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Abstract
In this paper, we study some blow-up conditions via one velocity component for
the 3D incompressible Navier–Stokes equations in the framework of scaling invariant
anisotropic Besov spaces. In particular, we prove that if one component of the velocity

remains small enough in the space Ḣ
1
2 , then there is no blow-up. This result improves

the previous ones by Chemin et al. (Commun Partial Differ Equ 44:1387-1405, 2019)
and Houamed (J Differ Equ 275:116–138, 2021).

Keywords Navier–Stokes equations · Blow-up criteria · One velocity component ·
Anisotropic Besov spaces

Mathematics Subject Classification 35Q30 · 76D05

1 Introduction andMain Results

In this paper, we consider possible blow-up behavior of a regular solutions to the 3D
incompressible Navier–Stokes equations:
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⎧
⎪⎨

⎪⎩

ut − �u + (u · ∇)u + ∇ p = 0 in (0,∞) × R
3,

∇ · u = 0 in (0,∞) × R
3,

u(0, x) = u0(x) in R
3,

(1.1)

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and p = p(t, x) are the unknown
velocity and pressure, respectively, and u0 = u0(x) is a given initial velocity.

It was proved in [19] that for u0 ∈ L2(R3) with ∇ · u0 = 0, (1.1) has at least one
global weak solution u ∈ L∞(0,∞; L2(R3)) ∩ L2(0,∞; H1(R3)) which satisfies
the energy inequality

1

2
‖u(t)‖22 +

∫ t

0
‖∇u(τ )‖22 dτ ≤ 1

2
‖u0‖22, for every t ∈ [0,∞). (1.2)

It was known in [12] that given u0 ∈ Hs(R3) with s > 1/2, there exist T ∗ =
T ∗(‖u0‖Hs ) > 0 and a unique local strong solution u to (1.1) on [0, T ∗) satisfying

u ∈ C([0, T ∗); Hs(R3)) ∩ C1((0, T ∗); Hs(R3)) ∩ C((0, T ∗); Hs+2(R3)).

(1.3)

It is a challenging problem whether such local strong solution blows up at T ∗ or can
be smoothly extended beyond T ∗ up to infinity. This problem still remains unsolved
in spite of tremendous efforts by many researchers over the years. Nevertheless, there
is a vast literature providing sufficient conditions to guarantee the regularity of weak
solution, or equivalently to ensure the smooth extension of maximal solution. (see [8,
10, 27] and references therein). For instance, it was known that if the weak solution
satisfies so called Prodi–Serrin condition

u ∈ L p(0, T ; Lq), for q ∈ (3,∞] and 2/p + 3/q = 1, (1.4)

then u is regular on (0, T ] (see [23, 25]). The limiting case where q = 3 was proved by
Escauriaza, Seregin, and Šverák in [11]. Note that (1.1) is invariant under the natural
scaling

uλ(t, x) = λu(λ2t, λx), pλ(t, x) = λ2 p(λ2t, λx), u0λ = λu0(λx), λ > 0,

(1.5)

and if 2/p + 3/q = 1, then we have ‖u‖L p(0,T ;Lq ) = ‖uλ‖L p(0,λ−2T ;Lq ). Therefore,
the Prodi-Serrin criterion (1.4) is optimal from the point of view of scaling invariance.
We refer the readers to [4, 8–10, 13] and references therein for the most up-to-date
results.

We mainly focus on some important regularity results involving one velocity
component. Neustupa and Penel [21] first established a regularity criterion

u3 ∈ L p(0, T ; Lq), for q ∈ (6,∞) and 2/p + 3/q = 1/2. (1.6)
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He [17] showed the regularity criterion

∇u3 ∈ L p(0, T ; Lq), for q ∈ [3,∞] and 2/p + 3/q = 1. (1.7)

After that, some improvements to [21] and [17] were made during the last decades
(c.f. [2, 3, 22, 30] and [31]), but most of which are not scaling invariant under the
natural scaling.

Chemin and Zhang [5] proved a scaling invariant blow-up criterion. They showed

that for any initial data with gradient in L
3
2 and for any unit vector e ∈ S

2, if its
lifespan T ∗ of unique maximal solution associated with the initial data is finite, then
there holds

∫ T ∗

0
‖u(t) · e‖p

Ḣ
1
2+ 2

p
dt = ∞, (1.8)

for p ∈ (4, 6). This criterion was extended to the case p ∈ (4,∞) in [6]. Han, Lei, Li,
and Zhao [16] further extended (1.8) to [2,∞). Wolf [28] proved a scaling invariant
criterion

∇u3 ∈ L4(0, T ; L2). (1.9)

Chemin et al. [7] studied what happens to the endpoint criterion when p = ∞ in
(1.8).Asmentioned in [7], such a result in the case of p = ∞, assuming it is true, seems
to be out of reach for the time being. They proved “almost” scaling invariant blow-up

criterion reinforcing slightly the Ḣ
1
2 norm in the horizontal direction. Precisely, they

proved the following:

Theorem 1.1 There exists a positive constant c0 such that if u is a maximal solution
of (1.1) in C([0, T ∗), H1), then for all positive real number E and for any e ∈ S

2,
we have

T ∗ < ∞ 	⇒ lim sup
t→T ∗

‖u(t) · e‖
Ḣ

1
2
logh,E

≥ c0, (1.10)

where

‖a‖2
Ḣ

1
2
logh,E

def=
∫

R3
|ξ |log(E |ξh | + e)|â(ξ)|2dξ < ∞.

