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Abstract

We provide several equivalent characterizations of locally flat, d-Ahlfors regular, uni-
formly rectifiable sets £ in R" with density close to 1 for any dimension d € N,
1 <d < n.In particular, we show that when E is Reifenberg flat with small constant
and has Ahlfors regularity constant close to 1, then the Tolsa « coefficients associated
to E satisfy a small-constant Carleson measure estimate. This estimate is new, even
when d = n — 1, and gives a new characterization of chord-arc domains with small
constant.
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1 Introduction

The connection between quantitative properties of elliptic PDEs, harmonic analysis,
and geometric measure in the past thirty years has significantly been influenced by the
introduction of uniformly rectifiable sets by David and Semmes in the early 90s. At
its core, uniform rectifiability of a d-dimensional set E C R" is the precise condition
on E which guarantees all (sufficiently nice) Calderén-Zygmund operators are L>
bounded [11]. In terms of elliptic boundary value problems, it turns out that uniform
rectifiability of the boundary 02 of a domain 2 arises naturally as one of the sharp
geometric conditions under which one can solve the Laplace-Dirichlet problem on
Q with singular (i.e., L”) boundary data (see [3] for a recent result, but also the
series of works [19, 21, 22]). At their core, though, uniformly rectifiable sets have
many equivalent geometric characterizations, all of which quantify (in some sense)
the d-rectifiability of E at different points x € E and scales r > 0.

Just to list two such examples, a d-Ahlfors regular set £ C R” is d-uniformly
rectifiable if and only if the Tolsa ctya|,, numbers satisfy the Carleson measure estimate
[40]

r dH (y)dt
sup r*"/ / w00 LED
0 JENB(x,r) t

xeE,r>0

for some uniform M; > 0. Here the a4, (x, r) are bounded coefficients which
measure the distance from E to the space of d-planes in the ball B (x, r) (see Definition
1.5), and so the estimate (1.1) says that for most balls B(x, r) centered on E, this
distance is quantitatively small in a precise sense. Of course, in the estimate above,
one could take different coefficients (e.g., the so-called L' beta coefficients, B1) and
still obtain a characterization [11]. In terms of a slightly more concrete definition, it
turns out that (1.1) is equivalent to E having “big pieces of Lipschitz images of subsets
of RY” which is to say the following: there is some uniform M, > 0 so that for each
x € E and every r > 0, one can find a Lipschitz mapping p : B;4(0,r) c RY - R”
with Lipschitz norm < 1 4+ M> so that

HY(E N B(x,r) N p(Ba(0, 7)) > (1 4+ Ma)~"HI (B4 (0, r)). (1.2)

There are many other interesting geometric and analytic characterizations of uniformly
rectifiable sets, and we refer the reader to [10, 11] where this is pursued. The goal
of the current paper is to take on a systematic study of the quantitative relationship
between such constants M and M5 in the small-constant regime: if M is sufficiently
small, does it mean that M» also is? If so, can such a relationship be made quantitative?

In this paper, we show that this is indeed the case. In fact, we show that the estimate
(1.1) with small constant M (along with good Ahlfors regularity control) characterizes
a certain class of Ahlfors regular sets £ C R” of any dimension 1 < d < n — 1 that
have very good approximations by very flat Lipschitz graphs (Theorem 1.9). This
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approximation property is even stronger than the “big pieces of Lipschitz images of
subsets of R?” property mentioned above. We call such sets uniformly rectifiable of
dimension d with small constant § > 0 (see Definition 1.7). Moreover, our result is
quantitative in that (1.1) holds with M1 = § ? for some dimensional constant 6 € (0, 1)
depending only on n and d; whenever, E C R" is uniformly rectifiable of dimension
d with small constant §, and a converse holds as well. This quantitative Carleson
measure estimate serves as an important tool in the upcoming work in [17], where the
authors study the regularity of the Poisson kernel associated to a degenerate elliptic
operator outside of Ahlfors regular sets of high co-dimension in R”. In addition, our
method of proof brings with it several other characterizations. In particular, we relate
the constant M to the control of the oscillation of the tangent planes to E and the
Reifenberg flatness of E.

These two other characterizations are largely motivated by the of work Semmes
[38, 39] (and later Blatt [5]) on chord-arc surfaces with small constant as well as
Kenig and Toro [27, 28] in their study of the Poisson kernel regularity for chord-arc
domains with small (and vanishing) constant. In particular, the work of Kenig and
Toro showed that chord-arc domains with small constant in many ways serve as an
appropriate substitute for C! domains in the study of boundary value problems for
elliptic PDE below the Lipschitz thresh-hold. It turns out that under a global assumption
of Reifenberg flatness of a domain €2, the Poisson kernel k associated to the Laplace
operator on 2 satisfies logk € VMO(0€2) if and only if the domain €2 is a chord-arc
domain with vanishing constant [29]. This result is the proper analog (and converse)
of the earlier result of Jerison and Kenig, which says that logk € VMO(3<) for C'!
domains (though, in general log k need not be continuous or even bounded for such
domains) [25]. Since then, chord-arc domains with small constant have continued to
be an important geometric object in the study of quantitative properties of solutions
to elliptic PDE on rough domains [8, 9, 16, 20, 33, 34], free boundary problems for
elliptic measure [2, 4, 6, 7, 36], and even have corresponding analogs and importance
in other PDE settings [18, 30, 35], and we can only scratch the surface here on the
plethora of theory devoted to the study of PDE on such domains.

Since chord-arc domains with small constant €2 have rich PDE properties, there
has been much interest in understanding and providing alternative geometric charac-
terizations of such domains. Roughly speaking, these are domains whose boundaries
locally separate space in two and whose boundaries are Ahlfors regular and bilaterally
well approximated by hyperplanes. In addition, these domains have unit normal with
small BMO-norm (see Definition 1.13 for a more precise statement) [28]. It is known
that such domains also have good Lipschitz graph approximations, and thus, their
boundaries are closely related to uniformly rectifiable sets of dimension (n — 1) with
small constant. In fact, when 2 is a domain satisfying some underlying topological
assumptions, we shall use our results to give an alternative characterization of 2 being
a chord-arc domain with small constant using the Carleson measure estimate (1.1) on
d€2 (see Theorem 1.15).

Before rigorously stating the main result, we remark that the relationship between
some of the defining characteristics of chord-arc domains with small constant (such
as Reifenberg flatness, oscillation of the unit normal, and Lipschitz graph approx-
imations) has been studied and exists in the literature in varying contexts (in the

@ Springer



125 Page4of44 C.Jeznach

co-dimension one case for chord-arc surfaces and chord-arc domains in [20, 29, 38],
and in any co-dimension for smooth embedded hypersurfaces [5], for example). Still
in our main result for uniformly rectifiable sets £ C R” of dimension d and small
constant § > 0, we provide proofs that hold for general Ahlfors regular sets of any co-
dimension, and we do not impose any topological assumptions on the set R” \ E apriori.
In any case, the characterization in terms of the small constant Carleson measure esti-
mate (1.1) is new in any dimension and co-dimension. In addition, our techniques
provide a systematic way to obtain small-constant Carleson measure estimates such
as (1.1) for coefficients besides the Tolsa o numbers for small-constant uniformly
rectifiable sets, which we hope to prove useful for small-constant PDE results in the
future. Let us now provide enough background to state the main result, Theorem 1.9.

1.1 Main Result and Outline of the Paper

In this paper, we always denote the ambient space by R"”, forn € N, andd € N
will always be so that 0 < d < n. We reserve the notation A(n,d) to denote the
collection of all d-planes P C R", and G (n, d) for the Grassmannian of d-dimensional
subspaces of R”. Also, we denote by H¢ the d-dimensional Hausdorff measure on R”,
normalized for notational convenience so thatif P € A(n,d),x € P,and r > 0, then
HY(B(x,r)N P) = re. Lastly, whenever P is a plane, we denote by 7p : R" — P
the orthogonal projection onto the plane P. Let us begin by introducing several related
notions of d-dimensional sets in R" and their geometric regularity that are needed to
state our main result.

Definition 1.1 A Borel measure p on R” is said to be d-Ahlfors regular with constant
C,, > 0 provided that for each x € spt 1t and each r > 0, one has

C'r? < u(B(x,r) < Curd. (1.3)

If E C R" is closed, we say that E is d-Ahlfors regular with constant C > 0if H9|x
is d-Ahlfors regular with constant Cg > 0. Finally, if only the upper (lower) bound
holds as above, then we say u is upper (lower) d-Ahlfors regular with constant C,.

Remark 1.2 The choice to normalize H¢ as above, and the role of the constant C win
Definition 1.1 is important, since we shall often want to measure how close a d-Ahlfors
regular measure p is to d-dimensional surface measure on spt 1. In particular, we shall
often use the phrase “d-Ahlfors regular with small constant” when the constant C;, > 1
is very close to 1, even though the phrase is misleading.

Next we introduce Jones’ 8 numbers (see [11, 26]) and Tolsa’s o numbers (see
[40]), which have been studied extensively in relation to rectifiable and uniformly
rectifiable measures on R” and singular integral operators. We also introduce the
notion of Reifenberg flat sets, which were introduced by Reifenberg in his solution of
the Plateu problem [37].
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Definition 1.3 If E is a d-Ahlfors regular set, then define for x € R” and r > 0,

b r) i=r 97l inf / dist (y, P) dH?
BrLe(x,r):=r PEgl(ﬂj)( B ist (y, P) lE(y)

+ / dist (3. E) de|p<y>) .
B(x,r)

Definition 1.4 For Q C R” open, denote by A(£2) the space of 1-Lipschitz functions
f : R" — R that are compactly supported in 2. If & and v are measures on R”, then
we define the localized Wasserstein distance between p and v in B(x, r) C R" by

/f(du—dv)

Dy r(p,v):= sup
feA(B(x,r)

Definition 1.5 Denote by Flat(n, d) the set of measures of the form cHd| p where
¢ >0and P € A(n,d). If u is a d-Ahlfors regular measure, then define for x € R”
and r > 0,

=1 inf Dy r (1, v).

oy (x,r)=r"
. veFlat(n,d)

In our notation «,, we omit the dependence on the dimension d of the measure p,
since it shall be clear from context.

Definition 1.6 We define the normalized local Hausdorff distance for closed sets
E, F C R” that meet B(x, r) by

de,(E, F) :=r—1< sup dist(y, F) 4+  sup dist(y,E)).
yeENB(x,r) yeFNB(x,r)

With this distance, we define the bilateral beta (infinity) numbers by

bBoo,p(x, 1) :=infdy (E, P),

where the infimum is taken over all d-planes P € A(n, d) thatmeet B(x, r). Moreover,
we say that a closed set E C R" is §-Reifenberg flat if bfoc g (x,r) < 8 for every
x € E and r > 0. We warn the reader that this definition of §-Reifenberg flatness is
different than that in [28].

Finally, we come to the notion of small-constant uniformly rectifiable sets.

Definition 1.7 A closed set E C R” is §-uniformly rectifiable of dimension d (§-UR
for short) if 0 < § < 1/10 and the following holds:

for everyx € Eandr > 0, there is ad — dimensional Lipschitz graphI’
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with constant < 8so thatH?|p(, ) (EAT) < 8r%andl’ N B(x,r/2) # 0. (1.4

Again we usually omit the dimension d since it will be clear from context.

Remark 1.8 In the definition of §-UR, we impose that § < 1/10. This is because if §
were allowed to be large, the definition would be satisfied for any d-Ahlfors regular
set E, whereas we want the 6-UR condition to be some small-constant quantification
uniform rectifiability. In particular, since § < 1/10, it is straight forward to verify that
8-UR sets are d-Ahlfors regular with constant close to 1 (see Lemma 3.2). Moreover,
they satisfy the “big pieces of Lipschitz graphs condition” and so §-UR sets are d-
uniformly rectifiable as in the sense of David and Semmes [10] with bounded constant
(see Definition 4.1). From the previous discussion, it follows that §-UR sets are d-
rectifiable, so they have approximate tangent planes for H?-almost all x € E (see
Theorem 5.1), which we denote by 7T (x) € G(n, d).

