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Abstract
We prove that every 1-Lipschitz map from a closed metric surface onto a closed
Riemannian surface that has the same area is an isometry. If we replace the target
space with a non-smooth surface, then the statement is not true and we study the
regularity properties of such a map under different geometric assumptions. Our proof
relies on a coarea inequality for continuous Sobolev functions on metric surfaces that
we establish, and which generalizes a recent result of Esmayli–Ikonen–Rajala.
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1 Introduction

The Lipschitz-volume rigidity problem in its general formulation asks whether every
1-Lipschitz and surjective map between metric spaces that have the same volume (e.g.
arising from Hausdorff measure) is necessarily an isometry. It is well-known that the
answer to this problem is affirmative for maps between smooth manifolds.
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Let X ,Y be closed Riemanniann-manifolds, where n ≥ 1. If Vol(X) = Vol(Y ), then
every 1-Lipschitz map from X onto Y is an isometric homeomorphism.

See [6, Sect. 9] or [4, Appendix C] for a proof of this fact. Moreover, this statement
has been generalized to singular settings ofAlexandrov and limit RCDspaces byStorm
[37], Li [23], and Li and Wang [25]. See also [24] for an overview of the Lipschitz-
volume rigidity problem. The problem in the setting of integral current spaces has
been recently studied by Basso et al. [2], Del Nin and Perales [9], and Züst [42].

The recent developments in the uniformization of non-smooth metric surfaces by
Rajala, Romney, Wenger, and the current authors [29, 31, 32, 35], allow us to estab-
lish the above rigidity statement in the two-dimensional setting under no geometric,
smoothness, or curvature assumptions on X .

Theorem 1.1 Let X be a closed metric surface and Y be a closed Riemannian sur-
face. If H2(X) = H2(Y ), then every 1-Lipschitz map from X onto Y is an isometric
homeomorphism.

Here a closedmetric surface is a compact topological 2-manifoldwithout boundary,
equipped with a metric that induces its topology. Also, an isometric map is a distance-
preserving map. We state an immediate corollary.

Corollary 1.2 Among all metrics d on S
2 that are at least as large as the spherical

metric, the map d �→ H2
d(S

2) has a unique minimum attained by the spherical metric.

We note in the next example that the conclusion is not true in general if we replace
the spherical metric with a non-smooth metric.

Example 1.3 Consider a non-constant rectifiable curve E in S2 and let d0 be the length
metricχS2\E ds+(1/2)χE ds. Then there exist infinitelymany distinctmetrics d ≥ d0
having the same area as d0. Namely, for each δ ∈ (1/2, 1], the metric χS2\E ds +
δχE ds has this property.

One of the most technical difficulties of Theorem 1.1 is establishing the injectivity
of the map in question; see Lemma 3.7. Since this issue is not present in Corollary
1.2, it is conceivable that the result can be obtained in higher dimensions as well by a
modification of our argument.

1.1 Area-Preserving and Lipschitz Maps Between Surfaces

A map as in Theorem 1.1 preserves the Hausdorff 2-measure, or else area measure,
of every measurable set. Theorem 1.1 is a consequence of Theorem 1.4, which pro-
vides several topological and regularity results for area-preserving and Lipschitz maps
between surfaces of locally finite Hausdorff 2-measure.

Weprovide the necessary definitions. Let X andY bemetric surfaces of locally finite
Hausdorff 2-measure. A map f : X → Y is area-preserving if H2(A) = H2( f (A))

for every measurable set A ⊂ X . A map f : X → Y is Lipschitz if there exists L > 0
such that for all x1, x2 ∈ X we have

d( f (x1), f (x2)) ≤ L d(x1, x2).
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In this case, we say that f is L-Lipschitz. A homeomorphism f : X → Y is quasi-
conformal (abbr. QC) if there exists K ≥ 1 such that

K−1 Mod f (�) ≤ Mod� ≤ K Mod f (�)

for each path family� in X ; hereMod refers to 2-modulus and the precise definition is
given in Sect. 2.3. In this case we say that f is K -quasiconformal. A map f : X → Y
is a map of bounded length distortion (abbr. BLD) if there exists a constant K ≥ 1
such that

K−1 · �(γ ) ≤ �( f ◦ γ ) ≤ K · �(γ )

for all curves γ in X ; this includes curves of infinite length. In this case we say that f
is a map of K -bounded length distortion.

We say that the surface X is reciprocal if there exists a constant κ > 0 such that
for every quadrilateral Q ⊂ X and for the families �(Q) and �∗(Q) of curves joining
opposite sides of Q we have

Mod�(Q) · Mod�∗(Q) ≤ κ.

By a result of Rajala [35, Sect. 14], if a surface is reciprocal then the above holds for
some κ ≤ (π/2)2. Reciprocal surfaces are important because they are precisely the
metric surfaces that admit quasiconformal parametrizations by Riemannian surfaces
[19, 31, 35]. We say that X is upper Ahlfors 2-regular if there exists K > 0 such that

H2(B(x, r)) ≤ Kr2

for every ball B(x, r) ⊂ X . If X is (locally) upper Ahlfors 2-regular, then it is also
reciprocal [35]. See Sect. 2.5 for further details. We state our main theorem, which is
also concisely presented in Table 1.

Theorem 1.4 Let X ,Y be metric surfaces without boundary and with locally finite
Hausdorff 2-measure, and let f : X → Y be an area-preserving surjective map.

(1) If X is reciprocal and f is Lipschitz, then there exists a constant K ≥ 1 such that

K−1 · �(γ ) ≤ �( f ◦ γ ) ≤ K · �(γ )

for all curves γ in X outside a curve family �0 with Mod�0 = 0. Moreover, if f
is 1-Lipschitz, then K = 1.

(2) If Y is reciprocal and f is Lipschitz, then there exists a constant K ≥ 1 such that
f is a K -quasiconformal homeomorphism and

K−1 · �(γ ) ≤ �( f ◦ γ ) ≤ K · �(γ )

for all curves γ in X outside a curve family �0 with Mod�0 = 0. Moreover, if f
is 1-Lipschitz, then K = 1.
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Table 1 The conclusions of Theorem 1.4. In all cases f is assumed to be area-preserving

Reference X Y f Conclusion about f

Question 1.5 – – Lip BLD on a.e. curve?

Theorem 1.4 (1) Reciprocal – (1-)Lip (1-)BLD on a.e. curve

Example 4.1 Riemannian – 1-Lip Not homeomorphic

Theorem 1.4 (2) – Reciprocal (1-)Lip (1-)QC homeom.

(1-)BLD on a.e. curve

Example 4.2 Riemannian Reciprocal 1-Lip Not BLD

Theorem 1.4 (3) – Upper regular Lip QC homeom., BLD

Example 1.3 Riemannian Upper regular 1-Lip Not isometric

Theorem 1.4 (4) – Riemannian 1-Lip Isometry

(3) If Y is upper Ahlfors 2-regular and f is Lipschitz, then there exists a constant
K ≥ 1 such that f is a homeomorphism of K -bounded length distortion.

The constant K in (1)–(3) depends quantitatively on the assumptions.

(4) If Y is Riemannian and f is 1-Lipschitz, then f is an isometric homeomorphism.

We were neither able to show that part (1) holds without the assumption that X
is reciprocal, nor were we able to find a counterexample. This raises the following
question.

Question 1.5 Suppose that X ,Y are metric surfaces of locally finite Hausdorff 2-
measure. If f : X → Y is an area-preserving andLipschitzmap, does it quasi-preserve
the length of a.e. path in X?

We note that an affirmative answer to the question has been provided by Creutz–
Soultanis [7, Proposition 4.1] with the additional assumptions that X is 2-rectifiable
and f is 1-Lipschitz. This result does not imply Theorem 1.4 (1) or vice versa.

In Sect. 4 we present examples illustrating the optimality of Theorem 1.4. We first
note that area-preserving and 1-Lipschitz maps are not injective in general without any
assumptions on Y ; a sufficient condition is the reciprocity of Y in part (2). Moreover,
one cannot expect in part (2) that the length ofall curves (rather than a.e. curve) is quasi-
preserved; a sufficient condition is upper Ahlfors 2-regularity of Y as in (3). Finally,
in part (3) one cannot expect a 1-Lipschitz map f to be an isometry without further
assumptions on Y , such as smoothness, as in (4); this has already been illustrated in
Example 1.3.

1.2 Coarea Inequality

The proof of Theorem 1.4 relies on a coarea inequality for continuous Sobolev
functions on metric surfaces. The following result is an improvement of the coarea
inequality for monotone Sobolev functions that was established recently in [13]; here
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monotonicity means that the maximum and minimum of a function on a precom-
pact open set are attained at the boundary. We direct the reader to [13] for further
background on the coarea inequality in metric spaces.

Theorem 1.6 Let X be a metric surface of locally finite Hausdorff 2-measure and
u : X → R be a continuous function with a 2-weak upper gradient ρu ∈ L2

loc(X).

(1) IfAu denotes the union of all non-degenerate components of the level sets u−1(t),
t ∈ R, of u, then Au is a Borel set.