Later on, Houamed [18] proved the same “almost” scaling invariant blow-up criterion

in the case of p = ∞, by slightly reinforcing the Ḣ
1
2 norm in the vertical direction

instead of the horizontal one. That is, it was proved that

Theorem 1.2 There exists a positive constant c0 such that if u is a maximal solution
of (1.1) in C([0, T ∗), H1), then for all positive real number E and for any e ∈ S

2,
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we have

T ∗ < ∞ 	⇒ lim sup
t→T ∗

‖u(t) · e‖
Ḣ

1
2
logv,E

≥ c0, (1.11)

where

‖a‖2
Ḣ

1
2
logv,E

def=
∫

R3
|ξ |log(E |ξv| + e)|â(ξ)|2dξ < ∞.

Notice that all the spaces Ḣ
1
2
logh,E and Ḣ

1
2
logv,E are smaller than Ḣ

1
2 . Motivated by

these two results, we first aim to show that if one component of the velocity remains

small enough in space Ḣ
1
2 itself, then there is no blow-up. Nowwe state the first result

as follows.

Theorem 1.3 There exists a positive constant c0 such that if u is a maximal solution
of (1.1) in C([0, T ∗), H1), then for any e ∈ S

2, we have

T ∗ < ∞ 	⇒ lim sup
t→T ∗

‖u(t) · e‖
Ḣ

1
2

≥ c0. (1.12)

Remark 1.1 Theorem 1.3 tells us that as long as the Ḣ
1
2 norm of one component to the

velocity field is less than c0, the blow-up cannot happen. The introduction of spaces

Ḣ
1
2
logh,E and Ḣ

1
2
logv,E in both Theorems 1.1 and 1.2 was due to the estimate for the

term J given by (3.5) below using the suitable anisotropic Bony decomposition, while
our proof is based on a new trilinear estimate involving scaling invariant anisotropic
Besov norm (see Lemma 2.7) and the proof here is relatively simple.

Next, we are concerned with the anisotropic scaling invariant blow-up criteria. It
is interesting to study the blow-up criterion in the framework of anisotropic Lebesgue
spaces. It becomes most useful when one considers conditional regularity in terms
of only one velocity component or its gradient. In general, the gradient of a function
is more informative than the function itself, and hence the results are better. The
anisotropic Lebesgue spaces make it possible to obtain almost scaling invariant blow-
up criteria which is not the case for corresponding result formulated in the framework
of standard Lebesgue spaces (see [14, 15, 24, 26, 29]).

Although the anisotropic Lebesgue spaces are convenient to obtain almost scaling
invariant blow-up criteria involving one velocity component, it is hardly reachable the
optimal Prodi-Serrin level. Recently, the second author [9] reached the Prodi-Serrin
level in the endpoint anisotropic Lebesgue space for the first time, which states that u
is regular if ∇u3 satisfies an anisotropic scaling invariant condition

∇u3 ∈ L2(0, T ; L∞
v L2

h), (1.13)

where h and v denote the horizontal and vertical components, respectively. Very
recently, the authors [13] proved more general anisotropic scaling invariant regularity
criterion, which covers (1.9) and (1.13), simultaneously.
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In order to reduce the differentiability order, Liu and Zhang [20] proved a scaling
invariant one component anisotropic regularity criterion, which states that u is regular
if

u3 ∈ L p(0, T ; L 3p
p−2 ) ∩ L p(0, T ; (Ḃ

μ+ 2
p+ 2

q1
−1

q1,κ )h(Ḃ
2
q2

−μ

q2,κ )v), (1.14)

where p ∈ (4,∞), q1 ∈ [1, 2), μ > 0, q2 ∈ [2, (1/p + μ)−1), and κ ∈ (1,∞).
Motivated by the above cited results, the second aim of this paper is to establish new

blow-up criteria involving the gradient of one velocity component in the framework
of scaling invariant anisotropic Besov spaces. More precisely, we prove the following
blow-up criteria.

Theorem 1.4 There exists a positive constant c0 such that if u is a maximal solution
of (1.1) in C([0, T ∗), H1), then for any e ∈ S

2, p ∈ [1, 2] and q ∈ [2,∞), we have

T ∗ < ∞ 	⇒ lim sup
t→T ∗

‖∇(u(t) · e)‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

≥ c0. (1.15)

Theorem 1.5 Let u be a maximal solution of (1.1) in C([0, T ∗), H1). if T ∗ < ∞,
then for any e ∈ S

2, p ∈ [1, 2], q ∈ [2,∞) and α ∈ (2,∞) such that

2

α
+ 1

q
< 1,

we have

∫ T ∗

0
‖∇(u(t) · e)‖α

(Ḃ
2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

dt = ∞. (1.16)

Remark 1.2 The space-time norms in (1.15) and (1.16) are scaling invariant quantities
under thenatural scaling (1.5).We remark that theBesov spaces for horizontal variables
in both Theorems 1.4 and 1.5 have the negative indices, even the limiting value −1 by
proper choice of p, q, and α.

