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Abstract

We consider a wave equation with variable coefficients in time and space in a bounded
domain  which has the smooth boundary I' = I'g U I'; such that To N Ty # @J. We
study this system that has a homogeneous Dirichlet boundary on I'g and a dynamic
boundary on I';. The innovation of the paper lies in the coefficients which depends on
the time variable and the singularities generated by changing the boundary conditions
along the interface, thus we need some special techniques to deal with these difficulties.
Under some geometric assumptions, the exponential decay result of the system is
established by the Riemannian geometry method and the energy perturbation method.

Keywords Wave equation - Time-varying coefficients - Dynamic boundary
conditions - Exponential decay
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1 Introduction

Let © be a bounded domain in R” (n > 2) which has a boundary I' = I'g U I'; of
class C2. Here meas(I"g) and meas(I";) are positive and ¥ = ToNT, # (. Let w be
an open neighborhood of the part I'; of the boundary that is supposed to be connected
and meas(w N T'g) > 0 (see Fig. 1).

Here v = (vy, - - - , v,) represents the outward unit vector normal to I'. We denote
the gradient and the divergence by V and div respectively, and the tangential-gradient
and the tangential-divergence by Vr and divr respectively in the Eucliden metric. In
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Fig. 1 An example of domain 2 satisfying the required geometrical assumptions for n = 2
this paper, we study the following problem
uy + A, Hu +b(x)u; =0 inQ x RT,
u=20 onTy x R,
(1.1)

9
ut,—i——u—i—AT(x,t)u—i-uz:O only x RT,
v 4

u(x,0) = up(x), ue(x,0) =ui(x) ing,
where

b(x) = by, x € w,

and bg > 0 is a constant. The initial data uo and u are in suitable function spaces. The

second-order differential operators A(x, ¢) and A7 (x, t) are given by

Ax, Hu = —B(t)div(A(x)Vu),
Ar(x, Hu == —B(0)divy (A(x)|r, Vru),

in which 8 € W!%°(0, 00) isa given function and A(x) = (a;;(x)),x, are symmetric
and positive definite matrices functions with g;; (x) € C°°(R"), and the operators also

satisfy the uniform ellipticity conditions

n

> g = h Y 6 ¥ € 0£ G b b € R,

i, j=1 i=1
for some constant A > 0. And

8 n
B0 Y @)

i,j=1

9
— = BOAX) Vi - v
aI)A 8Xj
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is the outer normal derivative.

Since the boundaries I'g and I'; satisfy ¥ = T'o N T'; # ¢, the singularities occur
when the boundary conditions change from I'g to I';. We cannot get the regularity
of solution by the elliptic results, so we have to use some technicalities to overcome
this difficulty. For the two-dimensional case, we can refer to the method in [1] to deal
with the problem of lack of regularity, and for more on this can be seen in [2, 3]. The
main idea in these papers is to divide the weak solution u corresponding to the elliptic
problem into two parts that the regular part and the singular part. More precisely, they
decompose the solution into

uU:=uy+u,

where u; € H?(2) and u» is given by

Uy = Z p(r, 0)4/r sin <§) ,

Xex

here (r, 0) is a coordinate system centered on x € X and p is an appropriately smooth
function with a compact support satisfying 0 < p < 1. This decomposition of u allows
us to estimate some integrals that resulting from the existence of singularities. For the
case of higher dimensions (n > 3), Bey et al. [4] extended the above results, and [4,
Theorem 4] is very important and helpful for the proof of our stability. Later, Cornilleau
et al. [5] further developed the results of [4] and considered the possible singularities
in which they changed the boundary conditions along the interface & = T'o N T';.
They assumed a partition (I'g, I'1) of I' = 92 such that

¥ =T NT; is a C3-manifold of dimension n — 2,
(x —x9) -v=0o0n X, where xg € R" is a fixed point,
I' N @ is a C3-manifold of dimension n — 1,
H*!(Ty) > 0,

where n > 2 is the dimension of 2, @ is a suitable neighborhood of ¥ and Hl
denotes the usual (n—1)-dimensional Hausdorff measure. Under a simple geometrical
condition concerning the orientation of the boundary, they obtained the stability results
for systems with linear or nonlinear Neumann feedbacks.

It is worth noting that [4] and [5] mentioned here are the literature for the constant
coefficients. For the variable coefficients case, we can refer to [6] which extended the
stability results of [5] to a time-dependent coefficients case. In [6] Cavalcanti et al.
concerned the following hyperbolic equation with boundary damping

K, Duy —AWu + F(x,t,u,Vu) =0 inQ x RT,

u=>0 only x R,

0
—M—G—,B(x)ut =0 onI'| x R,
3UA
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where €2 C R" (n = 2) is a bounded open set with the boundary I' = I'o U 'y such
that To N T # @. Let xo € R" be a fixed point, the sets I'g and I'; given by

IlNp={xel: (x—x9)-v<0} and 1 ={xel: (x —xp)-v >0}

Under some assumptions about the functions F', K and A, the authors obtained the
exponential decay result by using the energy method.

