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Abstract
In this article, we study the Schrodinger—Poisson—Slater type equation with the critical
growth and zero mass:

—Au+ ¢u = plulP2u+u’, xeR3,
—A¢=u2, X ERS,

where 3 < p < 6 and u > 0. By combining a new perturbation method and the
mountain pass theorem, Liu et al. [J. Diff. Eq., 266 (2019), 5912-5941] prove that the
above equation has at least one positive ground state solution for p € (4, 6) and © > 0
or p € (3, 4] if u is sufficiently large. By using a much simpler method than the ones
used in the above mentioned paper, together with subtle estimates and analyses, we
obtain better results on the existence for a ground state solution of Nehari-Pohozaev

type.
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1 Introduction

In this paper, we are concerned with the existence of ground state solutions for the
Schrodinger—Poisson—Slater problem with critical growth and zero mass

1.1
—A¢=u2, x € R3, (4.D

{—Au +ou = plulP2u+u’, xeR3,
where © > 0and3 < p < 6.
The interest on this system stems from the Schrodinger-Poisson-Slater problem

1.2
—A¢=u2, x € R3, (1.2

{—Au tou+ du = wlulPu, xR,
where w > 0, which is the Slater approximation of the exchange term in the
Hartree-Fock model, see [22]. The local term |u|”~2u was introduced by Slater, with
p = % and p is the so-called Slater constant (up to renormalization), see [24]. Of
course, other exponents have been employed in various approximations. In recent
years, problem (1.2) has been the object of intensive research, a lot of attention has
been focused on the study of the existence of solutions, sign-changing solutions,
ground states, radial and semiclassical states, see [2-9, 11-13, 17, 24, 26, 28-30, 32,
34-37] and the references therein. From a mathematical point of view, this model
presents an interesting competition between local and nonlocal nonlinearities.This
interaction yields to some non expected situations, as has been shown in the literature.
For problem (1.2), the parameter w corresponds to the phase of the standing wave
for the time-dependent equation. In the case w = 0, i.e. the Schrodinger-Poisson-Slater
problem with zero mass

(1.3)

—Au+ ¢u = plulP?u, xeR3,
—A¢p = u?, xe R3,

one could only search the static solutions (not periodic ones). The static case has
been motivated and studied in [14, 27] when p < 3 and p > 3, respectively. The
absence of a phase term wu makes the usual Sobolev space H' (R3) not to be a good
framework for the problem (1.3). In [27], the following working space and the norm
are introduced:

2 2
E :{ c DI2R3) : / f WD) 4 dy < oo} (1.4)
RY |x =yl

and

1
200U 1
lullg == / |Vu|2dx+(/ / u”(u”(y) xdy)
R? R3 47T|x —y|
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The double integral expression is the so-called Coulomb energy of the wave. In
that paper, Ruiz proved that (E, || - ||g) is a uniformly convex Banach space, and
E — L*@R>) for all s € [3, 6]. Moreover, the author gave also the equivalence
characterizations of the convergences in the space E.

Based on the above information, lanni and Ruiz [14] proved that (1.3) has a positive
solution with minimal energy among all nontrivial solutions provided 3 < p < 6.
In the arguments, they used a technique that dates back to Struwe and is usually
named “monotonicity trick" (see [15, 16]), well-known arguments of concentration-
compactness of Lions ([33]) and “Pohozaev identity". Lei and Lei [20] used variational
methods obtained existence of ground state solution of the Nehari—Pohozaev type. By
the new variational approach, there is a series of analytical results on the Schrodinger-
Poisson systems in the literature (see [16, 23] and the references therein).

Further, Liu, Zhang and Huang [24] studied the existence of ground state solutions
for (1.1) by combining a new perturbation method and the mountain pass theorem, the
authors obtained the existence of positive ground state solutions. To be specific, they
proved that (1.1) has at least one positive ground state solution for p € (4, 6)andu > 0
or p € (3,4]if u is sufficiently large. Via a truncation technique and Krasnoselskii
genus theory, Yang and Liu [34] obtained infinitely many solutions for (1.1) provided
u € (0, u*) with some u* > 0. Zheng, Lei and Liao [35] discussed the existence of
positive ground-state solutions and the multiplicity of positive solutions for a more
general Schrodinger-Poisson-Slater-type equation with critical growth. Recently, Lei,
Lei and Suo [21] obtained a ground state solution for (1.1) with the Coulomb-Sobolev
critical growth by employing compactness arguments.