The rest of this paper is organized as follows. In Sect. 2, we introduce the anisotropic
Besov spaces and useful lemmas, and establish two trilinear estimates involving the
anisotropic Besov norm. Section3 is devoted to the proof of the main results.

2 Preliminaries

Throughout this paper,wewill use the following notations.Wedenote byC the positive
constant which may vary from line to line. For simplicity, we omit R3 in all function
spaces X(R3) overR3 as long as no confusion arises. For a normed space X , we denote
by ‖ · ‖X the X -norm. L p denotes the standard Lebesgue space.
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The anisotropic Lebesgue space L p
h L

q
v consists of all measurable functions f over

R
3 such that

‖ f ‖L p
h L

q
v

:=
∥
∥
∥‖ f ‖L p

x1x2 (R2)

∥
∥
∥
Lq
x3 (R)

< ∞,

with the usual modification if p = ∞ and/or q = ∞.
Let us introduce the anisotropic Littlewood-Paley theory (see [1]). Let B be the ball

B = {ξ ∈ R
3 | |ξ | ≤ 4/3} and C be the annulus C = {ξ ∈ R

3 | 3/4 ≤ |ξ | ≤ 8/3}.
Then, there exist radial smooth functions χ and ϕ with their values in the interval
[0, 1], and supports, respectively, in B and C such that

χ(ξ) +
∑

j≥0

ϕ(2− jξ) = 1,∀ξ ∈ R
3,

∑

j∈Z
ϕ(2− jξ) = 1, ∀ξ ∈ R

3\{0}. (2.1)

Moreover, suppϕ(2− j ·)∩suppϕ(2−k ·) = ∅ if | j−k| > 1 and suppϕ(2− j ·)∩suppχ =
∅ if j > 0.LetS ′ be the space of tempered distributions,F andF−1 denote the Fourier
transform and the inverse Fourier transform, respectively.

For u ∈ S ′ and ( j, k, 
) ∈ Z
3, the homogeneous dyadic blocks �̇ j and the

homogeneous low-frequency cut-off operators Ṡ j are defined for all j ∈ Z by

�̇ j u = F−1(ϕ(2− j |ξ |)̂u), Ṡ j u =
∑

j ′≤ j−1

�̇ j ′u.

We have the anisotropic version of the dyadic decomposition:

�̇h
k u = F−1(ϕ(2−k |ξh |)̂u), Ṡhk u =

∑

k′≤k−1

�̇h
k′u,

�̇v

u = F−1(ϕ(2−
|ξv|)̂u), Ṡv


 u =
∑


′≤
−1

�̇v

′u,

where ξ = (ξh, ξv), ξh = (ξ1, ξ2) and û = Fu.

We denote by S ′
h the space of tempered distributions u such that

lim
j→−∞ ‖Ṡ j u‖∞ = 0.

Let s ∈ R and p, q ∈ [1,∞]2. The homogeneous Besov space Ḃs
p,q is defined as

follows:
Ḃs
p,q = {u ∈ S ′

h | ‖u‖Ḃs
p,q

< ∞},
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where

‖u‖Ḃs
p,q

=
⎧
⎨

⎩

(∑
j∈Z 2 jsq‖�̇ j u‖qp

) 1
q

, 1 ≤ p ≤ ∞, 1 ≤ q < ∞,

sup j∈Z 2 js‖�̇ j u‖p, 1 ≤ p ≤ ∞, q = ∞.

We recall the definition of anisotropic Besov spaces (see [1] for more details).

Definition 2.1 Let s1, s2 be two real numbers and let p, q1, q2 be in [1,∞], we define
the space (Ḃs1

p,q1)h(Ḃ
s2
p,q2)v as the space of tempered distributions u such that

‖u‖
(Ḃ

s1
p,q1 )h(Ḃ

s2
p,q2 )v

=
⎛

⎝
∑

k∈Z
2q1ks1

(
∑

l∈Z
2q2ls2‖�h

k�
v
l u‖q2L p

) q1
q2

⎞

⎠

1
q1

< ∞, (2.2)

with the usual modification if q1 = ∞ and/or q2 = ∞.

We remark here that

‖u‖(Ḃs
p,q )h

= ‖u‖Ḃs
p,q (R2) =

∥
∥
∥(2ks‖�h

k u‖L p(R2))

∥
∥
∥


q (Z)
,

‖u‖Ḣ s
h

= ‖u‖Ḣ s
h (R2) ≈

∥
∥
∥(2ks‖�h

k u‖L2(R2))

∥
∥
∥


2(Z)
.

(2.3)

We review some useful lemmas from the literature.

Lemma 2.2 ([1], Proposition 2.20) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤
∞. Then, for any real number s, the space Ḃs

p1,r1(R
d) is continuously embedded in

Ḃ
s−d

(
1
p1

− 1
p2

)

p2,r2 (Rd).