Our work changes part of the boundary conditions in the above reference, that is,
we study the influence of the dynamic boundary on the stability of system. This type
of boundary condition takes acceleration into account on the boundary to affect the
stability and the exact controllability of elastic structures. In [7], Li et al. considered
the following one-dimensional system

Uy —uyy =0, xe0,1), t >0,
u(0,t) =0, t >0,

0
kup(1,1) + 8—”(1, H4u(l,0)=0, t>0.
v

At k = 1, they got the optimal polynomial decay result, even though the system is
exponentially stable if x = 0. Thus, for the study of dynamic boundary, it not only
is very important for theoretical significance, but also is a good reference for some
practical applications. This kind of boundary is suitable for dynamic vibration mod-
eling of linear viscoelastic rods and beams with attached masses at their free ends, we
refer to the reference [8—13]. These questions are common in analyzing the mechan-
ical behavior of any structure with elongated members attached to smaller, heavier
objects, for example, a structure consisting of robotic arms attached to satellites. For
early studies of the system with dynamic boundary conditions we can refer to [14—16].
[16] was devoted to study of the following damped Cauchy-Ventcel problem

up + A@)u +a(x)gi(u;) =0 inQ x RY,
u=vuv onT x RT,

u=0 onlg x RT,
du

Uyt + —_— +AT()C)U +g2(vl) = O on Fl X R+’
v 4

where there exists a vector field H such that
MM={xel: H-v>0} and ToNT; =4.

The uniform energy decay rate for the above problem was established by Riemannian
geometry method which was first introduced by Yao [17] to study the exact control-
lability of wave equation with variable coefficients. For more information about the
variable coefficients that are only related to the space variable, we can refer to [18-23]
and the references in them.
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While for the time-varying coefficients case, we can refer to [24-27]. In [25], Liu
considered the mixed problem

uy + Alx, Hu =0,
with Neumann boundary control

ou
—— =v onl,
av g

or Dirichlet boundary control
u=v onl'g and u =0 onlI,

where TgNT'| = ¢ and v is a suitable control function. The observability inequalities
were established by the Riemannian geometry method under some geometric condi-
tions. For more on time-dependent linear operators, evolution families, and evolution
equations and their applications, we refer the reader to [28, 29] and the references
therein.

Inspired by the above literature, in this paper we mainly study the system (1.1) with
the assumption

Fo ﬂF] # 0.

In fact, there are two main difficulties in our work. First, because the coefficients are
related to the time variable, we cannot accurately estimate the positive and negative
properties of the derivative of the energy functional, which makes it impossible to get
the stability results of the system by traditional methods. Second, we lose the regularity
of solution due to the existence of singularities. So for these two main difficulties, we
need more skills to deal with system (1.1) to get the decay result that we want.

The paper is organized as follows. Section 2 presents the notations and some
assumptions that we need to follow. By using the semigroup method, we give the
well-posedness result in Sect. 3. In Sect. 4, we obtain the exponential decay estimate
of the energy. Finally, a concluding remark is stated in Sect. 5.

2 Preliminaries

In this section, we present some materials and assumptions used in this paper. L%()

and H'(-) denote the usual Sobolev spaces. || - [l and || - ||2,r, are the norms in the
Lz(Q) and L2(F1), respectively. For simplicity, we write || - || and || - ||, instead of
Il - ll2 and || - [l2,,, respectively. Let C denote various positive constants which may
be different at different occurrences.

Denote

HL (@) = {u e HY(Q) :ulp, = 0} .
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151 Page 6 of 30 J.Hao, F.Du

Since the Poincaré inequality holds in Hllo (2), then the apace Hllo (2) can be endowed
with the norm ||V - ||, which is equivalent to usual norm of H' ().

2.1 Riemannian Notations

We define
g(x) = (gij(x) = A" (x), xeR",

as a Riemannian metric on R" and consider the couple (R", g) as a Riemannian
manifold with the inner product and the norm

(X. V), =AT0X. V) =A"" @)X ¥, |X|;=(X.X);. X.YeR],

where (-, -) is the Euclidean product of R". For any C! function w, we define

n
Vew = A(x)Vuw, |ng|§, = Z aij (X)W, wy;, X € R",
ij=1

where V, is the gradient of the metric g. Denote by D the Levi-Civita connection in
the Riemannian metric g and let H be a vector field on R", then for each x € R", the
covariant differential D H of H determines a bilinear form on R" x R":

DH(X,Y)=(DyH,X),, X,Y eRY,
where Dy H is the covariant derivative of the vector field H with respect to Y. Next

we give the following lemma that provides some further relationships between the
Riemannian metric g and the Euclidean metric.

Lemma 2.1 [17] Let f € C? (ﬁ) and H be vector field. Then, with the references to
the above notations, we have

@) H(f)=(Vef . H),=Vf-H,
.. | 1 .
(i) (Vo f. Ve(H(f)), = DH (Ve f. Ve f) + 3div (|vgf|§,H) — 5 IVef v,
where divH is the divergence of the vector field H in the Euclidean metric.
2.2 Assumptions
(H1) Assume that (1) € Wllo’fo(O, 00), B'(t) € L'(0, 00) and
)= po>0, 1=0,

where S is some positive constant.
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(H2) [30] Let H be a vector field on Riemannian manifold (R", g), there exists a
continuous function o (x) such that

DH(X.X)=0()|X|;, XeR}, xeQ,

and denote 01 = mino(x) > 0 and 0o = max o (x). Moreover, assuming that the
.er xeQ
vector field H satisfies

H-v<0 forxely,
and
H-v>0 forx ely.

Remark 2.2 The vector field H in assumption (H2), which called the escape vector
field and firstly introduced by [31] as a checkable assumption. The existence of the
vector field H depends on the Riemannian curvature of the metric g. In [32], we know
that if assumption (H2) holds, then GCC (Geometric Control Condition) holds. And
for the constant coefficients case i.e. considering A(x, r) = —A, many papers always
take H =x —xo where xg € R" is a fixed point and x €.