(2) For every Borel function g : X → [0,∞] we have
∗∫ ∫

u−1(t)∩Au

g dH1 dt ≤ 4

π

∫
gρu dH2.

(3) If, in addition, u is Lipschitz, then for every Borel function g : X → [0,∞] we
have

∗∫ ∫
u−1(t)

g dH1 dt ≤ 4

π

∫
g · (ρuχAu + Lip(u)χX\Au ) dH2.

Here Lip(u) denotes the pointwise Lipschitz constant of a Lipschitz function u : X →
R, defined by

Lip(u)(x) = lim sup
y→x

|u(y) − u(x)|
d(x, y)

.

Also,
∫ ∗ denotes the upper integral, which is equal to the Lebesgue integral for mea-

surable functions. The main result of [13] (for p ≥ 2) states that (2) holds with the
additional assumption that u is monotone and with u−1(t) in place of u−1(t) ∩ Au .
Since the level sets of monotone functions are always non-degenerate (see e.g. [33,
Corollary 2.8]), we see thatAu = X when u is monotone; hence our theorem implies
the main result of [13] for p ≥ 2. Moreover, without the monotonicity assumption,
we note that part (2) is optimal and does not hold for the full level sets u−1(t) if we do
not restrict to Au , even if u is Lipschitz. A relevant example is provided in [13, Sect.
5].

The proof of Theorem1.6 relies on recent developments in the theory of uniformiza-
tion of metric surfaces. Specifically, we use a result of Romney and the second-named
author [31],which states that everymetric surface of locally finiteHausdorff 2-measure
admits a weakly quasiconformal parametrization by a Riemannian surface of the same
topological type.

After the completion and distribution of a first version of the manuscript it was
communicated to us by Wenger that in the case of orientable surfaces Theorem 1.1
may also be obtained via a combination of recent results on the geometric structure
of metric surfaces due to Basso et al. [3] and of a rigidity theorem of Züst for integral
current spaces [42]; see [3, Theorem 1.4]. The uniformization result of [31] is an
important ingredient of this alternative approach too.
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2 Preliminaries

2.1 Hausdorff Measures

For a metric space X and s > 0, the Hausdorff s-measure of a set A ⊂ X is defined
by

Hs(A) = lim
δ→0

Hs
δ(A), where Hs

δ(A) = inf

⎧⎨
⎩

∞∑
j=1

ωs

2s
diam(A j )

s

⎫⎬
⎭

and the infimum is taken over all collections of sets {A j }∞j=1 such that A ⊂ ⋃∞
j=1 A j

and diam(A j ) < δ for each j . Here ωs is a positive normalization constant, chosen
so that the Hausdorff n-measure coincides with Lebesgue measure in R

n . Note that
ω1 = 2 andω2 = π . If we need to emphasize themetric d being used for theHausdorff
s-measure, we writeHs

d instead of Hs .
We state the coarea inequality for Lipschitz functions and the classical coarea

formula for Sobolev functions.

Theorem 2.1 (Coarea inequality and formula) Let X be a metric space, u : X → R

be a continuous function, and g : X → [0,∞] be a Borel function.

(1) If u is Lipschitz, then for K = 4/π we have

∗∫ ∫
u−1(t)

g dH1dt ≤ K
∫
X
g · Lip(u) dH2.

If X is a Riemannian surface, we may take K = 1.
(2) If X is an open subset of R2 and u ∈ W 1,1

loc (X), then

∫ ∫
u−1(t)

g dH1dt =
∫
X
g · |∇u| dH2.

Part (1) is a consequence of [16, Theorem 2.10.25] for general metric spaces X and
of [15, Theorem 3.1] for Riemannian manifolds with K = 1. Part (2) is stated in [28]
and attributed to Federer. See also [12] for a more general statement than (1) and [13,
Lemma 5.2].

Wewillmake use of the following area formula.Below, N ( f , y)denotes the number
of preimages of a point y under a map f .

Theorem 2.2 [16, Theorem 2.10.10] Let X ,Y be metric spaces such that X is separa-
ble. Consider a map f : X → Y such that for every Borel set A ⊂ X the set f (A) is
H2-measurable. For S ⊂ X define ζ(S) = H2( f (S)) and denote byψ the measure on
X resulting by Carathéodory’s construction from ζ on the family of all Borel subsets
of X. Then, for each Borel set A ⊂ X we have

ψ(A) =
∫
Y
N ( f |A, y) dH2.
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2.2 Topological Preliminaries

Let X be a metric space. A path or curve is a continuous map γ : [a, b] → X . The
trace of γ is the set |γ | = γ ([a, b]). The length of γ is its total variation and is denoted
by �(γ ). The following theorem is a consequence of Theorem 2.2 and provides an area
formula for length.

Theorem 2.3 [16, Theorem 2.10.13] Let X be a metric space and γ : [a, b] → X be
a curve. Then

�(γ ) =
∫
X
N (γ, x) dH1.

We say that a curve γ : [a, b] → X is a Jordan arc if γ is injective. Here we allow
the possibility a = b, in which case γ is a degenerate Jordan arc. We say that γ is a
Jordan curve if γ |[a,b) is injective and γ (a) = γ (b). We also say that a set K ⊂ X is a
Jordan arc (resp. Jordan curve) if there exists a Jordan arc (resp. Jordan curve) γ with
|γ | = K . A continuum is a compact and connected metric space. A Peano continuum
is a locally connected continuum.

Lemma 2.4 Let {Ki }i∈I be a collection of pairwise disjoint Peano continua in R
2.

Then, with the exception of countably many i ∈ I , each Ki is a Jordan arc or a Jordan
curve.

Proof A triod is the union of three non-degenerate Jordan arcs that have a common
endpoint, the junction point, but are otherwise disjoint. A theorem of Moore [30] (see
also [34, Proposition 2.18]) states that there is no uncountable collection of pairwise
disjoint triods in the plane. On the other hand, if a Peano continuum is not a Jordan arc
or Jordan curve, then it contains a triod [33, Lemma 2.4]. This completes the proof. �
Lemma 2.5 Let K be a continuum withH1(K ) < ∞. Then K is a Peano continuum.

Proof IfH1(K ) < ∞, a result of Eilenberg–Harrold [10, Theorem 2] states that there
exists a continuous and surjective mapping γ : [0, 1] → K (with �(γ ) ≤ 2H1(K ) −
diam(K )). By the Hahn–Mazurkiewicz theorem [40, Theorem 31.5], Peano continua
are characterized as continuous images of the unit interval. �
Lemma 2.6 [5, Theorem 2.6.2] Let X be a metric space and let γ : [a, b] → X be a
curve. Then �(γ ) ≥ H1(|γ |). Moreover, if γ is a Jordan arc or Jordan curve, then
�(γ ) = H1(|γ |).

We state a consequence of Lemmas 2.4, 2.5, and 2.6, and of the existence of
arclength parametrizations of rectifiable curves [18, Sect. 5.1].

Corollary 2.7 Let X be a metric space homeomorphic to a subset of R2. Let {Ki }i∈I
be a collection of pairwise disjoint continua in X with H1(Ki ) < ∞ for each i ∈ I .
Then, with the exception of countably many i ∈ I , each Ki is a Jordan arc or a Jordan
curve and there exists a Lipschitz parametrization γ : [ai , bi ] → Ki that is injective
in [ai , bi ).

123



128 Page 8 of 30 D. Meier, D. Ntalampekos

Lemma 2.8 Let X be a topological space homeomorphic to S
2 or to a closed disk.

Let K ⊂ X be a compact set separating two points a, b ∈ X. Then there exists a
connected component of K that also separates a and b.

In S2 this is a consequence of [39, Lemma II.5.20, p. 61]. For topological disks the
conclusion follows from [27, Lemma 7.1].

Throughout the paper int(X) denotes the manifold interior of a surface X . The
topological interior of a set A in a topological space is denoted by inttop(A). Similar
notation is adopted for the notion of boundary.

2.3 Metric Sobolev Spaces

Let X be a metric space and � be a family of curves in X . A Borel function ρ : X →
[0,∞] is admissible for � if

∫
γ

ρ ds ≥ 1 for all rectifiable paths γ ∈ �. We define
the 2-modulus of � as

Mod� = inf
ρ

∫
X

ρ2 dH2,

where the infimum is taken over all admissible functions ρ for �. By convention,
Mod� = ∞ if there are no admissible functions for �. Observe that we consider X
to be equipped with the Hausdorff 2-measure. This definition may be generalized by
allowing for an exponent different from 2 or a different measure, though this generality
is not needed for this paper.

Let h : X → Y be a map between metric spaces. We say that a Borel function
g : X → [0,∞] is an upper gradient of h if

dY (h(x), h(y)) ≤
∫

γ

g ds (2.1)

for all x, y ∈ X and every rectifiable path γ in X joining x and y. This is called the
upper gradient inequality. If, instead the above inequality holds for all curves γ outside
a curve family of 2-modulus zero, then we say that g is a (2-)weak upper gradient of
h. In this case, there exists a curve family �0 with Mod�0 = 0 such that all paths
outside �0 and all subpaths of such paths satisfy the upper gradient inequality.