Lemma 2.3 ([1], Proposition 2.22) A constant C exists which satisfies the following
properties. If s1 and s2 are real numbers such that s1 < s2 and θ ∈ (0, 1), then we
have, for any (p, r) ∈ [1,∞]2 and u ∈ S ′

h,

‖u‖
Ḃ

θs1+(1−θ)s2
p,1

≤ C

s2 − s1

(
1

θ
+ 1

1 − θ

)

‖u‖θ

Ḃ
s1
p,∞

‖u‖1−θ

Ḃ
s2
p,∞

. (2.4)

Lemma 2.4 ([1], Proposition 2.39) For any p, q ∈ [1,∞]2 such that p ≤ q, the

space Ḃ
d
p− d

q
p,1 is continuously embedded in Lq . In addition, if p is finite, then Ḃ

d
p
p,1 is

continuously embedded in the space of C0 of continuous functions vanishing at infinity.
Lemma 2.5 ([5], Lemma 4.3) For any s positive and any θ ∈ (0, s), we have

‖u‖
(Ḃs−θ

p,q )h(Ḃθ
p,1)v

� ‖u‖Ḃs
p,q

. (2.5)

The following law of product in R
2 which is the slight generalization of Lemma A.3

in [7] is also useful.
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Lemma 2.6 A constant C > 0 exists such that if u ∈ L∞ ∩ Ḣ1(R2) and v ∈ Ḃθ
2,1(R

2)

with 0 < θ < 1, then

‖uv‖Ḃθ
2,1

≤ C(‖u‖L∞ + ‖u‖Ḣ1)‖v‖Ḃθ
2,1

, (2.6)

and if u ∈ L∞ ∩ Ḣ1(R2) and v ∈ Ḣ θ (R2) with 0 < θ < 1, then

‖uv‖Ḣ θ ≤ C(‖u‖L∞ + ‖u‖Ḣ1)‖v‖Ḣ θ . (2.7)

Proof We only prove the first assertion since the second one is similarly proved up to
a slight modification. We use the Bony decomposition in the horizontal variables:

uv = T h
u v + T h

v u + Rh(u, v), (2.8)

where

T h
u v =

∑

j

Shj−1u�h
jv and Rh(u, v) =

∑

| j−k|≤1

�h
j u�h

kv.

According to Theorem 2.47 of [1], we have

‖T h
u v‖Ḃθ

2,1
≤ C‖u‖L∞‖v‖Ḃθ

2,1
. (2.9)

As to T h
v u, it follows from (2.3) that

‖T h
v u‖Ḃθ

2,1
=

∑

k∈Z
2kθ

∥
∥
∥
∥
∥
�h

k

(
∑

l∈Z
Shl−1v�h

l u

)∥
∥
∥
∥
∥
L2

=
∑

k∈Z
2kθ

∥
∥
∥
∥
∥
∥
�h

k

⎛

⎝
∑

|l−k|≤4

Shl−1v�h
l u

⎞

⎠

∥
∥
∥
∥
∥
∥
L2

≤ C
∑

k∈Z
2kθ

∥
∥
∥
∥
∥
∥

⎛

⎝
∑

|ν|≤4

Shk+ν−1v�h
k+νu

⎞

⎠

∥
∥
∥
∥
∥
∥
L2

≤ C
∑

|ν|≤4

∑

k∈Z
2kθ‖Shk+ν−1v‖L∞‖�h

k+νu‖L2

≤ C
∑

|ν|≤4

∑

k∈Z
2(k+ν−1)(θ−1)‖Shk+ν−1v‖L∞2k+ν‖�h

k+νu‖L2

≤ C‖v‖Ḃθ−1
∞,2

‖u‖Ḃ1
2,2

≤ C‖u‖Ḣ1‖v‖Ḃθ
2,1

,

(2.10)
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where we have used the equivalence of Besov norms

(
∑

l∈Z
22(k+ν−1)(θ−1)‖Shk+ν−1v‖2L∞

) 1
2

∼ ‖v‖Ḃθ−1
∞,2

for negative index θ − 1 < 0 and the embedding Ḃθ
2,1 ↪→ Ḃθ−1

∞,2 in R2.

For the remaining term Rh(u, v), by the use of Theorem 2.52 in [1]

‖Rh(u, v)‖Ḃθ
2,1

≤ C‖u‖Ḃ0∞,∞‖v‖Ḃθ
2,1

≤ C‖u‖L∞‖v‖Ḃθ
2,1

. (2.11)

Collecting (2.8), (2.9), (2.10), and (2.11) imply that (2.6) holds.

We need the following trilinear inequality for the proof of Theorems 1.3 and 1.4.

Lemma 2.7 Let p ∈ [1, 2], q ∈ [2,∞). Then there exists a constant C > 0 such that

∫

R3
f gϕ dx ≤ C‖ f ‖

(Ḃ
2
p + 1

q −2

p,2 )h(Lq )v

‖∇hg‖L2‖∇ϕ‖L2 , (2.12)

for any f ∈ (Ḃ
2
p + 1

q −2

p,2 )h(Lq)v, g ∈ H1 and ϕ ∈ H1.

Proof By the density argument, it is sufficient to prove the inequality for g ∈ C∞
0 .

Applying the Hölder inequality and the duality argument between Besov spaces, we
have

∫

R3
f gϕ dx =

∫

Rv

(∫

Rh

f gϕ dxh

)

dxv

≤
∫

Rv

‖ f ‖
(Ḃ

2
p + 1

q −2

p,2 )h

‖gϕ‖
(Ḃ

2− 2
p − 1

q
p

p−1 ,2
)h

dxv

≤ ‖ f ‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖gϕ‖
(Ḃ

2− 2
p − 1

q
p

p−1 ,2
)h(L

q
q−1 )v

.