2.3 Main Results

Consider the phase space
H = Hp () x L*(Q) x H' (') x L*(T'y),

endowed with the inner product

T T
<(w1,w2,w3,w4) , (V1, v2, V3, V4) )H

= /Q [B(1)Vewi Vu + wavz]dx +/ [BO)(V1)gw3(Vr)v3 + wavs]dT.
Iy
@.1)

where (Vr)ew = AX)|r,(Vr)w for any C! function w. Taking U(t) =
(u, us, y1(w), y1 (ut))T with the trace operator y1(-) = -|r;, the system (1.1) can be

rewritten by

dU
— =AU, t >0,
ar A0 > 2.2)

U(0) = Uy = (uo, u1, y1(uo), yi(u))’,
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151 Page 8 of 30 J.Hao, F.Du

where the time-dependent linear operators A(#) have the form

u @
0 —Ax, Hu — b(x)e
A) o = ) ,
v) -2 -y
v 4

with domain

D(AD) = D(AO) = (HA(R) N HE(@)) x HE (@)

x (HACD N H! D) x BT, 120,

which means D(A(¢)) do not depend on 7.
Now, we state the well-posedness result for the Cauchy problem (2.2), which ensures
that the system (1.1) is globally well-posed.

Theorem 2.3 Suppose that (H1) and (H2) hold. Then for any Uy € 'H, the problem
(2.2) admits a unique solution U (t) such that

U(t) € C(Ry; H).

Further, assuming
(A®)IrH,7) <0, x€X, (2.3)

where 7 is the unit tangent vector pointing towards the exterior of I'{, from I'y to I'y.

In fact, for A(x) = I, this geometric assumption (2.3) is the same as in [4, 5] when

taking the vector field H = x — xo where xo € R" is a fixed point and x € X.
Define the associated energy of system (1.1) by

1
E) :=5{||u,||2+ﬂ(r>/g|vgu|§dx+||u,||%, +ﬁ(r>/r |(vr>gu|§dr}, 24)

according to the inner product of state space H. Our main decay result can be given
as follows

Theorem 2.4 Assume that (H1), (H2) and (2.3) hold and there exist positive constants
C», a and m such that for all t sufficiently large, it holds

t
/ e51B/(s)|ds < at™. (2.5)
0

Then the energy decay exponentially, i.e.,

E(t) < C (E(0) + at™) e,
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Remark 2.5 For assumption (2.5), we give the following two examples for the function

B(s).
Example (i). Let B(s) = ae " + Bo witha > 0 and b > C, > 0. It is obviously
that taking 8 to satisfy (H1). By direct calculation, we have

1B'(s)| = abe™,

and

t t
/ eC5)1B/(s)|ds < c/ e~ b= gy,
0 0

Therefore, there exist positive constants « and m such that for all ¢ sufficiently large,
(2.5) holds.

Example (ii). Let B(s) = se™** + By witha > C, > 0. It is obviously that taking
B to satisfy (H1). By direct calculation, we have

B'(s)=(1—asye*,

and
t t
f e | (s)lds < c/ (14 |she™“=1as.
0 0

Therefore, there exist positive constants « and m such that for all ¢ sufficiently large,
(2.5) holds.

3 Well-Posedness

In this section, we study the existence and uniqueness of the solution to system (1.1),
that is, using the semigroup method to prove Theorem 2.3.

Proof of Theorem 2.3 This proof is divided into four main steps.

Step 1. The first step is to prove that the linear operators A(r) are dissipative. Indeed, let
U= ,v, 13,0 € D(A(0)), using (2.1) and the fact of v| = v3, v; = vaon Ty,
we have

(AU, U)y = /Q [,B(I)ngZVm — (A(x, Hvy + b(x)vg)vz] dx

dv

+ / [ﬁ(t)(vr>gv4(vT>v3 _ (8—3 b Ar (e s + v4) M} ar
I VA

_ —bO/ va2dx — [ ua2dr
w I
SO’
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which yields the operators A(¢) are dissipative.

Step 2. In this step, we prove the surjection of the operators I — A(¢), where I stands
for the identity operator. In fact, set F' = (f1, f2, f3, f4)T € 'H, we will prove that
there exists U = (vq, vy, v3, v4)T such that

(I —AD)U =F,

which is equivalent to

vi—v = fi in HY, (),

vy + A, vy + b()v = fo in L2(Q),

V3 — V4= f3 in H! Ty, G.h
v .

v+ -+ Ar(x,Dvs + g = f4 in L2(Ty).
vy

From the first and third equations of (3.1), we obtain

lvz=v1—f1, 32)

V4 = v3 — f3
Substituting the equations of (3.2) into the second and the forth equations of (3.1), we

have
v + A(x, Hvy +b(x)v) = f1 + o+ bX) f1,

0 33
2v3+£+¢4r(x,t)v3 =2f3+ fa. (3-3)
A

av

This is an elliptic system of two equations. For (¢, ¥1), (¢2,¥2) € Hllo (2) x
H'(I'1), we introduce the following bilinear form

B((¢1, Y1), (92, ¥2)) = /Q [@192 + B1)Ve01Ver + b(x)p192] dx

+/ [2¥192 + B (V1)1 (V)Y | dT.
Iy
It is easy to show that B((¢1, V1), (¢2, ¥2)) is a bounded bilinear form and

B ). 1) = [ i1l + BOIVe01l + beolen ] d

+/ [2|w1|2 + ﬂ(t)l(VﬂgWﬁ] dr,
Iy

is coercive. Then by using the conditions of vy = v3, ¢ = ¥ on I'1, we can find
(vi,v3) € H}\ (Q) x H'(I'y), such that for all (p,¥) € Hf (2) x H'(I'}), the
following holds
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B((v1,v3), (9, ¥)) = /Q[fl + f2+b(x) filpdx +/F 2f3 + fa)ydr.
1

Therefore, the system (3.3) admits a unique weak solution (vi, v3) € Hllo () x

H'(I'1) by the well-known Lax-Milgram theorem. And we deduce from (3.2) that
vy € HE (2)(— L*(Q)) and vy € H'(I')(— L*(I'1)). This implies that U € H
which gives us the desired solution.

