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Abstract
We give sufficient conditions such that a volume preserving 1-Lipschitz map from
a metric integral current onto an infinitesimally Euclidean Lipschitz manifold is an
isometry.
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1 Introduction

The main question investigated in this note is the following: Suppose (X , dX , μX )

and (Y , dY , μY ) are metric measure spaces and f : X → Y is onto, 1-Lipschitz and
measure preserving. Under what additional assumptions does it follow that f is an
isometry?

An elementary example in this direction without any measures is the following
rigidity statement: If X is a compact metric space and f : X → X is onto and
1-Lipschitz, then f is an isometry, see e.g., [5, Theorem 1.6.15].

If domain and target are not assumed to be equal, then further assumptions are
needed for a positive answer. In our setting, the measure preserving property is the
main one. It excludes examples like f being a uniform scaling of some domain in Rn

with a scaling factor smaller than one. Among others, a more subtle requirement is
that the target Y can’t have separated components (at least if metrics are not allowed
to take the value ∞).
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An instance of Lipschitz-volume rigidity is between Riemannian manifolds
and their standard volumes as stated in the following known result, see e.g., [6,
Lemma 9.1]:

Proposition 1.1 Suppose X and M are oriented, closed, connected C1-manifolds
equipped with continuous Riemannian metrics. If f : X → M is 1-Lipschitz (with
respect to the induced length distances), onto and Vol(X) ≤ Vol(M), then f is an
isometry.

Our main result is a generalization allowing the domain to be a metric integral
current in the sense of Ambrosio-Kirchheim [3]. In this setting the specific definition
of volume on the domain becomes crucial and only certain choices lead to isometry.
We call these volumes Euclidean rigid. The precise definition is given in 2.3.

Theorem 1.2 Suppose m ≥ 1 and (M, d) is a compact, oriented, m-dimensional
Lipschitz manifold (possibly with boundary ∂M) such that:

(1) (M \ ∂M, d) is an essential length space and (M, d) its completion,
(2) (M, d) is infinitesimally Euclidean.

Suppose that T ∈ Im(X) is an m-dimensional integral current, μ is a Finsler volume
and f : spt(T ) → M is a 1-Lipschitz map such that

(a) f#T = [[M]],
(b) f (spt(∂T )) ⊂ ∂M,
(c) μ is Euclidean rigid,
(d) Mμ(T ) ≤ Vol(M).

Then f : spt(T ) → M is an isometry and T = ( f −1)#[[M]].
This theorem generalizes [4, Theorem 1.2], [4, Corollary 1.3] and [11, Theorem 1]

and answers [4, Question 8.1].
The assumptions can be further weakened. The compactness of (M, d) can be

replaced by complete and finite volume and finite boundary volume, so that [[M]] is
well defined as an integral current.

Here are some clarifications of the terminology used in the statement. Essential
length spaces are generalizations of classical length spaces, see Definition 2.8. In par-
ticular, the induced distance of a Riemannian manifold is of this type, see Lemma 2.9.
Similar to property (ET) in [19], we call a countably H m-rectifiable metric space S
infinitesimally Euclidean if whenever ϕ : K → S is a bi-Lipschitz chart defined on a
compact set K ⊂ Rm , then themetric derivative md(ϕx ) in the sense of [15] is induced
by a inner product for almost all x ∈ K . An m-dimensional Finsler volume μ assigns
to every norm onRm a particular multiple of the Lebesguemeasure, see Definition 2.2.
μ then also induces a volume (and a mass Mμ) on rectifiable spaces (and rectifiable
currents),see Sect. 2.3. For example, the usual mass of rectifiable currents is induced
by the Gromov-mass-star Finsler volume. On Riemannian manifolds, or more gener-
ally infinitesimally Euclidean spaces, there is only one Finsler volume. We also state
an area formula for Finsler volumes between rectifiable spaces, Theorem 2.7. This
builds on the known area formula for the Hausdorff measure [15, Theorem 7].
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We shortly explain the general strategy of the proof of Theorem 1.2. (a) and (b) can
be interpreted as saying that f is a cover ofM with algebraic multiplicity 1. Because f
is 1-Lipschitz, (d) is equivalent toMμ(T ) = Vol(M), which implies that f is measure
preserving in the sense that ‖T ‖μ(B) = Vol( f (B)) for all Borel sets B ⊂ X . This
quite readily implies that f is almost injective on T in a measure theoretic sense. The
technical part is contained in Proposition 3.1 which guarantees that an almost injective
map to Rm is a locally bi-Lipschitz embedding in case the volume is not distorted
too much. The latter is quantified by uniform bounds on Hardy-Littlewood maximal
functions of the push-forward measure. The tools used in the proof of Proposition 3.1
are zero-dimensional slices and the connection between normal currents in Rm and
BV-functions. It is a rather direct extraction of the partial rectifiability theorem in
the theory of metric currents as stated in [3, Theorem 7.4] and [16, Theorem 7.6].
Working in charts of M , Proposition 3.1 implies that f : spt(T )\ spt(∂T ) → M\∂M
is a homeomorphismwhich is locally bi-Lipschitz. Assumption (2) and (c) then further
imply that f is an infinitesimal isometry and as a consequence it preserves the length
of almost every curve. (1) then allows for a local to global argument to conclude that
f is an isometry.
Assumption (1) can’t be replaced by the weaker assumption that (M, d) is a

length space as shown in Example 4.1. Assumption (c) is necessary as seen by linear
maps between domains of normed spaces. We show that in particular the Busemann-
Hausdorff and the Gromov-mass-star volume are Euclidean rigid, see Lemma 2.5 and
Lemma 2.6.

2 Preliminaries

2.1 Metric Currents

Let X be a complete metric space. B(x, r) denotes the closed ball and U(x, r) the
open ball around a point x ∈ X with radius r > 0.