Notice also that the §-UR condition is strictly stronger than the “big pieces of
Lipschitz images of subsets of R?” condition mentioned in (1.2) with small constant
M>. Indeed, if E = V| U V, where V| and V; are distinct d-planes in R”, then one
can check that E is d-Ahlfors regular and satisfies (1.2) with M> = 0 but is not §-UR
of dimension d for § small.

In the language of the above, our main result is that a set £ C R" is §-UR of
dimension d if and only if one of various other quantities is sufficiently small (with
quantitative control). We refer the reader to Definition 2.1 for the precise definition
of a §-Corona decomposition, which is somewhat cumbersome to place here without
first discussing the Christ-David dyadic lattice in Sect.2.1.

Theorem 1.9 Fixn,d € Nwith0 < d < n and Cg > 0. Then there are constants
8o > 0and 6y € (0, 1) depending only on n, d, and Cg > 0, so that the following
holds. Whenever 0 < § < 8o, E C R" is d-Ahlfors regular with constant Cg, and one
of the following conditions holds

(A) E is §-uniformly rectifiable,

(B) E admits §-Corona decompositions,

(C) E isupperd-Ahlfors regular with constant (14 5), and for any Borel g satisfying
1+ 8)’1 <g <+, ifdulx) = g(x)de|E(x), then for all x € E and

r>0,

r d dt
W(Bx, ) / ap(y, n? L _
B(x,r) J0O t

(D) E isupper d-Ahlfors regular with constant (14 8), and forall x € E andr > 0,
bpie(x,r) <,

(E) E is upper d-Ahlfors regular with constant (1 + &) and 5-Reifenberg flat,

(F) E is d-rectifiable, lower d-Ahlfors regular with constant (1 + §8), and for every
x € Eandr > 0, thereisaV € G(n,d) so that

F o dmre =l alie@+ sup o -n]
B(x,r) yeB(x,r)NE r
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then all of the others also hold with constant 8% in place of 8.

Remark 1.10 (Sharpness of the Ahlfors regularity assumption) Let us discuss the sharp-
ness of the small-constant Ahlfors regularity assumptions appearing in the conditions
(A)—(F) in Theorem 1.9. We reminder the reader that in the statement of Theorem 1.9
and the discussion that follows below, our sets £ C R” are always assumed to be
d-Ahlfors regular with (large) constant Cg > 1.

First, in the places they appear in (D), (E), and (F), they are necessary. We shall
see shortly that (D) and (E) are easily seen to be equivalent. In (E), the upper Ahlfors
regularity assumption can be seen to be necessary by example of a very flat snowflake,
as in [13]. The key point is that there are §-Reifenberg flat snowflakes for arbitrarily
small § that have infinite 7{¢ measure. Finite truncations of such constructions yield
very flat d-Ahlfors regular sets E with large constant Cr >> 1, but for which small-
constant Ahlfors regularity fails. By Lemma 3.2, such sets are not 8%0-UR. In (F), one
can see the lower d-Ahlfors regularity assumption is necessary by taking E = V7 for
some half d-plane V. Again, such an E is d-Ahlfors regular with large constant and
satisfies the other condition in (F) trivially with § = 0, but is not 8Y-UR.

This brings us to (C) which is more delicate. If one instead considers the measure
du(x) = g(x)dH?| g (x) where 1/2 < g < 2, g attains the values 1/2 and 2 some-
where, yet ||gllgmo = J, then in fact, our arguments will show that still the Carleson
condition

r d dt
u(B(x,r»—l/ / ap(y, 02 ST _ o,
B(x,r) JO !

holds whenever E is §-UR (see the proofs of Lemmas 4.4 and 4.5). On the other hand,
W is not d-Ahlfors regular with small-constant, and thus, a small-constant Carleson
condition on the coefficients o, alone cannot imply small-constant Ahlfors regularity
of the measure (1. This is not to say that the implication cannot hold for the measure
H?| £, and indeed, there is a subtle but important difference between y and H?| £ in
the « coefficients. At this stage, we do not know whether the small-constant d-Ahlfors
regularity assumption in (C) is necessary.

We prove Theorem 1.9 one step at a time, proving (in alphabetical order) each of
the conditions (A)—(F) with constant § implies the subsequent condition with constant
Co8%, where Cy, 6y > 0 depend only on 1, d, and C. Instead of repeating this phrase
over and over, we shall instead write “(A) gives (B)”, when really we mean that (A)
implies (B) with constant Co8% in place of §. By taking 8y and 6y even smaller, this
is enough to prove the Theorem. We do not explicitly compute 6y in the proof of each
implication, except for where there is a clear optimal power; instead, we care only that
each condition is quantitatively controlled by the previous one.

The bulk of our work (and our main contribution) is in showing (A) gives (B),
and (B) gives (C), which are done in Sects.3 and 4, respectively. Here we should
emphasize as stated previously that for (large-constant) Ahlfors regular, uniformly
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rectifiable measures p, one has the large-constant Carleson measure estimate

_ " du(y)dt
Sup H/(B(xar)) 1/ / au(y,t)z —y < 00,
B(x,r) JO t

xespt u,r>0

(see [40, Theorem 1.2]). However, it takes delicate analysis to show that this quantity
is small for 6-UR sets (and in fact, necessitates the appropriate notion of a “small-
constant”-Corona decomposition, which we introduce here).

That (C) gives (D) is immediate once one recalls the fact that for Ahlfors regular
sets E, the Carleson measure estimate in (C) in fact implies that «;, (x, r)2 < C§,
and that the «;, dominate the B g [40, Lemma 3.2]. Similarly that (D) gives (E)
is a straight-forward estimate that uses the Lipschitz nature of the distance function
and d-Ahlfors regularity of E to show bfeo £(x,7) < Cbp1 g(x, )/ @+ As such
we omit the proofs. We prove that (E) gives (F) in Sect.5 from an argument that
estimates the portion of £ whose tangent planes make a large angle with a good
approximation to E in a ball B(x, r). This argument is different than the proof using
the Gauss-Green Theorem by Kenig and Toro in co-dimension 1 (see Theorem 2.1 in
[27] and also the proof following (2.18) in [7]), and in particular also works in any co-
dimension. Finally, the proof of (F) gives (A) exists in several forms in the literature.
When d = n — 1 and E is a smooth enough hypersurface, the argument is due to
Semmes [38, Proposition 5.1] (and the resulting approximating Lipschitz graphs are
referred to as Semmes decompositions) and later used in [27]. It is also proved under
different topological assumptions of a domain €2 in [20, Theorem 4.16], where the
hypothesis on the quantity |7Tvl (y— x)| /r is removed, and proved by other means.
When d < n — 1, this implication is essentially proved in [5, Lemma 3.2] again when
E C R" is a C' manifold, but for the sake of completeness, we outline the proof of
Blatt in Sect. 6 to make clear the fact that in our setting (and with the Ahlfors regularity
assumptions), the argument does not require E to be a C! manifold.

1.2 An Application to Chord-Arc Domains

Let us end the introduction with a discussion relating §-UR sets of dimension (n —
1) in R”, and §-chord-arc domains (as defined in [28]), as promised earlier. All of
the arguments involved in the proof of Theorem 1.9 are local, and thus, there are
corresponding local and “vanishing” results that follow from these arguments, though
they are slightly technical to write down. In fact, these local results, which we leave
to Sect.7, are in more direct analogy to the so-called §-chord-arc domains introduced
by Kenig in Toro in [27] and [28]. Let us define these rigorously now.

Definition 1.11 A domain 2 C R” is said to satisfy the separation property if for
each K C R” compact, there is an Rx > 0 so that for each x € 9Q2 N K and each
r € (0, Rg), there is a choice of V € A(n,n — 1) and choice of normal vector 7iy to
V sothat x € V, and

TYr,x)={y+tiy € B(x,r) : yeV, t>r/4 CQ,
T (r,x)={y+tiy € B(x,r) : yeV, t <r/4} C Q°.
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If © is unbounded, we assume also that d<2 divides R” into two distinct, nonempty
connected components.

Definition 1.12 Let§ € (0, §,) for some small dimensional constant §,, > 0. A domain
Q C R" is said to be a §-Reifenberg flat domain if for each K C R” compact, there
isan Rx > 0 so that for each x € 3Q N K and each r € (0, Rx), bBsc.aq(x, 1) < 6.
If © is unbounded, we assume also that

sup  bfocsnx,r) < 6,.
x€d, r>0

Definition 1.13 Let § € (0, 8,). A set of locally finite perimeter Q2 C R” is called a §-
chord-arc domain if €2 is a §-Reifenberg flat domain satisfying the separation property,
92 is (n — 1)-Ahlfors regular, and in addition the following holds. For each K C R”
compact, there is an Rx > 0 so that for each x € 92 N K,

7]l (B(x, Rx)) <.

Here 7i(y) is the unit outer normal to 9€2, 71y s = J[assz(y 5) n(z) dH"'(z), and

O<s<r

1/2
Il (B(y,r)) = sup (][ \fi(z)—ﬁy,s|2 dH"I(z)) )
AQNB(y,r)

In the terminology, we have introduced thus far, there is no immediate containment
between §-UR sets of dimension (n — 1) and boundaries of §-chord-arc domains. This
is because chord-arc domains satisfy topological separation conditions and are sets of
locally finite perimeter, and because §-UR sets satisfy global flatness conditions, while
8-chord-arc domains satisfy local ones. However, these differences are minor, and the
two notions are very closely related. In particular, equation (2.18) in [7] says that for
8-chord-arc domains, one has ‘ (g, y—x) | < C8'%r for y € B(x, r) whenever
7]l (B(x, 7)) < 8. This implies that the second condition in (F) holds locally for §-
chord-arc domains. In addition, one can prove local lower (n — 1)-Ahlfors regularity of
d<2 (with small constant) from the local Reifenberg flatness condition (see the proof of
Theorem 5.2). Combining these with the fact that the proof of Theorem 1.9 is local, we
see that when €2 is a §-chord-arc domain, then on compact sets for small enough scales,
0Q satisfies the 8%-UR conditions. This is made precise by the following Theorem,
and in fact, as long as we assume some underlying conditions on a domain €2, we
obtain a new characterization of §-chord-arc domains. For simplicity, we choose just
one such condition coming from (A)-(F) to give the characterization, which we make
as the following local definition.

Definition 1.14 Let u be d-Ahlfors regular. We say that p satisfies the local §-UR
condition of dimension d if for each K C R”" compact, there is an Rx > 0 so that for
each x € spty N K and r € (0, Rg) one has u(B(x, r)) < (1 + 8)r¢ and

r d dt
W(B(x, 1)) / o (y, 12 DL _
B(x,r) J0 t
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Theorem 1.15 Fix n € N and Cg > 0. Then there are constants &g, 6y € (0, 1)
depending only on n and Cg so that the following holds.

Let Q C R" be a set of locally finite perimeter such that Q2 satisfies the separation
property and 92 is (n — 1)-Ahlfors regular with constant Cg. If Q is unbounded,
assume in addition that SUPxedQ, r>0 bBoc.oq(x,r) < 6o. Then for any § € (0, ép)
each of the conditions

() Qis a §-chord-arc domain,
(I) For any measure du(x) = g(x)H"_llag(x) with (1 +8)7! < g <1446 pu
satisfies the local §-UR condition of dimension (n — 1),

implies the other with constant 8% in place of 8.

For a discussion of the proof of Theorem 1.15, see Sect. 7.

2 Preliminary Definitions

We introduce the system of “dyadic cubes” for Ahlfors regular sets, which is an integral
part of the definition of a §-Corona decomposition. They also play an important role
in the square function estimates we prove on the Tolsa « coefficients in Theorem 4.7,
since we opt to prove a dyadic version instead of the continuous one.

