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Abstract
In this article, we study the Schrödinger–Poisson–Slater type equation with the critical
growth and zero mass:

{
−�u + φu = μ|u|p−2u + u5, x ∈ R

3,

−�φ = u2, x ∈ R
3,

where 3 < p < 6 and μ > 0. By combining a new perturbation method and the
mountain pass theorem, Liu et al. [J. Diff. Eq., 266 (2019), 5912–5941] prove that the
above equation has at least one positive ground state solution for p ∈ (4, 6) andμ > 0
or p ∈ (3, 4] if μ is sufficiently large. By using a much simpler method than the ones
used in the above mentioned paper, together with subtle estimates and analyses, we
obtain better results on the existence for a ground state solution of Nehari-Pohozaev
type.
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1 Introduction

In this paper, we are concerned with the existence of ground state solutions for the
Schrödinger–Poisson–Slater problem with critical growth and zero mass

{
−�u + φu = μ|u|p−2u + u5, x ∈ R

3,

−�φ = u2, x ∈ R
3,

(1.1)

where μ > 0 and 3 < p < 6.
The interest on this system stems from the Schrödinger-Poisson-Slater problem

{
−�u + ωu + φu = μ|u|p−2u, x ∈ R

3,

−�φ = u2, x ∈ R
3,

(1.2)

where ω > 0, which is the Slater approximation of the exchange term in the
Hartree-Fock model, see [22]. The local term |u|p−2u was introduced by Slater, with
p = 8

3 and μ is the so-called Slater constant (up to renormalization), see [24]. Of
course, other exponents have been employed in various approximations. In recent
years, problem (1.2) has been the object of intensive research, a lot of attention has
been focused on the study of the existence of solutions, sign-changing solutions,
ground states, radial and semiclassical states, see [2–9, 11–13, 17, 24, 26, 28–30, 32,
34–37] and the references therein. From a mathematical point of view, this model
presents an interesting competition between local and nonlocal nonlinearities.This
interaction yields to some non expected situations, as has been shown in the literature.

For problem (1.2), the parameter ω corresponds to the phase of the standing wave
for the time-dependent equation. In the caseω = 0, i.e. the Schrödinger-Poisson-Slater
problem with zero mass

{
−�u + φu = μ|u|p−2u, x ∈ R

3,

−�φ = u2, x ∈ R
3,

(1.3)

one could only search the static solutions (not periodic ones). The static case has
been motivated and studied in [14, 27] when p < 3 and p ≥ 3, respectively. The
absence of a phase term ωu makes the usual Sobolev space H1(R3) not to be a good
framework for the problem (1.3). In [27], the following working space and the norm
are introduced:

E :=
{
u ∈ D1,2(R3) :

∫
R3

∫
R3

u2(x)u2(y)

|x − y| dxdy < ∞
}

(1.4)

and

‖u‖E :=
⎡
⎣∫

R3
|∇u|2dx +

(∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy
) 1

2

⎤
⎦

1
2

.
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The double integral expression is the so-called Coulomb energy of the wave. In
that paper, Ruiz proved that (E, ‖ · ‖E ) is a uniformly convex Banach space, and
E ↪→ Ls(R3) for all s ∈ [3, 6]. Moreover, the author gave also the equivalence
characterizations of the convergences in the space E .

Based on the above information, Ianni and Ruiz [14] proved that (1.3) has a positive
solution with minimal energy among all nontrivial solutions provided 3 < p < 6.
In the arguments, they used a technique that dates back to Struwe and is usually
named “monotonicity trick" (see [15, 16]), well-known arguments of concentration-
compactness of Lions ([33]) and “Pohozaev identity". Lei and Lei [20] used variational
methods obtained existence of ground state solution of the Nehari–Pohozaev type. By
the new variational approach, there is a series of analytical results on the Schrödinger-
Poisson systems in the literature (see [16, 23] and the references therein).

Further, Liu, Zhang and Huang [24] studied the existence of ground state solutions
for (1.1) by combining a new perturbation method and the mountain pass theorem, the
authors obtained the existence of positive ground state solutions. To be specific, they
proved that (1.1) has at least one positive ground state solution for p ∈ (4, 6) andμ > 0
or p ∈ (3, 4] if μ is sufficiently large. Via a truncation technique and Krasnoselskii
genus theory, Yang and Liu [34] obtained infinitely many solutions for (1.1) provided
μ ∈ (0, μ∗) with some μ∗ > 0. Zheng, Lei and Liao [35] discussed the existence of
positive ground-state solutions and the multiplicity of positive solutions for a more
general Schrödinger-Poisson-Slater-type equation with critical growth. Recently, Lei,
Lei and Suo [21] obtained a ground state solution for (1.1) with the Coulomb-Sobolev
critical growth by employing compactness arguments.