In this paper, inspired by [14, 24, 27, 30], we obtain ground state solutions of (1.1)
under weaker assumptions on w by using a much simpler method than the ones used
in [24]. In particular, we introduce some new test functions, which, together with
subtle estimates and analyses, to obtain a good energy estimate of the mountain pass
level such that the compactness of (PS) sequences at the energy level still holds, see
Lemmas 3.7 and 3.8.

Since E — L*(R3) for all s € [3, 6], so, we have that the associated energy
functional to (1.1)

2 2
) = 1/ |Vuldx + - / f WU 4y
2 w Jrs Al —y|

—/ <—|u|p+—|u|6)dx (1.5)
R3S\ P 6

is well-defined and C'. Our main result is the following:

Theorem 1.1 Assume that one of the following conditions holds:

(i) pe 4,6)and n > 0;

.. _ 1V/3.
(ii) p=4and p > =2=; .
—P
_ 3 5
3[672 (p=3PP I3 p4 83980352 2
(iti) p € G 4) and p > 1505, 3ywrS750 176 | 68750 a0 592w |
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Then Problem (1.1) has a solution u € E such that ® (u) = inf oy ® > 0, where

={ueE\{0}: J(u) =0} (1.6)
and
u? () (y) Cp=3u, » 3.
J(u) = —||Vu||2 + = / fR pr— dxdy — Tuuup = 5 lulle.
(1.7

The set M was introduced by Ruiz [26], is usually named ‘“Nehari-Pohozaev”
manifold.

Throughout this paper, we let u;(x) := u(tx) for + > 0, and denote the norm of
L (R3) by flully = (fps luldx)"” fors = 2, By(x) = {y e R3 : |y —x| < r), and
positive constants possibly different in different places, by Cy, C», - -

2 Variational Framework and Preliminaries

In this section we establish some notations that will be used throughout the paper. Let
E be defined by (1.4) and study some basic properties of it.

Set
12 (u
N _/ f u”(x)u=(y) dxdy
3 Jrs dmlx —yl

1/2
lulle = [1Vul} +VN@|

Lemma 2.1 [27] || - ||g is a norm, and (E, || - || ) is a uniformly convex Banach space.
Moreover, C(‘)’O (R3) is dense in E.

and

Lemma 2.2 [31] Assume that a, b > 0. Then there holds
al|Vul|3 4+ bN(u) > 24/ab|u|3, YueE. 2.1

Let E( denote the Banach space equipped with the norm defined by

1/2
luel = (IVal3 + llul3)

Then Lemma 2.2 shows that £ < E|.
Let us define

1 2
bu(x) = — u2=/ ) 4y vaeRS, 2.2)
x| R3 47 |x — |
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then, u € E if and only if both u, ¢, € DI’Z(R3). In such a case, —A¢ = u?ina
weak sense, and

/Vq&u Vvdx—/ uzvdx, VvelkE, 2.3)
R?

2 2
/ / (u (y)d dy / b (0)e’dx. (2.4)
R3 JR3 47T|)C —

Moreover, ¢, (x) > 0 when u # 0. By using Hardy-Littlewood-Sobolev inequality
(see [18] or [19, page 98]), we have the following inequality:

|”(X)U(Y)| 872 s
dxdy < ) ) L / R7). 2.5
/11@3 /Rs lx — y| y= 3%”””6/5”11”6/5 u,ve (R%). (2.5

Lemma 2.3 [27] Suppose that {u,} C E. Then

(i) up — it in E if and only if u, — i and ¢, — ¢z in DV2(R3);
(ii) up—uin E ifand only if u,—u in DLY(R3) and sup N (u,) < +o0. In such case,
Gu,—q in D2 (RY).