2.1 The Christ-David Dyadic Lattice

Recall that as in [12], if E is a d-Ahlfors regular set in R” with constant Cg, then one
can construct a family of subsets of E that plays an analogous role to the family of
dyadic cubes in R". In particular, for each j € Z, there is a partition A; of E into
“dyadic cubes" of E that satisfy the following:
ifj <k, Q € Aj,andQ" € A, then eitherQ N Q" = WorQ C Q’, 2.1
ifQ € Aj, thenCp'2/ < diam Q < Cp2/andC,'2/¢ < H(Q) < Cp2/?, (2.2)

ifQ € Ajandr > OthenH? ({x eQ :dist(x,E\ Q)< ij}) < Cptl/Cpoid,
2.3)

Remark that in (2.1)—(2.3) above, the constant Cp only depends on the dimensions
n,d, and Cg. Also, condition (2.3) for t sufficiently small furnishes the existence of
a “center” of each cube cp € Q, which satisfies

dist (cg, E\ Q) > CBldiam 0.
so that

B(co, Cp'diam Q) N E C Q. (2.4)
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By convention, we define for A > 1,
A0 ={xeE : dist(x, Q) < (A — l)diam Q}.

In a similar manner, for any Q, we define By = B(cg, diam Q) so that By is a ball
centered on E satisfying

QO CBpNEC2Q0.

If 0 C Q,and Q € Aj, Q' € Aj4q, then Q is said to be a child of Q’, and Q' is
said to be the parent of Q. Similarly, if R and R’ share a parent, then they are said to
be siblings. The set of all dyadic cubes of £ is A = U;Aj, and for R € A, we denote
all dyadic cubes contained in R by A(R). Finally, if O € A belongs to A ;, we write

gen Q = j.
2.2 Small-Constant Corona Decompositions

Let us define precisely 6-Corona decompositions for d-Ahlfors regular sets. We opt to
make the definition as strong as possible, since we anticipate this will be the most useful
property of small-constant UR sets from which one can obtain precise, quantitative,
small-constant square function estimates. Fix a constant C, 4 > 1 large, and to be
determined below in the discussion of Remark 2.2.

Definition 2.1 Suppose that E C R” is d-Ahlfors regular, and E has a system of
dyadic cubes A with constant Cp < C, 4. Then we say that E admits a 6-Corona
decomposition in Ry € A if for each R € A such that gen R = gen Ryp and R C
s~'B Ry there is a partition F (R) of A(R) which satisfies the following:

eachS € F(R)has a maximal cube Q(S)so that if Q € Sand some
Q' € A(R)satisfiesQ C Q' C Q(S), thenQ’ € S.Moreover, ifQ € S,
then either all of its children, or none of its children are inS. 2.5)

for eachS € F(R)there is ad — dimensional Lipschitz graphl" = I"(S)with
Lipschitz constant < §so that for everyQ € S,

H (57 Bos) N (EAT)) < §HI(Q(S)).

Moreover, for eachQ € Sandx € P Bp N (EUT), we havedist (x, E)+

dist (x, I') < §diam Q.(HereEAT = (E \ ') U (I" \ E)is not to be confused
with the symbol for dyadic latticesA = U;czA ;). (2.6)

the maximal cubes Q (S)satisfy a small-constant Carleson packing condi-
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tion in that for eachR’ € A(R), one has

> HYQB) = (1 +HHUR). 2.7)
SeF(R)
O(S)CR'

Moreover, we have the following condition on the “top” Lipschitz graphs of the Corona
decomposition:

IfSg, Sgyare so thatR € Sg € F(R)andRg € Sg, € F(Ry),
thenI"(Sg) = I"(Sg,).That is to say, each of the chosen Lipschitz graphs for

the collections containing the top cubes Rare identical. (2.8)

Finally we say that E admits §-Corona decompositions if it admits a §-Corona
decomposition in each Ry € A.

Remark 2.2 Some remarks about this definition (and how it is different from the usual
Corona decomposition as in [11]) are in order. In general, a Corona decomposition for
a uniformly rectifiable set E includes a partition of dyadic cubes into “good cubes"
and “bad cubes," where the bad cubes do not have a good approximating Lipschitz
graph as in (2.6). In the small-constant setting, it turns out that all cubes are “good,"
and thus the main condition satisfied is that there are not too many families S € F(R)
as quantified by (2.7). Also, since we are interested in bi-lateral approximations of
Ahlfors regular sets by planes, we include in (2.6) that the approximating graph I" be
sufficiently close to E as well. The facts that there are measure estimates on EAT
inside S_IB(Q(S)) and that (2.8) holds are perks we obtain for free when showing
(A) gives (B), which shall be useful to us in estimating the Tolsa o« coefficients for
8-UR sets. However, it should be noted that these measure estimates in condition (2.6)
are the strongest; for é sufficiently small, the condition (2.6) implies that E is C5-UR
(recall Definition 1.7). Since we shall use this fact later, we provide a quick proof in
Lemma 2.3 below.

One other main difference is that in a §-Corona decomposition, as opposed to
a general one, we require that the Carleson packing constant appearing in (2.7) be
controlled as é | 0. This plays a crucial role in the arguments that follow, since this
implies that if " € A(R) is a maximal cube in some family, R" = Q(S) for some
S € F(R), then necessarily one has

Y. HU®) = sHIR). (2.9)
SeF(R)
Q(HCR

Also it is important to remark that the so-called “coherent” condition on the families
F(R) from (2.5) includes two pieces. The second part, which asserts thatif Q € S then
either all of its children are or none of its children are, has as an important consequence
that

ifx € Q(S)then eitherxis in arbitrarily small cubes ofS, orxis contained
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in a minimal cube ofS. (2.10)

Finally this brings us to the appearance (and definition) of the constant C,, 4. Notice
that by definition, a §-Corona decomposition of E is assumed to hold over a dyadic
system A with bounded constant Cp < C, 4 where C,_4 is chosen as follows. We shall
soon see (Lemma 3.2) that §-UR sets of dimension d in R” are d-Ahlfors regular with
uniformly bounded constant. In particular, they admit a system of dyadic cubes A as in
Sect. 2.1 with constant Cp depending only 7, d, which we define to be C,, 4. Forcing
this condition on the system A is rather minor, but it allows us to rule out pathological
examples of §-Corona decompositions for §-UR sets associated to a system of dyadic
cubes with very large constant.

Lemma 2.3 Suppose that E is d-Ahlfors regular and admits a system of dyadic cubes
with constant Cp > 1. Then if E admits §-Corona decompositions for 0 < § <
Q2Cp+ 1~ tands sufficiently small, then E is (Cpd)-UR.

Proof Fixx € E andr > 0. Choose some integer j € Zsothat2/ < r < 2/+! Since
A is a partition of E, we may choose a dyadic cube Ry € A; so that x € Ry.

Now since E admits §-Corona decompositions, then it admits a §-Corona decompo-
sitionin Ry, and thus there is a partition of A(Ry) into coherent subfamilies S € F(Ry),
S C A(Ryp) satisfying conditions (2.5)—(2.8). Since the subfamilies S € F(R) par-
tition A(Rp) and Ry € A(Rp), there is some S € F(Rp) so that Ry € S. Notice that
the maximal cube Q(S) of S is a subset of Ry, but since Ry € S then Ry = Q(S).

Applying condition (2.6) to Ry = Q(S), we see that there is Lipschitz graph I
with Lipschitz constant < § so that

HY (8 Br, N (EAT)) < 8H(Ro) < 8Cp2/9 < 5Cpre. (2.11)

By (2.11), the proof will be finished as long as we show that 8_13R0 D By(x).
However, if |y — x| < r, then

|y — cRO} <|y—x|+ ‘x — cR0| < r +diam(Rg) < 2/+1 + diam(Rgp)
< (2Cp + DHdiam(Ry),

where cp, is the center of Ry. This proves the inclusion, since Bg,:=Bdiam(Rry)(CRy)-
]

2.3 Conventions for Constants

In general, we denote by C a constant which is allowed to change line per line,
depending on the parameters explicitly stated in the statement of a Lemma, Theorem,
or Corollary. We avoid using the symbols <, 2 but very infrequently will use the

notation A ~p B to mean that there is some constant C > 0 depending only on D so
that C™'A < B < CA.
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3 8-UR Measures Admit 59°-Corona Decompositions

In this section, we show that (A) gives (B), i.e., we prove Theorem 3.3. Let us begin
within two useful lemmas. The first shall be used repeatedly in future Sections.

To motivate the first result, remark that if © is d-Ahlfors regular with constant
C,. > 0 and support E, then in general we may only conclude that x and H | are
mutually absolutely continuous with density g = du/dH?|g satisfying C;l <g<
2 > and moreover, E is d-Ahlfors regular with constant 2 C [21, (see for example,
[32, Theorem 6.9]). This crude estimate is problematic if we want precise control of
the Ahlfors regularity constant of H?|g when y is d-Ahlfors regular with constant
C,, thatis close to 1. When more geometric regularity is assumed, though, this can be
strengthened as in the following.

Lemma 3.1 Suppose that w is a d-Ahlfors regular measure in R" with constant C;, >
0, and that E = spt u is d-rectifiable. Then the density dH®| g /du exists and satisfies

C,' <dH%g/dp < Cy,

w-almost everywhere. In particular, for any subset A C R Borel, we have

1 HYEA)
1
TR <C,, 3.1)

and H? | is d-Ahlfors regular with constant Ci > 0.

Proof 1t is straight-forward to see from the Ahlfors regularity of u that E is also
d-Ahlfors regular, and H?|z and p are mutually absolutely continuous with density
dH¢ | £/d n bounded above and below. Since E is rectifiable, we know that the density

09 (x) = lim HY g (B(x, ) /r?

exists and equals 1 for HY almost all x € E (see, for example, Theorem 16.2 in [32]).
It follows then that for H¢|£ (and thus 1) almost all x,

dH4 | g . HY| g (B(x,r))
(x) <limsup ————
dl»L rl0 /vl/(B(-x’ r))
. HYe(Bx,r)  rf
= lim sup 7
40 r w(B(x,r))
S C[,Lv

by Ahlfors regularity of u. A similar computation shows dH?|g /du(x) > C;l for
u almost all x, and thus whenever A C R” is Borel,

dH?|g
cluady= [ c;lda </ d<C/d=C A).
MM()/AMM_AdM p=Cuf du w m(A)
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Since HY|g(A) = fA (dH? g /dw) du (see for example, Theorem 2.12 in [32]), this
shows (3.1). The last claim of the Lemma follows by taking A = B(x,r) forx € E
in (3.1) and using Ahlfors regularity of . O

The proof of the following lemmas are omitted, since they are proved (when d =
n — 1)in [16, Lemma 5.4]. The arguments in higher codimension are the same.

Lemma 3.2 (see Lemma 5.4, [16]) There is a constant Cy > 1 depending only on n
and d such that if E C R" is §-UR of dimension d, then E is d-Ahlfors regular with
constant at most 1 + Co8'/? and Cy8'/?-Reifenberg flat.

We may now state the main Theorem of this section, which is that (A) gives (B). Of
course, in our setting of §-UR sets, life becomes easier in that we need not go through
the effort of constructing the Lipschitz graphs by hand in a small-constant Corona
decomposition, as the authors do in [11]. Instead, the following result simply says that
with our approximating Lipschitz graphs coming from the definition of a §-UR set,
we obtain a Corona decomposition with a loss in a constant, and an exponent in §.

Theorem 3.3 There are Co > 1, 89 > 0 and 6y € (0, 1) depending only on the
underlying dimensions n and d so that if E C R" is 5-UR of dimension d in R" with
8 € (0, 8), then E admits Cy8%-Corona decompositions.

Proof As mentioned at the end of Remark 2.2, since E is §-UR of dimension d, we
may fix once and for all a system of dyadic cubes A for E with constant Cp < C, 4.