We equip the space X with the Hausdorff 2-measure H2. Let L2(X) denote the
space of 2-integrable Borel functions from X to the extended real line R̂, where
two functions are identified if they agree H2-almost everywhere. The Sobolev space
N 1,2(X ,Y ) is defined as the space of Borel maps h : X → Y with a 2-weak upper
gradient g in L2(X) such that the function x �→ dY (y, h(x)) is in L2(X) for some
y ∈ Y . If Y = R, we simply write N 1,2(X). The spaces L2

loc(X) and N 1,2
loc (X ,Y )

are defined in the obvious manner. Each map h ∈ N 1,2
loc (X ,Y ) has a minimal 2-weak

upper gradient gh , in the sense that for any other 2-weak upper gradient g we have
gh ≤ g a.e. See the monograph [18] for background on metric Sobolev spaces.

We state a consequence of the coarea inequality for Lipschitz functions.
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Lemma 2.9 [13, Lemma 2.13] Let X be a metric surface of finite Hausdorff 2-measure
and u : X → R be a Lipschitz function. If �0 is a curve family in X withMod�0 = 0,
then for a.e. t ∈ R, every Lipschitz curve γ : [a, b] → u−1(t) that is injective on
[a, b) lies outside �0.

2.4 Quasiconformal Maps

Let X ,Y be metric surfaces of locally finite Hausdorff 2-measure. Recall that a home-
omorphism h : X → Y is quasiconformal if there exists K ≥ 1 such that

K−1 Mod� ≤ Mod h(�) ≤ K Mod�

for every curve family � in X . A continuous map between topological spaces is cell-
like if the preimage of each point is a continuum that is contractible in each of its
open neighborhoods. A continuous, surjective, proper, and cell-like map h : X → Y
is weakly quasiconformal if there exists K > 0 such that for every curve family � in
X we have

Mod� ≤ K Mod h(�).

In this case, we say that h is weakly K -quasiconformal.
If X and Y are compact surfaces that are homeomorphic to each other, then we

may replace cell-likeness with the weaker requirement that h is monotone; that is, the
preimage of every point is a continuum. In that case, continuous, surjective, andmono-
tone maps from X to Y coincide with uniform limits of homeomorphisms; see [31,
Theorem 6.3] and the references therein. Alternatively, if X ,Y have empty boundary,
then continuous, proper, and cell-like maps from X to Y also coincide with uniform
limits of homeomorphisms, see [8, Corollary 25.1A].

We note that a weakly K -quasiconformal map between planar domains is a K -
quasiconformal homeomorphism. Indeed, by [32, Theorem 7.4], such a map is a
homeomorphism. Also, note that a quasiconformal homeomorphism between planar
domains is a priori required to satisfy only one modulus inequality, as in the definition
of a weakly quasiconformal map; see [22, Sect. I.3].

The next theorem of Williams ( [41, Theorem 1.1 and Corollary 3.9]) relates the
above definitions of quasiconformality with the “analytic” definition that relies on
upper gradients; see also [32, Sect. 2.4].

Theorem 2.10 (Definitions of quasiconformality) Let X ,Y be metric surfaces of
locally finite Hausdorff 2-measure, h : X → Y be a continuous map, and K > 0.
The following are equivalent.

(i) h ∈ N 1,2
loc (X ,Y ) and there exists a 2-weak upper gradient g of h such that for

every Borel set E ⊂ Y we have

∫
h−1(E)

g2 dH2 ≤ KH2(E).
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(i’) Each point of X has a neighborhood U such that h|U ∈ N 1,2(U ,Y ) and there
exists a 2-weak upper gradient gU of h|U such that for every Borel set E ⊂ Y we
have

∫
(h|U )−1(E)

g2U dH2 ≤ KH2(E).

(ii) For every curve family � in X we have

Mod� ≤ K Mod h(�).

Theorem 2.11 [32, Theorem 7.1 and Remark 7.2] Let X ,Y be metric surfaces of
locally finite Hausdorff 2-measure and h : X → Y be a weakly K -quasiconformal
map for some K > 0.

(1) The set function ν(E) = H2(h(E)) is a locally finite Borel measure on X. More-
over, for a.e. x ∈ X we have

gh(x)
2 ≤ K Jh(x), where Jh = dν

dH2 .

(2) N (h, y) = 1 for a.e. y ∈ Y .

Recall that N (h, y) denotes the number of preimages of y under h.

2.5 Reciprocal Surfaces

Let X be a metric surface of locally finite Hausdorff 2-measure. For a set G ⊂ X and
disjoint sets E, F ⊂ G we define �(E, F;G) to be the family of curves in G joining
E and F . A quadrilateral in X is a closed Jordan region Q together with a partition
of ∂Q into four non-overlapping edges ζ1, ζ2, ζ3, ζ4 ⊂ ∂Q in cyclic order. When
we refer to a quadrilateral Q, it will be implicitly understood that there exists such a
marking on its boundary.We define�(Q) = �(ζ1, ζ3; Q) and�∗(Q) = �(ζ2, ζ4; Q).
According to the definition of Rajala [35], the metric surface X is reciprocal if there
exist constants κ, κ ′ ≥ 1 such that

κ−1 ≤ Mod�(Q) · Mod�∗(Q) ≤ κ ′ for each quadrilateralQ ⊂ X (2.2)

and

lim
r→0

Mod�(B(a, r), X \ B(a, R); X) = 0 for each ballB(a, R). (2.3)

By work of Rajala and Romney [36] it is now known that the lower bound in (2.2) is
always satisfied for some uniform constant κ . In fact, the optimal constant was shown
to be κ = (4/π)2 [11]. Moreover, (2.3) follows from the upper bound in (2.2), as was
shown by Romney and the second-named author [31]. Therefore, we may only require
the upper inequality of (2.2) in the definition of a reciprocal surface.
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Rajala [35] proved that a metric surface X of locally finite Hausdorff 2-measure
that is homeomorphic to R2 is 2-quasiconformally equivalent to an open subset of R2

if and only if X is reciprocal. This result was generalized to all metric surfaces (with
or without boundary) of locally finite Hausdorff 2-measure, whereR2 is replaced with
a Riemannian surface [19, 31].

More generally, it was shown in [31] that any metric surface of locally finite Haus-
dorff 2-measure admits a weakly quasiconformal parametrization by a Riemannian
surface of the same topological type. The following special case is sufficient for our
purposes.

Theorem 2.12 [31, Theorem 1.2] Let X be a metric surface of finite Hausdorff 2-
measure that is homeomorphic to a topological closed disk. Then there exists a weakly
(4/π)-quasiconformal map from D onto X.

HereD denotes the open unit disk in the plane.We show thatweakly quasiconformal
maps can be upgraded to quasiconformal homeomorphisms under certain conditions.

Lemma 2.13 Let X ,Y be metric surfaces without boundary and with locally finite
Hausdorff 2-measure such that Y is reciprocal. Then every weakly quasiconformal
map f : X → Y is a quasiconformal homeomorphism, quantitatively.

Proof Let f : X → Y be a weakly K -quasiconformal map for some K > 0. Since Y
is reciprocal, condition (2.3) implies that the modulus of the family of non-constant
curves passing through any point of Y is zero. By [32, Theorem 7.4] we conclude that
f is a homeomorphism. Now, the reciprocity of Y implies that the upper bound in
(2.2) is satisfied for X as well. Therefore, X is reciprocal.

Consider a domain V ′ ⊂ Y that is homeomorphic to R
2. By Rajala’s theorem,

there exists a 2-quasiconformal homeomorphism φ from V ′ onto a domain V ⊂
R
2. The set U ′ = f −1(V ′) is homeomorphic to R

2, so by Rajala’s theorem there
exists a 2-quasiconformal homeomorphism ψ from U ′ onto a domain U ⊂ R

2. The
composition g = φ ◦ f ◦ ψ−1 is a weakly 4K -quasiconformal map from U onto V .
Since the domains are planar, g is a 4K -quasiconformal homeomorphism. Therefore,
f is a 16K -quasiconformal homeomorphism from U ′ onto V ′. By Theorem 2.10,
quasiconformality is a local condition, so f : X → Y is 16K -quasiconformal. �

2.6 Metric Differentiability

Throughout the section we let U ⊂ R
2 be a domain and Y be a metric space. We say

that a map h : U → Y is approximately metrically differentiable at a point x ∈ U if
there exists a seminorm Nx on R

2 for which

ap lim
y→x

d(h(y), h(x)) − Nx (y − x)

y − x
= 0.

Here, ap lim denotes the approximate limit as defined in [14, Sect. 1.7.2]. In this case,
the seminorm Nx is unique, is denoted by apmd hx , and we call it the approximate
metric derivative of h at x .
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Proposition 2.14 [26, Proposition 4.3] If h ∈ N 1,2(U ,Y ) then there exist countably
many pairwise disjoint compact sets Ki ⊂ U, i ∈ N, such thatH2(U \⋃

i∈N Ki ) = 0
with the following property. For every i ∈ N and every ε > 0 there exists ri (ε) > 0
such that h is approximately metrically differentiable at every x ∈ Ki and

|d(h(x), h(x + v)) − apmd hx (v)| ≤ ε|v|

for all x ∈ Ki and all v ∈ R
2 with |v| ≤ ri (ε) and x + v ∈ Ki .