Asin [14, 27], we define

T.-E*S R, Tu,v,w,2) ::/ f UVOWMZD 44 (26)
R3 JR3 4 |x — y|

and

D:E*— R, D(u,v) := / / u(x)v(y) dxdy. 2.7
r3 4mlx — yl

Lemma 2.4 [14] Suppose that {u,}, {v,}, {w,} C E, z € E. Ifup,—u, v,—v, w,—w
in E, then

T(una vna Wn, Z) - T(ﬁa l_)’ lI)a Z)'

In view of Lemmas 2.1-2.4, (F1) implies that ® defined by (1.5) is a well-defined
of classes C! functional in E, and that

(D' (w), v) = / Vu - Vudx —l—/ ¢y (x)uvdx
R3 R3

—/ (|u|p72+u4) uvdx, u,veE. (2.8)
R3

Therefore, the solutions of (1.5) are then the critical points of the reduced functional
(1.5).

In view of the Gagliardo-Nirenberg inequality [1, 25] and Sobolev inequality [33],
one has
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lully < Kgullul§ = IVal3 ™, Vue DR, se3,6) (29
and
Slully < IVul3, Yue D3®R?). (2.10)
where Kgn > 01is a constant and S is the best embedding constant.

We also state here, for convenience of the reader, an adaptation to the space E of a
result due to P.-L. Lions, see [22, Lemma I.1]:

Lemma 2.5 Ifu,—u in Eq, and

lim sup/ lunPdx = 0, (2.11)
00 RN J B (y)

then
lunlls = 0, Vs e(@3,6). (2.12)

3 Ground State Solutions
Set

2(p—3) — 2p —3)13 32073
3p

g() = , t>0. 3.1

Then we have the following lemma by a simple computation.

Lemma 3.1 Assume that p € (3,6). Then g(t) > g(1) = 0 forallt € (0,1) U
(1, +00).

Lemma 3.2 Assume that p € (3,6) and t > 0. Then

) -1
D(u) > ©(t7u;) +

1_322 3
+( 1)6( +17)

J(u)
lul®, YueckE, t=>0. (3.2)

Proof Note that

3 3
t t
d)(tzut) = E‘/]‘QS |V1,¢|2dx + 7 A; ¢u(x)u2dx

t2p73 l9
—/M [“ . |u|p+g|u|6j| dx. (3.3)
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Thus, by (1.5), (1.7), (3.1) and (3.3), one has

(x)uzdx

2p—3 _ 9

t 1 t 1

f |:M( )|u|p )|u|6i| dx
R3 P 6

_ 43 332 3
tum+A;Pwmww+9—i%9ii%m]m

-3 (1 -2 +1%)

1 — 3
D) — dt2u,) =

= J ) + pg®lluljy + : luel-
This shows that (3.2) holds. O
From Lemma 3.2, we have the following corollary immediately.
Corollary 3.3 Assume that p € (3, 6) and ;© > 0. Then for u € M,
(1) = max O (t%u,). (3.4)
1>

Lemma 3.4 Assume that p € (3, 6) and y > 0. Then for any u € E \ {0}, there exists
a unique t(u) > 0 such that t(u)zut(u) e M.

Proof Letu € E \ {0} be fixed and define a function ¢(r) := ®(z%u;) on [0, 00).
Clearly, by (3.3), we have

32 2p—3)ut2p=2
(=0 & ——nv M+——:/ b ()udx 311—554——4|np———n|k—
& J(Pu)=0 & 1*u, € M.

It is easy to verify that £(0) = 0, ¢{(¢) > O fort > 0 small and ¢{(¢) < O for ¢
large. Therefore max;e(o,00) £ (¢) is achieved at a fo = ¢(u) > 0 so that £’ (fp) = 0 and
t2u, € M
0kn :

Next we claim that #(u) is unique for any u € E \ {0}. In fact, for any given
u € E\{O},lett;, t; > Osuchthat¢(t1) = ¢(t2) = 0. Then J (t{u,,) = J (t3uy,) = 0.
Jointly with (3.2), we have

3 2 3
(t —t)(2t +15)
D (t{uy) > S(uy) + - ZJm,p+ ! 291 2= {|ullg
3t 61
# — )28 +t)
= O(uy) + — 2691 luall§ (3.5)
1
and
3 —H2028 + 1))
¢@mg>¢mmn+ 1uaan—2 1 92 2l
33 61,
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(13 —11)*Q213 +17)
615

= & (fuy) + llullg. (3.6)

(3.5) and (3.6) imply #; = t,. Therefore, (1) > 0 is unique forany u € E \ {0}. O
Both Corollary 3.3 and Lemma 3.4 imply the following lemma.

