , H) be another strongly pseudoconvex complex Finsler
manifold with the holomorphic sectional curvature bounded from above by a constant
K2 < 0. Suppose that M satisfies condition (A), then for any holomorphic map
f : M → N, we have

f ∗ H ≤ K1

K2
G.

Proof Set μ = f ∗ H
G , it is a non-negative function on T 1,0M . By the homogeneity of

G and H , μ(p, ζv) = μ(p, v) for ζ ∈ C
∗, so it is indeed a function on PT 1,0M , we

can denote it by μ(p, [v]). By condition (A), there is a proper function u on M , set
Dε := {p ∈ M |u(p) < 1

ε

}
, then Dε is compact. We consider PT 1,0M by restricting

the base point p to Dε, i.e.,

PT 1,0M
∣∣∣

Dε

:=
⋃

p∈Dε

π̃−1(p),

where π̃ : PT 1,0M → M is the natural projection map. Since Dε is compact, the set
PT 1,0M

∣∣
Dε

is also compact. Lifting the function u to PT 1,0M by denoting

ũ(p, [v]) := u(π̃(p, [v])) = u(p).

Consider a special function μ(p, [v]) 1
2 (1 − εũ(p, [v])) on PT 1,0M

∣∣
Dε
. It attains its

local maximum at some point (p0, [v0]) ∈ PT M |Dε
, the representative element v0

here satisfies G(v0) > 0. It is necessary to note that p0 is not the boundary point of

Dε. Since μ(p, [v]) 1
2 (1 − εũ(p, [v])) goes to zero as p → ∂ Dε, (p0, [v0]) must be

the interior point of PT 1,0M
∣∣

Dε
. Furthermore, if the maximum value equals to zero,

then μ(p0, [v0]) must be zero, which means f ∗H(p0, ζv0) = 0 for all ζ ∈ C
∗. This

makes a contradiction, thus we can set μ(p0, [v0]) 1
2 (1 − εũ(p0, [v0])) > 0.

By condition (A), there exists an upper supporting function w of u at p0 satisfying
u(p) ≤ w(p) and u(p0) = w(p0), with |∂w(ξ)|2 ≤ 1 and ξαξβ ∂2w

∂zα∂zβ
≤ 1 for any

unit vector ξ . Lifting w to PT 1,0M
∣∣

Dε
just like u, denote by w̃, then μ(p, [v]) 1

2 (1−
εw̃(p, [v])) is smooth in PT 1,0M

∣∣
Dε

and satisfies

μ(p, [v]) 1
2 (1 − εw̃(p, [v])) ≤ μ(p, [v]) 1

2 (1 − εũ(p, [v]))
≤ μ(p0, [v0]) 1

2 (1 − εũ(p0, [v0]))
= μ(p0, [v0]) 1

2 (1 − εw̃(p0, [v0])). (4.1)
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Hence μ(p, [v]) 1
2 (1 − εw̃(p, [v])) attains its maximum at (p0, [v0]).

Now we choose an arbitrary holomorphic function ϕ : �a → M that satisfies
ϕ(0) = p0, ϕ′(0) = v0, and �a is taken sufficiently small such that ϕ(�a) is con-
tained in the domain of w, then ζ = 0 is a local maximum point of the function

μ
(
ϕ(ζ ),

[
ϕ′(ζ )

]) 1
2 (1 − εw̃(ϕ(ζ ), [ϕ′(ζ )])), here we should note that w̃ is indepen-

dent of the direction [ϕ′(ζ )], i.e., w(ϕ(ζ )) = w̃(ϕ(ζ ), [ϕ′(ζ )]). Notice that the pull
back of a complex Finsler metric into a Riemannian surface (we use the disk �a ⊆ C

here) is a Hermitian metric, we can set

λ2(ζ )dζd ζ̄ := ϕ∗G(ζ ), (4.2)

σ 2(ζ )dζd ζ̄ := ( f ◦ ϕ)∗ H(ζ ), (4.3)

where

λ2(ζ ) = G
(
ϕ(ζ ), ϕ′(ζ )

)
,

σ 2(ζ ) = H
(

f ◦ ϕ(ζ ), ( f ◦ ϕ)′(ζ )
)
.

Hence
σ 2(ζ )

λ2(ζ )
= H

(
f ◦ ϕ(ζ ), ( f ◦ ϕ)′(ζ )

)

G (ϕ(ζ ), ϕ′(ζ ))
= μ

(
ϕ(ζ ),

[
ϕ′(ζ )

])
, (4.4)

in particular,
σ 2(0)

λ2(0)
= μ (p0, [v0]) . (4.5)

We apply the maximum principle to the function μ
(
ϕ(ζ ),

[
ϕ′(ζ )

]) 1
2 (1 −

εw̃(ϕ(ζ ), [ϕ′(ζ )])) at the maximum point ζ = 0, we have

0 ≥ i ∂∂̄ log
(
μ(ϕ(ζ ),

[
ϕ′(ζ )

]) 1
2 (1 − εw̃(ϕ(ζ ), [ϕ′(ζ )])))

∣∣∣∣
ζ=0

,

, i.e.,

0 ≥ i ∂∂̄ log
(
μ(ϕ(ζ ),

[
ϕ′(ζ )

])
(1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))2)

∣∣∣
ζ=0

,

for all holomorphic maps ϕ : �a → M with ϕ(0) = p0, ϕ′(0) = v0. Now taking the
supremum for these family of ϕ, by Lemma 2.1, we can continue our progress.