In particular, every map h ∈ N 1,2(U ,Y ) is approximately metrically differentiable
at a.e. x ∈ U .

Lemma 2.15 [27, Lemma 3.1] If h ∈ N 1,2(U ,Y ) then

�(h ◦ γ ) =
∫ b

a
apmd hγ (t)(γ̇ (t)) dt

for every curve γ : [a, b] → U parametrized by arclength outside a family �0 with
Mod�0 = 0.

Lemma 2.16 If h ∈ N 1,2(U , X) then the function L : U → [0,∞] defined by L(x) =
max{apmd hx (v) : |v| = 1} is a representative of the minimal 2-weak upper gradient
of h.

Proof It is an immediate consequence of Lemma2.15 that L is a 2-weak upper gradient
of h. It remains to show that if g is an upper gradient of h in L2(U ), then L(x) ≤ g(x)
for a.e. x ∈ U ; this will imply that the same conclusion is true for the minimal 2-weak
upper gradient. Let g ∈ L2(U ) be an upper gradient of h. It can be deduced from
Fubini’s theorem that for each v ∈ S

1 and for a.e. x ∈ U we have

g(x) = lim
δ→0

1

δ

∫ δ

0
g(x + tv) dt = lim

δ→0

1

δ

∫
γv |[0,δ]

g ds, (2.4)

where γv : [0, 1] → R
2 is the curve γv(t) = x+tv. Consider a set Ki as in Proposition

2.14. An application of Fubini’s theorem shows that for each v ∈ S
1 and for a.e. x ∈ Ki

we have x + δv ∈ Ki for arbitrarily small values of δ > 0. Let ε > 0, v ∈ S
1, and

x ∈ Ki such that (2.4) is true and x+δnv ∈ Ki for a sequence δn → 0. By Proposition
2.14, whenever |δnv| ≤ ri (ε), we have

apmd hx (v) ≤ 1

δn
d(h(x), h(x + δnv)) + ε|v| ≤ 1

δn

∫
γv |[0,δn ]

g + ε.

We let n → ∞ and then ε → 0 to obtain apmd hx (v) ≤ g(x). Since this is true for
every v ∈ S

1, we obtain L(x) ≤ g(x) for a.e. x ∈ Ki . The sets Ki , i ∈ N, cover U up
to a set of measure zero, so the conclusion follows. �

Before providing the definition of the Jacobian of a Sobolev map, we state the
following version of John’s theorem; see [1, Theorem 3.1].
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Theorem 2.17 (John’s theorem) Each symmetric convex body K ⊂ R
2 contains a

unique ellipse E of maximal area, called the John ellipse of K . Moreover,

E ⊂ K ⊂ √
2E .

If apmd hx is a norm, let Bx = {y ∈ R
2 : apmd hx (y) ≤ 1} be the closed unit ball

in (R2, apmd hx ). The Jacobian of apmd hx is defined to be J (apmd hx ) = π/|Bx |,
where |Bx | is the Lebesgue measure of Bx . Since Bx is a symmetric convex body, by
John’s theorem there exists a unique ellipse Ex ⊂ Bx ofmaximal area.When apmd hx
is not a norm, the closed unit ball Bx has infinite area and we define J (apmd hx ) = 0.

Theorem 2.18 (Area formula) If h ∈ N 1,2(U ,Y ), then there exists a set G0 ⊂ U with
H2(G0) = 0 such that for every measurable set A ⊂ U \ G0 we have

∫
A
J (apmd hx ) dH2 =

∫
Y
N (h|A, y) dH2.

Proof It is a consequence of [18, Theorem 8.1.49] that U can be covered up to a set
of measure zero by countably many disjoint measurable sets G j , j ∈ N, such that
h|G j is Lipschitz. This implies that outside a set of measure zero G0 ⊂ U , h satisfies
Lusin’s condition (N). The statement now follows from [20, Theorem 3.2] �
Lemma 2.19 Let Y be a metric surface of locally finite Hausdorff 2-measure and
h : U → Y be a weakly K -quasiconformal map for some K > 0. Then

J (apmd hx ) ≤ max{(apmd hx (v))2 : |v| = 1} ≤ K J (apmd hx )

for a.e. x ∈ U. In particular, for a.e. x ∈ U we have J (apmd hx ) = 0 if and only if
apmd hx ≡ 0.

Proof By Theorem 2.10, h ∈ N 1,2
loc (U ,Y ), so h is approximately metrically differen-

tiable at a.e. x ∈ U . We set Nx = apmd hx and Jx = J (apmd hx ) for a.e. x ∈ U .
By Lemma 2.16, the quantity Lx = max{Nx (v) : |v| = 1} is a representative of the
minimal 2-weak upper gradient of h, so Lx = gh(x) for a.e. x ∈ U . By the area
formula of Theorem 2.18, there exists a set G0 ⊂ U of measure zero such that for
each measurable set A ⊂ U \ G0 we have

∫
A
Jx =

∫
Y
N (h|A, y) dH2 = H2(h(A)),

where the latter equality follows from Theorem 2.11. This implies that Jx is the
Radon–Nikodym derivative of the measure A �→ H2(h(A)), so Jx = Jh(x) for a.e.
x ∈ U , again by Theorem 2.11. Finally, since gh(x)2 ≤ K Jh(x), we conclude that
L2
x ≤ K Jx for a.e. x ∈ U . The inequality Jx ≤ L2

x follows by the fact that the unit
ball Bx = {y ∈ R

2 : Nx (y) ≤ 1} contains a Euclidean ball of radius 1/Lx . �
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Remark 2.20 It is a consequence of Lemma 2.19 that if f is a weakly K -
quasiconformal map from a planar (or Riemannian) domain U onto a metric surface
Y , then we necessarily have K ≥ 1. It is unclear how to show this for maps between
arbitrary metric surfaces.

3 Proof of Main Theorem

This section is devoted to the proof of Theorem 1.4. Throughout the section we assume
that X ,Y are metric surfaces without boundary and with locally finite Hausdorff 2-
measure.

3.1 Preservation of Length

In this section we establish Theorem 1.4 (1).

Lemma 3.1 Let f : X → Y be a map that is area-preserving and L-Lipschitz for some
L > 0. Then Mod� ≤ L2 Mod f (�) for each curve family � in X.

Proof Since f is L-Lipschitz, the constant function L is an upper gradient of f .
Moreover, for every Borel set A ⊂ Y we have

∫
f −1(A)

L2 dH2 = L2H2( f −1(A)) = L2H2( f ( f −1(A))) ≤ L2H2(A).

The conclusion now follows from Theorem 2.10. �
Lemma 3.2 Let f : X → Y be a map that is area-preserving and continuous. Then
N ( f , y) = 1 for a.e. y ∈ f (X).

Proof For eachBorel set A ⊂ X the set f (A) is analytic [21, Proposition 14.4] and thus
H2-measurable [21, Theorem29.7].Define ζ(S) = H2( f (S)),where S ⊂ X is aBorel
set. By assumption, ζ(S) = H2(S). The measure on X resulting by Carathéodory’s
construction from ζ is precisely H2. By Theorem 2.2, for each Borel set A ⊂ X we
have

H2(A) =
∫
Y
N ( f |A, y) dH2.

In particular, since f is area-preserving we have

H2(A) =
∫
f (A)

N ( f |A, y) dH2 ≥ H2( f (A)) = H2(A).

If H2(A) < ∞, we conclude that N ( f |A, y) = 1 for a.e. y ∈ f (A). Since X has
σ -finite Hausdorff 2-measure, we have N ( f , y) = 1 for a.e. y ∈ f (X). �
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Lemma 3.3 Let U ⊂ R
2 be a domain and φ : U → X be a weakly quasiconformal

map. Let f : X → Y be amap that is area-preserving and L-Lipschitz for some L > 0.
Then there exists a constant C(L) > 0 such that

C(L)�(φ ◦ β) ≤ �( f ◦ φ ◦ β) ≤ L�(φ ◦ β)

for all curves β in U outside a curve family �0 withMod�0 = 0. Moreover, if L = 1,
then we can choose C(1) = 1.

Proof By Lemma 3.1 and the weak quasiconformality of φ, there exists a constant
K ≥ 1 such that for each curve family � in U we have

Mod� ≤ K Mod f (φ(�)).

By Theorem 2.10, f ◦ φ ∈ N 1,2
loc (U ,Y ) and φ ∈ N 1,2

loc (U , X). In particular, both maps
are approximately metrically differentiable almost everywhere.

Set Nx = apmd φx and Ñx = apmd( f ◦ φ)x for a.e. x ∈ U . We use the notation
Bx , B̃x for the corresponding unit balls, and Jx , J̃x for the corresponding Jacobians.
By Lemma 2.15 we have

�(φ ◦ β) =
∫ b

a
Nβ(t)(β̇(t)) dt (3.1)

for every curve β : [a, b] → U parametrized by arclength outside a family �1 with
Mod�1 = 0. Analogously, we get

�(( f ◦ φ) ◦ β) =
∫ b

a
Ñβ(t)(β̇(t)) dt (3.2)

for every curve β : [a, b] → U parametrized by arclength outside a family �2 with
Mod�2 = 0.