Lemma 3.5 Assume that p € (3,6) and u > 0. Then

inf & = = inf max ®(%u,).
ueM (@) :=mo weE\(0) 120 (t7ur)

Lemma 3.6 Assume that p € (3,6) and t > 0. Then

(i) there exists py > 0 such that ||Vu||% > po, Yu e M;
(ii) mo = inf,cpq ©(u) > 0.

Proof Since J (1) = 0, Yu € M,by(1.7),(2.1),(2.9),(2.10) and the Young inequality,
it has

3 3 3 3
IVt + il < 5 [ wubae+ g [ gueoniax

2p—=3)u 3

= ullh + Euung
3

< Enuu% + Cyllu) (3.7)
3 Ci

< S lully + Vel (38)

where C is a positive constant. This implies

V383
2./C;’

From (1.5), (1.7), (3.7) and (3.9), we have

Vull3 > po := YueM. (3.9)

1
O(u) = d(u) — gJ(u)

2p —In -
= =5 el Sl

3 2
> ——|Vulz
4Cq

. 3,383
~ 8CJ/Ci’

This shows that mg = inf,cAq @ (1) > 0. m|

YueM.
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Now as in [10], we define functions U, (x) := ©,(|x|), where

Ve O<r<l

Ou =31 [ -r), 1<r<2 (3.10)

0, r>2.

Computing directly, we have

2 2 too, 2
VU5 = /R3 IVU| dx:4nf0 r#1@), (r)|*dr

1 5,4 2
= 437 / nr 3err " 2/ r2dr
0 (1+n2r2) 1+n- )1

n 4
= 437 / u 3ds-i— Tn 3
0 (1452 30 +nd)

3 400 4 7
=52 +4V37 7/ S ds |
no (1+s2) 3(14n%)

3.11)

6 6 to , 6
1Unllg =/ [Unl dx=4ﬂ/ re|@y (r)[°dr
R3 0

1 32 n \3 2
= 12437 / 3dr-‘:—( 2) [ r22—r)bar
0 (1+n2r2)‘ 1+n 1
n S2 n 3 .1
1237 / 3ds—&—( 2) f s6(2—s)2ds
0 (1+52) I+n2/ Jo
3 +00 2 2 3
S2 +12v3n —f 573ds+—3 (Lz) , (3.12)
n (1+52) 126 \1+n
+00 2
WUl = fR3 |Un|qu=4n/0 1210, () 17dr
[l q/2,2 q/2 2
= 4(V3)in / o zdr+< i 2) / 22— r)ldr
/o (1 +n2r2)‘1/ 1+n 1

f‘f‘! B 1 n 52 n q/2 lq )
= 4(~/3) n_n(ﬁ_q)/Q/o (1+s2)‘l/2ds+(1+n2> /0 s1(2 —s5)“ds

n 2 2 2
_ a3y 1 / sods q-+7q + 14 ( n )2
43T | n6=072 Jo (1 +52)2/2 T aE DG+ DGy \1 2 (3.13)

and

2 6/5
12/5 4 12/5 L n N 2285 n
1Unll3)5 = 4(V3) P [,ﬂ/s /0 A+ T 5000 \ T2 '

(3.14)
Both (2.5), (3.11) and (3.14) imply that U,, € E foralln € N.
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Lemma 3.7 Assume that condition (i) or (ii) in Theorem 1.1 holds. Then there exists
a positive integer i such that

1
mo < sup d <t2(U;,)t) <-53. (3.15)

t>0

(O8]

Proof By (2.5), (3.3), (3.11), (3.12), (3.13) and (3.14), we have

® («2Wa)
3 3 2p—3 9
t , wt t 6
= SIVUIE + 7N (Un) = 1Uallh = = 1UalG
3
- t_ S% n 28\/§nn
2 30 +n2)

6713
1 [ 52 2285 n 5|
44713 —/ d
tavan |:n9/5 by A+ T50a0 T2
4(%)pnut2p—3 n S2 q
T @2 fy 1+ s2r