Now begin with some dyadic cube Ry € A for E. Denote by Cg the Ahlfors
regularity constant of Hdl £, which by Lemma 3.2, is bounded. Fix 0, 6" € (0, 1) to
be determined, and set n:=89, M:=5"? For definiteness, we state now that 6 = 1/2
and 0’ < 6/(2d) shall suffice here, but these parameters are different than the 6 in
the conclusion of the Theorem. We construct our partition 7 = F(R() by sequential
coherent generations. That is, we will construct F as a disjoint union F = Fo U
F1UJF, U... where each F; consists of coherent collections S C A(Ry), and Fy
contains a single collection Sy with top cube Q(Sp) = Ry. Moreover, each F; for
i € N will satisfy the following: for each S € F;, there is a unique S’ € F;_; so that
0(S) C Q(S), and all cubes Q € A(Rg) with Q(S) € QO C Q(S’) are such that
Q € §'. Also, we shall deal only with the partition F = F(Rg) of A(Rg) for now, and
leave to the very end of the proof how to ensure that (2.8) holds for the other R € A
that are nearby Bp,.

As mentioned, we shall take Ry to be the top cube of the only collection Sy in
the zeroth generation family, Fy. Since E is §-UR, we choose a §-Lipschitz graph
I' =I'(Sp) so that

H g (MBg, \T) + H|r(MBg, \ E) < §(Mdiam Ry).
= 879 (diam Ry)“. (3.2)
In what follows, estimate (3.2) (and the fact that I, E are sufficiently flat) shall be the

only fact we use about I to ensure that this particular I" shall suffice in the construction
of Sp.
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Now we continue adding children of Ry to the collection Sy until we reach a cube
Q that has a sibling Q’ (possibly Q' = Q) which is mediocre for Sy, meaning that

HY(Q'\T) > nHY(Q)). (3.3)

At this stage, O, and all of its siblings become minimal cubes of the collection Sy, and
all of their children become top cubes for the new collections § € ;. Notice that for
such Q, if Q is the parent of Q, then Q is not mediocre for Sy, and thus,

HY(Q\T) <HYO\T) < nHY(0) < CnH(0), (3.4)

with constant C depending only on Cp and the underlying dimensions.

Let us make some observations about the family Sy constructed. First of all, Sy is
coherent (i.e., satisfies condition (2.5)) by construction. Moreover, from (3.4) we see
that all Q € Sp satisfy

HUQ\T) < CnHi(0), (3.5)

since those Q € Sy that are not minimal satisfy the above inequality with C = 1. Let
us show now that this measure estimate implies that for the cubes in Sy, I' and E are
very near each other in that for any Q € Sy, we have

sup  dist (x, ') +dist (x, E) < CM*p'/?diam Q
xe€MBgN(EUT)

= 8942 diam 0, (3.6)

for some constant C depending only on the dimensions and Cp.

First, suppose that Q € Sy, and x € B(cg, CBldiam 0/2) N Q\T (recall that
cg is the center of Q, for which (2.4) holds). Denoting r = dist (x, I'), then as
long as § is sufficiently small, we must have r < Cgldiam Q/2. This is because
otherwise we have 0 \I' > QN B(x, Cp,'diam Q0/2), and thus H?(Q\T") > H*(Q N
B(x, CBldiam 0/2)) > cHd(Q) for some constant 0 < ¢ < 1 depending only on
Cp and Cg. When §g (and thus ) is sufficiently small, this contradicts (3.5) and
whence the fact that O € Sy. Hence, we may assume that r < CBldiam Q/2, so

B(x,r) C B(cg, CI;ldiam 0), and thus
HYQ\T) = HY(Q N B(x,r) = Cp're.
Since Q € Sy, we have that (3.5) gives r < Cn'/¢diam Q, i.e.,

sup dist (x, T') < Cn'/4diam Q. (3.7)
x€ENB(cg,Cy,' diam 0/2)
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Next, recall from Lemma 3.2 that E is C§1/¢ Reifenberg flat, and similarly, so is I".
We claim that for §q sufficiently small, this implies

for everyx € (I' \ E) N B(cg, CBldiam Q/8), there is a point
y € EN B(x, 2dist (x, E)) N B(cg, CBldiam Q/2)withdist (y, ") >
(2/3)dist (x, E). 3.8)

Assume (3.8) for the time being. Along with (3.7), the existence of such a point shows
that

sup dist (x, I') + dist (x, E) < Cn'/?diam Q. (3.9)
x€B(co.Cp,' diam Q/8)N(EAT)

Appealing again to the fact that £ and I" are C§'/¢ Reifenberg flat, one deduces (3.6)
from (3.9) with a possibly larger C. The proof is slightly technical, but it merely
requires choosing good approximating planes for E and I' at different scales. For the
sake of completeness, let us sketch a few details.

Recall here that we use the notation d , for the normalized local Hausdorff distance
as in Definition 1.6. In addition, 6, 8" are such that #’ < 6/(2d), and thus we have
that M?n'/4 can be made arbitrarily small if 8y is chosen small enough. Since I" is a
8-Lipschitz graph, we know that there is some plane d-plane Pr so that

deyr (T, Pr) < C8',

as long as &g is sufficiently small, and as long as r > Cl_)ldiam Q/8. Since E is
C 81/ Reifenberg flat, we may choose d-planes Pr and P}, so that

de g 2diam @ (E ., PE) + dey 2mdiam 0 (E, P) < cs'/,

The fact that Pg and Py, are very good approximations to E inside 2B, and run very
near the center of By, imply that ch,Zdiam o(Pg, Pé) < CM8Y4 | and thus

dey. mdiam o (P, Pp) < CM8'4.

Finally, recalling estimate (3.9), we see that ch,diamQ(Pr, Pg) < Cnl/ 4 which
implies dCQ, Mdiam 0 (Pr, PE) < C nl/ 4 Thus if we compare distances from I', to Pr,
to Pg, then Py, and finally to E inside B(cg, Mdiam Q), we obtain (3.6).

This leaves us to justifying (3.8), which can be argued by contradiction. Indeed, if
no suchpointy € ENB(x, 2dist (x, E)) exists, then each such y satisfies dist (y, I') <
(2/3)dist (x, E). Then the fact that £ and I" are very well approximated by d-planes
in B(x, 2dist (x, E)) and similar arguments to those described above would lead to
the contradiction that there is some z € E with |[x —z| < dist (x, E). Now we
simply recall that cp € E, and so since x € B(cy, CI;ldiam Q/8) we have that
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dist (x, E) < CBldiam Q/8, so that necessarily, y € B(cp, CBldiam Q/2). This
completes the proof of (3.8).

Hence, for the first family Fp, we have that the first part of (2.6) holds with
cCM 2171/ d = cg0/d=20", By construction (recall (3.2)), we also have the desired mea-
sure estimate

HY(MB(sy N (EAT)) < C8' =4 H(Q(Sn)). (3.10)

We have one final step for Fq, which is to estimate the portion of minimal cubes of
So, denoted m (Sp), contained in Q(Sp).

Recall that if Q € m(Sp), then necessarily Q has a sibling Q' € m(Sp) which is
mediocre for Sp, i.e., (3.3) holds. Then since the number of siblings of any dyadic
cube in A is uniformly bounded (by Ahlfors regularity of E), we have that

Y r@=c Y m@)=S Y wioT)

0em(sn) 0'em(So) T oremisn)
Q' mediocre Q' mediocre
c d C d
< ;H (Q(So) \T") = ;H |[E(MBg, \ T)

by definition of 1. Notice that if 8, 8" are sufficiently small, then 1 —d6’ — 6 > 0, and
in particular, taking & = 1/2 and 8’ < 6/2d shall suffice for these purposes.

Now assuming that F;_; has been constructed for i € N, we make each child Qg
of some Q' € m(S’) for ' € F;_ atop cube Qp = Q(S) of a new collection S € F;,
and construct S € F; in the same way as we did Sy € Fo. That is, since E is §-UR,
we choose a Lipschitz a §-Lipschitz graph I' = I'(Q) for which

HY g (MBg, \T) +H|r(MBg, \ E) < §(Mdiam Qo).

We continue to add subcubes of Q € A(Qp) to the collection S until we find a some
cube Q who has a sibling Q' which is mediocre for S in that (3.3) holds. At this
stage O and all of its siblings become minimal cubes of S, and each of their children
become top cubes in the next generation F; 1. The same proof above applies to this
collection S in place of Sp: it is coherent in that (2.5) holds, and in addition, we have
the following estimates:

sup  dist (x, E) + dist (x, T(Q(S))) < €8/ diam Q for Q € S,

xeMBN(EUT)

(3.11)

HY(MBgs) N (EAT(Q(S)) < €8 HI(Q(8)), (3.12)

Y HIQ) = C8IHY(Q(S)). (3.13)
Qem(S)
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Recalling that M = 5%, we conclude that E admits a C5% Corona decomposition
with 6y = min{0/d —260’,1 —d6’ — 0,6’} > 0 provided that we show (3.13) implies
(2.7) with C8% in place of 8, i.e.,

> HUQE) = (1 + C8P)YHAR). (3.14)

SeF
Q(S)CR

Let R € A(Rp), and choose an index i* € N U {0} and a collection S* so that
R € §* € Fj«. Assume first R is the top cube of $*, R = Q(S5*). Then by construction,

U o= U o

SeFmi Qem(S*)
QTR QCR

where each of the unions above is a disjoint union. In particular, we see

> HrYesH= Y MW
SeFix 4 Qem(S*)
Q(S)CR QCR

< C8HA(R),

by (3.13). Now, for any index k € N, k > i* + 1, we have that

U ew= U | U ¢

SeFi SeFi—1 Qem(S)
Q(HCR QSR

where each of the unions above are disjoint. This gives

o orisn= Y | Y HW

SeFi SeFr—1 \Qem(S)
O(S)CR O(8)CR
<8 3 Q)
SeFi—1
O(S)CR
< (C8MF=" 14 (R), (3.15)

where the first inequality in the above follows from (3.13), and the second is by
induction on k. As long as § is small enough (depending only on 6y and the underlying
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dimensions), CSgO < 1. Whence from (3.15) we obtain

Yo riQesH= Yo Y HAQW)

SeF k=i*+1 SeF;
Q(SCR O(SCR
= 3 (cs) T A m)
k>i*+1
o
- (Z(c(s@o)k> HY(R)
k=1

< Cs%HI(R),

since again, 8 is small enough so that )", (C8%)* =1 — (1 — C3%)~! < Cs%.
We have thus shown that whenever R € A(Ry) is a top cube, R = Q(S*), then

Y HUQS) < C8PHUQ(S™)). (3.16)

SeF
0($)S0(5)

From here, we deduce our estimate for general R.
Suppose that R € A(Ry) is arbitrary. Then we can decompose the collection of top
cubes Q(S) C R, S € F into 2 disjoint collections, 7 (R) and R(R), where

T(R):={SeF : Q(S) CR, and Q(S) C Q(S) C R implies S = '}
R(R):={SeF : Q) CR,S¢T(R)}

Put simply, 7 (R) consists of the collections S € F whose top cubes are the “first”
descendants of R that are top cubes, and R(R) are the rest. Note that necessarily the
cubes in 7 (R) are disjoint, and also to each Q(S) € R(R) there is some S’ € T (R)
for which Q(8) C Q(S’). We estimate

> oHYQE)= Y H@QOH+ D HUQS)

SeF Se7T (R) SER(R)
O(S)CR

< Y HYQOH+ Y > H®)

SeT(R) seT(R) | SeR(R)
2(HC0(S)

< Y H@QOH+ Y, > HYQ®)

SeT(R) S'eT (R) SeF
0(5HC0(S)
< Y HiQW)+cs® Y HUQS))
SeT(R) S'€T (R)
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=1+cs%) Y HUQS)
SeT(R)

< (14 CcsPYHA(R).

In the above, we used (3.16) in the third inequality, and the fact that the cubes Q(S) for
S € T (R) are disjoint and contained in R in the last. This shows (3.14), and thus our
proof is complete once we can justify how to construct the other F(R) as in Definition
2.1 so that (2.8) holds.