Next, we claim that for a.e. x ∈ U and all v ∈ R
2 we have,

C(L)Nx (v) ≤ Ñx (v) ≤ LNx (v)

for some constant C(L) > 0 with C(1) = 1. This implies that there exists a curve
family �3 inU with Mod�3 = 0 such that for all curves β : [a, b] → U parametrized
by arclength that are outside �3 we have

C(L)

∫ b

a
Nβ(t)(β̇(t)) dt ≤

∫ b

a
Ñβ(t)(β̇(t)) dt ≤ L

∫ b

a
Nβ(t)(β̇(t)) dt . (3.3)

Let �0 be the family of curves that have a reparametrization in �1 ∪ �2 ∪ �3. Then
Mod�0 = 0. By combining (3.1), (3.2), and (3.3), we see that the conclusions of the
lemma are true for the family �0.
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Now, we prove the claim. Theorem 2.18 applied to φ provides a set of measure zero
G1 ⊂ U such that for any measurable set A ⊂ U \ G1 we have

∫
A
Jx =

∫
X
N (φ|A, x) dH2 = H2(φ(A)), (3.4)

where the last equality follows fromTheorem2.11. Similarly, there exists a setG2 ⊂ U
of measure zero such that for any measurable set A ⊂ U \ G2,

∫
A
J̃x =

∫
Y
N ( f ◦ φ|A, y) dH2.

From Lemma 3.2 we know that N ( f , y) = 1 for a.e. y ∈ f (X). By Theorem 2.11,
for a.e. x ∈ X , φ−1(x) is a singleton. Since f is area-preserving and in particular
has the Lusin (N) property, we conclude that for a.e. y ∈ f (X) the set φ−1(x) is a
singleton whenever f (x) = y. In summary, N ( f ◦φ|A, y) = 1 for a.e. y ∈ f (φ(A)).
In particular, for any measurable set A ⊂ U \ G2,

∫
A
J̃x =

∫
Y
N ( f ◦ φ|A, y) dH2 = H2( f (φ(A))).

The area-preserving property of f and (3.4) now imply that Jx = J̃x for a.e. x ∈ U
and hence

|Bx | = |B̃x | (3.5)

for a.e. x ∈ U . This equality implies that Nx is not a norm if and only if Ñx is also
not a norm. By Lemma 2.19, if Nx is not a norm, then Nx ≡ 0.

Let Ki , K̃ j ⊂ U , i, j ∈ N, be the sets from Proposition 2.14 applied to φ, f ◦ φ,
respectively. Let ε > 0. The Lipschitz property of f implies that

Ñx (v) ≤ LNx (v) + (1 + L)ε|v|
for every x ∈ Ki, j = Ki ∩ K̃ j and every v ∈ R

2 with |v| ≤ min{ri (ε), r̃ j (ε)} and
x + v ∈ Ki, j . This shows that

Ñx (v) ≤ LNx (v) and thus Bx ⊂ L B̃x (3.6)

for a.e. x ∈ U and all v ∈ R
2.Here L B̃x denotes the closed ball {y ∈ R

2 : Ñx (y) ≤ L}.
In particular, if Nx is not a norm, then Ñx ≡ Nx ≡ 0.

If L = 1, then (3.6) implies that Bx ⊂ B̃x for a.e. x ∈ U . By (3.5), we have
Bx = B̃x for a.e. x ∈ U , since Nx and Ñx are either both norms or vanish identically.
Hence, Nx (v) = Ñx (v) for a.e. x ∈ U and all v ∈ R

2.
Denote by Ex , Ẽx the John ellipse of Bx , B̃x , respectively, whenever Nx and Ñx

are norms. John’s theorem (Theorem 2.17) implies that

Ex ⊂ Bx ⊂ √
2Ex and Ẽx ⊂ B̃x ⊂ √

2Ẽx . (3.7)
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Denote by ax , ãx (resp. bx , b̃x ) the length of the major (resp. minor) axis of Ex , Ẽx ,
respectively. By (3.6) and (3.7) we have that

L−1Ex ⊂ L−1Bx ⊂ B̃x ⊂ √
2Ẽx ,

which implies that bx ≤ √
2Lb̃x . Moreover, combining (3.5) and (3.7) gives

|Ẽx | ≤ |B̃x | = |Bx | ≤ 2|Ex |.

Since |Ex | = πaxbx and |Ẽx | = π ãx b̃x , we get

ãx ≤ 2
axbx
b̃x

≤ 2
√
2Lax .

In particular, if we assume in addition that Ex is a geometric ball, then Ẽx ⊂ 2
√
2LEx .

All in all we obtain that

L−1Bx ⊂ B̃x ⊂ √
2Ẽx ⊂ 4LEx ⊂ 4LBx , (3.8)

with the additional assumption that Ex is a geometric ball. Note that (3.8) shows that
the claim holds for C(L) = (4L)−1.

For the general case that Ex is not a geometric ball, we consider a linear map
T : R2 → R

2 such that T (Ex ) is a round ball. Note that (3.5) remains true for the
images of Bx , B̃x under T . Since the John ellipse is preserved under linear maps, the
above calculations are true for the images of the corresponding sets under T , and thus
one obtains the inclusions (3.8) for the images. Therefore, the inclusions also hold for
the original sets. �

Proof of Theorem 1.4 (1)We cover X with a countable collection of open sets {Xn}n∈N,
each homeomorphic toR2. Every Xn is reciprocal and, by Rajala’s theorem [35], there
exists a quasiconformal homeomorphism φn : Un → Xn , where Un ⊂ R

2 is an open
set. By Lemma 3.3,

C(L)�(φn ◦ β) ≤ �( f ◦ φn ◦ β) ≤ L�(φn ◦ β)

holds for every curve β in Un outside a curve family �n with Mod�n = 0, where
C(L) > 0 is someconstantwithC(1) = 1. Sinceφn is quasiconformal,Mod φn(�n) =
0 for each n ∈ N. Note that if γ is a curve in Xn outside φn(�n), then after setting
β = φ−1

n ◦ γ we see that the statement of Theorem 1.4 (1) holds for γ . We define �0
to be the family of curves in X that have a subcurve in some φn(�n), n ∈ N. Then
Mod�0 = 0 and the conclusions of Theorem 1.4 (1) hold for all curves γ in X outside
�0. �
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3.2 Injectivity

In this section we establish Theorem 1.4 (2). The main difficulty is to establish the
injectivity of f . A map f : X → Y is light if f −1(y) is totally disconnected for each
y ∈ Y .

Lemma 3.4 Suppose that Y is reciprocal. Let f : X → Y beanon-constant continuous
map such that there exists K > 0 with the property that Mod� ≤ K Mod f (�) for
each curve family � in X. Then f is a light map.

Proof Let y ∈ Y and suppose that f −1(y) contains a non-degenerate continuum E .
Consider a non-degenerate continuum F ⊂ X\ f −1(y); note that the latter set is
non-empty because f is non-constant. The family � of curves joining E and F has
positive modulus [35, Proposition 3.5]. On the other hand, each curve of f (�) joins
the continuum f (F) to y. Since Y is reciprocal, we have Mod f (�) = 0 (see (2.3)).
This is a contradiction. �

For y0 ∈ Y and r > 0 we denote by S(y0, r) the set {y ∈ Y : d(y, y0) = r}.
Lemma 3.5 Let y0 ∈ Y and K ⊂ Y\{y0} be a closed set. There exists δ > 0 such that
for a.e. r ∈ (0, δ) there exists a component E ⊂ S(y0, r) that is a rectifiable Jordan
curve separating y0 and K .

Proof LetU ⊂ Y be the interior of a topological closed diskU ⊂ Y such that Y \U is
connected, y0 ∈ U , and K ⊂ Y\U . Note that H2(U ) < ∞. Let δ > 0 be sufficiently
small such that B(y0, δ) ⊂ U . Then for all r ∈ (0, δ) the set S(y0, r) is compact. By
the coarea inequality for Lipschitz functions (Theorem 2.1), H1(S(y0, r)) < ∞ for
a.e. r ∈ (0, δ). By Corollary 2.7 (see also [33, Theorem 1.5]), for a.e. r ∈ (0, δ), each
component of S(y0, r) is a rectifiable Jordan arc or Jordan curve. Fix such a parameter
r . Since S(y0, r) separates y0 from all points of ∂U , by Lemma 2.8 there exists a
component E of S(y0, r) that separates y0 from ∂U . In particular, E must be a Jordan
curve and separates y0 from K . �
Lemma 3.6 Let Z ⊂ X be homeomorphic to a topological closed disk and let f : Z →
Y be a continuous map in N 1,2(Z ,Y ). For every y0 ∈ Y and for a.e. r ∈ (0,∞), each
component of f −1(S(y0, r)) is a Jordan arc or a Jordan curve.