P 3 1 23 no\°
S 412 el (N
6 [‘S + ﬁ”( 3n3+126<1+n2> )]

3 9
<S% (t__t_)+ \/gnt9+29\/§ﬂ't3

2 6 n3 6n
4(B)Prper=3 o 52
S /()(]+s2)p/2ds, V> 100. (3.16)

Under condition (i) or (ii) of Theorem 1.1, there are three cases to distinguish.
Csae 1.1 € [2, +00), p € (3,6) and n > 0. It follows from (3.16) that

3 9
> (C_r Neovo(l)r—o(—L )
@« (U,,),)<Sz<2 6>+0(n3>z +0<n £ -0\ )t
<0, n— oo (3.17)

Csae 2.t € (0,2), p € (4,6) and u > 0. It follows from (3.16) that

) s (3 1 1 1
® (@2Ur) < S? (3 - g) +0 (n—3> +0 (;) —u [0 (—n(é_mﬂ)}
1 .3 1
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Csae 3.1 € (0,2),p=4and u > %g It follows from (3.16) that

B 53713 37rut5 52
@ ( (2 (U, sr(L-L
(( (")’ = (2 6>+ 7 7 /0 TSt
3 9 2
_si(t L +5ﬁ”t3——3nut5+0 L
2 6 n 4n n3
1 S3
“lsiio G) 7 = oo, (3.19)
3 n

Case 1-Case 3 imply that there exists a positive integer 7 > 100 such that (3.15) holds.

O
Set
s 8398035 2 (320,
468750~/273 \ 527
and
w = ke ™. (3.21)

Then w € H'(R3), and

+00
Vw3 =/ |Vw|?dx =4n2,<2f rre™?dr = n2k?, (3.22)
R3 0

+00 8 2,8
lwlf = [ [wldx = 4r2%° Pedr = 2 Vs e2,6] (3.23)
N R3 0 S3

and

2/ } 2 12/5 5 ’ 5 33 4
4 12/5

w — d = | 87 .
” ”12/5 </R3 |U)| X> k (12) (6) i ﬁl{

(3.24)
Lemma 3.8 Assume that condition (iii) in Theorem 1.1 holds. Then
2 1.3
mo < sup @ (r wt> <-83. (3.25)
t>0 3

Proof Both (2.5) and (3.24) imply

3 5
292 (é) k. (3.26)

6

232
NV = [ guwutar = 2l = 2
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From (2.5), (3.20), (3.22), (3.23), (3.26) and condition (iii) in Theorem 1.1, we have

2p—3 9

! 6
lwllh — €||w||6

ut

2 = Vw2 4 DN w) -
o) = SVl + N w)

_ rh 288 <5>5 3 4 8TAPus?P3 8mict?

=2 *t7% \6 P 64

4

6 6

2 p

3
< =37 (e 3p* =
=253 162p — 31

+781253/§n3x3 5927
839803 | 2

3

_ =7 poppy [ 30 1T g
2p—3 1622p —3)u 6
1.3
< =87,
3

This shows that (3.25) holds.

Lemma 3.9 Assume that p € (3,6) and u > 0. Ifu,—u in E, then

Q(un) = P + Pup —u) +o(1),

(D (un), up) = (®'(@), ) + (' (up — i), uy — ) + o(1)
and
J(uy) = J@) + J(up —it) + o(1).

Proof Set

) = / VuPdx, L) = / du(Oudy,
R3 R3

1
L) :=/ <ﬁ|u|1’+—|u|6) dx.
R3I\ P 6

[n2K2t3 8712/<1’/u2p_3i| |:«3/§t3 (5)5 34 87w
— + —_ T K —

64

2K6t9:|

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

Let v, = u,, — u. Then u,—u and v,—0 in E. From (2.4), (2.6), (2.7), (3.31) and

Lemma 2.4, we have
L(uy) = D((it + vp)?, (@t + va)?)
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= D@, @%) 4+ D2, v2) + 4D, itv,) + 4D(v2, iiv,)
+4D(itv,, itv,) + 2D (%, v?)