Following the theory of Ambrosio and Kirchheim [3], for an integer m ≥ 0, an
m-dimensional metric current T ∈ Mm(X) of finite mass in X is a multilinear function
T : Lipb(X) × Lip(X)m → R with an associated finite Borel measure ‖T ‖ on X .
Currents are best understood as a generalization of oriented, compact Riemannian
manifolds. For more details and the terminology we refer to [3].

According to [3, Theorem 3.4], normal currentsNm(Rm) can be identified with the
space BV(Rm) of functions with bounded variation, i.e. those u ∈ L1(Rm) with

|Du|(U ) := sup

{∫
U
u div(ϕ) dL m : ϕ ∈ C1

c (U ,Rm), ‖ϕ‖∞ ≤ 1

}
< ∞

for all open sets U ⊂ Rm . Moreover, ‖[[u]]‖ = L m�u and ‖∂[[u]]‖ = |Du|.
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If μ is a finite Borel measure on Rm , then Mμ : Rm → [0,∞] denotes the Hardy-
Littlewood maximal function defined by

Mμ(x) := sup
r>0

μ(B(x, r))

αmrm

where αm is the (Lebesgue) volume of the Euclidean unit ball in Rm . A covering
argument shows that Mμ(x) < ∞ forL m-almost every x ∈ Rm . If u ∈ BV(Rm) and
x, x ′ ∈ Rm are Lebesgue points of u, then

|u(x) − u(x ′)| ≤ cm
(
M|Du|(x) + M|Du|(x ′)

) |x − x ′| (2.1)

for some constant cm > 0 depending only on m. This is a classical result. For proofs,
see for example [16, Lemma 7.1] or [3, Lemma 7.3].

The next result is contained in the statement of [16, Theorem 7.5] within the theory
of local metric currents and follows directly from [3, Equation (5.7)].

Lemma 2.1 Suppose m ≥ 1, T ∈ Nm(X), π ∈ Lip(X ,Rm) and f ∈ Lip(X). Then
π#(T� f ) = [[u f ]] for some u f ∈ BV(Rm) and

〈T , π, y〉( f ) = u f (y)

for almost every y ∈ Rm.

Proof Let ψ ∈ Cc(Rm) be arbitrary. By [3, Equation (5.7)],

∫
Rm

ψ(y)〈T , π, y〉( f ) dL m(y) = T ((ψ ◦ π) · f , π)

= (π#(T� f ))(ψ, idRm )

=
∫
Rm

ψ(y)u f (y) dL
m(y).

Thus 〈T , π, y〉( f ) = u f (y) for almost every y ∈ Rm . 
�
According to [3, Lemma 4.1] a subset S of X is countablyH m-rectifiable if there

exist countably many bi-Lipschitz maps ϕi : Ki → S defined on compact subsets
Ki ⊂ Rm such that the images ϕi (Ki ) are pairwise disjoint and

H m
(
S \

⋃
i

ϕi (Ki )

)
= 0.

We call such a collection of charts (ϕi , Ki ) an atlas for S.
By [3, Theorem 4.5] a current T ∈ Mm(X) is rectifiable if there exists a countably

H m-rectifiable S ⊂ X with an atlas (ϕi , Ki ) and θi ∈ L1(Ki ) for each i such that

M(T ) =
∑
i

M(ϕi#[[θi ]]) and T =
∑
i

ϕi#[[θi ]].
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The collection of such rectifiable currents is denoted by Rm(X). If the densities θi
above are in L1(Ki ,Z), then T is integer rectifiable and their collection is denoted by
Im(X). Moreover, Im(X) := Im(X) ∩ Nm(X) is the collection of integral currents.

There is a canonical choice for the set S, namely

ST := {x ∈ X : �∗m(‖T ‖, x) > 0} . (2.2)

See [3, Theorem 4.6].

2.2 Finsler Volumes

Finsler volumes are consistent choices of Haar-measures in normed spaces.

Definition 2.2 Given an integer m ≥ 1, anm-dimensional Finsler volume μ assigns
to every m-dimensional normed space V a Haar measure μV with the properties:

(1) If A : V → W is linear and short (i.e. ‖A‖ ≤ 1), then A is volume decreasing,
i.e. μW (A(B)) ≤ μV (B) for all Borel sets B ⊂ V .

(2) If V is Euclidean (i.e. the norm is induced by an inner product), thenμV is the stan-
dard Euclidean volume (the Lebesgue measure with respect to some orthonormal
coordinate system).

Our two primary examples are the Busemann-Hausdorff volume μbh and the
Gromov-mass-star μm∗. μbh agrees with the m-dimensional Hausdorff measure and
has the defining property that μbh

V (BV (0, 1)) = αm , see e.g., [15, Lemma 6]. μm∗ is
defined by μm∗

V (P) = 2m if P is a parallelepiped of minimal volume that contains
BV (0, 1).

A special subclass of Finsler volumes is extracted in the following definition. We
denote by | · | the standard Euclidean norm on Rm .

Definition 2.3 Anm-dimensional Finsler volumeμ isEuclidean rigid if the following
holds: If ‖ · ‖ is a norm on Rm such that

(1) ‖ · ‖ ≥ | · | and
(2) μ‖·‖ ≤ μ|·|,
then ‖ · ‖ = | · |.

Note that (1) is equivalent to id : (Rm, ‖ · ‖) → (Rm, | · |) being 1-Lipschitz. This
implies μ|·| ≤ μ‖·‖ by the definition of Finsler volumes. Thus (2) is equivalent to
μ‖·‖ = μ|·|.

Due to the properties of Finsler volumes, this definition has the following seem-
ingly more general but equivalent formulation: An m-dimensional Finsler volume μ

is Euclidean rigid if and only if the following property holds: If A : V → H is a
linear map from a normed space V into an Euclidean space H of the same dimension
m such that f is 1-Lipschitz and volume preserving (i.e. μV (B) = μH (A(B)) for all
Borel sets B), then A is an isometry (i.e., ‖v‖V = ‖A(v)‖H for all v).