In this paper, inspired by [14, 24, 27, 30], we obtain ground state solutions of (1.1)
under weaker assumptions on μ by using a much simpler method than the ones used
in [24]. In particular, we introduce some new test functions, which, together with
subtle estimates and analyses, to obtain a good energy estimate of the mountain pass
level such that the compactness of (PS) sequences at the energy level still holds, see
Lemmas 3.7 and 3.8.

Since E ↪→ Ls(R3) for all s ∈ [3, 6], so, we have that the associated energy
functional to (1.1)

�(u) = 1

2

∫
R3

|∇u|2dx + 1

4

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy

−
∫
R3

(
μ

p
|u|p + 1

6
|u|6

)
dx (1.5)

is well-defined and C1. Our main result is the following:

Theorem 1.1 Assume that one of the following conditions holds:

(i) p ∈ (4, 6) and μ > 0;

(ii) p = 4 and μ > 7
√
3

π
;

(iii) p ∈ (3, 4) and μ >
3[6π2(p−3)]2(p−3)/3 p4

16(2p−3)(2p−3)/3S(5p−12)/6

[
839803S 3

2

468750 3√2π3

√
2

5 3√2π

] 6−p
9

.
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Then Problem (1.1) has a solution ū ∈ E such that �(ū) = infM � > 0, where

M := {u ∈ E \ {0} : J (u) = 0} (1.6)

and

J (u) = 3

2
‖∇u‖22 + 3

4

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy − (2p − 3)μ

p
‖u‖p

p − 3

2
‖u‖66.

(1.7)

The set M was introduced by Ruiz [26], is usually named “Nehari-Pohozaev”
manifold.

Throughout this paper, we let ut (x) := u(t x) for t > 0, and denote the norm of
Ls(R3) by ‖u‖s = (∫

R3 |u|sdx)1/s for s ≥ 2, Br (x) = {y ∈ R
3 : |y − x | < r}, and

positive constants possibly different in different places, by C1,C2, · · · .

2 Variational Framework and Preliminaries

In this section we establish some notations that will be used throughout the paper. Let
E be defined by (1.4) and study some basic properties of it.

Set

N (u) :=
∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy

and

‖u‖E =
[
‖∇u‖22 + √

N (u)
]1/2

.

Lemma 2.1 [27] ‖ · ‖E is a norm, and (E, ‖ · ‖E ) is a uniformly convex Banach space.
Moreover, C∞

0 (R3) is dense in E.

Lemma 2.2 [31] Assume that a, b > 0. Then there holds

a‖∇u‖22 + bN (u) ≥ 2
√
ab‖u‖33, ∀ u ∈ E . (2.1)

Let E0 denote the Banach space equipped with the norm defined by

‖u‖0 =
(
‖∇u‖22 + ‖u‖23

)1/2
.

Then Lemma 2.2 shows that E ↪→ E0.
Let us define

φu(x) := 1

|x | ∗ u2 =
∫
R3

u2(y)

4π |x − y|dy, ∀ x ∈ R
3, (2.2)
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then, u ∈ E if and only if both u, φu ∈ D1,2(R3). In such a case, −�φ = u2 in a
weak sense, and ∫

R3
∇φu · ∇vdx =

∫
R3

u2vdx, ∀ v ∈ E, (2.3)

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy =
∫
R3

φu(x)u
2dx . (2.4)

Moreover, φu(x) > 0 when u �= 0. By using Hardy-Littlewood-Sobolev inequality
(see [18] or [19, page 98]), we have the following inequality:

∫
R3

∫
R3

|u(x)v(y)|
|x − y| dxdy ≤ 8 3

√
2

3 3
√

π
‖u‖6/5‖v‖6/5, u, v ∈ L6/5(R3). (2.5)

Lemma 2.3 [27] Suppose that {un} ⊂ E. Then

(i) un → ū in E if and only if un → ū and φun → φū in D1,2(R3);
(ii) un⇀ū in E if and only if un⇀ū inD1,2(R3) and sup N (un) < +∞. In such case,

φun⇀φū in D1,2(R3).