Proof Define u(x) = d( f (x), y0) on Z , which is continuous and lies in N 1,2(Z).
Observe that u−1(r) = f −1(S(y0, r)) for every r > 0. By the coarea inequality
of Theorem 1.6 we see that H1(u−1(r) ∩ Au) < ∞ for a.e. r > 0. In particular,
for such values r , if E is a non-degenerate component of u−1(r), then E ⊂ Au , so
H1(E) < ∞. By Corollary 2.7, for a.e. r > 0, every non-degenerate component of
u−1(r) is a Jordan arc or a Jordan curve. �
Lemma 3.7 Let f : X → Y be a continuous light map in N 1,2(X ,Y ) such that
N ( f , y) ≤ 1 for a.e. y ∈ Y . Then N ( f , y) ≤ 1 for every y ∈ Y . In particular,
f is injective.
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Proof Let y ∈ f (X) and x ∈ f −1(y). For the moment, we consider the restriction
g = f |Z to a compact neighborhood Z of x that is homeomorphic to a closed disk and
contains x in its interior. Since g is light, it is non-constant on int(Z) and there exists
a point z ∈ int(Z) \ g−1(y). Note that for each r ∈ (0, d(y, g(z))) the set S(y, r)
separates y from g(z). Therefore, the compact set g−1(S(y, r)) separates x from z.
By Lemma 3.6, for a.e. r > 0, each component of g−1(S(y, r)) is a Jordan arc or a
Jordan curve. Combining these facts with Lemma 2.8, we see that there exists a full
measure subset I of (0, d(y, g(z))) such that for each r ∈ I , there exists a component
of g−1(S(y, r)) that separates x from z and is a Jordan arc or a Jordan curve.

We claim for all sufficiently small r ∈ I , each such component must be a Jordan
curve. To prove this, suppose that there exists a sequence of positive numbers rn → 0
and components Frn of g

−1(S(y, rn)) that are Jordan arcs and separate x from z. Fix a
continuum K ⊂ int(Z) connecting x and z. Since Frn separates x from z, it intersects
K . Moreover, since Frn is a Jordan arc, it cannot be contained in int(Z), as int(Z)\Frn
would then be connected. Therefore, Frn intersects ∂Z and

diam(Frn ) ≥ dist(K , ∂Z) > 0

for all n ∈ N. After passing to a subsequence, Frn converges in the Hausdorff sense
to a non-degenerate continuum F . Since rn → 0, we have that F ⊂ g−1(y). This
contradicts the lightness of g. The claim is proved.

By the assumption that N ( f , w) ≤ 1 for a.e. w ∈ Y and the coarea inequality for
Lipschitz functions (Theorem 2.1), we see that for a.e. r > 0,H1-a.e. point of S(y, r)
has at most one preimage under f . Also, given a closed set K ⊂ Y \ {y}, by Lemma
3.5, for a.e. sufficiently small r > 0 there exists a Jordan curve E ⊂ S(y, r) separating
y from K . Altogether, there exists δ′ > 0 and a set I ′ ⊂ (0, δ′) of full measure so that
for every r ∈ I ′ the following statements are true.

(1) H1-a.e. point of S(y, r) has at most one preimage under f .
(2) There exists a component of S(y, r) that is a Jordan curve separating y and K .
(3) Each component of g−1(S(y, r)) that separates x and z is a Jordan curve.

Let E be a component of S(y, r), r ∈ I ′, that is a Jordan curve and let F ⊂ g−1(E)

be a Jordan curve. We claim that g(F) = E . By (1), H1-a.e. point of E has at most
one preimage under g. The map g|F is conjugate to a continuous map φ : S1 → S

1

with the property that a dense set of points of S1 have at most one preimage. Suppose
that g(F) is a strict subarc of E . Note that g(F) cannot be a point since g is light. Then
φ(S1) is a non-degenerate strict subarc of S1. This contradicts the fact that a dense set
of points of S1 have at most one preimage. We have shown the following.

(4) If E is a component of S(y, r) that is a Jordan curve and F ⊂ g−1(E) is a
Jordan curve, then g(F) = E .

We have completed our preparation to show the injectivity of f . Suppose that
f −1(y) contains two points x1, x2 for some y ∈ f (X). We consider disjoint topo-
logical closed disks Z1, Z2 ⊂ X such that xi ∈ int(Zi ), i = 1, 2. We also fix
zi ∈ int(Zi ) \ f −1(y). Consider the restrictions gi = f |Zi , i = 1, 2. By the pre-
vious, for i = 1, 2, there exists a set I ′

i of full measure in an interval (0, δ′
i ), such that
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(1)–(4) are true for the map gi ; specifically, in (2) we use the set K = { f (z1), f (z2)}.
Let I ′ = I ′

1 ∩ I ′
2, which has full measure in (0, δ′), where δ′ = min{δ′

1, δ
′
2}. By (2),

for r ∈ I ′ there exists a component E of S(y, r) that is a Jordan curve separating
each of the pairs (y, f (z1)) and (y, f (z2)). Let Fi be a component of g−1

i (E) that
separates xi and zi , i = 1, 2; such components exist by Lemma 2.8. Note that Fi is
also a component of g−1

i (S(y, r)). By (3), Fi is a Jordan curve for i = 1, 2. By (4), we
conclude that gi (Fi ) = E , i = 1, 2. Thus, each point of E has at least two preimages
under f . This contradicts (1). �

Lemma 3.8 Let f : X → Y be an area-preserving map that is a quasiconformal
homeomorphism. Suppose that there exists K ≥ 1 such that

K−1/2�(γ ) ≤ �( f ◦ γ ) ≤ K 1/2�(γ )

for all curves γ in X outside a curve family �0 with Mod�0 = 0. Then f is K -
quasiconformal.

Proof The constant function K 1/2 is a 2-weak upper gradient of f and lies in N 1,2
loc (X).

Moreover, by the preservation of area, for each Borel set E ⊂ Y we have

∫
f −1(E)

K dH2 = KH2( f −1(E)) = KH2(E).

In view of Theorem 2.10, we derive that f is weakly K -quasiconformal. Since f is
quasiconformal, we have

�( f −1 ◦ γ ) ≤ K 1/2�(γ )

for all curves γ in Y outside a curve family �′
0 with Mod�′

0 = 0. Thus, the same
argument applies to f −1 and shows that it is weakly K -quasiconformal. Altogether,
f is K -quasiconformal. �

Proof of Theorem 1.4 (2) Suppose that f is L-Lipschitz and area-preserving. By
Lemma 3.2, N ( f , y) = 1 for a.e. y ∈ f (X). Also, Lemmas 3.1 and 3.4 imply that f
is a lightmap.Now,Lemma3.7 implies that the restriction of f to any precompact open
subsetU of X (so that f |U ∈ N 1,2(U ,Y )) is injective. This implies that f is injective
in all of X . The invariance of domain theorem implies that f is an embedding. Since f
is surjective by assumption, we conclude that f is a homeomorphism. By Lemma 3.1,
we see that f is a weakly L2-quasiconformal homeomorphism. Since Y is reciprocal,
Lemma2.13 yields that f is K -quasiconformal for some K = K (L) ≥ 1. In particular,
this implies that X is also reciprocal.

The final inequality in Theorem 1.4 (2) involving the lengths follows fromTheorem
1.4 (1). In the case that f is 1-Lipschitz, we obtain �(γ ) = �( f ◦ γ ) for all curves γ

in X outside a curve family �0 with Mod�0 = 0. By Lemma 3.8, we conclude that f
is 1-quasiconformal. �
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3.3 Bounded Length Distortion and Isometry

Here we prove Theorem 1.4 (3). Our goal is to upgrade the conclusion of Theorem 1.4
(2) so that the length of every path, rather than almost every path, is quasi-preserved.
This is achieved with the aid of upper Ahlfors 2-regularity. We say that a space is
locally upper Ahlfors 2-regular with constant K > 0 if each point has a neighborhood
U such that H2(B(x, r)) ≤ Kr2 for all x ∈ U and r < diam(U ). We denote by
Nr (E) the open r -neighborhood of a set E .

Lemma 3.9 Suppose that Y is locally upper Ahlfors 2-regular with constant K > 0
and γ is a curve in Y . Then for all sufficiently small r > 0 we have

H2(Nr (|γ |)) ≤ 2Kr�(γ ) + 8Kr2.

Proof Without loss of generality, γ : [0, �(γ )] → X is non-constant, rectifiable and
parametrized by arclength. Assume that 0 < r < �(γ )/2 and that for every x ∈ |γ |
we have

H2(B(x, 2r)) ≤ 4Kr2.

Consider a partition {t0, . . . , tn} of [0, �(γ )] such that |ti − ti−1| ≤ 2r , i ∈ {1, . . . , n},
and (n − 1)2r < �(γ ) ≤ 2nr . Then {B(γ (ti ), 2r)}ni=0 covers Nr (|γ |) and we can
compute

H2(Nr (|γ |)) ≤
n∑

i=0

H2(B(γ (ti ), 2r)) ≤ (n + 1)4Kr2 ≤ 2Kr�(γ ) + 8Kr2.