Step 3. Define a vector valued function 2 : Ry — H with h(t) = A(@)U. We will
prove in this step that £ is differentiable and its Frechet derivative is the vector valued
function

0
Wiy = | TG0
— AL (x, v
where
A'(x, Hu = —B'(t)div(A(x)Vu),
and

(. v = —p'(O)divr (A)Ir, Vrv).

Indeed, it is quite obvious that h'(¢) € H fort > 0. And for any ¢, T > 0 with 7 # T,
we have

0
h(t) —h(x) 1 —[A(x, 1) — A(x, T)]u
t—1 Tt—7 0
—[Ar(x, 1) — Ar(x, D]v

Then
0
A(-x, t)_A(-x5T) /
ht) —h(t) ., _[ t—t _A(x’t)}u
— W)= 0 '
t—1
_ [.AT(X, t) - AT(-x7 T) o A/T(-x9 t)} v
-1
which yields
[HOHE o] = |- [ADZACD )
P " t—1
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e ]

- H (—ﬂ(ti = f(f) - ﬂ/(t)) divV,u

" H (%f(” - ﬂ’(t)> divr (Vr)go

I

I

We have

h(t) — h(r)
r—7t

lim

=T

—-W@®| =o.

H

Hence according to the chapters 5 of Pazy’s book [33], we define the solution operators
of the initial value problem

dU ~
d—t=A~(t)U O0<s<t<T, (3.4)
U(s) = Uy,

by
W, )0, =U(), 0<s<t<T,

where U (1) is the solution of (3.4) and W (¢, s) is a two parameter family of operators.
Then, the evolution equation (2.2) has a unique mild solution

U)=W(, 00Uy, tel0, Tnax).

Step 4. Let us show that Tip,x = 00. From the definition of energy (2.4), we have

1 _ 1 / 2 2 2 2
E'(t) = Eﬁ () |Vgu|gdx + I(VT)gu|ng —bo | u;dx — u;drl,
Q I 1) ry

and
|E'(1)] < 4 (t)l {/ |Vgu |2dx+f [(Vr)gul dl"}

_ BB (t)Iﬁ(t) {/ Vol dH/ (V) dr}

A

1B’ (t)I
E(t).
< B (1)
The above inequality gives
i (I)IE(t) <E@ < 1B (t)lE(z). 3.5)
0 Bo
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Let

< B ()]
- ds,
A /o Bo ’

we have
e PIEW0) < E(t) < P E(0), 1 €0, Tiax). (3.6)

Then using (2.1), (2.4) and (3.6), we have
IUN3, =2E(t) <2eP'E(0), 1 € [0, Tya),

where U = (u, us, y1(u), y1 (ut))T € 'H. Therefore, the local solution cannot blow-up
in finite time and it follows that 7j.x = 00. O

Remark 3.1 It is worth noting that in this paper we assumes that To N T'j # @, so we
cannot use the elliptic regularity argument to get u € H 2(Q) and y1(u) € H 2(F1)
from

A, Hu € L2(Q) and Az(x, 1)y1(u) € L3(T)).

Then, for the more regular initial data Up € D(A(0)), we do not have a more regular
solution U € C(R; D(A(0))) N C'(Ry; H).

4 Decay Result

Because of the existence of singularities, we need to avoid them in the following work.
As in [6], let § > O be a small and fixed constant and consider

Bs = ) B(x.9).

xex

where B(x,8) = {y € Q: |x — y| < §}. Denote
Qs = Q\ Bs.

Next, we will study the stability result of the corresponding system in Q25 (see
Fig. 2), whose boundary is defined as

092 = ’I:() UF] Urs,
where
Fozaﬂ(gﬂro, F] =9dQs NIy,
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The damping region w

Fig.2 The new domain Q5 forn =2

and
I's = 0Bs N 2.
Then the system (1.1) is transformed into the following system

uy + Alx, Hu + b(x)u; =0 inQs x R,
u=0 on F() X R+, (41)

0 ~
U + o +Ar(x,t)u +u; =0 onT| x R™.
av»

Define the energy associated with the problem (4.1) in Q5 by

1 2

Es(t) .= = lug|“dx
2 [Jay

+ﬁ(r)/ |Vgu|§dx+/N |ut|2dF+,3(t)/~ |(vT)gu|§,dr}, (4.2)
Qs Iy Iy
then by a simple calculation, we have
PN 2 2 _ 2
Eg(t) = =B'(t) |Veulgdx + [ [(Vr)guledl bo | u;dx
2 Qs F) o

3
—/N u2dT +/ Y udr. 423)
I s aUA

Lemma 4.1 The functional

Ds(1) ::/ u,udx—i—/N u;udll “4.4)
Qs I

@ Springer



Exponential Decay for a Wave Equation Page 150f30 151

satisfies

boCper  Cren
ABo ABo

+ 1+ -— |u,| dx+ |14+ — |u;| dr + —udTl,
4 £1 4ey rs 0vA

where €1 and &> are some positive constants, C; is the smallest possible positive
constant produced by the trace theorem and Poincaré inequality and C,, > 0 is the
Poincaré optimal embedding constant.