As in [14, 27], we define

T : E4 → R, T (u, v, w, z) :=
∫
R3

∫
R3

u(x)v(x)w(y)z(y)

4π |x − y| dxdy (2.6)

and

D : E2 → R, D(u, v) :=
∫
R3

∫
R3

u(x)v(y)

4π |x − y|dxdy. (2.7)

Lemma 2.4 [14] Suppose that {un}, {vn}, {wn} ⊂ E, z ∈ E. If un⇀ū, vn⇀v̄,wn⇀w̄

in E, then

T (un, vn, wn, z) → T (ū, v̄, w̄, z).

In view of Lemmas 2.1-2.4, (F1) implies that � defined by (1.5) is a well-defined
of classes C1 functional in E , and that

〈�′(u), v〉 =
∫
R3

∇u · ∇vdx +
∫
R3

φu(x)uvdx

−
∫
R3

(
|u|p−2 + u4

)
uvdx, u, v ∈ E . (2.8)

Therefore, the solutions of (1.5) are then the critical points of the reduced functional
(1.5).

In view of the Gagliardo-Nirenberg inequality [1, 25] and Sobolev inequality [33],
one has
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‖u‖ss ≤ Ks
GN‖u‖6−s

3 ‖∇u‖2s−6
2 , ∀ u ∈ D1,3(R3), s ∈ (3, 6) (2.9)

and

S‖u‖26 ≤ ‖∇u‖22, ∀ u ∈ D1,3(R3). (2.10)

where KGN > 0 is a constant and S is the best embedding constant.
We also state here, for convenience of the reader, an adaptation to the space E of a

result due to P.-L. Lions, see [22, Lemma I.1]:

Lemma 2.5 If un⇀ū in E0, and

lim
n→∞ sup

y∈RN

∫
B1(y)

|un|3dx = 0, (2.11)

then

‖un‖s → 0, ∀ s ∈ (3, 6). (2.12)

3 Ground State Solutions

Set

g(t) := 2(p − 3) − (2p − 3)t3 + 3t2p−3

3p
, t > 0. (3.1)

Then we have the following lemma by a simple computation.

Lemma 3.1 Assume that p ∈ (3, 6). Then g(t) > g(1) = 0 for all t ∈ (0, 1) ∪
(1,+∞).

Lemma 3.2 Assume that p ∈ (3, 6) and μ > 0. Then

�(u) ≥ �(t2ut ) + 1 − t3

3
J (u)

+ (1 − t3)2(2 + t3)

6
‖u‖66, ∀ u ∈ E, t ≥ 0. (3.2)

Proof Note that

�(t2ut ) = t3

2

∫
R3

|∇u|2dx + t3

4

∫
R3

φu(x)u
2dx

−
∫
R3

[
μt2p−3

p
|u|p + t9

6
|u|6

]
dx . (3.3)
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Thus, by (1.5), (1.7), (3.1) and (3.3), one has

�(u) − �(t2ut ) = 1 − t3

2

∫
R3

|∇u|2dx + 1 − t3

4

∫
R3

φu(x)u
2dx

+
∫
R3

[
μ(t2p−3 − 1)

p
|u|p + t9 − 1)

6
|u|6

]
dx

= 1 − t3

3
J (u) +

∫
R3

[
μg(t)|u|p + (1 − t3)2(2 + t3)

6
|u|6

]
dx

= 1 − t3

3
J (u) + μg(t)‖u‖p

p + (1 − t3)2(2 + t3)

6
‖u‖66.

This shows that (3.2) holds. ��
From Lemma 3.2, we have the following corollary immediately.

Corollary 3.3 Assume that p ∈ (3, 6) and μ > 0. Then for u ∈ M,

�(u) = max
t≥0

�(t2ut ). (3.4)

Lemma 3.4 Assume that p ∈ (3, 6) and μ > 0. Then for any u ∈ E \ {0}, there exists
a unique t(u) > 0 such that t(u)2ut(u) ∈ M.

Proof Let u ∈ E \ {0} be fixed and define a function ζ(t) := �(t2ut ) on [0,∞).
Clearly, by (3.3), we have

ζ ′(t)=0 ⇔ 3t2

2
‖∇u‖22+

3t2

4

∫
R3

φu(x)u
2dx− (2p−3)μt2p−2

p
‖u‖p

p−3t8

2
‖u‖66=0

⇔ J (t2ut )=0 ⇔ t2ut ∈ M.

It is easy to verify that ζ(0) = 0, ζ(t) > 0 for t > 0 small and ζ(t) < 0 for t
large. Therefore maxt∈[0,∞) ζ(t) is achieved at a t0 = t(u) > 0 so that ζ ′(t0) = 0 and
t20ut0 ∈ M.