= D%, i%) + D(v2, v2) + o(1)

= Lu) + L(vy) +o(1) (3.32)

and

(I5 (), up) = 4D (@ + vy)%, (it + v)?)
= 4D (%, ii*) + 4D (2, v2) + o(1)
= (3@, i) + (13 (vn), va) + o(1). (3.33)

By (3.32), (3.33) and the Brezis-Lieb lemma, one can easily prove that

D (uy) = @) + P(vy) +0(1) (3.34)
and
(D (un), un) = (@' (vn), va) + (P (@), 1) + o(1).
Note that
T(u) = 2(®' (), u) — 30 ) + | Vul3 — %Iz(u), (3.35)
then from (3.28), (3.29) and (3.35), we can prove that (3.30) holds. o

Lemma 3.10 Assume that the conditions in Theorem 1.1 hold. Then m is achieved.

Proof We prove this lemma by using the strategy used in [30]. Let {u,,} C M be such
that ®(u,) — myg. Since J (u,) = 0, then it follows from (1.5) and (1.7) that

2(p—3)u 1 6
mo 4 o(1) = Tnunnﬁ + 3 lall§ (3.36)
and
1 1 26— p)u
mo -+ o(1) = 31Vt | + 7N (uy) - 9—;’||un||,’:. (3.37)
By (1.7) and J (u,) = 0, we have
3 3 2p -3 3
Enwnn% + N ) = S uallh + Enunng. (3.38)

Hence, (3.36) (3.38) show that {u,} is bounded in E. From (3.38), one has

22p — 3)

nw
Vi |l3 < T el + lun . (3.39)
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We claim that there exist a § > 0 and a sequence y, € R3 such that

n—o00

lim inf / lup|?dx > 8. (3.40)
By (yn)
Indeed, suppose that (3.40) does not hold. Then we have

lim sup sup f lun|dx = 0. (3.41)
Bi(y)

n—00 yeR3
By Lemma 2.5, we have
lunlh — 0. (3.42)
Up to a subsequence, we assume that
IVunlls = 11 = 0. [lunll — I > 0. (3.43)
Then it from (2.10), (3.39), (3.42) and (3.43) follows that

Iy = lim |[Vu,|3 < lim Ju, |8 <S73 lim |Vu,|§ =835, (3.44)
n—oo n—oo n—oo

If I} > 0, then (3.44) implies that [ > S %, which, together with (3.37) and (3.42),

implies that mo > %S % This contradicts with (3.15) and (3.25). Therefore, (3.40)
holds.
Let i, (x) = u,(x + y,). Then we have ||ii,||g = ||lu, | g and

n—o00

J(iy) =0, @) — mo, liminf/ |iinPdx > 6. (3.45)
B1(0)
Therefore, there exists u € E \ {0} such that, passing to a subsequence,
U,—i, inkE;

(R3), Vs €[, 6); (3.46)
i, — i, ae.onR3.

Up—it, in Ly

Let w, = i1, — . Then (3.46) and Lemma 3.9 yield

D (,) = P() + P(wy) + o(l) (3.47)
and

J(in) = J(@) + J(wy) + o(1). (3.48)
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From (1.5), (1.7), (3.45), (3.47) and (3.48), one has

2(p =3 _2(p—=3n
3

A2 — L@t + o) 3.4
3p ||u||p—§||uI|6+0( ) (3.49)

p 6
lwallp + g”wn”ﬁ =my

and
J(wy,) = —J @) + o(1). (3.50)

If there exists a subsequence {wy,} of {w,} such that w,; = 0, then going to this
subsequence, we have

(i) = mo, J(i) =0, (3.51)

which implies the conclusion of Lemma 3.10 holds. Next, we assume that w, # O.
In view of Lemma 3.4, there exists #, > 0 such that t>(w,); € M. We claim that
J(u) < 0. Otherwise, if J(u) > 0, then (3.50) implies J (w;,) < O for large n. From
(1.5), (1.7), (3.2) and (3.49), we obtain

2(p =3
T

_ I _ 2(p —3)u 1
il — g + o) = annn’; + §||wn||2
1
= q)(wn) - §J(wn)

@ (2w, ) - guwn)

v

t3
n
mgy — gf(wn)