(1) < —(1— ) N ﬁ(z)wgu@dx—/F B()|(Vr)gul2dT
1

4.5)

Proof Taking the derivative of (4.4) with respect to the variable ¢ and using (4.1) and
Green formula yield

/ |u,|2dx+/ upudx + [ |u1|2d1"+ﬁ usrudll
Qs Qs I Iy

=/ |ut|2dx+/ lu;|?dT
Qs F]

— [ACx, Hu + b(x)u;udx — /N

Qs I

(1)

]
[_u + Ar(x, Hu + u,i| udl
v 4

f |ut|2dx+/~ |ut|2dr—f ﬂ(t)|vgu|§dx—/~ B(1)|(Vr)gulzdT
Qs I Qs I

ad
—/ b(x)u,udx—/ uudll + —uudr‘.
Qs Fl Ts aU.A
4.6)

Making use of Young’s inequality, Poincaré inequality, the trace theorem and (H1),
we have

/ b(x)u;udx Sb()/ |usuldx
Qs Qs
bo 2 2
< — lu;|“dx + boeq |u|“dx “4.7)
de1 Jo, Qs
b Cye
< D0y 2 1/ ()| Vgul2dx,
481 Qs
and
/:4M[Mdr < » |u,u|dr
I Iy
4.8)
<Y par s %/ B()|Vu2dx.
der JF, ABo Jas
Thus, taking (4.7) and (4.8) into (4.6), (4.5) is obtained. m]
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151 Page 16 of 30 J.Hao, F.Du

Lemma 4.2 Suppose that H is the vector field defined in assumption (H2), and define
Hr = H — (H - v)v. Then, the functional

Ws(t) = 2/ u,H(u)dx—I—Z/; u; Hr (u)drl’d 4.9)
Qs I

satisfies

W) < — (no1 — boer) / e Pdx — (co — €2) /N g dT
Qs I

max, .o |H|*bo )
+\noy —20) + —== / B)|Voul|2dx
( 21 Bo€1 o £

IVr All oo () max z |Hr|  max z |Hr |?

1 xel’y 2
— HI(V -dl”

+< . s, /F BO)I(Vr)gul?

2
+f lus* + ﬂ(t)z H -vdl
f valg

3
+/ [\utlzfﬁ(t)lvgulﬁ]H~vdF+2/ ™ Hudr,
s Ts aU_A

ou
BVA

(4.10)
where €1, €3 and ¢, are some positive constants.

Proof Taking the derivative of (4.9) with respect to the variable ¢ and using (4.1) and
Green formula yield

Wi () :2/ utH(ut)dx—i—Z/ uy H(u)dx
Qs Q

8
+2/; u,HT(ut)dF—i—Z/; MttHT(M)dF
ry Iy
= | H@udx - 2/ [ACx, Ou + b(x)u,] H (u)dx
Qs

Qs

2 ou
+ Hr(up)dl' =2 — + A7 (x, Hu + u; | Hp (u)dT
F F Lova

— | H@dx —2/ ,B(I)VguV(H(u))dx—f-Z/ U war @11
Qs Qs aQs VA

9
—2/ b(x)u,H(u)dx—i—/ Hy (u?)dT —2/ 2 Hp(wydr
Qs F] F] 8‘}./4

_2/F B (Vr)guVr (Hr (u))dl’ —Z/N us Hr (u)dT.
1

Iy

We begin to deal with the terms on the right of (4.11). Since the assumption (H2), we
have

noy <divH < nop,
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then there are positive constants ¢, and C, such that
¢ < divrHr < C,.

Using the divergence theorem, (H2) and the fact of Hr - v = 0, we have

H(u?)dx + ﬁ Hr (u?)dT
Q,} Iy

= / div(u? H)dx — / lu |*divHdx — | |u;|*divy HrdT
Qs Qs I

:/ |u,|2H.udr—/ |u,|2didex—/~ |lu;|?divy HrdT
IO Qs I

< | |u/)*H-vdU + | |u;|*H -vdD

I )

—n01/ |ut|2dx—c0/ |u;)?dT. (4.12)
Qs T

Using Lemma 2.1 and (H2), we get

) /Q BOVuV (H@w)dx — 2 /F B()(V)guVr (Hr (0)dT
5 1
= <2 [ B0 Vo, Vi (H))dx
S

— [ BOA®I V7 (IVrul) - HrdD =2 | BOI(Vr)gulidivr HrdT
I Iy

2 [ BODHNu, Veuydx — | B@)IVeu2H - vdT
Qs Q2

+ / B()|VgulidivHdx
Qs
+ fﬁ B (VrA@)Ir,) [Vrul* - Hrdl — fr BOI(Vr)gul3divy HrdD
1 1

< (noy —201) | B@)|Veul2dx — B(t)|Veu|2H - vdTl
Qs & 0925 §

(anA(xnn ooy max, g, Hr|
A

— cg> /F B(1)|(Vr)gul3dT .
1
(4.13)
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And using Young’s inequality, we have