0 ≥ 2

G(v0)
sup
ϕ

{
∂2

∂ζ∂ζ̄
log
[
μ
(
ϕ(ζ ), [ϕ′(ζ )]) (1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))2

]∣∣∣
ζ=0

}

= 2

G(v0)
sup
ϕ

{
∂2

∂ζ∂ζ̄
log

σ 2(ζ )

λ2(ζ )

∣∣∣∣
ζ=0

+ 2
∂2

∂ζ∂ζ̄
log
(
1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))∣∣

ζ=0

}

= 2

G(v0)
sup
ϕ

{
− ∂2

∂ζ∂ζ̄
log λ2(ζ )

∣∣∣
ζ=0

+ ∂2

∂ζ∂ζ̄
log σ 2(ζ )

∣∣∣
ζ=0
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+2
∂2

∂ζ∂ζ̄
log
(
1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))∣∣

ζ=0

}

= sup
ϕ

{
− 2

λ2(0)

∂2

∂ζ∂ζ̄
log λ2(ζ )

∣∣∣
ζ=0

+ σ 2(0)

λ2(0)
· 2

σ 2(0)

∂2

∂ζ∂ζ̄
log σ 2(ζ )

∣∣∣
ζ=0

+ 4

λ2(0)

∂2

∂ζ∂ζ̄
log
(
1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))∣∣

ζ=0

}

≥ sup
ϕ

{
K
(
ϕ∗G

)
(0)
}− μ(p0, [v0]) sup

ϕ

{
K
(
( f ◦ ϕ)∗ H

)
(0)
}

− sup
ϕ

⎧
⎨
⎩

4

λ2(0)

(
ε[w̃(ϕ(ζ ), [ϕ′(ζ )])]ζ ζ̄

1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]) + ε2
∣∣[w̃(ϕ(ζ ), [ϕ′(ζ )])]ζ

∣∣2
(1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))2

)∣∣∣∣∣
ζ=0

⎫
⎬
⎭

= KG(p0, v0) − μ(p0, [v0])K f ∗ H (p0, v0)

− sup
ϕ

⎧
⎨
⎩

4

λ2(0)

(
ε[w̃(ϕ(ζ ), [ϕ′(ζ )])]ζ ζ̄

1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]) + ε2
∣∣[w̃(ϕ(ζ ), [ϕ′(ζ )])]ζ

∣∣2
(1 − εw̃(ϕ(ζ ), [ϕ′(ζ )]))2

)∣∣∣∣∣
ζ=0

⎫
⎬
⎭ .

(4.6)

By the assumption and Lemma 2.1, it is clear that

K f ∗ H (p0, v0) ≤ K H ( f (p0), f∗(v0)) ≤ K2

and

KG(p0, v0) ≥ K1.

The rest just needs to deal with the last term in (4.6). Since w̃(ϕ(ζ ), [ϕ′(ζ )]) =
w(ϕ(ζ )), then by Remark 1.2, we have

∣∣∣∣
∂[w̃(ϕ(ζ ), [ϕ′(ζ )])]

∂ζ
(0)

∣∣∣∣
2

= ∣∣∂w
(
ϕ′(0)

)∣∣2 ≤ G(ϕ′(0)) = λ2(0) (4.7)

and

∂2[w̃(ϕ(ζ ), [ϕ′(ζ )])]
∂ζ∂ζ

(0) = ∂2w

∂zα∂zβ
(ϕ(0))

∂ϕα

∂ζ
(0)

∂ϕβ

∂ζ
(0) ≤ G(ϕ′(0)) = λ2(0).

(4.8)
Combining (4.6) ∼ (4.8), we get

0 ≥ K1 − μ(p0, [v0])K2 − 4

(
ε

1 − εw̃(p0, [v0]) + ε2

(1 − εw̃(p0, [v0]))2
)

= K1 − μ(p0, [v0])K2 − 4

(
ε − ε2w̃(p0, [v0]) + ε2

(1 − εw̃(p0, [v0]))2
)
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≥ K1 − μ(p0, [v0])K2 − 8ε

(1 − εw̃(p0, [v0]))2
.

Rearranging terms, we have

μ(p0, [v0])(1 − εw̃(p0, [v0]))2 ≤ K1

K2
(1 − εw̃(p0, [v0]))2 + 8ε

−K2

≤ K1

K2
+ 8ε

−K2
.

Note that (p0, [v0]) is the maximum point of the function μ
1
2 (1 − εw̃), thus for any

other z ∈ Dε and v ∈ T 1,0
z M ,

μ(z, [v])(1 − εw̃(z, [v]))2 ≤ μ(p0, [v0])(1 − εw̃(p0, [v0]))2

≤ K1

K2
+ 8ε

−K2

always holds. By the construction of the proper function u and the definition of Dε,
for any z ∈ M , when ε is small enough, we have z ∈ Dε. So letting ε → 0, we obtain

μ(z, [v]) ≤ K1

K2
, (4.9)

for any z ∈ M and v ∈ T 1,0
z M . This implies

f ∗ H ≤ K1

K2
G.

The main theorem is proved. ��
Acknowledgements The authors are very grateful to the referees for providing many valuable suggestions.
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