�
Lemma 3.10 Suppose that Y is locally upper Ahlfors 2-regular with constant K > 0.
Let �0 be a curve family in Y with Mod�0 = 0. Then for each curve γ : [a, b] → Y
and for each ε > 0 there exists a curve γε : [a, b] → Y with the following properties.

(1) γε /∈ �0.
(2) |γ (a) − γε(a)| < ε, |γ (b) − γε(b)| < ε, and |γε| ⊂ Nε(|γ |).
(3) �(γε) ≤ 4π−1K�(γ ) + ε.

Moreover, if Y is Riemannian, then

(3’) �(γε) ≤ �(γ ) + ε.

Proof Assume that γ is simple, otherwise we consider a simple curve with trace in |γ |
connectingγ (a) andγ (b). Let ε > 0.Consider the distance function g(x) = d(x, |γ |).
By the coarea inequality for Lipschitz functions (Theorem 2.1) and Lemma 3.9, there
exists r1 > 0 such that for all 0 < r < r1 we have

∗∫
χ(0,r)(t)H1(g−1(t)) dt ≤ 4

π
H2(Nr (|γ |)) <

8

π
Kr�(γ ) + εr . (3.9)
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Therefore, for all 0 < r < r1 we have

essinf
t∈(0,r)

H1(g−1(t)) <
8

π
K�(γ ) + ε. (3.10)

By Lemma 2.9, for a.e. t ∈ (0, r1), every Lipschitz and injective curve α : [a, b] →
g−1(t) does not lie in �0.

Let U ⊂ Y be a neighborhood of |γ | homeomorphic to D. Since γ is simple, the
space Z := U/|γ | equipped with the quotient metric is homeomorphic to D. The
quotient map π : U → Z is a local isometry on U \ |γ |. This together with Lemma
3.5 provides the existence of r2 > 0 such that for a.e. t ∈ (0, r2), the level set g−1(t)
contains a rectifiable Jordan curve γt in U separating |γ | from ∂U . Note that |γt |
converges to |γ | in the Hausdorff sense as t → 0. Thus, there exists r3 ∈ (0, r2)
such that for a.e. t ∈ (0, r3) we can find distinct points at ∈ B(γ (a), ε) ∩ |γt | and
bt ∈ B(γ (b), ε) ∩ |γt |. Let γ ′

t be a Lipschitz and injective parametrization of the
closure of the shorter component of |γt | \ {at , bt }. For 0 < r < min{r1, r2, r3, ε} we
have

essinf
t∈(0,r)

�(γ ′
t ) <

4

π
K�(γ ) + ε

2
.

By the previous, γ ′
t /∈ �0 for a.e. t ∈ (0, r). Moreover, |γ ′

t | ⊂ g−1(t) ⊂ Nε(|γ |).
Therefore, there exists t ∈ (0, r) so that γ ′

t satisfies (1)–(3).
If Y is Riemannian we have a local upper area bound of the form

H2(Nr (|γ |)) ≤ 2r�(γ ) + O(r2);

see [17, Corollary 9.24]. By arguing as in (3.9) while applying the coarea inequality
for Riemannian manifolds (Theorem 2.1), we obtain

essinf
t∈(0,r)

�(γ ′
t ) ≤ �(γ ) + ε,

for all sufficiently small r > 0. Hence, (3’) follows. �
Lemma 3.11 Suppose that Y is locally upper Ahlfors 2-regular with constant K > 0.
Let g : Y → X be continuous map such that there exists L > 0 with the property that
�(g ◦ γ ) ≤ L�(γ ) for all curves γ in Y outside a curve family �0 with Mod�0 = 0.
Then

�(g ◦ γ ) ≤ 4

π
K L�(γ )

for every rectifiable curve γ in Y . Moreover, if Y is Riemannian then

�(g ◦ γ ) ≤ L�(γ )

for every rectifiable curve γ in Y .
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Proof Let γ be a rectifiable Jordan arc in Y . By Lemma 3.10, for each n ∈ N we can
find a curve γn ⊂ N1/n(|γ |) whose endpoints are (1/n)-close to the endpoints of γ ,
γn /∈ �0, and

�(γn) ≤ 4π−1K�(γ ) + n−1.

Suppose that γn is parametrized by [0, 1] with constant speed. After passing to a
subsequence, we may assume that γn converges uniformly to a path γ̃ : [0, 1] → |γ |
with the same endpoints as γ . It follows that γ̃ is surjective, but it is possibly not
injective. Moreover, g ◦ γn converges uniformly to g ◦ γ̃ . Since γ is a Jordan arc, we
have N (g ◦ γ̃ , y) ≥ N (g ◦ γ, y) for each y ∈ g(|γ |). The area formula for length
(Theorem 2.3) and the lower semi-continuity of length imply that

�(g ◦ γ ) ≤ �(g ◦ γ̃ ) ≤ lim inf
n→∞ �(g ◦ γn).

Since γn /∈ �0, the latter is bounded by

L lim inf
n→∞ �(γn) ≤ 4π−1K L�(γ ).

This completes the proof in the case of Jordan arcs.
Now, suppose that γ : [a, b] → Y is an arbitrary path. Let {t0, . . . , tn} be a partition

of [a, b]. For i ∈ {1, . . . , n}, let γi : [ti−1, ti ] → γ ([ti−1, ti ]) be a Jordan arc with
endpoints γ (ti−1), γ (ti ). Then

n∑
i=1

d(g(γ (ti−1)), g(γ (ti ))) ≤
n∑

i=1

�(g ◦ γi ) ≤ 4π−1K L
n∑

i=1

�(γi )

≤ 4π−1K L
n∑

i=1

�(γ |[ti−1,ti ]) = 4π−1K L�(γ ).

This yields �(g ◦ γ ) ≤ 4π−1K L�(γ ).
If Y is Riemannian, the statement follows after applying (3’) from Lemma 3.10

instead of (3). �
Proof (Proof of Theorem 1.4 (3)) The upper Ahlfors 2-regularity implies that Y is
reciprocal [35, Theorem 1.6]. By Theorem 1.4 (2), we have that f is a quasiconformal
homeomorphism and the length of a.e. path is quasi-preserved. We now apply Lemma
3.11 to g = f −1, together with the fact that f is Lipschitz, and conclude that the
length of every rectifiable path is quasi-preserved. It also follows that �(γ ) < ∞ if
and only if �( f ◦ γ ) < ∞. Therefore, f is a map of bounded length distortion. �
Proof (Proof of Theorem 1.4 (4)) Since Y is reciprocal, by Theorem 1.4 (2), f is a 1-
quasiconformal homeomorphism and preserves the length of all curves in X outside a
curve family�0 withMod�0 = 0. It follows fromLemma3.11 that �( f −1◦γ ) ≤ �(γ )
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for every rectifiable curve γ in Y . If x, y ∈ X and γ is a rectifiable curve in Y joining
f (x) and f (y) then

d(x, y) ≤ �( f −1 ◦ γ ) ≤ �(γ ).

Infimizing over γ gives d(x, y) ≤ d( f (x), f (y)). Equality follows from f being
1-Lipschitz. �

4 Examples

We present examples that show the optimality of Theorem 1.4. In all examples X ,Y
are metric surfaces of locally finite Hausdorff 2-measure and f : X → Y is an area-
preserving and 1-Lipschitz map.

Example 4.1 This example shows that f is not a homeomorphism in general, even
if X is Euclidean. Let I be the interval [0, 1] × {0} and Y = R

2/I , equipped with
the quotient metric. The natural projection map f : R2 → Y is area-preserving and
1-Lipschitz, but it is not a homeomorphism.

Example 4.2 This example shows that if Y is reciprocal as in Theorem 1.4 (2), then f
is not BLD in general, even if X is Euclidean. Define the weight ω : R2 → [0, 1] by
ω(x) = x1 if x = (x1, 0) ∈ I :=(0, 1] × {0} and ω(x) = 1 otherwise. We define a
metric d on R

2 by

d(x, y) := inf
γ

∫
γ

ω ds,

where the infimum is taken over all rectifiable curves γ connecting x, y ∈ R
2. Let

f : R2 → Y := (R2, d) be the identity map, which is 1-Lipschitz, since ω ≤ 1, and a
local isometry on R

2 \ I , hence area-preserving. Moreover, f is a homeomorphism,
and thus Y is a metric space homeomorphic to R

2.
One can show that for each Borel set E ⊂ R

2 we have H1
d(E) = ∫

E ω dH1; in
fact, it suffices to show this for sets E ⊂ I . This fact and the area formula for length
(Theorem 2.3) imply that if γ is a rectifiable curvewith respect to the Euclideanmetric,
then �d(γ ) = ∫

γ
ω ds. This implies that

∫
γ

ρ dsd =
∫

γ

ρω ds

for every Borel function ρ : R2 → [0,∞].
Let � be a family of curves in R

2. Since f is 1-Lipschitz and area-preserving, by
Lemma 3.1 we have Mod� ≤ Mod f (�); here the latter modulus is with respect to
the metric d. We now show the reverse inequality. Let ρ : R2 → [0,∞] be admissible
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for �. We set ρ′ = ρω−1. If γ ∈ �, then

∫
f ◦γ

ρ′ dsd =
∫

γ

ρω−1ω ds =
∫

γ

ρ ds ≥ 1.