Many definitions of volume have this property. For example the Busemann-
Hausdorff and the Gromov-mass-star volume as shown in Lemma 2.5 and Lemma 2.6

123



210 Page 6 of 19 R. Züst

below. As a consequence also the largest Finsler volume, namely the inscribed Rie-
mannian volume μir , is Euclidean rigid. See e.g. [14] for the precise definition and
properties of this volume. μir is complemented by the smallest Finsler volume, which
we call the circumscribed Riemannian volumeμcr. By definition,μcr(E) = αm for the
(unique) minimal volume ellipsoid E that contains the unit ball of the given normed
space. In contrast to the volumes mentioned above,μcr is not Euclidean rigid as shown
in the following example.

Example 2.4 Let | · | be the standard Euclidean norm on R2 with unit disk B and let
C ⊂ B be a regular 2n-con (n ≥ 2) with vertices on the unit circle ∂B. By symmetry,
B is the ellipse of minimal area that containsC . Let ‖·‖ be the norm ofR2 for whichC
is the unit disk. Then id : (R2, ‖·‖) → (R2, | · |) is 1-Lipschitz and volume preserving
μcr‖·‖ = μcr|·|, but the two norms are obviously not equal.

Lemma 2.5 The Busemann-Hausdorff volume μbh is Euclidean rigid.

Proof Let ‖ · ‖ be a norm on Rm with properties (1) and (2) of Definition 2.3. The
Busemann-Hausdorff volume has the defining property

μbh‖·‖(B‖·‖(0, 1)) = αm = μbh|·| (B|·|(0, 1)).

Since B‖·‖(0, 1) ⊂ B|·|(0, 1) by (1) and μbh‖·‖ ≤ μbh|·| by (2), it holds

μbh‖·‖(B‖·‖(0, 1)) ≤ μbh|·| (B‖·‖(0, 1)) ≤ μbh|·| (B|·|(0, 1)) = μbh‖·‖(B‖·‖(0, 1)) .

Thus equality holds and hence B‖·‖(0, 1) = B|·|(0, 1), or equivalently, ‖ · ‖ = | · |. 
�
Lemma 2.6 The Gromov-mass-star volume μm∗ is Euclidean rigid.

Proof Let ‖ · ‖ be a norm on Rm with properties (1) and (2) of Definition 2.3. Let
e1, . . . , em be any orthonormal basis with respect to the standard Euclidean norm | · |
and denote by f1, . . . , fm the dual basis. The unit ball B|·|(0, 1) is contained in the
parallelepiped

P := {x ∈ Rm : | fi (x)| ≤ 1, for all i}

of (Lebesgue) volume 2m . It holds B‖·‖(0, 1) ⊂ P because ‖ · ‖ ≥ | · | and μm∗‖·‖(P) =
2m because μm∗|·| = μm∗‖·‖ by assumption. By the definition of the Gromov-mass-star
volume, P must be a parallelepiped of minimal volume that contains B‖·‖(0, 1). The
only points x ∈ B|·|(0, 1) with | f1(x)| = 1 are e1 and −e1. Because B‖·‖(0, 1) ⊂
B|·|(0, 1), the points ±e1 have to be contained in B‖·‖(0, 1) too. Otherwise, P can
be scaled in direction e1 to a parallelepiped of smaller volume that also contains
B‖·‖(0, 1). This is a contradiction. Since the orthonormal basis e1, . . . , em is arbitrary,
we conclude that every point in the sphere ∂B|·|(0, 1) is contained inB‖·‖(0, 1). Hence
B‖·‖(0, 1) = B|·|(0, 1), respectively, ‖ · ‖ = | · |. 
�

123



Lipschitz-Volume Rigidity of Lipschitz Manifolds Page 7 of 19 210

2.3 Finsler Mass

As in [20, Definition 2.4] any Finsler volume induces a notion of volume on rectifiable
spaces and mass on rectifiable metric currents. To recall this definition, we first need
the Jacobian of seminorms.

If s is a seminorm on Rm , the Jacobian Jμ(s) of s with respect to μ is μs([0, 1]m)

if s is a norm, and 0 otherwise. Equivalently, in case s is a norm,

Jμ(s) = μs(B)

L m(B)
(2.3)

for a (any) Borel set B ⊂ Rm of positive and finite measure.
Suppose S ⊂ X is a countably H m-rectifiable with atlas (ϕi , Ki ). We may iso-

metrically embed X into 	∞(X) and extend each ϕi to a Lipschitz map defined on
all of Rm . Due to [15], the metric derivative of ϕi is defined at almost every point
x ∈ Ki and denoted by md(ϕi )x . A metric derivative is a seminorm on Rm . We note
that a different isometric embedding into 	∞ and a different Lipschitz extension of ϕi
changes md(ϕi ) in at most a set of measure zero. These choices could also be bypassed
by switching to approximate limits in the definition of metric derivatives similar to
[13, §3.1.2] in the classical case.

Suppose μ is an m-dimensional Finsler volume, then μS is the Borel measure on
S defined by

μS(B) :=
∑
i

∫
Ki∩ϕ−1

i (B)

Jμ(md((ϕi )x )) dL
m(x) . (2.4)

Suppose T ∈ Rm(X) is induced by an atlas with densities (ϕi , Ki , θi ), then the
Borel measure and mass of T with respect to μ is defined by

‖T ‖μ(B) :=
∑
i

∫
Ki∩ϕ−1

i (B)

|θi (x)|Jμ(md(ϕi )x ) dL
m(x)

and Mμ(T ) := ‖T ‖μ(X). Similarly we could define a mass on rectifiable G-chains
as introduced in [10].

Essentially by [20, Lemma 2.5] it holds:

• This extended notion of volume and mass on rectifiable spaces is compatible with
the underlying Finsler volume on normed spaces.

• The Gromov-mass-star measure ‖T ‖m∗ is the usual measure ‖T ‖ for metric
currents, whereas the mass on rectifiable G-chain is induced by the Busemann-
Hausdorff volume.