However, this last step is simple. Notice thatif R € A; where gen R = j = gen Ry,
and also R C (M /3)Bg,, then for §y sufficiently small, we have that (M /3Cp)Bgr C
M Bg,. Hence (3.2) gives that

M M ,
HY\ g ((EBR) \ F(So)) + H 1 (sy) ((EBR) \ E) < ¢5'74% (diam R),

where C > 0 depends only on n, d and Cp. In particular, we recall that this was the
only condition we used on the Lipschitz graph I"(Sp) to be chosen for the top cube
of Sp in order to construct F. In particular, by simply taking C > 0 larger in the
conclusion of the Theorem, we can use this same Lipschitz graph I"(Sp) for each such
R, and repeat the construction of JF essentially verbatim to construction the partition
F(R) of A(R) for each such R, finishing the proof of the Theorem. O

4 6-Corona Decompositions Imply @, (x, r) are Small

In this section, we show that (B) gives (C), i.e., we prove Theorem 4.7. Although the
Carleson measure estimate we prove is a dyadic version of (C), this discrete estimate
appearing in Theorem 4.7 implies the continuous one. This estimate can be found in
[15, Lemma 5.9] so we omit the proof. The first step in the proof is to obtain small-
constant Carleson measure estimates on the o, (x, r) when u is a measure supported
on a small-constant Lipschitz graphs with density close to 1. This estimate is done in
[40] when w is surface measure on the graph, but for completeness we fill in the gap
when one takes u slightly more general.

To state the Theorem in the same language as in [40], whenever E = spt i is
d-Ahlfors regular, A is a system of dyadic cubes for £, and Q € E, we abuse notation
of ay, and set

2, (Q):=a, (¢, 3 diam Q) @.1)

where of course, (¢, 3 diam Q) is as in Definition 1.5. There is a very minor differ-
ence in «;, (Q) and that written in [40], where the normalization is taken with respect to
the quantity £(Q) (whichis £(Q) = 2/ when Q € A ;) in place of 3 diam Q, but since
these quantities are comparable (with constant Cp) this difference is unimportant in
the estimates that follow. Let us state two main Theorems proved in [40], which we
shall use in our proof of Theorem 4.7. First we recall the definition of “large-constant”
uniformly rectifiable measures.

@ Springer



125 Page22of44 C.Jeznach

Definition 4.1 Suppose that p is a d-Ahlfors regular measure on R”. Then p is said
to be d-uniformly rectifiable (with constant M > 1) if for each x € sptx and r > 0,
there exists a Lipschitz map f : By(0,r) C R4 — R” with Lipschitz constant < M,
so that

(w(B(x, ) N f(Ba(0,r))) = M~ 'rd.

Theorem 4.2 (Theorem 1.2 in [40]) Let u be a d-Ahlfors regular measure in R"
with constant C, and suppose that y is d-uniformly rectifiable (with large constant,
M > 1). Fix a system A of dyadic cubes for u with constant Cp > 0. Then there is
some constant Cy = Co(n,d, C;,, M, Cp) > 1 5o that one has the Carleson condition

sup w(Ro)™' Y @u(@)*u(Q) < Co. (4.2)

Roea Q€A(Ry)

Theorem 4.3 (Theorem 1.1 and Remark 4.1 that follows in [40]) Suppose that T is a
d-dimensional Lipschitz graph in R" with constant § < 1, let @ = H?|r, and suppose
that A is a system of dyadic cubes for E with constant Cp > 0. Then the following
Carleson condition holds:

sup ((Ro) ™' Y (@) (Q) < Cod?,

Roea QeA(Ry)

where Co = Co(n, d, Cp) is independent of §.

To be totally transparent, Remark 4.1 in [40] is stated for true dyadic cubes in R”
that meet the Lipschitz graph I', and the result is stated as a global Carleson packing
condition for compactly supported Lipschitz graphs. However, it is straight-forward
to deduce the Theorem above from how Remark 4.1 is stated. Indeed, one can obtain
a local result from a global one by fixing an initial cube Ry of I', and finding a
(C§)-Lipschitz graph I'” that agrees with I in 10Bg, and has support in 20Bg,. Then
Theorem 4.3 applied to I'’ gives the result, since the , (Q) are local to 3 Bg, anyway.

From here, we can extend this small-constant estimate to measures of the form
dp(x) = g(x) dH?|r(x) where g(x) is some controlled density, using the following
two Lemmas.

Lemma 4.4 Suppose that ju is a d-Ahlfors regular in R" with constant C,, > 0, and A
is a system of dyadic cubes for spt  with constant Cp > 0. Then for any g € leoc (),
the coefficients O, ,(Q) defined on the cubes Q by

Ou.¢(0):=(diam 0) "~ inf  sup
2eR reA(3Bg)

[re-nrad @
satisfy the Carleson condition

sup 1t(Ro)™! Z 0u.6(0)*1(0) < Co (][c . g — (g)C0R0|2 dﬂ)-
o0

RoeA Q€A(Ry)
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Here, Cy = Co(n,d, Cy, Cp) > 0 is independent of g.

Proof The idea is to use a dyadic Martingale decomposition of g with respect to
the dyadic cubes for E = spt i, but for a family of adjacent dyadic cubes for E
rather than the single system from Sect.2.1 (we shall see the flexibility this gives us
shortly). Lemma 2.2 in [1] (which uses Theorems 2.9 and 5.9 in [24]) imply that there
exists § € (0,1) small, and M € N, Cp > 1, large depending only on n,d and
C,., so that the following holds. For each w € {1, ..., M}, one can find a system of
D(w) = UjezDj(w) of “dyadic cubes” for E such that

for al]] € Z, E = UQEDj (w)Q» (44)
ifR, R’ € Dj(w)andR # R, thenH!(RN R') = 0, 4.5
for eachj < ¢andQ € Dy(w), one hasQ = Urc g, reD; (@) R (4.6)

eachQ € Dj(w)has a “center,”zpso thatB(zp, 8'/5NEcCQC
B(zg. 387).Consequently, H*(Q) ~¢, §/°. 4.7

These first properties are essentially the same as the system A from Sect. 2.1, but here
the {D(w) : 1 < w < M} also satisfy

for anyx € E,r > 0, there is some choice of]l <w < M, j € ZwithCélr
<8/ < Cpr,andQ € Dj(w)so thatB(x,r) C Q. (4.8)
We shall use the family of dyadic systems {D(a))}aﬂf: | in conjunction with the fixed
dyadic system A from Sect. 2.1 to prove the result.
Let Qo € A be a dyadic cube of E from Sect.2.1, and fix any cube R C Q.

By (4.8), there exists some 1 < wgp < M, jg € Z with 8k >~cp diam R, and
ORr € Djp(wp) so that 3Bg C Qr. Now since gxpy € LZ(M), we may write

(8~ ®owxox= ), Asg (4.9)
SeD(wr,Qr)

with convergence in Lz(u,), where by definition, D(wg, Q) are the subcubes of QO r
(in D(wr)),

Asg= Y ((©)s —(@)s)xs

S’echild(S)

and (g)4 = f 4 & diu. Moreover, one has that

e = @0 x0rliogy = D 1As&lia:
SeD(wr,QORr)

since the terms on the right-hand side of (4.9) are pairwise orthogonal in L2(,u).
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Now since Oy, ¢(R) = O ¢+4(R) for any constant a, we may assume that (g) g, =
0 in our estimate of O, ¢(R). Fix f € A(3Bg), and note that since f is 1-Lipschitz
and spt f C Ok,

’/gfd/x

< > ‘/Asgf dﬂ’

SeD(wr,QR)

= ¥ |[as- el

SeD(wr,OR)

<Cu ). (diam 9P| Asgll 2.
SeD(wr,OR)

Since f was arbitrary, taking A = 0 in (4.3) and recalling that w(R) ~c, (diam R)4
we obtain for some constant C depending only on n, d and C,

2
Z (diam S)114/2 1

Ou(R*u(R) < C A —
g (R)"(R) < (diam R) Il Sg”Lz(lL) w(R)

SeD(wr,0ORr)

Using the fact that diam Qg ~¢, diam R, the Cauchy-Schwarz inequality, and the

. diam S .
estimate | >~ scpwr.0x) Tom R () | = Cu(Qr) = Cu(R) give

diam S
2 2
Y. OugRu® <C Y > ( . R)uAsgan(m
ReA(Qo) REA(Qo) \SeD(wr,0r)
diam S 1
X > ( )u(S) —
SeDion.0r) diam R w(R)

diam § 2
<C Z Z (m) ||ASg||Lz(m
ReA(Qo) \SeD(wg,0Rr)
(4.10)

Setting Z(w) = {Q € D(w) : Q C C2Qp} for some large C> > 1 depending only
onn,d,Cy,, Cp and Cp, we can crudely estimate (4.10) by

M .
diam §
cy > >y (diamQ>||Asg||izw) (4.11)

w=1 QeZ(w) SeD(w, Q)

for some large constant C > 1 depending on the same parameters. This is because
each term in the summand of (4.10) appears in (4.11), and to each term in (4.11)
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there are only finitely many terms coming from (4.10) which are associated to those
of (4.11), by Ahlfors regularity and the fact that diam Qg ~c, R.
Finally, switching the order of summation in (4.11) and using the fact that

diam S
> : <C,
(dlam 0 )

0eZ(w),0DS

we see that

M
Y. 0w <CY . Y Y lAsglls,

ReA(Qo) w=1 Qetop(Z(w)) S€D(w, Q)

M
=cY Y - @oreli,

w=1 Qetop(Z(w))

< Cu(Qo) (f ’g - (g)Con}z d“)
C200

where top(Z (w)) are the maximal cubes in Z(w) whose boundaries intersect in sets of
zero H? measure. This completes the proof, since the constants §, M and Cp depend
onlyonn,d and Cj,. O

Lemma 4.5 Suppose that u is a d-Ahlfors regular measure with constant (1 +6§) < 2.

Moreover, assume that E = spt u is d-rectifiable. Fix A, a system of dyadic cubes for
E with constant Cp > 0. Then for the function g = dj/dH?|g, we have

Co' (~C00,, 4 1(0) + ), (0)) < 4 (Q) < Co (Oppay, ((Q) + ), (Q))

where Co = Co(n,d, Cp) > 0 is independent of u and é.

Proof By virtue of Lemma 3.1, we know that the densities dH¢ | /dp and dju JdH? | g
exist and satisfy

dH g  dup
du ~dHeg

1+87" < <(1+9)

u-almost everywhere. Set g:=du/dH%|g. We readily compute for any dyadic cube
Q e A,any f € A(BBg), A € Rand v a d-flat measure,

- ‘/f(gdeIE ~av)

/f(g—k)dH"IE +‘/f(de"|E—dv>
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Taking the infimum over A € R which minimizes the quantity Oy, , (Which one

readily sees must be in [(1 +8)~', (1 4+ 8)], by the bounds on g), and then taking the
infimum over flat measures in the definition of Opd ) WE obtain

0,(Q) < C (Opa), 4(Q) + ey (Q)) 4

with constant C > 0 depending on 7, d and Cp. Reversing the roles of x and H?|g
gives the other inequality. O

Putting together the previous Lemmas and Theorem 4.3, we obtain our small-
constant Carleson measure estimate we shall use in proving Theorem 4.7.

Corollary 4.6 Suppose that T is a d-dimensional §-Lipschitz graph in R", and i is a
d-Ahlfors regular measure with support I' and with constant (1 4+ §). Fix A, a system
of dyadic cubes for I" with constant C p. Then one has the Carleson packing condition,

sup (Ro) ™' Y (@) Q) < Cos”.

Roea QEA(Ro)
Here Cy = Co(n,d, Cp) > 0 is independent of 1 and $.

Proof Set g:=du/dH"|r. Lemma 3.1 implies that g, g~ < (1 + 8). We combine
the cube-wise inequality from Lemma 4.5 along with the Carleson packing conditions
from Theorem 4.3 and Lemma 4.4 to see that for any Ry € A and osc g = esssup g —
essinf g,

KR DT (@)

QeA(Ro)

=CuR)™ | Y (O (@7 + apga, (0)F) 1(Q)

QeA(Ry)
< C((osc g)* + 8%

<cC (((1 +8) -+ 5)‘1)2 + 52) < C8,

completing the proof of the Corollary. O

Finally, we transfer the a-Carleson packing conditions from Lipschitz graphs to
3-UR sets with the small-constant Corona decomposition, i.e., we prove (B) implies
(C). The upper Ahlfors regular in this implication essentially comes for free.