Next we claim that t(u) is unique for any u ∈ E \ {0}. In fact, for any given
u ∈ E\{0}, let t1, t2 > 0 such that ζ ′(t1) = ζ ′(t2) = 0. Then J (t21ut1) = J (t22ut2) = 0.
Jointly with (3.2), we have

�(t21ut1) ≥ �(t22ut2) + t31 − t32
3t31

J (t21ut1) + (t31 − t32 )2(2t31 + t32 )

6t91
‖u‖66

= �(t22ut2) + (t31 − t32 )2(2t31 + t32 )

6t91
‖u‖66 (3.5)

and

�(t22ut2) ≥ �(t21ut1) + t32 − t31
3t32

J (t22ut2) + (t32 − t31 )2(2t32 + t31 )

6t92
‖u‖66
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= �(t21ut1) + (t32 − t31 )2(2t32 + t31 )

6t92
‖u‖66. (3.6)

(3.5) and (3.6) imply t1 = t2. Therefore, t(u) > 0 is unique for any u ∈ E \ {0}. ��
Both Corollary 3.3 and Lemma 3.4 imply the following lemma.

Lemma 3.5 Assume that p ∈ (3, 6) and μ > 0. Then

inf
u∈M

�(u) := m0 = inf
u∈E\{0}max

t≥0
�(t2ut ).

Lemma 3.6 Assume that p ∈ (3, 6) and μ > 0. Then

(i) there exists ρ0 > 0 such that ‖∇u‖22 ≥ ρ0, ∀ u ∈ M;
(ii) m0 = infu∈M �(u) > 0.

Proof Since J (u) = 0, ∀u ∈ M, by (1.7), (2.1), (2.9), (2.10) and theYoung inequality,
it has

3

4
‖∇u‖22 + 3

2
‖u‖33 ≤ 3

2

∫
R3

|∇u|2dx + 3

4

∫
R3

φu(x)u
2dx

= (2p − 3)μ

p
‖u‖p

p + 3

2
‖u‖66

≤ 3

2
‖u‖33 + C1‖u‖66 (3.7)

≤ 3

2
‖u‖33 + C1

S3 ‖∇u‖62, (3.8)

where C1 is a positive constant. This implies

‖∇u‖22 ≥ ρ0 :=
√
3S 3

2

2
√
C1

, ∀ u ∈ M. (3.9)

From (1.5), (1.7), (3.7) and (3.9), we have

�(u) = �(u) − 1

3
J (u)

= 2(p − 3)μ

3p
‖u‖p

p + 1

3
‖u‖66

≥ 3

4C1
‖∇u‖22

≥ 3
√
3S 3

2

8C1
√
C1

, ∀ u ∈ M.

This shows that m0 = infu∈M �(u) > 0. ��
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Now as in [10], we define functions Un(x) := �n(|x |), where

�n(r) = 4
√
3

⎧⎪⎪⎨
⎪⎪⎩

√
n

1+n2r2
, 0 ≤ r < 1;√

n
1+n2

(2 − r), 1 ≤ r < 2;
0, r ≥ 2.

(3.10)

Computing directly, we have

‖∇Un‖22 =
∫
R3

|∇Un |2dx = 4π
∫ +∞
0

r2|�′
n(r)|2dr

= 4
√
3π

[∫ 1

0

n5r4(
1 + n2r2

)3 dr + n

1 + n2

∫ 2

1
r2dr

]

= 4
√
3π

[∫ n

0

s4(
1 + s2

)3 ds + 7n

3(1 + n2)

]

= S 3
2 + 4

√
3π

[
−
∫ +∞
n

s4(
1 + s2

)3 ds + 7n

3(1 + n2)

]
, (3.11)

‖Un‖66 =
∫
R3

|Un |6dx = 4π
∫ +∞
0

r2|�n(r)|6dr

= 12
√
3π

[∫ 1

0

n3r2(
1 + n2r2

)3 dr +
(

n

1 + n2

)3 ∫ 2

1
r2(2 − r)6dr

]

= 12
√
3π

[∫ n

0

s2(
1 + s2

)3 ds +
(

n

1 + n2

)3 ∫ 1

0
s6(2 − s)2ds

]

= S 3
2 + 12

√
3π

[
−
∫ +∞
n

s2(
1 + s2

)3 ds + 23

126

(
n

1 + n2

)3
]

, (3.12)