(2.13)

Then, by virtue of Lemma 2.2, we have

(Ḃ
1− 1

q
2,2 )h ↪→ (Ḃ

2− 2
p − 1

q
p

p−1 ,2
)h,

and

(Ḃ
1
q
2,1)v ↪→ (L

2q
q−2 )v.
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Considering the above embedding and taking into account the conditions q ∈ [2,∞)

and 1 − 1
q > 0, we now use Lemma 2.6 and Lemma 2.5. Then, (2.13) reduces to

∫

R3
f gϕ dx ≤ ‖ f ‖

(Ḃ
2
p + 1

q −2

p,2 )h(Lq )v

‖gϕ‖
(Ḃ

2− 2
p − 1

q
p

p−1 ,2
)h(L

q
q−1 )v

≤ C‖ f ‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖gϕ‖
(Ḃ

1− 1
q

2,2 )h(L
q

q−1 )v

≤ C‖ f ‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

(‖g‖L∞
h L2

v
+ ‖g‖Ḣ1

h L
2
v
)‖ϕ‖

(Ḃ
1− 1

q
2,2 )h(L

2q
q−2 )v

≤ C‖ f ‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

(‖g‖L∞
h L2

v
+ ‖∇hg‖L2)‖ϕ‖

(Ḃ
1− 1

q
2,2 )h(Ḃ

1
q
2,1)v

≤ C‖ f ‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

(‖g‖L∞
h L2

v
+ ‖∇hg‖L2)‖ϕ‖Ḃ1

2,2
.

(2.14)

As argued in [13], since g has compact support, by virtue of the Newton-Leibniz
formula, we have

g(xh, xv) =
∫ x1

−∞
∂1g(ξ, x2, xv)dξ =

∫ x2

−∞
∂2g(x1, η, xv)dη,

|g(xh, xv)|2 = 2
∫ x1

−∞
g(ξ, x2, xv)∂1g(ξ, x2, xv)dξ

= 2
∫ x1

−∞

(∫ x2

−∞
∂2g(ξ, η, xv)dη

)

∂1g(ξ, x2, xv)dξ.

Thanks to the Fubini theorem, we get

‖g‖2L∞
h L2

v
=

∫

Rv

max
xh

|g|2dxv

≤ 2
∫

Rv

max
xh

∫ x1

−∞

(∫ x2

−∞
|∂2g(ξ, η, xv)|dη

)

|∂1g(ξ, x2, xv)|dξdxv

≤ 2
∫

R3
|∂1g||∂2g| dx ≤ 2‖∇hg‖2L2 .

(2.15)

Thus, collecting the estimates (2.13), (2.14), and (2.15) gives the target inequality
(2.12). Finally, the Lemma 2.7 is proved.

We establish the following trilinear estimate involving the anisotropic Besov norm
for the proof of Theorem 1.5.
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Lemma 2.8 Let p ∈ [1, 2], α ∈ (2,∞), q ∈ [2,∞) and 2
α

+ 1
q < 1. Then, there exists

a constant C > 0 such that
∫

R3
f gϕ dx ≤ C‖ f ‖

(Ḃ
2
p + 2

α + 1
q −2

p,∞ )h(Lq )v

‖∇hg‖L2‖ϕ‖
2
α

L2‖∇ϕ‖1−
2
α

L2 , (2.16)

for any f ∈ (Ḃ
2
p + 2

α
+ 1

q −2
p,∞ )h(Lq)v, g ∈ H1 and ϕ ∈ H1.

Proof By the density argument, it is enough to prove the inequality for g ∈ C∞
0 .

Applying the Hölder inequality and the duality argument between Besov spaces, we
have

∫

R3
f gϕ dx =

∫

Rv

(∫

Rh

f gϕ dxh

)

dxv

≤
∫

Rv

‖ f ‖
(Ḃ

2
p + 2

α + 1
q −2

p,∞ )h

‖gϕ‖
(Ḃ

2− 2
p − 2

α − 1
q

p
p−1 ,1

)h

dxv

≤ ‖ f ‖
(Ḃ

2
p + 2

α + 1
q −2

p,∞ )h(Lq )v

‖gϕ‖
(Ḃ

2− 2
p − 2

α − 1
q

p
p−1 ,1

)h(L
q

q−1 )v

.

(2.17)

On the one hand, by virtue of Lemma 2.2 and Lemma 2.4, we have

(Ḃ
1− 2

α
− 1

q
2,1 )h ↪→ (Ḃ

2− 2
p − 2

α
− 1

q
p

p−1 ,1
)h,

and

(Ḃ
1
q
2,1)v ↪→ (L

2q
q−2 )v.