Theorem 4.7 There are constants Cy > 1 and &g, 6y € (0, 1) depending only on the

dimensions n and d so that the following holds. Whenever 0 < § < &9, E C R" is
d-Ahlfors regular and admits §-Corona decompositions, then for any measure |4 of the
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formdu(x) = g(x)dH?| g (x) where g is Borel and satisfies (1+8)~! < g < (1+39),
we have the Carleson condition

sup 1(Ro)™" ) @u(Q)’u(Q) < Cos™. (4.12)
Roeh QeA(Ro)

Moreover; E is upper d-Ahlfors regular with constant 1 + Co8%.
Here A is a fixed system of dyadic cubes for E with bounded constant Cp < Cp 4
coming from the definition of §-Corona decompositions.

Proof Choose a system of dyadic cubes A for E as in the definition of a §-Corona
decomposition with constant Cp < C, 4. We begin the proof with a reduction. Recall
that by Lemma 2.3, E is C3-UR as long as d is sufficiently small. By Lemma 3.2 then,
we may assume that E is Ahlfors regular with constant (1 + Cos'4y < (14 Co(Sé/ d).
Let i = Hd| . Whenever Ry € A, denote by F(Ry) the partition of A(Rg) given by
the §-Corona decomposition of E in Definition 2.1. Moreover, denote by Sg, € F(Ro)
the subcollection of A (Rp) containing Ry. We show that the conclusion of the Theorem
follows from the estimate

sup l(Ro)™" Y @i(@)*i(Q) < Cos™. (4.13)
RoeA QESRO

Indeed, assume that (4.13) holds, and let Ry € A be given. Choose F(Rp) as in the
Definition of a §-Corona decomposition. Then

AR)™" Y wp(@PA(Q) = A(Ry) T Y ap(Q)7(Q)
QeA(Ry) Q€eSg,

+aR)™T Y Y (@)

SEF(Ro)\(Sry)} Q€S

“4.2) B _ B

< Cod® +CAR) ™ Y AQ(S))
SeF (Ro)\{Sry}

2.9

)
< Cos% + Cs,

as long as §o < 1, where C > 0 is some dimensional constant depending only on n, d
here and in the future. Next, one argues just as in the proof of Corollary 4.6 to replace
L with u to obtain

du\2
(Rp) ™" Z @ (0)*u(Q) < C <C050° + (osc ﬁ) )

QeA(Ry)
< CCys? + C52.

This shows that it suffices to demonstrate (4.13), and thus from here on we fix Ry € A,
F = F(Rp), and we may as well assume in our estimates that u = ji = H?|z. Fix the
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top family S = Sg, € F to be the subcollection for which Ry € Sg,, and choose an
approximating é-Lipschitz graph I' = I'(S) as in (2.6) that also satisfies (2.8). Notice
also that Ry = Q(S). We break the remainder of the proof into three steps.
Step one: We define a measure on I' N 3B s) to compare to u. Recall that cgs) is
the center of Q(S), and that Bg(s) = B(cg(s), diam Q(S)) D Q(S). The condition
(2.6) on the proximity of T" to E near § ! By (s implies that there is cr s € I'N Bg(s)
so that |CQ(5) — CF,S’ < §diam Q(S).

Now we produce a system of dyadic cubes for I that come from true dyadic cubes
in R" as follows. Note that up to rotation, we may assume that I" is the graph of a
Lipschitz function over R c R". Let Q' (S) be a (true) closed cube in R” with axis-
parallel sides centered at cr s such that lOBQ(S) c oV () c 2OfBQ(S), so that
diam QT (§) ~ =n, 4 diam Q(S). Denote by O (S) the projection of Q" (S) onto R4, and
notice that Q' (S) is a true cube in R?, since Q" (S) has axis- parallel sides. Split or(s)
into 2¢ closed subcubes Q 1o Ql 5a Of 0" (S) c R? with disjointinteriors. Denote

this collection of cubes in R‘l by AT'(QV(S)), which we call first generation (true)
dyadic cubes in R4 contained in Q' (S). Then one generates the family A? (0T (8))
from Ay_l(Qr(S)) by splitting eacll cube in the~ previous generation into 2¢ more
(true) closed cubes in RY. With Al (QT (S)) = {0 (5)}, denote by

AT (s) = a0 .

Jj=0

We thgn lift the dyadic cubes in AT ( QF (8)) to closed cubes in R” centered on I'. That
is, if Qr € AJF(QF(S)) with center Cors then since I' is a §-Lipschitz graph defined
over RY, there is a unique cor € I'so that mpa (ch) =Cpr. Let Qr be a closed cube
in R" with axis-parallel sides, center equal to cyr, and side-length equal to that of

O"". Denote the collection of all such cubes generated this way by A;(QF(S )), and
set

P=ale ) = Jal " ©y.
j=0
Notice by construction we have the following facts about the dyadic cubes in

AT Q" ($):

for eachj > 0, the cubes inAJ17 (0" (S))have disjoint interiors. Moreover,

I'NQ"(S) =Uprearor(s) T NInt(Q")) U F;, whereF; C T'is anH — null
J

set. (4.14)
ifQ" e AT (Q"(S))wherej € N, then there is a uniqueR" € AT (0" (S))
so thatQ" ¢ RV, (4.15)

for eachQF € AF, one has that
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(14 C8 "M (e (OT)) < HAMT N Q") < (1 + COHH (mpa(QD)). (4.16)

Indeed, conditions (4.14), (4.15), and (4.16) follow from the fact that I" is a §-Lipschitz
graph as long as § is chosen small enough.

Fix parameters M, A > 1 to be determined. In the end, the choice of these param-
eters shall depend only on the underlying dimensions n and d. Since E is d-Ahlfors,
the set

{R € AgenRo R ﬂZOﬁBQ(S) #* (/)}

has boundedly many elements, Ri, R, ..., Ry with k < C, again for some dimen-
sional constant C depending only on n and d. As per (2.8), we know that for each
1 < j <k, there is a partition J; = F(R;) of A(R;) that satisfy the conditions of
the §-Corona decomposition, (2.5)—(2.7). Moreover, such a partition can be chosen
so that when §; € F; is the subcollection with R; € S;, we know that the conditions
(2.5)—(2.7) are satisfied with the same Lipschitz graph I" as the one chosen for S.

We perform a stopping time argument on the cubes in A" to find some coherent
collection ST c ATl of (true) cubes in R” for which I and E are sufficiently close.
Let us say that a cube QU € Al is ‘far from S’ (written FS) if the cube AQ" does not
meetany Q € SUS; U---U Sp=:5* satisfying

M~ 'diam Q" < diam Q < Mdiam Q". (4.17)

Now we proceed generation by generation. If M, A are chosen large enough and if
do is sufficiently small (depending on only on the underlying dimensions), then one
readily checks that the first few generations of cubes in Al are not FS. Therefore, let
the first generation of A! be in the set ST'. We continue generation by generation in the
dyadic system A! adding cubes to S', until we reach a cube Q' which has a sibling
(possibly itself) which is FS. At this stage, Q" and all of its siblings become minimal
cubes of ST, denoted m(ST), and no other subcubes from the parent of QF are added
to ST, Notice that this gives that the collection S " is coherent, and its minimal cubes
are disjoint and contained in Q' (S). In addition, if Q" e m(S"), then the fact that its
parent, R' is not FS implies that AR" meets some element Q € S* with

M~ 'diam R" < diam Q < Mdiam RF,

As long as §y is taken sufficiently small (depending on M and 1), then the fact that
diam R" and diam Q are comparable and the fact that AR" meets Q implies that

§7'Bg 28,'Bo D R".
Then condition (2.6) implies that

sup  dist (x, E) + dist (x, I') < 8diam Q < §Mdiam R'. (4.18)
xe(EUNNRT
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Since Q'  R', this implies

sup dist (x, E) + dist (x, I') < 26 Mdiam QF. 4.19)
xe(EunnQr

Now, we claim that for any cube Q! satisfying (4.19) (and thus, for all cubes
O" e ST, we have that

H | (Q")
1—C8h < =222 7 1484 4.20
187 < b = + C (4.20)

for constants C; > 1 and 61 € (0, 1/d) depending only the underlying dimensions 7,
d, and the constant M as long as §¢ is small. The proof of this fact is a bit tedious,
but the main ideas are that I is the graph of a §-Lipschitz graph defined over R?, and
there is another §-Lipschitz graph I'’ that gives a good (measure) approximation to E
inside Q' in the sense that

HY(Q" N (EAT)) < C§(diam Q)?, 4.21)

by virtue of (2.6). Then the fact that Q' is centered on I', and estimate (4.19)
implies that I' also passes near the center of Q' in that dist (cor, ' < cE' +
sM)diam Q" < €8'4diam Q. Moreover, I’ can be written as a C(Sl/d-Lipschitz
graph over R?, so that since Q' is a true cube with sides parallel to the coordinate
axes, we can estimate with the area formula that

(diam Q") < H'|r(Q"), H I (Q") < (1 4 €5/4)(diam Q7).
Along with (4.21), the estimate above on Hd|r/( QF) then implies
(1 — Cd)(diam Q") < H!|z(Q") < (1 + €8"/)(diam Q")“,
so that the estimates on H¢|(Q") in (4.21) then give (4.20) with any 01 € (0, 1/d)
and C depending on 0.
Finally, we define our density for our measure on I'. Define the coefficients

bor:=H"(Q")/HI|r(Q"), set

bor. whenx e I'NQ", and Q" € m(S")
gx):= )
1 otherwise,

and definedy (x)::g(x)de Ir (x). Notice that by (4.20), we have that 1 —C} (M&)? <
gx) <1+C (M8)91 on I', so that since I" is a §-Lipschitz graph, we have that

yis ad — Ahlfors regular measure with supportI’and constantl + C(M 801
(4.22)
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for some (larger) C1 > 1, depending only on n and d. In addition, the density g(x) is
chosen in such a way that for each Q' € m(S"),

w(@" =H Q") = y(0h), (4.23)

where we recall that we are assuming without loss of generality that 1 = H?|g. With
our definition of our approximating measure in hand, we move to the main estimate.
Step two: We estimate the «, by the a,,. First, notice thatif x € (EAT)N 0" (S), then
x belongs to some minimal cube of ST (since otherwise, being contained in arbitrarily
small cubes of ST, and (4.19) gives that x € E N T'). From this, one deduces that for
any cube Q' e ST,

(Eamno")c [(J R (4.24)
RUem(sh)
RUcQl

Now, let us begin our estimate. Fix any cube Q € S for E. Notice 3Bg C
10Bgsy C QY (S), by choice of Q' (S). Now since F is coherent, any Q7 € AT
meeting 3B that also satisfies Mdiam Q" > diam Q must be so that QT e ST
Indeed let us argue this by contradiction and suppose that this is not true. Then there
is some minimal cube R" e S' containing @', and some sibling of R", (R")" € AT
which is FS. That is, A(R")’ does not meet any R € S* satisfying

M~ 'diam (R")’ < diam R < Mdiam (R")'.
However, notice that as long as A is chosen large enough (depending on M), then the
fact that (RF)/ and RT are siblings, RT meets 3Bg, and diam Q < Mdiam Qr <
Mdiam (R")’ implies that A(R") meets Q. Since (R")" is FS, then Q € S and
diam Q < Mdiam (R")’ imply diam (R")" > Mdiam Q. However, since F is coher-
ent, and A(R") meets Q, one may find some parent Q' > Q with Q' € § so that

M~ 'diam (R")’ < diam Q' < Mdiam (R"),

which contradicts the fact that (R")’ is FS. Hence, we have proved that for any cube
Q" e AT,

0 € S,3Bp N Q" # ¢, and Mdiam Q" > diam 0 = Q" € §'. (4.25)

From here, we see that (4.25) and the fact that A" partitions the space Q' (S) that
whenever Q € S,

3B meets some ol e st satisfying diam Q < diam o' <2diam Q.  (4.26)

For every Q € S, denote by any such choice of a cube Q' asin (4.26) by T(Q) € S'.
Remark that since diam 7'(Q) > diam Q for Q € §, we know that 107 (Q) D 3Bg.