‖Un‖qq =
∫
R3

|Un |qdx = 4π
∫ +∞
0

r2|�n(r)|qdr

= 4( 4√3)qπ

[∫ 1

0

nq/2r2(
1 + n2r2

)q/2 dr +
(

n

1 + n2

)q/2 ∫ 2

1
r2(2 − r)qdr

]

= 4( 4√3)qπ

[
1

n(6−q)/2

∫ n

0

s2

(1 + s2)q/2 ds +
(

n

1 + n2

)q/2 ∫ 1

0
sq (2 − s)2ds

]

= 4( 4√3)qπ

[
1

n(6−q)/2

∫ n

0

s2ds

(1 + s2)q/2 + q2 + 7q + 14

(q + 1)(q + 2)(q + 3)

(
n

1 + n2

) q
2
]
(3.13)

and

‖Un‖12/512/5 = 4( 4
√
3)12/5π

[
1

n9/5

∫ n

0

s2

(1 + s2)6/5
ds + 2285

5049

(
n

1 + n2

)6/5
]

.

(3.14)

Both (2.5), (3.11) and (3.14) imply that Un ∈ E for all n ∈ N.
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Lemma 3.7 Assume that condition (i) or (ii) in Theorem 1.1 holds. Then there exists
a positive integer n̂ such that

m0 ≤ sup
t>0

�
(
t2(Un̂)t

)
<

1

3
S 3

2 . (3.15)

Proof By (2.5), (3.3), (3.11), (3.12), (3.13) and (3.14), we have

�
(
(t2(Un)t

)
= t3

2
‖∇Un‖22 + t3

4
N (Un) − μt2p−3

p
‖Un‖p

p − t9

6
‖Un‖66

<
t3

2

[
S 3

2 + 28
√
3πn

3(1 + n2)

]

+4 3
√
4π t3

[
1

n9/5

∫ n

0

s2

(1 + s2)6/5
ds + 2285

5049

(
n

1 + n2

) 6
5
] 5

3

−4( 4
√
3)pπμt2p−3

pn(6−p)/2

∫ n

0

s2

(1 + s2)p/2
ds

− t9

6

[
S 3

2 + 12
√
3π

(
− 1

3n3
+ 23

126

(
n

1 + n2

)3
)]

< S 3
2

(
t3

2
− t9

6

)
+

√
3π

n3
t9 + 29

√
3π

6n
t3

−4( 4
√
3)pπμt2p−3

pn(6−p)/2

∫ n

0

s2

(1 + s2)p/2
ds, ∀ n ≥ 100. (3.16)

Under condition (i) or (ii) of Theorem 1.1, there are three cases to distinguish.
Csae 1. t ∈ [2,+∞), p ∈ (3, 6) and μ > 0. It follows from (3.16) that

�
(
(t2(Un)t

)
< S 3

2

(
t3

2
− t9

6

)
+ O

(
1

n3

)
t9 + O

(
1

n

)
t3 − O

(
1

n(6−p)/2

)
t2p−3

< 0, n → ∞. (3.17)

Csae 2. t ∈ (0, 2), p ∈ (4, 6) and μ > 0. It follows from (3.16) that

�
(
(t2(Un)t

)
< S 3

2

(
t3

2
− t9

6

)
+ O

(
1

n3

)
+ O

(
1

n

)
− μ

[
O

(
1

n(6−p)/2

)]

≤ 1

3
S 3

2 − μ

[
O

(
1

n(6−p)/2

)]
, n → ∞. (3.18)
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Csae 3. t ∈ (0, 2), p = 4 and μ > 7
√
3

π
. It follows from (3.16) that

�
(
(t2(Un)t

)
< S 3

2

(
t3

2
− t9

6

)
+ 5

√
3π t3

n
− 3πμt5

n

∫ n

0

s2

(1 + s2)2
ds

= S 3
2

(
t3

2
− t9

6

)
+ 5

√
3π

n
t3 − 3π2μ

4n
t5 + O

(
1

n3

)

≤ 1

3
S 3

2 − O

(
1

n

)
, n → ∞. (3.19)

Case 1-Case 3 imply that there exists a positive integer n̂ > 100 such that (3.15) holds.
��

Set

κ3 := 839803S 3
2

468750 3
√
2π3

√
2

5 3
√
2π

(3.20)

and

w = κe−|x |. (3.21)

Then w ∈ H1(R3), and

‖∇w‖22 =
∫
R3

|∇w|2dx = 4π2κ2
∫ +∞

0
r2e−2rdr = π2κ2, (3.22)

‖w‖ss =
∫
R3

|w|sdx = 4π2κs
∫ +∞

0
r2e−srdr = 8π2κs

s3
, ∀ s ∈ [2, 6] (3.23)

and

‖w‖412/5 =
(∫

R3
|w|12/5dx

) 5
3 =

[
8π2κ12/5

(
5

12

)3
] 5

3

=
(
5

6

)5

π3 3
√

πκ4.