Thus, ρ′ is admissible for f (�). Since H2
d(I ) = 0, we conclude that

Mod f (�) ≤
∫

ρ2 dH2

and thus Mod f (�) ≤ Mod�. This shows that f is 1-quasiconformal and that Y is
reciprocal.

By Theorem 1.4 (1), f preserves the length of a.e. curve with respect to 2-modulus;
this can also be seen immediately here, since a.e. curve intersects I at a set of length
zero. However, f does not preserve the length of every curve and is not BLD. Indeed,
for t ∈ (0, 1] denote by γt the straight line segment connecting (0, 0) and (t, 0). Then
�(γt ) = t , whereas

�d(γt ) =
∫

γt

ω ds = t2/2.

5 Coarea Inequality

In this section we establish the general coarea inequality of Theorem 1.6. First we
prove the statement in the case that X is a topological closed disk. The proof follows
the same strategy as in [13, Theorem 4.8].

Theorem 5.1 Let X be a metric surface of finite Hausdorff 2-measure that is home-
omorphic to a topological closed disk and suppose that there exists a weakly
K -quasiconformal map from D onto X for some K ≥ 1. Let u : X → R be a contin-
uous function with a 2-weak upper gradient ρu ∈ L2(X).

(1) IfAu denotes the union of all non-degenerate components of the level sets u−1(t),
t ∈ R, of u, then Au is a Borel set.

(2) For every Borel function g : X → [0,∞] we have
∗∫ ∫

u−1(t)∩Au

g dH1 dt ≤ K
∫

gρu dH2.

Proof First we show that Au is a Borel set. We can write

Au =
∞⋃
k=1

Ak,

where Ak is the union of the components E of u−1(t), t ∈ R, with diam(E) ≥ 1/k.
We will show that Ak is closed for each k ∈ N. Let {xn}n∈N be a sequence in Ak .
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If xn ∈ En ⊂ u−1(tn), n ∈ N, then after passing to a subsequence, the continua En

converge in the Hausdorff sense to a continuum E with diam(E) ≥ 1/k. Moreover,
after passing to a further subsequence, tn converges to some t ∈ R, so E ⊂ u−1(t).
This shows that E ⊂ Ak . Therefore, all limit points of {xn}n∈N lie in Ak , as desired.

Let f : D → X be a weakly K -quasiconformal map. By Theorem 2.10 there exists
a 2-weak upper gradient ρ f ∈ L2(D) such that

∫
f −1(E)

ρ2
f dH2 ≤ KH2(E)

for each Borel set E ⊂ X . This implies that

∫
(g ◦ f ) · ρ2

f dH2 ≤ K
∫

g dH2 (5.1)

for each Borel function g : X → [0,∞]. Moreover, for all curves γ in D outside a
curve family �0 with Mod�0 = 0 we have (see [18, Prop. 6.3.3])

∫
f ◦γ

g ds ≤
∫

γ

(g ◦ f ) · ρ f ds. (5.2)

Consider the function v = u ◦ f on D. Then by [13, Lemma 4.5], v has a 2-weak
upper gradient ρv such that for a.e. x ∈ D we have

ρv(x) ≤ (ρu ◦ f )(x) · ρ f (x).

In conjunction with (5.1), this implies that ρv ∈ L2(D), so v ∈ W 1,2(D), and

|∇v(x)| ≤ (ρu ◦ f )(x) · ρ f (x) (5.3)

for a.e. x ∈ D, because |∇v| is the minimal 2-weak upper gradient of v (see [18,
Theorem 7.4.5]). We can extend v by reflection to a continuous function ṽ ∈ W 1,2(U )

for some neighborhood U of D. By the classical coarea formula (Theorem 2.1), the
set v−1(t) = ṽ−1(t) ∩ D has finite Hausdorff 1-measure for a.e. t ∈ R. Corollary 2.7
implies that for a.e. t ∈ R each component E of v−1(t) is a Jordan arc or a Jordan
curve and can be parametrized by a Lipschitz function γ : [a, b] → E that is injective
on [a, b). Moreover, using the classical coarea formula for ṽ one can show that for a.e.
t ∈ R, each Lipschitz curve γ : [a, b] → v−1(t) that is injective on [a, b) lies outside
the given curve family �0 of 2-modulus zero (cf. Lemma 2.9); hence γ satisfies (5.2).
Therefore, the following statements are true for a.e. t ∈ R.

(1) H1(v−1(t)) < ∞. (Consequence of classical coarea formula.)
(2) Each non-degenerate component E of v−1(t) is a Jordan arc or a Jordan curve and

there exists a Lipschitz parametrization γ : [a, b] → E that is injective in [a, b).
(Consequence of Corollary 2.7.)
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(3) For each Lipschitz curve γ : [a, b] → v−1(t) that is injective on [a, b) and for
each Borel function g : X → [0,∞], we have

∫
f ◦γ

g ds ≤
∫

γ

(g ◦ f ) · ρ f ds.

(Consequence of classical coarea formula and (5.2).)

We fix aBorel function g : X → [0,∞], a value t ∈ R satisfying the above statements,
a non-degenerate component E ofv−1(t), and aLipschitz parametrizationγ : [a, b] →
E that is injective in [a, b). We have

∫
f (E)

g dH1 =
∫
f (|γ |)

g dH1 ≤
∫
f ◦γ

g ds

≤
∫

γ

(g ◦ f ) · ρ f ds =
∫
E
(g ◦ f ) · ρ f dH1.

Note that if G is a non-degenerate component of u−1(t), then by the monotonicity of
f , f −1(G) is a non-degenerate component of v−1(t). Hence,

∫
G
g dH1 ≤

∫
f −1(G)

(g ◦ f ) · ρ f dH1.

The finiteness of the Hausdorff 1-measure of v−1(t) implies that it can have at most
countably many non-degenerate components. Summing over all the non-degenerate
components gives

∫
u−1(t)∩Au

g dH1 ≤
∫

v−1(t)
(g ◦ f ) · ρ f dH1.

We now integrate over t ∈ R, use the classical coarea formula for ṽ, and inequalities
(5.3) and (5.1), to obtain

∗∫ ∫
u−1(t)∩Au

g dH1dt ≤
∫ ∫

v−1(t)
(g ◦ f ) · ρ f dH1dt

=
∫
D

(g ◦ f ) · ρ f · |∇ṽ| dH2

=
∫
D

(g ◦ f ) · ρ f · |∇v| dH2

≤
∫

(g ◦ f ) · (ρu ◦ f ) · ρ2
f dH2

≤ K
∫

gρu dH2.

This completes the proof. �

123



128 Page 28 of 30 D. Meier, D. Ntalampekos

Proof of Theorem 1.6 Wewrite X as the countable union of topological closed disks Xn

withH2(Xn) < ∞, n ∈ N.We also consider topological closed disks Zn ⊃ Xn , so that
the topological interior inttop(Zn) contains Xn . We have int(Zn) ⊂ inttop(Zn) ⊂ Zn ,
where int(Zn) refers to the manifold interior. Therefore the topological closure of
inttop(Zn) is precisely the closed disk Zn . Let un = u|Zn . We claim that

Au =
∞⋃
n=1

Aun . (5.4)

For this, it suffices to show that

Au ∩ Xn ⊂ Aun (5.5)

for each n ∈ N. Let x ∈ Au ∩ Xn and consider a non-degenerate component E of
u−1(t) for some t ∈ R such that x ∈ E . Note that x lies in inttop(Zn). If E ⊂ Zn ,
then E ⊂ Aun and x ∈ Aun . Suppose that E is not contained in Zn ; in this case
E ∩ ∂topZn �= ∅ by the connectedness of E . Since E is a generalized continuum
(i.e., a locally compact connected set), by [38, (10.1), p. 16], we conclude that each
component of E ∩ Zn intersects ∂topZn . In particular, the component Ex of E ∩ Zn

that contains x must intersect ∂topZn , and thus Ex is non-degenerate. We conclude
that Ex ⊂ Aun , so x ∈ Aun . The claim is proved. Now, each Aun is a Borel set by
Theorem 5.1, so Au is Borel measurable by (5.4) and we have established (1).

Let g : X → [0,∞] be a Borel function. For n ∈ N, let gn = g · χXn\⋃n−1
i=1 Xi

. Let

x ∈ Au ∩ (Xn \ ⋃n−1
i=1 Xi ). Then x ∈ Aun by (5.5), so

g(x)χAu (x) = gn(x)χAu (x) = gn(x)χAun
(x).

We conclude that

gχAu =
∑
n∈N

gnχAun
.

By Theorem 5.1, applied to un : Zn → R, and the existence of weakly (4/π)-quasi-
conformal parametrizations (Theorem 2.12), we have

∗∫ ∫
u−1(t)

gnχAun
dH1dt ≤ 4

π

∫
gnρu dH2

for each n ∈ N. Thus, upon summing we obtain the claimed inequality (2).
Finally, part (3) follows from part (2) and the coarea inequality for Lipschitz func-

tions. Namely, one applies (2) to the Borel function gχAu and Theorem 2.1 to gχX\Au .�
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