• Finsler volumes are comparable in the sense that

C−1
m ‖T ‖μ2 ≤ ‖T ‖μ1 ≤ Cm‖T ‖μ2

for some universal Cm ≥ 1. In particular, any such measure is comparable to the
Ambrosio-Kirchheim or the Hausdorff mass.
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The last point indicates in particular that questions concerning measurability, integra-
bility and null-sets are independent of the choice of Finsler volume.

Suppose f : X → Y is Lipschitz and S ⊂ X is countably H m-rectifiable with
atlas (ϕi , Ki ) as above. For H m-almost every x ∈ S there exists i and y ∈ Ki with
ϕi (y) = x such that the μ-Jacobian of f at x is well-defined by

Jμ(md( fx )) := Jμ(md(( f ◦ ϕi )y))

Jμ(md((ϕi )y))
.

Note that md((ϕi )y)) is indeed a norm (not a degenerated seminorm) for almost every
x ∈ Ki by the area formula with respect to the Hausdorff measure H m , [15, The-
orem 7], and the fact that bi-Lipschitz maps preserve H m-null sets. This definition
is independent of the underlying atlas in the sense that for another atlas the two def-
initions agree in the complement of an H m-null subset of S. This boils down to the
following chain rule for Jacobians. Assume (ϕ, K1) and (ψ, K2) are two charts of S
with the same image. Then for almost every x ∈ K1,

Jμ(md(( f ◦ ϕ)x )) = Jμ
(
md(( f ◦ ψ ◦ ψ−1 ◦ ϕ)x )

)
= Jμ

(
md(( f ◦ ψ)(ψ−1◦ϕ)(x)) ◦ D(ψ−1 ◦ ϕ)x

)
= Jμ

(
md(( f ◦ ψ)(ψ−1◦ϕ)(x))

) ∣∣det(D(ψ−1 ◦ ϕ)x )
∣∣ .

If we plug in f = id we also obtain

Jμ(md(ϕx ))

Jμ
(
md(ψ(ψ−1◦ϕ)(x))

) = ∣∣det(D(ψ−1 ◦ ϕ)x )
∣∣ ,

and hence

Jμ(md(( f ◦ ϕ)x ))

Jμ(md(ϕx ))
= Jμ

(
md(( f ◦ ψ)(ψ−1◦ϕ)(x))

)
Jμ

(
md(ψ(ψ−1◦ϕ)(x))

)

for almost all x ∈ K1.

Theorem 2.7 (Finsler area formula) Suppose that X and Y are completemetric spaces,
S ⊂ X is countably H m-rectifiable, f : X → Y is Lipschitz and g : S → [0,∞] is
measurable. Then

∫
S
g(x)Jμ(md( fx )) dμS(x) =

∫
f (S)

( ∑
x∈ f −1(y)

g(x)

)
dμ f (S)(y).
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Proof Let (ϕi , Ki ) be an atlas of S. By the definition ofμS in (2.4) and approximating
x �→ g(x)Jμ(md( fx )) by simple functions, the left-hand side above can be written as

∑
i

∫
Ki

g(ϕi (z))Jμ(md( fϕi (z)))J
μ(md((ϕi )z)) dL

m(z)

=
∑
i

∫
Ki

g(ϕi (z))Jμ(md(( f ◦ ϕi )z)) dL
m(z) .

To conclude the proof we assume first that g = χA for somemeasurable subset A ⊂ S.
Proceeding as in Theorem 7 in [15] we find for each i countablymany disjoint compact
subsets Ei, j ⊂ Ki such that:

• f ◦ϕi : Ei, j → f (S) is bi-Lipschitz and md( f ◦ϕi ) is a norm almost everywhere.
• md( f ◦ ϕi ) is a strict seminorm for almost all points of Ki \ ⋃

j Ei, j .
• H m(( f ◦ ϕi )(Ki\⋃

j Ei, j )) = 0 = μ f (S)(( f ◦ ϕi )(Ki\ ⋃
j Ei, j )).

By the first point, ( f ◦ϕi , Ei, j ) is a chart of f (S) for each i and j and by the definition
of μ f (S) in (2.4),

∫
Ei, j∩ϕ−1

i (A)

Jμ(md(( f ◦ ϕi )z)) dL
m(z) = μ f (S)( f (A ∩ ϕi (Ei, j )))

=
∫
f (S)

( ∑
x∈ f −1(y)

χA∩ϕi (Ei, j )(x)

)
dμ f (S)(y) .

Note that the integrand in second line is equal to the characteristic function of f (A ∩
ϕi (Ei, j )). Let E := ⋃

i, j ϕi (Ei, j ) ⊂ S. From the third point it follows μ f (S)( f (S \
E)) = 0. By summing over all i and j using the second point in the second line below:

∫
A
Jμ(md( fx )) dμS(x) =

∑
i

∫
Ki∩ϕ−1

i (A)

Jμ(md(( f ◦ ϕi )z)) dL
m(z)

=
∑
i, j

∫
Ei, j∩ϕ−1

i (A)

Jμ(md(( f ◦ ϕi )z)) dL
m(z)

=
∑
i, j

∫
f (S)

( ∑
x∈ f −1(y)

χA∩ϕi (Ei, j )(x)

)
dμ f (S)(y)

=
∫
f (S)

( ∑
x∈ f −1(y)

χA∩E (x)

)
dμ f (S)(y)

=
∫
f (S)\ f (S\E)

( ∑
x∈ f −1(y)

χA(x)

)
dμ f (S)(y)

=
∫
f (S)

( ∑
x∈ f −1(y)

χA(x)

)
dμ f (S)(y) .
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So the theorem holds for simple functions g and by approximation for all non-negative
measurable functions. 
�

Amap f : X → Y as in the theorem above is called an infinitesimal isometry on S
if whenever (ϕ, K ) is a chart of S, then md(ϕx ) = md( f ◦ ϕx ) for almost all x ∈ K .