(3.24)

Lemma 3.8 Assume that condition (iii) in Theorem 1.1 holds. Then

m0 ≤ sup
t>0

�
(
t2wt

)
<

1

3
S 3

2 . (3.25)

Proof Both (2.5) and (3.24) imply

N (w) =
∫
R3

φw(x)w2dx ≤ 2 3
√
2

3 3
√

π
‖w‖412/5 = 2 3

√
2

3

(
5

6

)5

π3κ4. (3.26)
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From (2.5), (3.20), (3.22), (3.23), (3.26) and condition (iii) in Theorem 1.1, we have

�(t2wt ) = t3

2
‖∇w‖22 + t3

4
N (w) − μt2p−3

p
‖w‖p

p − t9

6
‖w‖66

≤ π2κ2t3

2
+

3
√
2t3

6

(
5

6

)5

π3κ4 − 8π2κ pμt2p−3

p4
− 8π2κ6t9

64

=
[
π2κ2t3

2
− 8π2κ pμt2p−3

p4

]
+
[

3
√
2t3

6

(
5

6

)5

π3κ4 − 8π2κ6t9

64

]

≤ (p − 3)π2

2p − 3
κ(p−6)/2(p−3)

[
3p4

16(2p − 3)μ

] 3
2(p−3)

+78125 3
√
2π3κ3

839803

√
5 3
√
2π

2

= (p − 3)π2

2p − 3
κ(p−6)/2(p−3)

[
3p4

16(2p − 3)μ

] 3
2(p−3)

+ 1

6
S 3

2

<
1

3
S 3

2 . (3.27)

This shows that (3.25) holds. ��
Lemma 3.9 Assume that p ∈ (3, 6) and μ > 0. If un⇀ū in E, then

�(un) = �(ū) + �(un − ū) + o(1), (3.28)

〈�′(un), un〉 = 〈�′(ū), ū〉 + 〈�′(un − ū), un − ū〉 + o(1) (3.29)

and

J (un) = J (ū) + J (un − ū) + o(1). (3.30)

Proof Set

I1(u) :=
∫
R3

|∇u|2dx, I2(u) :=
∫
R3

φu(x)u
2dx,

I3(u) :=
∫
R3

(
μ

p
|u|p + 1

6
|u|6

)
dx . (3.31)

Let vn = un − ū. Then un⇀ū and vn⇀0 in E . From (2.4), (2.6), (2.7), (3.31) and
Lemma 2.4, we have

I2(un) = D((ū + vn)
2, (ū + vn)

2)
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= D(ū2, ū2) + D(v2n, v
2
n) + 4D(ū2, ūvn) + 4D(v2n, ūvn)

+4D(ūvn, ūvn) + 2D(ū2, v2n)

= D(ū2, ū2) + D(v2n, v
2
n) + o(1)

= I2(ū) + I2(vn) + o(1) (3.32)

and

〈I ′
2(un), un〉 = 4D((ū + vn)

2, (ū + vn)
2)

= 4D(ū2, ū2) + 4D(v2n, v
2
n) + o(1)

= 〈I ′
2(ū, ū〉 + 〈I ′

2(vn), vn〉 + o(1). (3.33)

By (3.32), (3.33) and the Brezis-Lieb lemma, one can easily prove that

�(un) = �(ū) + �(vn) + o(1) (3.34)

and

〈�′(un), un〉 = 〈�′(vn), vn〉 + 〈�′(ū), ū〉 + o(1).

Note that

J (u) = 2〈�′(u), u〉 − 3�(u) + ‖∇u‖22 − 1

2
I2(u), (3.35)

then from (3.28), (3.29) and (3.35), we can prove that (3.30) holds. ��
Lemma 3.10 Assume that the conditions in Theorem 1.1 hold. Then m0 is achieved.