@ Springer



125 Page320f44 C.Jeznach

For each cube Q € §, choose a flat measure vo minimizing the quantity

&, (T(Q)):=(diam T (Q)) ¢! vt Pergy10dam7(0) (7: V).

where Flat(n, d) is the space of flat measures as in Definition 1.5 and Dy , is as in
Definition 1.4. Then whenever f € A(3Bp),

(diam Q)~%!

/f(dﬂ - va))
< (diam Q) 4! <'/f(du - d)/)‘ + '/ fdy — dVQ)D

< (diam @)~ / fldp - dy)‘ + Céry (T (Q)). (4.27)

To estimate the first term above, we notice that by (4.24), we have

‘/ fldp — d)/)‘

Qr (Sr
0'N3Bo#0

< ‘/ f - f(ch)du' ‘/ f = flegridy
Qre s
0'N3By#0

<C ) (diam Q"u(Q"),
ol em(s")
0'N3Bo#0

since u(Q") = y(Q") for QU € m(S") (recall (4.23)), and since f is 1-Lipschitz.
Combining the above with (4.27) then gives

D (0P u(Q) < C Y@y (T(Q)*u(Q)

QesS Q€S
2
+C Y w@iam @ 2( Y (diam @)u(Q"))
Qes Q" em(sh).
Q"' N3Bo#4
—:(I) + (ID).

To estimate (I), we remark that the diameter estimate on 7 (Q), (4.26), gives us that
for some dimensional constant C > 0, and uniformly over all Rl e §T,

#{oes: T(Q=R"}<cC. (4.28)
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Hence we readily see,

Y@ (T@)’u@ =C > & (R"Y(R

Qes RUeAT(QT(5))
< CM&My (0" (8)) < C(M& 1L(Q(S)).

To be clear, the second to last inequality above follows from the estimate on the d-
Ahlfors regularity constant of y, (4.22), and the fact that I" is a §-Lipschitz graph.
Along with the fact that the cubes Q' N T for Q' € AT serve as a system of dyadic
cubes for I', the estimate then follows from Corollary (4.6). This gives our desired
estimate on (I).

We now move onto (II). Define the collection of cubes Z(Q) C m(S") for Q € §
by

Z(0):={0" em(S") : 0" N3By #0¥, 0" c R" e s"
for some Rrsatisfying(4.26)}.

Notice that the same argument that precedes (4.25) can be used to demonstrate that if
o' e m(S") and Q' N 3Bg # ¥ for Q € S, then necessarily, diam Qo' < 2diam Q.
Indeed, otherwise, the fact that Q" is minimal and choosing A large enough (depending
on M) guarantees the stronger inequality diam Q' > Mdiam Q. But then the fact that
S is coherent can be used to show that none of the siblings of Q! are far from S, so
QF is not minimal. Thus,

0" e m(s") and Q" N 3By # ¥ = diam Q" < 2diam Q,
from which we can easily see we have equality of sets
Z(0) = (0" em(s") : Q" N3By # 0} (4.29)

We now move on to the main estimate for (II).
We have the following string of inequalities:

di r
M= w@uWam)| Y <ﬂ> n(Q")

ocs oF emts™) diam Q
0T N3Bo#Y
- 2
diam Q
: —d r
<C Z(dlam 0) Z (m) n(Q)
Q€S 0r'eZ(Q)

diam 0T \*\ . -
<C Z Z Q" <m) (diam Q)™ Z w(e"
QeSS \QreZ(0) 0'eZ(0)
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diam 0T \?
<C Z Z Q" (m)

QeSS \QleZ(0)

. 2
diam QT
<C E My —=
= Z wen) (diamRr>
RUesT olem(sT): QN crY
O meets some3 Bgwhere Q€S

sc Y weh Y (jﬁﬁ%) =c Y ueh.

Ol em(sT) Rl est O em(s")
R'>QF

In the above, the first inequality holds simply because we sum the same cubes, by
(4.29), and since u(Q) =, 4 (diam Q)d The second holds by Cauchy-Schwarz and
since diam Q =, 4 diam 7' (Q), and the third because the cubes in Z(Q) are disjoint
minimal cubes of ST contained in 10B¢. The fourth follows from (4.26) and (4.28),
so that to each Q there corresponds an RT € ST for which the term appears, and each
such R' corresponds to only finitely many such Q € S. The fifth is just a switching
of the order of summation, and the sixth is because the remaining inner series is a
geometric series.

In view of our estimate on (I), our last step of the proof is to verify that for some
6 > 0 (depending only on n and d),

Y u(@") = (). (4.30)

ol em(sT)

In fact, we shall see that we may take 6 = 1.

Step three: we prove (4.30). Let Q' € m(S"). By definition, there is some R € ST,
a sibling of Q' that is FS. Recall that R C Q' (S) C 20/nBg(s), and thus (4.20)
implies that RT must meet one of the Ry, Ry, ..., R, say R;, as long as dg is small.
Indeed (4.20) says that such an R must meet some portion of E for & small, and
since the R; cover all of E in a neighborhood of Ry, then R" must meet one of them.
For convenience write So = § = S(Rp). Recall that

diam R" < diam Q" (S) < Cdiam Q(S) < Cadiam R},

for some dimensional constant C, > 1. By taking M > max{C>, Cp}, we see that it
must be the case that diam R; > Mdiam RT, since otherwise RT is not FS. Now we
repeat this argument on the children of R;. Because R I meets R j» we see that there is
some R1 C Rj achild of R; that meets RT. Since diam R1 > C‘zdiam R;, we know
that d1am R1 > MCp, 2dlam R" > M~'diam R" by the choice of M above. Since
R" is FS, elther R Y j» OF, R € §; and in fact the stronger inequality diam R1

Mdiam R" holds. We contmue this argument finitely many times until we reach a
child Rf C Rj, Rf € m(S;), which meets R' and satisfies diam Rf > Mdiam R'.
In particular, since Qr is a sibling of RF, and since diam R < M~!diam Rf, we
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readily see that Q' C 3B RE: This shows that

k
U o' clU U 3Bo 4.31)

Olem(sT) J=0Qem(S;)

Using (4.31) and the fact that the Q7 € m(S") are disjoint, we then estimate

k
> o weh=ul U o |=u|lU U 380

Qlem(sT) olem(sT) Jj=0 Qem(S;)
k k
<> > uBB=CY > w@
j=0 Qem(S;) Jj=0 Qem(Sj)

k
<CY > QW)

j=0 S€F(R}),S#S;

2.9 k

< € 8u(R)) < Clk+ 1u(Ro).
j=0

Recalling that £ < C for some dimensional constant C depending only on n and d
this shows (4.30), and thus the proof of the Theorem is complete. O

5 Reifenberg Flatness Implies Y (E) is Small

In this section show that (E) gives (F), i.e., we prove Theorem 5.2. First let us introduce
in what sense E will have tangent planes, which requires some notation. If u,, u are
Radon measures on R”, then we write p,—u (and say, u, converges weakly to i) to
mean that for each ¢ € C.(R"), [¢ djup, — [ ¢ du asn — oo. Whenever p is a
Radon measure and f : R” — R”" is proper continuous map, then the Radon measure
fuu is defined by feu(A) = wu(f~'(A)). Finally, denote for x € R” and r > 0,
cDx,r(y) =@ -x)/r.

Theorem 5.1 (see Theorem 10.2, [31]) Let E C R" be d-rectifiable. Then for H-
almost all x € E, there is a unique d-plane T (x) € G(n, d) so that

r N (@x ) H  E=H ().
We call T (x) the approximate tangent d-plane to E at x.

Finally, we introduce the quantity y (E) as in [5] which is the one appearing in
Condition (F) in Theorem 1.9. Suppose that £ C R” is d-Ahlfors regular and d-
rectifiable, so that E has approximate d-planes T (x) for H¢-almost all x € E by
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Theorem 5.1. Define

y(E):= sup inf <][ Tro — v || dHY g x)
xeE,r>0VeGd) \JB(x,r) H (x) ”

+ Sup M) .

yeB(x,r)NE r

Our intent in this section is to estimate this y(£) when E is Reifenberg flat as in
the following Theorem. In the next section, we will then use arguments from [5] to
construct Lipschitz graph approximations to E when y (E) is small.

Theorem 5.2 There are constants Co, 8o > O depending only on n and d so that
whenever § € (0, 8o), E C R" is d-Ahlfors upper regular with constant (1 + §) and
8-Reifenberg flat, then E is d-rectifiable, and moreover, y (E) < Co8'/?. In addition,
E is lower d-Ahlfors regular with constant (1 + C4).

Proof Suppose that the hypotheses of the Theorem hold. As long as §yp > 0 is chosen
sufficiently small (depending only on n and d), then Theorem 15.2 in [13] implies
that E satisfies the “big pieces of Lipschitz graphs” property, and thus is d-uniformly
rectifiable (see the main Theorem in [11], or Theorem 1.57 in [10]). Here we are using
the fact that if §p is small enough, then then the Reifenberg flatness of E guarantees
that E is lower d-Ahlfors regular with some bounded constant (this is made more
precise in the following paragraph). In particular, E is d-rectifiable, and thus 7 (x)
exists for H“-almost all x € E. Denote the set of all such x by E’.

Fix x € E,r > 0, and denote by P € A(n,d) some choice of a d-plane so
that dy 2, (E, P) = bBoc, £(x,2r) < . Notice that by translation invariance of the
hypotheses and conclusion of the Theorem, we may as well assume that P € G(n, d).
Recall that d, , is the normalized local Hausdorff distance, so that by definition,

sup dist (y, P) + sup dist (y, E) < 26r.
yeENB(x,2r) yePNB(x,2r)

Choose some point p € P so that |x — p| < 26r, and thus we have that
B(p, (1 — 26)r) C B(x,r). By Reifenberg’s topological disk Theorem, we have
that if §¢ is chosen sufficiently small depending only on n and d, then necessarily E
is a C“-topological, d-disk [37] (see also Section 3 in [14] or [23] for other proofs).
In particular, since E is very well approximated by P in B(x, 2r), one can argue by
contradiction to show that for y € P N B(p, r), there is some x, € EN B(p, (3/2)r)
so that p (xy) = y, provided that &y is sufficiently small. The argument is essentially
contained in Lemma 8.3 of [14], so we omit the details. This conclusion on projections
also gives that E is lower d-Ahlfors regular as follows.

Notice that in fact, the above implies that to each y € P N B(p, (1 — 458)r), there
is some xy, € £ N B(p, (1 —28)r) for which 7p(xy) = y. Indeed, just choose the x,
from above, so that xy, € E N B(p, (3/2)r). Then we estimate

lxy = p| < ey = y[+ 1y = pl
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= |xy —7p )| + 1y — pl
= dist (xy, P) + |y — pl
< 26r + (1 —48)r

=1 -28r,

so necessarily x, € B(p, (1 —268)r). In particular, since 7 p is 1-Lipschitz, we obtain
the lower Ahlfors regularity of E:

HYENB(x,r) = H(x|p(ENB(x,r)
= MY p(B(p. (1 —48)r))
=(1—48)%r?
> (14 Cod)~'re,
as long as & is small enough and Cp > 1 is large enough.

We are now ready to begin our estimate on the 77 (y). Fix & > § to be determined,
and set

Fi={x € E'NB(p,(1 =28)r) : ||mre) — 7p| > &}, Fi=np(F).

Define v:=(r p)#’l-[d | E to be the push-forward measure of H4 | g through the map 7 p.
Notice that a naive application of Chebysev gives us the estimate v(F) < Ce'r9.

The key step in estimating y (E) is to show the stronger estimate v(F) < C8s~'r?
given that E is §-Reifenberg flat. We claim that
B 9
fim inf B> ) _ )t (5.1)

—_— 1
N T (B(y,s) ¢

for each y € F. Let us show this now.