—2/ b(x)u; H(u)dx §2b0/ |us H(u)|dx
Qs Qs
max H
§b061/ |ut|2dx+L||/ B(D)|Vqul2dx,
Qs 2\
4.14)

and

2

max _= |Hr|
2 [wttrwdx e [ Py = [ g,
F] F] 2Aﬂ062 Fl
4.15)

where €; > 0 and €3 > 0 are some constants. Substituting (4.12)—(4.15) into (4.11),
we obtain

Wi(1) < — (noy — boer) | |ug*dx — (co — €2) f lur)2dT
Qs

max
—2 maxyeq, |17 bo f 1)|Veul2d
+ (n02 o] + 22Boe1 ) B@®)] 14| X

+(||VTA<x>|r] ooy max, g, | Hr |

xel'y

A

- 2
max & |Hr |

2ABo€r

9
| Ju,)PH - vdl — 2/~ 2 Hrdr + | ug?H - vdT
I I 81}./4 Is

0
- ﬂ(t)|vgu|§H.vdr+2/ 2 H(uyar. (4.16)
99 aQs VA

- ca> /F BWI(Vr)gulgdl
1

Now, we are going to estimate the integrals over 9£2s. On I'o UT|, we have

Vou2 = —— | 24 2+|(V )il
= T 5 |7 T B
8T al2 Joval, £7e
and
u ou (1)
L Hw) = —HT( ERLICA
v g valg

8

Since u = u, = 0 on I'p, it hold that

ou 5 ~
_H(“)Z,B(t)|vg“|gHV7 XGFO’
vy
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then

9
—f ﬁ(z)|vgu|§H.udr+2/ 2 H(uydr
99 ags 0vA

= /~ B()|Vgul;H - vdl
To

B()

2
lvalg

ou

I

ou
+/~ [2er(u> — BOI(Vr)qu2H - v + e

2
H~v:|d1"

9
— | BOIVeulPH -var +2 | 2L Hw)ar.
§%lg T

I's 5 8\)A
4.17)
Combining (4.16) and (4.17), we infer that
Wi(1) < — (no1 — boer) f urPdx — (co — €2) /~ ludT
Qs I
max, g |H by 5
+ | noy —20) + —2=0— — / )| Voul5dx
( 221 poe€r 95'3 o8
o (VT AW e i max, o, 17|
A
maxxelil |I‘IT|2 )/ BOI(Vr) |2dF+/ BV |2H dr
4+ ———c t T)olU t u )
Zkﬂoez e I':l 871g 1:40 8§71g
B | du |’
+/~ e > = BONVr)gul2 + =2 2|V H - var
7, Al [9v4
5 5 ou
+ [Iull —ﬂ(t)|Vgu|g]H-vdF+2 ——H(u)dr. (4.18)
Ts r; 0VA
Therefore, using (H2), we obtain (4.10). O
Next we define the perturbed energy associated with 25 by
Esg(t) := NEs(t) + Os(2) + 0Ws(1), (4.19)

where N and 6 are some positive constants.

Lemma4.3 If

Es —> FE, ®5—> ® and VY5 —> ¥, as § > 0,

then
Esg — Ep, as § — 0,
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where
(1) :=f utudx—l—/ u;udrl,
Q r
V() = 2/ utH(u)dx—i—Z/ us Hr (u)drT,
Q I
and

Eo(t) :=NE(@)+ D(t) +0W¥().

Proof Using Lebesgue dominated convergence theorem, we can easily obtain Lemma
4.3. O

Obviously, for N large enough, we have
Es ~ Es.
Moreover, due to (3.6), there exists a positive constant 8, such that
Es(t) < B2, t=>0. (4.20)

Proof of Theorem 2.4 Differentiating (4.19) and taking (4.3), (4.5) and (4.10) into it,
we have

Ej (1) = NEj() + @} (1) + 0 (1)

b
< — | Nby 4+ (noy — bge1)0 — (1 + —O>i|/ |u,|2dx
4 Qs

— N+(ca—62)9—<1+—> cﬂe} lu;|>dT
i (1 boCpe1 C;82)
L ABo ABo
max._s |H|%bg
— -2 S R e 9/ 1)|Voul2d
(naz o1+ 2 foc, +Cn szaﬁ()l gltlgdx
[1 (||VTA||L0<>(F1) max_z |Hr|
R A

max g |HT|2 5
4l T —ca)e)“ BOI(Vr)guldr
Iy

2ABo€r
NIB'(1)]
2

NI|B' ()]
* 280

+ N

f B(0)|Vgulzdx + / BOI(Vr)gul;dT
Qs I

u ou
udl’ + —udl’
Ts 8UA Ts BU_A
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16 [|u,| — BO)|V,ul ]H~vd[‘+29 2 H@wydr, @21
s § s 81)./4

where Cy > 0 is some constant depending on H. Thus, we choose €1, €2, €] and €
small enough such that

nop — boe; > 0,
¢y — € >0,
and

_ b()Cpé‘l _ thpé‘z -0
APo APo

1

Fixing them, choosing 6 sufficiently small and N lager enough such that

boC C max._s |H|?b

ABo ABo 22 o€
IVT All oy max, g |Hr| max _z |Hrl?
ci=1-— —cs |0 >0,
A 2ABoer

b
c3 := Nbg + (noy — bper)0 — <l + 4—0> > 0,
€1

and

1
C4i=N+(Cg—€2)9—(1+E)—CH9>0.

Therefore, combining (4.20) and (4.21) we obtain

E5o(t) < — C1Es(1) + C|B'(1)| + 00s(1) + As(1), (4.22)
where
Ci :=min {cy, ¢2, ¢3, ¢4} > 0,
0
Os(1) := f |:2—MH(u) — BW)|Veul3H - v] dr,
Is BV_A
and

ou ou 2
As(t) == —u-+N u; +0lu|“H - v |dT.
rs LovA av g
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T
1