Proof We prove this lemma by using the strategy used in [30]. Let {un} ⊂ M be such
that �(un) → m0. Since J (un) = 0, then it follows from (1.5) and (1.7) that

m0 + o(1) = 2(p − 3)μ

3p
‖un‖p

p + 1

3
‖un‖66 (3.36)

and

m0 + o(1) = 1

3
‖∇un‖22 + 1

4
N (un) − 2(6 − p)μ

9p
‖un‖p

p. (3.37)

By (1.7) and J (un) = 0, we have

3

2
‖∇un‖22 + 3

4
N (un) = (2p − 3)μ

p
‖un‖p

p + 3

2
‖un‖66. (3.38)

Hence, (3.36) (3.38) show that {un} is bounded in E . From (3.38), one has

‖∇un‖22 ≤ 2(2p − 3)μ

3p
‖un‖p

p + ‖un‖66. (3.39)
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We claim that there exist a δ > 0 and a sequence yn ∈ R
3 such that

lim inf
n→∞

∫
B1(yn)

|un|3dx > δ. (3.40)

Indeed, suppose that (3.40) does not hold. Then we have

lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|3dx = 0. (3.41)

By Lemma 2.5, we have

‖un‖p
p → 0. (3.42)

Up to a subsequence, we assume that

‖∇un‖22 → l1 ≥ 0, ‖un‖66 → l2 ≥ 0. (3.43)

Then it from (2.10), (3.39), (3.42) and (3.43) follows that

l1 = lim
n→∞ ‖∇un‖22 ≤ lim

n→∞ ‖un‖66 ≤ S−3 lim
n→∞ ‖∇un‖62 = S−3l31 . (3.44)

If l1 > 0, then (3.44) implies that l1 ≥ S 3
2 , which, together with (3.37) and (3.42),

implies that m0 ≥ 1
3S

3
2 . This contradicts with (3.15) and (3.25). Therefore, (3.40)

holds.
Let ûn(x) = un(x + yn). Then we have ‖ûn‖E = ‖un‖E and

J (ûn) = 0, �(ûn) → m0, lim inf
n→∞

∫
B1(0)

|ûn|3dx > δ. (3.45)

Therefore, there exists ū ∈ E \ {0} such that, passing to a subsequence,

⎧⎪⎨
⎪⎩
ûn⇀ū, in E;
ûn⇀ū, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ûn → ū, a.e. on R3.

(3.46)

Let wn = ûn − ū. Then (3.46) and Lemma 3.9 yield

�(ûn) = �(ū) + �(wn) + o(1) (3.47)

and

J (ûn) = J (ū) + J (wn) + o(1). (3.48)
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From (1.5), (1.7), (3.45), (3.47) and (3.48), one has

2(p − 3)μ

3p
‖wn‖p

p + 1

3
‖wn‖66 = m0 − 2(p − 3)μ

3p
‖ū‖p

p − 1

3
‖ū‖66 + o(1) (3.49)

and

J (wn) = −J (ū) + o(1). (3.50)

If there exists a subsequence {wni } of {wn} such that wni = 0, then going to this
subsequence, we have

�(ū) = m0, J (ū) = 0, (3.51)

which implies the conclusion of Lemma 3.10 holds. Next, we assume that wn �= 0.
In view of Lemma 3.4, there exists tn > 0 such that t2n (wn)tn ∈ M. We claim that
J (ū) ≤ 0. Otherwise, if J (ū) > 0, then (3.50) implies J (wn) < 0 for large n. From
(1.5), (1.7), (3.2) and (3.49), we obtain

m0 − 2(p − 3)μ

3p
‖ū‖p

p − 1

3
‖ū‖66 + o(1) = 2(p − 3)μ

3p
‖wn‖p

p + 1

3
‖wn‖66

= �(wn) − 1

3
J (wn)

≥ �
(
t2n (wn)tn

)
− t3n

3
J (wn)

≥ m0 − t3n
3
J (wn)

≥ m0,

which implies J (ū) ≤ 0 due to 2(p−3)μ
3p ‖ū‖p

p + 1
3‖ū‖66 > 0. Since ū ∈ E \ {0}, in

view of Lemma 3.4, there exists t̄ > 0 such that t̄2ūt̄ ∈ M. From (1.5), (1.7), (3.2),
(3.45) and Fatou’s lemma, one has

m0 = lim
n→∞

[
�(ûn) − 1

3
J (ûn)

]

= lim
n→∞

[
2(p − 3)μ

3p
‖un‖p

p + 1

3
‖un‖66

]

≥ 2(p − 3)μ

3p
‖ū‖p

p + 1

3
‖ū‖66

= �(ū) − 1

3
J (ū)

≥ �
(
t̄2ūt̄

)
− t̄3

3
J (ū)

≥ m0 − t̄3

3
J (ū) ≥ m0,
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which implies (3.51) holds also. ��
Lemma 3.11 Assume that the conditions in Theorem 1.1 hold. If ū ∈ M and �(ū) =
m0, then ū is a critical point of �.