2.4 Essential Length Spaces

The essential length distance originates in [9]. Our formulation in the context of metric
measure spaces is from [1].

Definition 2.8 A metric measure space (X , d, μ) is an essential length space if for
all x, y ∈ X , all N ⊂ X with μ(N ) = 0 and all ε > 0 there exists a Lipschitz curve
γ : [0, 1] → X connecting x and y such that L 1(γ −1(N )) = 0 and

d(x, y) + ε ≥ L(γ ).

In other words, d(x, y) is equal to the essential length distance

dess(x, y) := sup{dN (x, y) : N ⊂ X , μ(N ) = 0}

where

dN (x, y) := inf{L(γ ) : γ ∈ Lip([0, 1], X), γ (0) = x, γ (1) = y,L 1(γ −1(N )) = 0}.

This is compatible with the definition of essential metric in [1, Definition 4.1] due
to [1, Proposition 4.6]. A further generalization to p-essential length distances for
p < ∞ is studied in [8]. Essential length spaces are obviously standard length spaces
but the converse does not hold even for quite nice Lipschitz manifolds as we will
see in Example 4.1. An m-dimensional Lipschitz manifold (possibly with boundary)
is a metric space (M, d) which can be covered by open sets which are bi-Lipschitz
equivalent to open subsets of Rm (or ofHm := {x ∈ Rm : xm ≥ 0}). See e.g., [18] for
more details. It is understood that in this case μ is the induced Hausdorff measure on
M (any other Finsler volume induces the same essential length distance). If (M, d) is
a Lipschitz manifold, then the essential distance dess is locally bi-Lipschitz equivalent
to d. This follows by elementary means and is an instance of [12, Theorem 3.1] which
lists five other characterizations for this bi-Lipschitz equivalence for more general
metric measure spaces.

Suppose M is a C1-manifold (possibly with boundary) and g is a continuous Rie-
mannian metric on M . The induced length distance di is defined by

di(x, y) := inf
γ

L(γ )
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where the infimum is over length of all piecewise C1-curves γ : [0, 1] → M with
γ (0) = x and γ (1) = y. The length of such a γ is defined by

L(γ ) :=
∫ 1

0
gγ (t)(γ

′(t), γ ′(t))
1
2 dt .

As shown in [7, Corollary 3.13], di can equivalently be defined with respect to abso-
lutely continuous curves instead of piecewise C1-curves. If d is a background metric
on M such that C1-charts on M are locally bi-Lipschitz, such metric exists by [18,
Theorem 3.5], then absolutely continuous curves in M are those curves absolutely
continuous with respect to d. Thus any curve class in between piecewise C1 and
absolutely continuous induces the same length metric di, see [7, §3.6]. In contrast to
general Lipschitz manifolds, Riemannian manifolds with the induced length distance
are essential length spaces. The main reason is that for any sequence of C1-curves
(γn) which converges in the C1-topology to γ , it holds L(γn) → L(γ ). Here are the
details.

Lemma 2.9 If M is a C1-manifold with continuous Riemannian metric g, then

dess = di.

Proof We assume that M is connected since for points in different components, dess
and di are ∞. Let γ : [0, 1] → M be an injective piecewise C1-curve which connects
x = γ (0) and y = γ (1) in M . Working in a chart we first assume that M is an open,
connected subset U of Rm . Let N ⊂ U be a set of L m-measure zero and fix ε > 0.
By a smoothing argument we may replace γ by a C1-embedding γ̃ : [0, 1] → M
connecting x and y such that L(γ̃ ) < L(γ ) + ε. In dimension 1 this is trivially true,
in dimensions ≥ 2 this follows by a general position argument smoothing the corners.
By the tubular neighborhood theorem, there exists a C1-embedding 
 : [0, 1] ×
Um−1(0, 1) → M with 
(t, 0) = γ̃ (t). Define δ : [0, 1] × Um−1(0, 1) → [0, 1] by
δ(t, p) := t(1− t)p and 
̃(t, p) := 
(t, δ(t, p)). Then 
̃ is a C1-map which is still a
C1-embedding on (0, 1)×Um−1(0, 1) but the endpoints x and y on t = 0, 1 are fixed.
Applying the Theorem of Fubini there exists a sequence pn → 0 in Um−1(0, 1) such
that each curve γn,N (t) := 
̃(t, pn) satisfies L 1(γ −1

n,N (N )) = 0. γn converges in the

C1-norm to γ̃ , hence L(γn,N ) → L(γ̃ ) for n → ∞. Thus for n big enough γn,N is a
C1-curve connecting x with y, essentially avoiding N such that L(γn,N ) < L(γ̃ )+ ε.
By [7, Theorem 4.11], the length L(γ ) for an absolutely continuous curve γ agrees
with the metric definition of length with respect to the induced length distance di. We
denote this length by Ldi(γ ).

For arbitrary x and y (possibly on the boundary) let γ : [0, 1] → M be piecewise
C1-curve connecting them such that L(γ ) ≤ di(x, y) + ε and let N ⊂ M be a
set of measure zero. By approximation we may assume that γ ((0, 1)) ⊂ M \ ∂M .
Covering γ ((0, 1)) by countably many charts in M \ ∂M we find a C1-embedding
γε,N : [0, 1] → M with:

(1) γε,N (0) = x , γε,N (1) = y, γε,N ((0, 1)) ⊂ M \ ∂M ,
(2) L 1(γ −1

ε,N (N )) = 0,
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(3) L(γε,N ) ≤ L(γ ) + ε.

It follows that

dess(x, y) = sup
H m (N )=0

Ldi(γε,N ) = sup
H m (N )=0

L(γε,N )

≤ L(γ ) + ε = Ldi(γ ) + ε ≤ di(x, y) + 2ε .

dess(x, y) ≥ di(x, y) is clear by definition. This proves the statement. 
�
The result above as well as those in [7] should hold as well for continuous Finsler

metrics g on C1-manifolds. In this situation, g assigns to any point p ∈ M a norm
in the tangent space gp : TpM → [0,∞) such that g ◦ X is continuous for every
continuous vector field X on M .