Considering the above embeddings and taking into account the conditions α ∈
(2,∞), q ∈ [2,∞), and 1 − 2

α
− 1

q > 0, we now use Lemma 2.6 and Lemma
2.5. Then, (2.17) reduces to

∫

R3
f gϕ dx ≤ C‖ f ‖

(Ḃ
2
p + 2

α + 1
q −2

p,∞ )h(Lq )v

‖gϕ‖
(Ḃ

1− 2
α − 1

q
2,1 )h(L

q
q−1 )v

≤ C‖ f ‖
(Ḃ

2
p + 2

α + 1
q −2

p,∞ )h(Lq )v

(‖g‖L∞
h L2

v
+ ‖g‖Ḣ1

h L
2
v
)‖ϕ‖

(Ḃ
1− 2

α − 1
q

2,1 )h(L
2q
q−2 )v

≤ C‖ f ‖
(Ḃ

2
p + 2

α + 1
q −2

p,∞ )h(Lq )v

(‖g‖L∞
h L2

v
+ ‖∇hg‖L2)‖ϕ‖

(Ḃ
1− 2

α − 1
q

2,1 )h(Ḃ
1
q
2,1)v

≤ C‖ f ‖
(Ḃ

2
p + 2

α + 1
q −2

p,∞ )h(Lq )v

(‖g‖L∞
h L2

v
+ ‖∇hg‖L2)‖ϕ‖

Ḃ
1− 2

α
2,1

.

(2.18)

On the other hand, as in the proof of Lemma 2.7, we have

‖g‖2L∞
h L2

v
≤ 2‖∇h f ‖2L2 . (2.19)
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On the another hand, it follows from Lemma 2.3 that

‖ϕ‖
Ḃ
1− 2

α
2,1

≤ C‖ϕ‖
Ḃ

2
α
2,∞

‖∇ϕ‖
Ḃ
1− 2

α
2,∞

≤ C‖ϕ‖
2
α

L2‖∇ϕ‖1−
2
α

L2 .

(2.20)

Therefore, collecting the estimates (2.17), (2.18), (2.19), and (2.20) gives the target
inequality (2.16). Finally, the Lemma 2.8 is proved.

3 Proofs of Main Results

Proof of Theorem 1.3 We adopt the proof procedure of [7]. Without loss of generality,
we shall always take σ = e3. The proof is divided into two steps. First, we estimate
‖∇hu‖L2 . Multiplying (1.1) by �hu and integrating by parts, we get

1

2

d

dt
‖∇hu‖2L2 + ‖∇∇hu‖2L2 =

3∑

i, j=1

2∑

k=1

∫

R3
∂kui∂i u j∂ku j dx

=
2∑

i, j,k=1

∫

R3
∂kui∂i u j∂ku j dx +

2∑

j,k=1

∫

R3
∂ku3∂3u j∂ku j dx

+
2∑

i,k=1

∫

R3
∂kui∂i u3∂ku3dx +

2∑

k=1

∫

R3
∂ku3∂3u3∂ku3dx

=: I1 + I2 + I3 + I4.

(3.3)

It is obvious from the divergence free condition that

I1 =
2∑

i, j,k=1

∫

R3
∂kui∂i u j∂ku j dx

=
∫

R3
−∂3u3

⎛

⎝
2∑

i, j=1

(∂i u j )
2 + ∂1u2∂2u1 − ∂1u1∂2u2

⎞

⎠ dx .

The three terms I1, I3, and I4 are sums of terms by the form

I =
∫

R3
∂i u3∂ j uk∂lumdx, (3.4)

with ( j, l) ∈ {1, 2}2 and (i, k,m) ∈ {1, 2, 3}3. In order to estimate I2, it is sufficient
to study the following term by the form

J =
∫

R3
∂i u3∂3ul∂i uldx, (3.5)
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with (i, l) ∈ {1, 2}2.We now estimate I and J , separately.We use the duality argument
and product law in three-dimensional Sobolev spaces to estimate I . Then, we have

I ≤ C‖∇u3‖
Ḣ− 1

2
‖∇hu∇hu‖

Ḣ
1
2

≤ C‖u3‖
Ḣ

1
2
‖∇hu‖2

Ḣ1 .
(3.6)

We now use Lemma 2.7 with p = 2 and q = 2 to estimate J . Then, we have

J ≤ C‖∇hu3‖
(Ḃ

− 1
2

2,2 )h(L2)v

‖∇h∂3u‖L2‖∇hu‖Ḣ1

≤ C‖∇hu3‖
(Ḃ

− 1
2

2,2 )h(L2)v

‖∇hu‖2
Ḣ1

≤ C‖u3‖
(Ḃ

1
2
2,2)h(L

2)v

‖∇hu‖2
Ḣ1

≤ C‖u3‖
Ḣ

1
2
‖∇hu‖2

Ḣ1 .

(3.7)

Combining (3.3) with (3.6) and (3.7), we obtain

d

dt
‖∇hu‖2L2 + 2‖∇∇hu‖2L2 ≤ C‖u3‖

Ḣ
1
2
‖∇∇hu‖2L2 . (3.8)

We set

T∗ = sup

{

T ∈ [0, T ∗)| sup
[0,T ]

‖u3‖
Ḣ

1
2

≤ 1

C

}

.

Then, we have for all t ≤ T∗

‖∇hu(t)‖2L2 +
∫ t

0
‖∇∇hu(s)‖2L2ds ≤ ‖∇hu(0)‖2L2 . (3.9)

Second, we estimate ‖∂3u‖L2 . Multiplying (1.1) by ∂233u and integrating by parts
together with the divergence free condition give us

1

2

d

dt
‖∂3u‖2L2 + ‖∇∂3u‖2L2 ≤ C‖∇hu‖L2‖∇∇hu‖L2‖∂3u‖2L2 + 1

2
‖∇∂3u‖2L2 .