Fig.3 The vectors v, 7, v and T forn = 2

Then, integrating (4.22) from 0 to ¢, we obtain

t t
Es0(t) SC[ES,G(O)-I— / eC B/ (s)|ds + / e [®3(S)+Aa(s)]ds} e O
0 0

(4.23)
where C, > 0 is some constant.

t
o Estimate for Ls(7) := / e“2 Q5 (s)ds

(i) For n = 2, at each poin(t))? € X, we can build the vectors b = v(x) and T = 7(X)
which depend on x and 2. v is the unit normal vector pointing towards the exterior
and 7 is the tangent vector pointing towards from Iy to ['g. If § is small enough, each
point x € I's belongs to one and only one coordinate system (X, v, T) and x belongs
to some arc of circle d B(X, §) contained in this coordinate system (see Fig. 3).

We decompose the solution

u(x) = ur(x) +uz(x) :=ur(x) + n(x)Uz2(x — x),

where u| € H2(Q), n is locally in H% (X) and Uy is given by
. . (0
Ur(x — %) = Us(r,0) = p(r)/r sin 5

where p is a C*°-function with compact support such that p(r) = 1 in some neigh-
bourhood of 0 and supp(p) C [—o0, 0] C (—1, 1), where ¢ > 0 is as small as we want.
Then, using coordinate in (X, V, T), similar to [4], we have

2292 ) — By VL U2 H L
— — Y = — .
va 2 8§72l 5

N

B(1)A(x) (
4

. f) . (424)
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where H = H (x) with H -7 =0.When$§ — 0, dB (X, 8) behaves as a half-circle,
then we obtain
1

— A@X)dD —> A(X) = A as § — 0.
78 JaB(.8)

Integrating (4.24) along d B(X, §), we get

1) 2 Th) » ~ .
2—H(U2)—,8(t)|VgU2|gH~v dl’ — AH -7 as § — 0.
IBE8) L 9vg 4

Therefore, integrating the regular part of solution «; on d B(x, §) and using Cauchy-
Schwarz inequality, Lebesgue dominated convergence theorem, (2.3) and the com-
pactness of function p, we obtain that Ls(¢) has a limit of non-positive number as
s — 0.

(ii) For n > 3, when § is small enough, we also know that each point x € ' belongs
to one and only one plane defined by (X, v, 7), and x belongs to some arc of circle
[(x, §) contained in this plane (the figure is similar to Fig. 3).

Firstly, just like in the case of n = 2, we write
u(x) = up(x) +uz(x),

then

/ [28—”11(14) — B |Voul2H - v] dr
IBES) L 9va &%'e
= / B(1)A(x) [2Vu~vVu-Hf |Vu|2H-v]dF
dB(x,8)
= / BWOAW) [2V (@t +u2) vV (1 +u2) - H = [V(uy +up)PH - v]dT
dB(X,8)

- / B(A(x) [2w1 WVuy - H — |Vuy 2 H - v] dr
IB(E,8)

1s(Vuy)

+/ B(1)A(x) [2w2 WV - H — |Vuo |2 H - v] dT
dB(X,8)

I5(Vuz)

+ 2/ BHA) [Vuy - vVuy - H + Vuy - vVuy - H — Vuy - VupH - v]dT .
IB(F,8)

Js(Vuy,Vuz)

Since u; € H?*(2) and meas(dB(%,8)) — 0as § — 0 and using the regularity of
B(t) and A(x), it is easy to get

Is(Vu1) > 0 as§ — 0.
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Further, let us do the decomposition of Vu,:
Vuy = Vxuy + Vouo,

where V,us belongs to the plane (X, v, T) defined above and Vyu, is orthogonal to
Vouo, i.e.,

Vxity - Vouy =0 and  |Vur|* = |Vxus|? + [Vaua|*.

Then

/ |Vus|?dT =/ |Vxus|?dT +/ |Vaus|?dr.
dB(x,8) dB(X,8) dB(X,8)

Thanks to the first part of Theorem 4 in [4] and the Lebesgue dominated convergence
theorem, we get

/ |Vxus)?dl — 0 as s — 0.
dB(X,8)

And as us(x) = n(x)U>(x — X), using the Fubini’s theorem, we have

/ VauaPdl = f 7 / VaUs 2d1dT (B),
JdB(X,5) > 1(X,5)

and know that this integral is bounded using n € H 3 (X) and the definition of U;. So
we can end up with

/ |Vuo|?dl’ < C.
9B(X,8)

Therefore, making use of Cauchy-Schwarz inequality, we obtain

1 1

2 2

|J5(Vu1,wz>|sc</ |Vu1|2dr) (/ |wz|2dr) :
9B(%,8) dB(X,5)

It tends to zero since the first term vanishes as § — 0 and the second one is bounded.
And finally we start to deal with the term I5(Vu>). Similar to the above process, we
decompose Vu, and have

I5(Vua) = / B(t)A(X)[2Vxus - vVxuy - H — |Vxuz|*1dT
dB(X,8)

Is(Vxuz)
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+/ B A [2Vaus - vVaus - H — |Vauo|*H - v]dT
3B(,8)

I5(Vauz)

+ 2/ B)A(x)[Vxuy - vVouy - H + Vous - vVyxuy - HldIN .
IB(E.5)

Js(Vxu2,Vouz)

As above, I5(Vxuy) — 0as § — 0. Since

1 1
2 2
|Ja<vxu2,vzuz)|sc</ |vxu2|2dr> (/ |v2u2|2dr) ,
0B (x,8) dB(x,8)

we have the first term vanishes as § — 0 and the second one is bounded, thus we
obtain Js(Vxuo, Vouy) tends to zero. For I5(Vouy), as the case of n = 2, we also
have

1/1 ~

2V2U2~UV2U2-H—|V2U2|2H~v=Z<8H-f—v-f>,

and

7B) -~ .
2 AH -7 as § — 0.