3 Proof of theMain Theorem

The following proposition is motivated by the partial rectifiability theorems [16, Theo-
rem 7.6] and [3, Theorem 7.4]. Since rectifiable currents are concentrated on separable
spaceswemay assume, by restricting to the support, that the ambient space is complete
and separable.

Proposition 3.1 Suppose m ≥ 1, L > 0, T ∈ Im(X), π ∈ Lip(X ,Rm) and V ⊂ Rm

is open. Set U := π−1(V ) ⊂ X and assume that the following assumptions hold:

(1) U ∩ spt(∂T ) = ∅,
(2) π#(T�U ) = [[V ]],
(3) π : U → V is almost injective in the sense that π−1(y) ∩ ST consists of a single

point for almost all y ∈ V . (ST is as in (2.2)).
(4) Lip(π)m−1Mπ#‖T�U‖(y) ≤ L for almost all y ∈ V (hence for all y ∈ V ).

Then π : spt(T ) ∩ U → V is a homeomorphism which is locally bi-Lipschitz in the
sense that

Lip(π)−1|π(x) − π(x ′)| ≤ d(x, x ′) ≤ 2cmL|π(x) − π(x ′)|

for all x, x ′ ∈ spt(T ) ∩U with

d(x, x ′) < min(dist(x, X \U ), dist(x ′, X \U )) (3.1)

Here, cm > 0 is the constant of (2.1).

Proof We abbreviate μ := Lip(π)m−1π#‖T�U‖, i.e.

μ(B) = Lip(π)m−1‖T ‖(π−1(B) ∩U )

for every Borel set B ⊂ Rm . So (4) is equivalent to Mμ(y) ≤ L .
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By [3, Theorem 5.7], (2) and (3) there is a Borel set of full measure A ⊂ V such
that for any y ∈ A there exists a unique point x(y) ∈ π−1(y) ∩ ST with 〈T , π, y〉 =
[[x(y)]] ∈ I0(X) and π#〈T , π, y〉 = [[y]]. Note that every element of I0(X) is a finite
sum

∑
i ni [[xi ]] with integer multiplicities ni ∈ Z.

For f ∈ Lip(X) with spt( f ) ⊂ U we let u f ∈ BV(Rm) be the function that
represents the current π#(T� f ) as in Lemma 2.1. For any Borel set B ⊂ Rm ,

|Du f |(B) = ‖∂[[u f ]]‖(B) = ‖∂(π#(T� f ))‖(B) = ‖π#(∂(T� f ))‖(B)

≤ Lip(π)m−1‖∂(T� f )‖(π−1(B)) .

If moreover Lip( f ) ≤ 1, it follows from (1) and [3, Equation (3.5)] that

∂(T� f ) = (∂T )� f − T�d f = −T�d f = −(T�U )�d f .

Hence

|Du f |(B) ≤ Lip(π)m−1‖T� spt( f )‖(π−1(B))

≤ Lip(π)m−1‖T�U‖(π−1(B)) ≤ μ(B) . (3.2)

LetF ⊂ Lip(X) be a countable collection of 1-Lipschitz functions such that for every
x ∈ U , 0 < ε < 1 and 0 < ρ < dist(x, X\U ) there is fx,ρ,ε ∈ F with

fx,ρ,ε(x) ≥ ερ , 0 ≤ fx,ρ,ε ≤ ρ , fx,ρ,ε = 0 on X \ U(x, ρ) . (3.3)

Note that X and hence also U is separable. Then there exists a Borel set A′ ⊂ A of
full measure such that for every f ∈ F every y ∈ A′ is a density point of u f and
〈T , π, y〉( f ) = u f (y). From (2.1), (3.2) and (4) it follows that

|u f (y) − u f (y
′)| ≤ cm

(
Mμ(y) + Mμ(y′)

) |y − y′|
≤ 2cmL|y − y′| (3.4)

for all y, y′ ∈ A′ and f ∈ F . Let x, x ′ ∈ π−1(A′) ∩ ST be different but close
enough together such that (3.1) holds and set ρ := d(x, x ′). Fix 0 < ε < 1 and set
f := fx,ρ,ε ∈ F as in (3.3). It holds f (x) ≥ ερ and f (x ′) = 0. Then

|〈T , π, π(x ′)〉( f )| ≤
∫
X
f d‖〈T , π, π(x ′)〉‖

≤ ρ · ‖〈T , π, π(x ′)〉‖({x}) = 0 .

On the other side,

|〈T , π, π(x)〉( f )| ≥ |〈T , π, π(x)〉(χ{x} f )| − |〈T , π, π(x)〉(χU\{x} f )|
≥ ερ|〈T , π, π(x)〉(χ{x})| ≥ ερ .
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We conclude from [3, Equation (5.7)] and (3.4) that

εd(x, x ′) = ερ ≤ |〈T , π, π(x)〉( f ) − 〈T , π, π(x ′)〉( f )|
= |u f (π(x)) − u f (π(x ′))|
≤ 2cmL|π(x) − π(x ′)|.

This holds for all 0 < ε < 1, hence

d(x, x ′) ≤ 2cmL|π(x) − π(x ′)| (3.5)

for all x, x ′ ∈ π−1(A′) ∩ ST separated as in (3.1).
We claim that T�U is concentrated on π−1(A′) ∩ ST . For any ε > 0, V \ A′ can

be covered by countably many balls B(yn, rn) ⊂ V such that

∑
n

αmr
m
n ≤ ε.

By (4),

‖T�U‖(π−1(V \ A′)) ≤
∑
n

‖T�U‖(π−1(B(yn, rn)))

≤
∑
n

Mπ#‖T�U‖(yn)αmr
m
n

≤ Lip(π)1−mLε .