The Gronwall lemma leads to

‖∂3u(t)‖2L2 ≤ ‖∂3u(0)‖2L2 · exp
(

C
∫ t

0
‖∇hu(s)‖L2‖∇∇hu(s)‖L2ds

)

. (3.10)

As we have (3.9), we see that ‖∂3u‖L2 is also bounded on (0, T∗). Thus, ‖∇u‖L2

remains bounded on (0, T∗). Thus, by contraposition, if ‖∇u‖L2 blows up at finite
T ∗ > 0, then
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∀t ∈ [0, T ∗), sup
s ∈[0,t]

‖u3‖
Ḣ

1
2

≥ 1

C
= c0,

which proves the Theorem 1.3 by passing to the limit t → T ∗. ��
Proof of Theorem 1.4 We proceed exactly in the same way as in the proof of Theorem
1.3 up to (3.5). Without loss of generality, we shall always take σ = e3. We now use
Lemma 2.7 to estimate I and J , separately. Then, we get

I =
∫

R3
∂i u3∂ j uk∂lumdx

≤ C‖∇u3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖∇h∇hu‖L2‖∇∇hu‖L2

≤ C‖∇u3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖∇∇hu‖2L2 .

(3.11)

As to the term J , we have

J ≤ C‖∇hu3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖∇h∂3u‖L2‖∇∇hu‖L2

≤ C‖∇hu3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖∇∇hu‖2L2

≤ C‖∇u3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

‖∇∇hu‖2L2 .

(3.12)

Combining (3.3) with (3.11) and (3.12), we obtain

d

dt
‖∇hu‖2L2 + 2‖∇∇hu‖2L2 ≤ C‖∇u3‖

(Ḃ
2
p + 1

q −2

p,2 )h(Lq )v

‖∇∇hu‖2L2 . (3.13)

We set

T∗ = sup

{

T ∈ [0, T ∗)/ sup
[0,T ]

‖∇u3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

≤ 1

C

}

.

Then, we have for all t ≤ T∗

‖∇hu(t)‖2L2 +
∫ t

0
‖∇∇hu(s)‖2L2ds ≤ ‖∇hu(0)‖2L2 , (3.14)

which together with (3.10) implies that ‖∇u‖L2 remains bounded on (0, T∗). Thus,
by contraposition, if ‖∇u‖L2 blows up at finite T ∗ > 0, then

∀t ∈ [0, T ∗), sup
s ∈[0,t]

‖∇u3‖
(Ḃ

2
p + 1

q −2

p,2 )h(Lq )v

≥ 1

C
= c0,

which proves the Theorem 1.4 by passing to the limit t → T ∗. ��
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Proof of Theorem 1.5 Without loss of generality, we shall always take σ = e3. We now
use Lemma 2.8 to estimate I and J , separately. Then, we get

I =
∫

R3
∂i u3∂ j uk∂lumdx

≤ C‖∇u3‖
(Ḃ

2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

‖∇h∇hu‖L2‖∇hu‖
2
α

L2‖∇∇hu‖1−
2
α

L2

≤ C‖∇u3‖
(Ḃ

2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

‖∇hu‖
2
α

L2‖∇∇hu‖2−
2
α

L2 .

(3.15)

The remaining term J is similarly estimated by

J ≤ C‖∇hu3‖
(Ḃ

2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

‖∇h∂3u‖L2‖∇hu‖
2
α

L2‖∇∇hu‖2−
2
α

L2

≤ C‖∇u3‖
(Ḃ

2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

‖∇hu‖
2
α

L2‖∇∇hu‖2−
2
α

L2 .

(3.16)

Thus, combining (3.3) with (3.15) and (3.16), we obtain

d

dt
‖∇hu‖2L2 + 2‖∇∇hu‖2L2 ≤ C‖∇u3‖

(Ḃ
2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

‖∇hu‖
2
α

L2‖∇∇hu‖2−
2
α

L2 .

(3.17)

Applying the Young inequality and Gronwall lemma leads then to

‖∇hu(t)‖2L2 +
∫ t

0
‖∇∇hu(s)‖2L2ds ≤ ‖∇hu(0)‖2L2

· exp
(∫ t

0
C‖∇u3‖α

(Ḃ
2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

ds

)

, (3.18)

which together with (3.10) implies that ‖∇u‖L2 remains bounded on (0, T ). By
contraposition, if there is a blow-up of the Ḣ1 at finite T ∗ > 0, then we have

∫ T ∗

0
‖∇u3(t)‖α

(Ḃ
2
p + 1

q + 2
α −2

p,∞ )h(Lq )v

dt = ∞.

Thus, the proof of Theorem 1.5 is complete. ��
Acknowledgements The authors thank the reviewers for their helpful comments on this paper. The first
author was partially supported by Natural Science Foundation of Jiangsu Province (BK20201478) and the
Qing Lan Project of Jiangsu Universities.

DataAvailability The data that support the findings of this study are available from the corresponding author
upon reasonable request.