/ B AX)2VaUs - vVaUs - H — |VaUs |2 H - vidl —
1(7,8)

In other words, this integral term on /(x, §) is bounded. Then, the dominated conver-
gence theorem can be used to get

() 0w~ -
Is(Vour) — 7 n“AH -7dl'(x) as § — 0.
b

Therefor, using the assumption (2.3), we know that I5(Vou;) converges to a non-
positive number.
In conclusion, we infer
Os() > ¢ as § > 0,
where ¢ < 0 is a real number. When ¢ < 0, then there exists §; > 0 such that

Os(t) <0, §<5dy,

and
t
Ls(t) =/ e“0s(t)ds < 0.
0
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When ¢ = 0, we need to talk about two cases. One case is that there exists a positive
constant 8, such that

Os(t) <0, §< b

Then the process is the same as ¢ < 0. The other case is that there exists a positive
constant 83 such that

Os() >0, § < d3.

Then

t t
0 < Ls(t)e ©! =/ e O5(s)dse ! < / Os(s)ds — 0 as § — 0,
0 0

ie.,
Ls(t)=0 as § - 0.

Thus, we get
Ls(t) <0 as § — 0. (4.25)

t
o Estimate for M;(t) := / e Ags(s)ds

0
Just like we did above, we split u into two parts, this is,
u(x) = uy(x) + uz(x),

where u; € H 2(Q) is the regular part and u» = 7 - U; is the singular part, then
0
/ —uudl"
IB(%.8) VA
= / BWAX)(Vuy + Vuz) - v(uy + uz)dll
dB(Z,8)

= / BAAX)[Vuy - vuy + Vuy - vuy + Vuy - vuy + Vuy - vuy ldT.
9B (%,8)

(4.26)
Using Cauchy-Schwarz inequality and the above results, we have
/ Vuj-vurpdll - 0 as § — 0, 4.27)
dB(%,8)
/ Vuy -vurdll — 0 as § — 0, (4.28)
dB(%,8)
/ Vui -vurdll — 0 as § — 0, (4.29)
IB(%,8)
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and
/ Vuy -vudll — 0 as § — 0. (4.30)
B(%,8)

Taking (4.27)—(4.30) into (4.26) and using Lebesgue dominated convergence theorem
allow us to get

f CZS/ U dTds — 0 as 5 — 0. (4.31)
IB(i.5) VA

Analogously,

t
9
/ eCZS/ Y dTds — 0 as 8 — 0. (4.32)
0 IB(E,8) VA

On the other hand, using the decomposition of u into a regular part and a singular
part, we have

t
/ e©2s f lus|?H - vdT'ds
0 dB(X,8)

t t
= / eCN/ |u1,t|2H.udrds+/ eCN/ lur.:|*H - vdT'ds.
0 JdB(x,68) 0 JdB(X,5)

From the dominated convergence theorem, we have

t
/ eCzS/ |u1_¢|2H -vdl'ds — 0 as § — 0.
B(3.8)

As
2w 6 . 3
/ lus |*H - vdl < cf / ridrdf < C82,
1(%,8) o Jo
we get
t
/ eCz“/ |u2,,|2H -vdlds — 0 as § — 0.
IB(X,8)
Then it follows

t
f eCﬂ/ lu;>H - vdT'ds — 0 as § — 0. (4.33)
B(X,9)
Therefore, combining (4.31)—(4.33), we get
t
Ms(t) = / e As(s)ds — 0 as 8 — 0. (4.34)
0
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In conclusion, let § — 0 and taking (4.25) and (4.34) into (4.23), we have

t
&) <C (59(0) +/ eC”I,B’(s)Ids) e 2,
0

Then, using the energy equivalence relation and (2.5), we get
E(t) < C(E(0) + at™) e .

Thus, we complete the proof of Theorem 4.4. O

5 Conclusions

In this paper, we present a study on the stability of a time-varying coefficients wave
equation in the bounded domain 2. The smooth boundary of Qis I' = I'g U I'; such
that ¥ = TN Ty # (J. We consider that a homogeneous Dirichlet boundary on I'g
and a dynamic boundary with damping term on I';. Since the coefficients depends
on the time variable and the singularities are generated by changing the boundary
conditions along the interface, these bring no small difficulty to our proof, so some
special techniques are needed to deal with these problems. Under the appropriate
geometric assumptions, the exponential decay result of the system is established by
the Riemannian geometry method and the energy perturbation method.

There are many other issues associated with this type of problem, but we have not
studied them here.

(i) The geometric conditions (H2) and (2.3) are essential in the proof of our expo-
nential stability result, but their necessity leads us to exclude many mathematical
models of interest that should also be uniformly stable.

(i) We assume that there are no external forces acting on the system or its boundary
other than friction. If there is thermal force in system, can the energy still be
uniformly stable? What if there is a nonlinear negative source term on I'1?
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