\%

= my,

which implies J(#) < 0 due to Wllﬁllﬁ + %||ﬁ||g > 0. Since u € E \ {0}, in

view of Lemma 3.4, there exists # > 0 such that 5212,- € M. From (1.5), (1.7), (3.2),
(3.45) and Fatou’s lemma, one has

. R I,
my = nlggo [Cb(un) - gJ(un)}

. 2(p =3 1
= lim [pTllunllﬁ—l—glluan}

n—oo

o 2p =3

S T
= = Nl + Sl

1
D(u) — 31(12)
3
> @ (fzﬁ,-) - %J(ﬁ)
3

> mo — gl(ﬁ) > mo,
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which implies (3.51) holds also. m]

Lemma 3.11 Assume that the conditions in Theorem 1.1 hold. If u € M and ®(u) =
mo, then u is a critical point of .

Proof We prove this lemma by using the method introduced in [9]. Assume that
@’ (i) # 0. Then there exist § > 0 and ¢ > 0 such that

lu — il <38 = D' W] = o (3.52)

Let {t,} C R such that 7, — 1. Since t,%ﬁtn—\ﬁ in E, then it follows from (2.7) and
Lemma 2.4 that

|v () - val, = [
@+ 1)/ Vit 2dx — 2/ v (z,fﬁ,n)  Viidx

R3 R3
o(1) (3.53)

5 2
\Y (tnu,n> — Vu‘ dx

and
N (i, — )

= D (i, - @2, (i, — 0?)

= D (i), @2,)?) + D (@, ) —4D (i), (2, )i
—4D (fﬂ, (t,%ﬁtn)ﬁ>
+4D ((r,fzztn)zz, (z,%ﬁ,n)ﬁ) +2D ((zﬁatn)z, 122)

=D ((r,fﬁ,n)z, (t,fﬁ,n)z) -D (ﬁz, ﬁz) +o(1)

— @ - 1D (ﬁz, ﬁ2> +o(l)

= o(1). (3.54)

Combining (3.53) with (3.54), one has

lim Hrzzz, — ’ZHE —0. (3.55)

t—1
Thus, there exists §; > 0 such that
It — 1] <8 = ||II%4;, —itllg <. (3.56)
In view of Lemma 3.1, one has

(1-rYQ+7r)

@ (t%i1;) < D) — c

=116
llullg
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1-)22+1
_mo—$|mng, Vi>0. (3.57)

It follows from (1.7) that there exist 77 € (0, 1) and T, € (1, co) such that
J (T12ﬁ7,> >0, J (Tzzzsz) <o. (3.58)

Set © = infye(on1uim o0 SR G|, Let S = B(@,8) and & :=
min{® /24, 1, 08/8}. Then [33, Lemma 2.3] yields a deformationn € C([0, 1]x E, E)
such that

1) n(,u) =uif ®(u) < mg —2¢ or ®(u) > mgy + 2¢;
(i) n (1, @™ N B(i, §)) C PO,
(i) P((l,u)) < P(u), Yu € E;
@iv) n(1, u) is a homeomorphism of E.

By Corollary 2.3, & (+2i1,) < ® (1) = mg for ¢ > 0, then it follows from (3.56) and
ii) that

d(n(l, tzﬁ,)) <mg—e¢e, Vi>0, |t—1]<§é. (3.59)
On the other hand, by iii) and (3.57), one has

(1-)H22+1)

®(n(1, 12i1y) < D(t%ii;) < mo — c lillg,
Vi>0, |t—1]> 8. (3.60)
Combining (3.59) with (3.60), we have
max ®(n(l, t2i;)) < mo. (3.61)
te[T1,T2]

Define Wy (1) := J (n (1, t%it;)) fort > 0.1t follows from (3.60) and i) that n(1, it;) =
u; fort = Ty and t = T, which, together with (3.58), implies

Wo(Ty) = J (leﬁrl> >0, WYo(T)=J (T22'2T2) <0.

Since Wy (¢) is continuous on (0, o0), then we have that n (l, t2IZ,) NM # @ for some
to € [T, Tz], contradicting to the definition of my. O

Theorem 1.1 is a direct corollary of Lemmas 3.6, 3.10 and 3.11.

Data Availability There are no relevant data in our paper.
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