Proof We prove this lemma by using the method introduced in [9]. Assume that
�′(ū) �= 0. Then there exist δ > 0 and � > 0 such that

‖u − ū‖ ≤ 3δ ⇒ ‖�′(u)‖ ≥ �. (3.52)

Let {tn} ⊂ R such that tn → 1. Since t2n ūtn⇀ū in E , then it follows from (2.7) and
Lemma 2.4 that∥∥∥∇ (

t2n ūtn
)

− ∇ū
∥∥∥2
2

=
∫
R3

∣∣∣∇ (
t2n ūtn

)
− ∇ū

∣∣∣2 dx
= (t3n + 1)

∫
R3

|∇ū|2dx − 2
∫
R3

∇
(
t2n ūtn

)
· ∇ūdx

= o(1) (3.53)

and

N
(
t2n ūtn − ū

)
= D

(
(t2n ūtn − ū)2, (t2n ūtn − ū)2

)
= D

(
(t2n ūtn )

2, (t2n ūtn )
2
)

+ D
(
ū2, ū2

)
−4D

(
(t2n ūtn )

2, (t2n ūtn )ū
)

−4D
(
ū2, (t2n ūtn )ū

)
+4D

(
(t2n ūtn )ū, (t2n ūtn )ū

)
+ 2D

(
(t2n ūtn )

2, ū2
)

= D
(
(t2n ūtn )

2, (t2n ūtn )
2
)

− D
(
ū2, ū2

)
+ o(1)

= (t3n − 1)D
(
ū2, ū2

)
+ o(1)

= o(1). (3.54)

Combining (3.53) with (3.54), one has

lim
t→1

∥∥∥t2ūt − ū
∥∥∥
E

= 0. (3.55)

Thus, there exists δ1 > 0 such that

|t − 1| < δ1 ⇒ ‖t2ūt − ū‖E < δ. (3.56)

In view of Lemma 3.1, one has

�(t2ūt ) ≤ �(ū) − (1 − t3)2(2 + t3)

6
‖ū‖66
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= m0 − (1 − t3)2(2 + t3)

6
‖ū‖66, ∀ t > 0. (3.57)

It follows from (1.7) that there exist T1 ∈ (0, 1) and T2 ∈ (1,∞) such that

J
(
T 2
1 ūT1

)
> 0, J

(
T 2
2 ūT2

)
< 0. (3.58)

Set � := inf t∈(0,T1]∪[T2,+∞)
(1−t3)2(2+t3)

6 ‖ū‖66. Let S := B(ū, δ) and ε :=
min{�/24, 1, �δ/8}. Then [33, Lemma 2.3] yields a deformation η ∈ C([0, 1]×E, E)

such that

(i) η(1, u) = u if �(u) < m0 − 2ε or �(u) > m0 + 2ε;
(ii) η

(
1,�m0+ε ∩ B(ū, δ)

) ⊂ �m0−ε;
(iii) �(η(1, u)) ≤ �(u), ∀ u ∈ E ;
(iv) η(1, u) is a homeomorphism of E .

By Corollary 2.3, �(t2ūt ) ≤ �(ū) = m0 for t > 0, then it follows from (3.56) and
ii) that

�(η(1, t2ūt )) ≤ m0 − ε, ∀ t > 0, |t − 1| < δ1. (3.59)

On the other hand, by iii) and (3.57), one has

�(η(1, t2ūt )) ≤ �(t2ūt ) ≤ m0 − (1 − t3)2(2 + t3)

6
‖ū‖66,

∀ t > 0, |t − 1| ≥ δ1. (3.60)

Combining (3.59) with (3.60), we have

max
t∈[T1,T2]

�(η(1, t2ūt )) < m0. (3.61)

Define�0(t) := J
(
η
(
1, t2ūt

))
for t > 0. It follows from (3.60) and i) that η(1, ūt ) =

ūt for t = T1 and t = T2, which, together with (3.58), implies

�0(T1) = J
(
T 2
1 ūT1

)
> 0, �0(T2) = J

(
T 2
2 ūT2

)
< 0.

Since�0(t) is continuous on (0,∞), then we have that η
(
1, t2ūt

)∩M �= ∅ for some
t0 ∈ [T1, T2], contradicting to the definition of m0. ��

Theorem 1.1 is a direct corollary of Lemmas 3.6, 3.10 and 3.11.

Data Availability There are no relevant data in our paper.
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