Hence ‖T�U‖(π−1(V \ A′)) = 0 and thus π−1(A′) ∩ ST is dense in spt(T�U ) =
spt(T ) ∩U . This shows that

d(x, x ′) ≤ 2cmL|π(x) − π(x ′)| (3.6)

for all x, x ′ ∈ spt(T ) ∩U separated as in (3.1).
Next we show that π : spt(T ) ∩ U → V is an open map. Let x ∈ spt(T ) ∩U and

r > 0 be small enough such that:

• B(x, r) ⊂ U ,
• T�U(x, r) ∈ Im(X),
• spt(∂(T�U(x, r))) ⊂ S(x, r) := {x ′ ∈ X : d(x, x ′) = r},
• π restricted to spt(T ) ∩ U(x, r) is a bi-Lipschitz embedding into Rm .

If dx denotes the distance function to x , then point two and three are consequences of
the slicing identity

〈T , dx , r〉 = ∂(T�{dx < r}) − (∂T )�{dx < r} = ∂(T�{dx < r})

for almost all small r > 0 which is due to [3, Lemma 5.3] or [16, Defini-
tion 6.1] and assumption (1). Point four is a consequence of (3.6). It follows that
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R := π#(T�U(x, r)) �= 0 because x ∈ spt(T ) and π is bi-Lipschitz. Now
U(π(x), s) ⊂ V \π(S(x, r)) for some small s > 0. If R�U(π(x), s) �= 0, then
R�U(π(x), s) = λ[[U(π(x), s)]] for some λ �= 0 by the constancy theorem of [13].
Thus U(π(x), s) is contained in π(B(x, r)). Otherwise if R�U(π(x), s) = 0,

0 = R�U(π(x), s) = π#(T�Nx )

for the neighbourhood Nx := spt(T ) ∩ U(x, r) ∩ π−1(U(π(x), s)) of x in spt(T ).
But π is bi-Lipschitz on Nx and T�Nx �= 0 because x is in the support of T . Thus
π#(T�Nx ) �= 0. This is a contradiction.

It remains to show that π : spt(T ) ∩U → V is injective. But this follows directly
from assumption (3) and the openness of π . 
�

This allows to prove the main theorem. Without loss of generality we assume that
spt(T ) = X .

Proof of Theorem 1.2 Let f : X → M as in the statement. f being 1-Lipschitz and
assumption (c) imply that f is volume preserving in the sense

‖T ‖μ(B) = ‖[[M]]‖μ( f (B)) = H m( f (B)) (3.7)

for anyBorel set B ⊂ X . T is represented by the countablyH m-rectifiable set S = ST ,
a density θ : S → N and an orientation induced by an atlas of positively oriented,
pairwise disjoint charts (ϕi , Ki ) for S. With the Finsler area formula 2.7 it follows

Mμ(T ) =
∫
S
θ(x) dμS(x) ≥

∫
S
θ(x)Jμ(md( fx )) dμS(x)

=
∫
M

( ∑
x∈ f −1(y)

θ(x)

)
dμM (y) ≥ Mμ([[M]]) = Mμ(T ) .

The first inequality holds because f is 1-Lipschitz and hence Jμ(md( fx )) ≤ 1 almost
everywhere. Thus we obtain equalities and the following consequences:

• H 0( f −1(y) ∩ S) = 1 for almost all y ∈ M .
• Jμ(md( fx )) = 1 for H m-almost all x ∈ S.
• θ(x) = 1 for H m-almost all x ∈ S.

Because f is 1-Lipschitz it holds md((ϕi )x ) ≥ md(( f ◦ ϕi )x ) for all i and almost all
x ∈ Ki . Since M is infinitesimally Euclidean, md(( f ◦ϕi )x ) is an Euclidean norm for
all i and almost all x ∈ Ki . Since μ is Euclidean rigid, the second point above implies
md((ϕi )x ) = md(( f ◦ϕi )x ) for all i and almost all x ∈ Ki . Thus f is an infinitesimal
isometry and S is infinitesimally Euclidean too.

Wenext apply Proposition 3.1 by postcomposingwith charts ofM . Fix y0 ∈ M\∂M
and let D : M → R be the distance function to y0, i.e. D(y) = d(y0, y). Fix r > 0
small enough such that B(y0, 2r) ∩ ∂M = ∅ and there exists a positively oriented
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bi-Lipschitz chart ϕ : U(y0, 2r) → Rm onto an open subset of Rm . By the slicing
theory of [3] and assumption (b) we can further assume that

T� f −1(B(y0, r)) = T� f −1(U(y0, r)) and

∂(T� f −1(U(y0, r))) = 〈T , D ◦ f , r〉 ∈ Im−1(X)

holds for this r . Set X ′ := f −1(B(y0, r)), U := f −1(U(y0, r)), V := ϕ(U(y0, r)),
T ′ := T�X ′ and π := ϕ ◦ f : X ′ → Rm . Then

• T ′ ∈ Im(X),
• π#T ′ = ϕ#([[M]]�U(y0, r)) = [[V ]],
• spt(∂T ′) is contained in (D ◦ f )−1(r) which is disjoint from U .

We now apply Proposition 3.1 with X ′ and T ′ in place of X and T respectively and
π as above. Assumptions (1), (2) and (3) of Proposition 3.1 are clearly satisfied. It
holds f#‖T ′‖ = H m�U(y0, r) by (3.7) and because ϕ is bi-Lipschitz there is some
constant C ≥ 1 such that

C−1‖[[V ]]‖ ≤ π#‖T ′‖ ≤ C‖[[V ]]‖.

The maximal function of ‖[[V ]]‖ clearly satisfies M‖[[V ]]‖ ≤ 1, hence (4) of Propo-
sition 3.1 holds too for some finite L > 0. Thus for all y0 ∈ M\∂M we find
0 < r < dist(y0, ∂M) such that f : spt(T ) ∩ f −1(U(y0, r)) → U(y0, r) is a
homeomorphism and locally bi-Lipschitz.