123



170 Page 16 of 17 Z. Guo, Chol-Jun O.

References

1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations.
Grundlehren derMathematischenWissenschaften [Fundamental Principles ofMathematical Sciences],
vol. 343. Springer, Heidelberg (2011)

2. Cao, C., Titi, E.: Regularity criteria for the three dimensional Navier–Stokes equations. Indiana Univ.
Math. J. 57, 2643–2661 (2008)

3. Cao, C., Titi, E.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of
the velocity gradient tensor. Arch. Ration. Mech. Anal. 202, 919–932 (2011)

4. Chae, D., Wolf, J.: On the serrin-type condition on one velocity component for the Navier–Stokes
equations. Arch. Ration. Mech. Anal. 240, 1323–1347 (2021)

5. Chemin, J.-Y., Zhang, P.: On the critical one component regularity for 3-DNavier–Stokes system. Ann.
Sci. Éc. Norm. Supér. 49, 133–169 (2016)

6. Chemin, J.-Y., Zhang, P., Zhang, Z.: On the critical one component regularity for 3-D Navier–Stokes
system: general case. Arch. Ration. Mech. Anal. 224, 871–905 (2017)

7. Chemin, J.-Y., Gallagher, I., Zhang, P.: Some remarks about the possible blow-up for theNavier–Stokes
equations. Commun. Partial Differ. Equ. 44, 1387–1405 (2019)

8. O, C-J.: Regularity criterion for weak solutions to the 3D Navier–Stokes equations via two vorticity
components in BMO−1. Nonlinear Anal. Real World Appl. 59, 103271 (2021)

9. O, C-J.: An optimal regularity criterion for 3D Navier–Stokes equations involving the gradient of one
velocity component. J. Math. Anal. Appl. 518, 126630 (2023)

10. O, C-J.: A remark on the regularity criterion for the 3D Navier–Stokes equations in terms of two
vorticity components. Nonlinear Anal. Real World Appl. 71, 103840 (2023)

11. Escauriaza, L., Seregin, G., Šverák, V.: L3,∞-solutions of Navier–Stokes equations and backward
uniqueness. Russian Math. Surv. 58, 211–250 (2003)

12. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16,
269–315 (1964)

13. Guo, Z., O, C-J.: Anisotropic Prodi–Serrin regularity criteria for the 3D Navier–Stokes equations
involving the gradient of one velocity component. Appl. Math. Lett. 145, 108732 (2023)

14. Guo, Z., Caggio, M., Skalák, Z.: Regularity criteria for the Navier–Stokes equations based on one
component of velocity. Nonlinear Anal. Real World Appl. 35, 379–396 (2017)

15. Guo, Z., Li, Y., Skalák, Z.: Regularity criteria of the incompressible Navier-Stokes equations via only
one entry of velocity gradient. J. Math. Fluid Mech. 21, 35 (2019)

16. Han, B., Lei, Z., Li, D., Zhao, N.: Sharp one component regularity for Navier–Stokes. Arch. Ration.
Mech. Anal. 231, 939–970 (2019)

17. He, C.: Regularity for solutions to the Navier–Stokes equations with one velocity component regular.
Electron. J. Differ. Equ. 2002, 1–13 (2002)

18. Houamed, H.: About some possible blow-up conditions for the 3-D Navier–Stokes equations. J. Differ.
Equ. 275, 116–138 (2021)

19. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. ActaMath. 63, 183–248 (1934)
20. Liu, Y., Zhang, P.: Critical one component anisotropic regularity for 3-DNavier–Stokes system, (2017).

arXiv:1712.09072v1 [math.AP]
21. Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier-Stokes equations as a

consequence of regularity of one velocity component. In: Rodrigues, J.F., Sequeira, A., Videman, J.
(eds.) Applied Nonlinear Analysis, pp. 391–402. Kluwer, New York (1999)

22. Pokorný, M.: On the result of He concerning the smoothness of solutions to the Navier–Stokes
equations. Electron. J. Differ. Equ. 2003, 1–8 (2003)

23. Prodi, G.: Un teorema di unicità per el equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182
(1959)

24. Qian, C.: A generalized regularity criterion for 3D Navier–DStokes equations in terms of one velocity
component. J. Differ. Equ. 260, 3477–3494 (2016)

25. Serrin, J.: The initial value problems for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear
Problems. University of Wisconsin Press, Chicago (1963)

26. Skalák, Z.: One component optimal regularity for the Navier–Stokes equations with almost zero
differentiability degree. Appl. Math. Lett. 97, 41–47 (2019)

27. Sohr, H.: The Navier–Stokes equations. An Elementary Functional Analytic Approach. Advanced
Texts Basler Lehrbücher Series, Birkhäuser, Basel (2001)

123

http://arxiv.org/abs/1712.09072v1


Remarks on the Possible Blow-Up Conditions Page 17 of 17 170

28. Wolf, J.: A regularity criterion of serrin-type for the Navier–Stokes equations involving the gradient
of one velocity component. Analysis (Berlin) 35(4), 259–292 (2015)

29. Zheng, X.: A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity
component. J. Differ. Equ. 256, 283–309 (2014)

30. Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier–Stokes equations involving gradient of
one velocity component. J. Math. Phys. 50, 1–11 (2009)

31. Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier–Stokes equations via one
velocity component. Nonlinearity 23, 1097–1107 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Remarks on the Possible Blow-Up Conditions via One Velocity Component for the 3D Navier–Stokes Equations
	Abstract
	1 Introduction and Main Results
	2 Preliminaries
	3 Proofs of Main Results
	Acknowledgements
	References