Lety € F so that there is some Xy € E’' N B(p, (1 —28)r) with wp(xy) =y
and ”rrr(xy) —7p || > ¢. Choose a unit vector e, € R" for which e, € T(xy)
but |7rp(ey)| < 1 — &. We assume as well that wp(ey) # 0, but the argument
when mwp(ey) = 0 is similar, and in fact, one can show in this case that the
left-hand side of (5.1) is +o0o. Choose unit vectors ej,...,es—1 € R" so that
{p(ey)/ |er (ey)|,e1,...,eq—1} is an orthonormal basis for P C R". If we con-
sider the set

d—1 d—1
Hy(xy):i= {xy + (ﬁoey + Z,Biei) +v:ivePt (I-e)?fi+) B < s2} ,

i=1 i=l1

for s < r, then a direct computation of |y — wp(z)| = |7'rp (xy — z)| for z € Hy(xy)
using |7'rp (ey)| < l—¢givesthatwp(Hs(xy)) C PN B(y, s). In particular, we obtain

V(B(y, ) = H| ey (B(y,s) N P))
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> H| g (Hy (xy)),

so that

v(B(y.s) _ v(B(.S))
HY|p(B(y, $)) sd
d
. H |E(Sljs(xy))

~ HpGH +x))
=Tt

(5.2)

where sH + xy, = H,(x,) defines the set H. However, H contains a d-ellipsoid
A C T (xy) of the form

d—1 d—1
A:={Boey + ) Biej : (1—e)*B+ Yy B} <1},
i=1 i=l1

where {ey, e’l, e, e&_l} is some orthonormal basis for 7 (x,). Thus, in view of The-
orem 5.1, (5.2), and the fact that Hd|r(x),) (0A) = 0, we obtain that

... v(B(y.9) . HYE(sH +xy)

lim inf > lim

510 HYp(B(y,s)) ~ sl0 54
T —d d
_ls%” (P, ) H £ (H)

= H|7(x,)(A)
=(1-g71 (5.3)

proving (5.1). Here we have used the fact that if u,—u and B C R” is Borel and
bounded with u(dB) = 0, then w,(B) — w(B) (see for example, Proposition 4.26
in [31]). We are also using our convention that H? is normalized so that if B is a
ball of radius r centered on 7 (xy), then Hdlr(xy)(B) = r?, which gives the value of
H|7(x,)(A) above.

Finally, we get an estimate on the size of H?| g (F). First, Theorem 2.13(2) in [32]
along with estimate (5.3) implies

Hd|E(F):V(ﬁ)2/limSup v(B(y,r))

i soy 1— &) "M p(F),
Foro HAp(B(y,r) lP() = (1—¢) |p(F)

54

(in particular, we do not need v < H?| p to get the first inequality above). Denote G =
ENB(p,(1—=2r))\ F.Recalll thatwp(ENB(p, (1—=28)r)) D PNB(p, (1—48)r)
and the fact that Hd|E(B(p, (1 —28)r)\(F U G)) = 0. Hence the inequality (5.4),
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the fact that 7¢| g is upper d-Ahlfors regular with constant (1 + 8), and the fact that
mp is 1-Lipschitz gives
(1 —48)7r" =M1 p(B(p, (1 — 48)r)))
<M (mp(G) +H|p(F)
< HE(G) + (1 — e)H!|p(F)
=H!g(B(p. (1 —28)r)) — eH g (F)
<1481 =284 — eH | (F).

Rearranging for 1| (F) yields that
Hilp(F) < &7 ((1 +8) — (1 - 43)”’)) r! < cse're,

where C is some constant depending only on d. Thus since B(x, (1 — 48)r) C
B(p’ (1 - 28)”),

/ |77 — | dHlE < / |l7ereo —mp| dHlE
B(x,(1-48)r) G

+ [ Jareo el art
F

< eHE(B(x,r)) + 2HA(F)
< C(s+8e Hr?
< cs'/%e

by taking & = §1/2.

Now we take on the second term of y (E); this estimate comes directly by choice
of P. Notice that for any y € B(x, (1 —46)r) N E we have that

|Tpi(y —0)| =1y —7p(y) —x + 7p(x)]
<ly—mp(|+Ix —mp(x)l
< 26r,

by choice of P. Thus, altogether we’ve shown that

[ e el antie
B(x,(1-45)r)

b4 —x
o P9l (824 cs) r,
yeENB(x,(1—48)r) r
from which we readily see that y (E) < C§'/2. O
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6 Y(E) Small Implies Good Lipschitz Approximations to E

In this last section, we briefly detail how the work of [5] demonstrates that (F) gives
(A). The argument involving the Hardy-Littlewood Maximal function goes back to
the co-dimension 1 case in [38]. Under different assumptions on a domain €2 when
a2 is (n — 1)-Ahlfors regular, there is also a proof in [20]. Our goal here is to point
the reader to the fact that for these particular arguments in [5], one does not need E to
be a C! d-dimensional chord-arc submanifold, as long as we instead assume Ahlfors
regularity of E. Since all of the arguments exist in this work, we only enumerate the
various steps in the proof. Let us state precisely the Theorem that can be obtained.

Theorem 6.1 (Theorem 3.1 in [5]) There are constants &y, Co > 0 depending only
onn, d, and Cg, so that whenever E is lower d-Ahlfors regular with constant (1 +9),
upper d-Ahlfors regular with constant Cg > 0, and y(E) < § < 8¢, then E is
(Co8'/2)-UR.

Proof Recall that y (-) is only defined on d-rectifiable subsets, so we assume y (E) < §
and E is d-rectifiable. Thus Theorem 5.1 applies so that £ has approximate tangent
d-planes almost everywhere in £. We continue as in the proof of Lemma 3.2 of [5].
Fix xo € E, R > 0, and t € (1068, 1/3). Denote by Mg for R > 0 the variant of
the Hardy-Littlewood Maximal function, Mg f(x) = supy_,-r fB(y’r) |f| dHY\Eg
for x € E and Mg f(x) = 0 otherwise.
Set

F:={ye B(xo,R)NE : M4R(H7TT = Ty 4R

)(y) < 1},
B:=(B(xo, R)YNE)\ F,

where T (y) is the approximate tangent d-plane to E at y and Ty, 4g € G(n,d) is a
d-plane minimizing the quantity

][ |rey = 7v| dHEG) + sup 7y v = x0)]
B4R ye€B(x0.4R)NE 4R

over all V. € G(n,d). Then Step 1 in [5, Lemma 3.2] (which only uses the Ahlfors
regularity of E, and the definition of y (E)) gives that for §y chosen small enough,
there are uniform constants a, C > 0 depending only on n, d, and Cg so that

HY(B) < Ce "/ RY, 6.1)

Steps 2 and 4 of the proof of the same Lemma (which again, only use Ahlfors regularity
of E and Step 1) then give that for &y sufficiently small, there is a Lipschitz graph I"
with constant < Ct for which F C I'. Consequently, setting 7 = §'/2 gives

—1/2

HY((B(xo, )N (E\T)) < Ce™ "R
< C8R. (6.2)
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The fact that H?| g is lower d-Ahlfors regular with constant (1 + §) and the norm on
the Lipschitz constant of I" readily give

HY(B(xo, R) N (T'\ E)) = H(I' N B(x0, R)) — H*(E N B(xo, R))
< («/1 FCo—(1+ 5)‘1) R
< Cs'/2Re,

Together with (6.2), this shows that E is (Co8'/?)-UR. O

In all, Theorem 6.1 thus concludes the proof of Theorem 1.9.

7 A Comment on Local Results and Chord-Arc Domains With Small
Constant

As mentioned in the introduction, Theorem 1.9 has local and “vanishing” versions,
which correlate more closely to the local definition of §-chord-arc domains as in
[28]. Instead of formulating very precise local definitions here, we simply remark
the following about the proofs of Theorems 3.3, 4.7, 5.2, and 6.1. In each of these
proofs, the conclusion of the Theorem is deduced inside a ball B(x, r) centered on E
using information about E in the ball B(x, Cor) up to scale Cor for some dimensional
constant Co = Co(n, d, Cg) > 0, except for Theorem 3.3. In the argument of Theorem
3.3, we used information about E inside the larger ball B(x, Cor) up to the scale
C08’9,r where 0’ € (0, 1/4d). This means that the local version of Theorem 1.9
should be loosely formulated in the following way.

Theorem 7.1 (Local version of Theorem 1.9) Fix n,d € Nwith 0 < d < n and
Cg > 0. Then there are constants 1o, 6y, 8o € (0, 1) depending only on n,d and Cg
so that the following holds.

Suppose that E is a set which satisfies

Cp'r* <HUENBx,r) < Cpr?

foreach x € EN B0, R) and 0 < r < ro. Assume in addition that any one of the
conditions (A)—~(F) holdfor x € ENB(0, R) and0 < r < rowith constant § € (0, &p).
Then the rest hold for all points x € E N B(0, tgRy) and scales 0 < r < Storog with
constant 8%,

Here, the phrase “condition (B) holds for x € E N B(0, R) and 0 < r < ro with
constant 6" really means that for each Q¢ € A with dist (Qp, B(0, R)) < ro and
diam Qg < rog, E admits §-Corona decompositions in Q. For the others, the meaning
is self-explanatory: we just mean the conditions defining the statement are required to
hold only for such points x € E and such scales » > 0 as opposed to uniformly.

In particular, this remark can be used to prove Theorem 1.15 in the following way.
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Proof of Theorem 1.15 Let 2 C R” be such a domain as in the statement of the Theo-
rem, and for convenience write o:=H""|3q. Fix 69, 70, and 8¢ coming from Theorem
7.1 depending on n and Cg, and let § < §y.

Suppose first that €2 is a §-chord-arc domain. Fix a ball B(0, R) with R > 1 large,
and assume without loss of generality that O € 9€2. Then we may find some p > 0
small so that for x € 9Q2 N B(0, R) and r € (0, p),

bﬁOO,BQ(x’ I"), ”7’”* (B(xv IO)) S 6
This first local Reifenberg condition on 9€2 gives, by the proof of Theorem 5.2 that
o(B(x,r) > (1+C&~ !,

whenever x € B(0, 19R) and r < 19p for some constant C > 0 depending only
on n. Moreover, [7, equation (2.18)] implies the estimate ‘(ﬁx,r, y— x)| < Crsl/?
whenever x € dQ2 N B(0, R),r € (0, p) and y € Q2N B(x, r). Here C is a constant
depending only on n and Cg. Combined with the lower Ahlfors regularity condition
above, this says exactly that d€2 satisfies condition (F) for points x € 322N B(0, toR)
and scales r € (0, 7op) with constant C§'/2. Theorem 7.1 then implies that (C) holds
for points x € 92 N B(O, rgR) and scales r € (0, 81:3,0) with constant C8%/2. Since
R > 0 is arbitrary, this shows that (I) implies (II) with worse constant, 8% for some
6}, small.

Conversely, assume that €2 satisfies (II). Again fix a ball B(0, R) with R > 1 large,
and assume without loss of generality that 0 € d2. By assumption, there is some
p > 0, so that the measure ¢ satisfies the small-constant Carleson measure condition

o(B(x,r»—l/ / 0y (7, )2 2T _
B(x,r) JO s

forall x € 3Q N B(0, R) and r € (0, p). Also, o (B(x, 7)) < (1 + 8)r"! for such x
and r. In other words, d<2 satisfies condition (C) for x € B(0, R) and r € (0, p) with
constant §, so Theorem 7.1 implies that for x € 922 N B(0, tpR) and r € (0, §top),
9 satisfies conditions (E) and (F) with constant 8%. In other words, for each x €
32N B(0, rgp) and r € (0, §top), we have

bBoos(x.r) < 8%, and ||iill, B(x,870p) < 5.
Since R > 0 is arbitrary, then joint with the underlying assumptions on €2 made in the

statement of the Theorem, this implies that 2 is a 8% _chord-arc domain. O
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