Collecting the local information, f : X◦ := spt(T )\ spt(∂T ) → M◦ := M\∂M is
1-Lipschitz, surjective, open, locally bi-Lipschitz and an infinitesimal isometry. Since
f −1(y)∩X◦ is a single point forH m-almost all y ∈ M◦ and f is open, f : X◦ → M◦
is injective and thus a homeomorphism which is locally bi-Lipschitz. Next we show
that f : X◦ → M◦ also preserves the length of curves. Suppose that ϕ : U → X◦ and
f ◦ ϕ : U → M◦ are bi-Lipschitz charts defined on an open set U ⊂ Rm . Because
f is an infinitesimal isometry it follows that md(ϕx ) = md(( f ◦ ϕ)x ) for almost all
x ∈ U . We call this collection by A ⊂ U . If γ : [0, 1] → U is a Lipschitz curve with
L 1(γ −1(U \ A)) = 0, then, for example by [2, Theorem 4.1.6] it holds

L(ϕ ◦ γ ) =
∫ 1

0
md(ϕx )(γ

′(t)) dt =
∫ 1

0
md(( f ◦ ϕ)x )(γ

′(t)) dt = L( f ◦ ϕ ◦ γ ).

Covering M◦ by countably many such bi-Lipschitz charts we find a set N ⊂ M◦ with
H m(N ) = 0 such that L(γ ) = L( f −1 ◦ γ ) for all Lipschitz curves γ : [0, 1] →
M◦ with L 1(γ −1(N )) = 0. Because M◦ is an essential length space, this implies
d(x, y) ≤ d( f (x), f (y)) for all x, y ∈ X◦. The other inequality is clear because f is
1-Lipschitz. Thus f : X◦ → M◦ is an isometry. BecauseM is themetric completion of
M◦, and X is complete, f : X◦ → M is an isometry too. Now X◦ = spt(T )\ spt(∂T )

is dense in spt(T ) because

‖T ‖μ(spt(∂T )) = H m( f (spt(∂T ))) ≤ H m(∂M) = 0
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by (3.7) and assumption (b). Thus X◦ = spt(T ) and hence f : spt(T ) → M is an
isometry as claimed. 
�

4 Counterexamples and Comments

In case M has a boundary, it is not clear to the author if assumption (1) in Theorem 1.2
can be replaced by assuming that (M, d) is an essential length space instead of (M \
∂M). In any case it can’t be replaced by assuming M (or M \∂M) to be a length space
as the following example demonstrates.

Example 4.1 Let S2 be the standard Euclidean sphere inR3 with induced lengthmetric
D. Fix a great circle C in S2. A new metric d on S2 is defined by

d(x, y) = min

(
D(x, y), inf

v,w∈C D(x, v) + 1
2D(v,w) + D(w, y)

)
.

The resulting metric space (S2, d) is denoted by S and f : S2 → S is the identity.
The following statements are easy to check:

(1) S is a geodesic space.
(2) f is 1-Lipschitz with 1

2 -Lipschitz inverse.
(3) f is an infinitesimal isometry outside C and thus area preserving.
(3) f#[[S2]] = [[S ]] withM([[S]]) = M([[S ]]) as a consequence of (2) and (3).

S is a geodesic Lipschitz manifold because of (1) and (2) but f is not an isometry.

A careful application of the Nash-KuiperC1-isometric embedding theorem applied
to a sequence of Riemannian metrics on S2 akin to [17] probably shows that S can
be realized isometrically as the length distance on some Lipschitz submanifold of R3.
Note that [17, Corollary 2.6] gives a path isometric embedding ofS into R3, but it is
not clear that this embedding, in this particular situation (in general it is not), is also
bi-Lipschitz.

We propose a different construction of a geodesic Lipschitz surface in R3 with the
same properties listed for S above. This serves as a counterexample to [4, Ques-
tion 8.1]. The essential part of this surface is a Lipschitz graph over the xy-plane.
Define z : R → R to be the periodic zigzag function

z(t) := min{|t − n| : n ∈ Z}.

For any integer n ∈ Z \ {0} the rescaled version zn : R → R is defined by zn(t) :=
2−nz(t2n). All these functions are piecewise linear with |z′n(t)| = 1 for almost all t .
Define the function f : R × (0,∞) → R by

f (s, λ2n + (1 − λ)2n+1) = λzn(s) + (1 − λ)zn+1(s)

in case n ∈ Z and λ ∈ [0, 1]. We extend f to all of R2 by setting f (x, 0) = 0 and
f (x, y) = f (x,−y) for (x, y) ∈ R× (−∞, 0). It is easy to check that f is Lipschitz
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and hence the graph

M := {(x, y, f (x, y)) : (x, y) ∈ R2}

equipped with the Euclidean distance d of R3 is a Lipschitz surface. Let di ≥ d
be the induced length distance on M . Because f is Lipschitz, there is some L > 0
such that di ≤ Ld. Let I be the line segment in M with endpoints p = (0, 0, 0)
and q = (1, 0, 0). It holds d(p, q) = di (p, q) = 1. It can be shown that there is
some c > 0 such that whenever γ is a Lipschitz curve in M connecting p and q with
H 1(im(γ )∩ I ) = 0, then L(γ ) ≥ c. Thus (M, di ) is not an essential length space. If
de denotes the essential length distance on M induced by d (or equivalently di ), then

Ld ≥ de ≥ di ≥ d.

So the identity g : (M, de) → (M, di ) is 1-Lipschitz. g is also volume preserving,
since M is piecewise smooth outside the x-axis {(x, 0, 0) : x ∈ R}. But g is not an
isometry because di (p, q) = 1 < de(p, q).

It is straight forward to modify M in R3 so that the resulting space is bi-Lipschitz
equivalent to S2 with properties similar to S above. For example we may restrict M
to [−1, 1]2 ×R to obtain a compact Lipschitz surface with piecewise linear boundary
which can be closed to obtain a Lipschitz sphere.
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