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Abstract
Wepresent new estimates in the setting ofweighted classical Lorentz spaces for impor-
tant operators in Harmonic Analysis such as Calderón-Zygmund operators, sparse
operators and the Bochner-Riesz operator among others.
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1 Introduction

Given positive locally integrable functions (called weights)

w : (0,∞) → (0,∞) and u : R
n → (0,∞),

the main goal of this paper is to prove boundedness of important operators in har-
monic analysis on weighted classical Lorentz spaces �

p
u (w), p > 0, defined by those

measurable functions f such that

|| f ||�p
u (w) :=

(∫ ∞

0
f ∗
u (t)pw(t) dt

) 1
p

< ∞,

(see [18]) where f ∗
u is the decreasing rearrangement of f defined by

f ∗
u (t) := inf{y > 0 : λuf (y) ≤ t}, t > 0,
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with

λuf (y) := u({| f | > y}) =
∫

{| f |>y}
u(x) dx, y > 0.

This will lead to the unification of classical results about the boundedness of operators
on different weighted settings, like the Lebesgue spaces L p(u) := �

p
u (1) or the clas-

sical Lorentz spaces �p(w) := �
p
1 (w), resulting into a general framework involving

both theories.
Boundedness on weighted classical Lorentz spaces have been already studied

for some operators. For instance, let us just mention [3], including the case of the
Hilbert transform and the Hilbert maximal operator, and [17] that contains the case
of Calderón-Zygmund operators and commutators. Further, we should also consider
[18], where the authors study inter alia the characterization of the Hardy-Littlewood
maximal operator.

Here, by means of the theory of weighted extrapolation, we present new estimates
for operators such as Calderón-Zygmund operators TK , sparse operators AS or the
Bochner-Riesz operator at the critical index Bn−1

2
, among many others.

Now, the examples mentioned above share one important property: they all satisfy
that, for some (and hence for all) p0 > 1,

T : L p0(v) −→ L p0(v), ∀v ∈ Ap0 , (1)

is bounded, where for a given exponent p > 1, Ap is the class ofMuckenhouptweights
defined by those weights v that satisfy

||v||Ap := sup
Q

(
1

|Q|
∫
Q

v(x)dx

)(
1

|Q|
∫
Q

v(x)
1

1−p dx

)p−1

< ∞,

with the supremum being taken overall cubes Q ⊆ R
n . Further, those Ap weights

characterize the boundedness on L p(v) of the Hardy-Littlewood maximal operator M
defined by

M f (x) = sup
Q	x

1

|Q|
∫
Q

| f (y)|dy, f ∈ L1
loc(R

n), x ∈ R
n,

where the supremum is taken overall cubes Q ⊆ R
n containing x . Moreover, the

definition of Ap can be extended to p = 1, and we say that v ∈ A1 if there exists a
positive constant C such that

Mv(x) ≤ Cv(x), a.e. x ∈ R
n,

and ‖v‖A1 is set to be the infimum of such constants C . We shall point here that the
Ap class of weights increases with the exponent (that is, Ap ⊆ Aq , for p ≤ q) so it is
natural to define the class of weights
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A∞ :=
⋃
p≥1

Ap.

Throughout this paper, an operator T satisfying (1) for some p0 and with norm
constant less than or equal to ϕ(‖v‖Ap0

), and ϕ : [1,∞) → (0,∞) being a nonde-
creasing function, will be called a Rubio de Francia operator [42]. Those operators
satisfy the well-known Rubio de Francia extrapolation theorem.

Theorem 1.1 [29] Given a Rubio de Francia operator T for some exponent p0 ≥ 1.
Then, for all p1 > 1,

T : L p1(v) → L p1(v), ∀v ∈ Ap1 ,

with norm constant less than or equal to �(‖v‖Ap1
) where

�(r) = C1ϕ

(
C2r

max
(
1, p0−1

p1−1

))
, r ≥ 1.

A Banach function norm ρ is a mapping ρ : M+ → [0,∞], with M+ being the
set of positive measurable functions, such that the following properties hold:

(i) ρ( f ) = 0 ⇔ f = 0 a.e.;
(ii) ρ(a f ) = aρ( f ), for a ≥ 0;
(iii) ρ( f + g) ≤ ρ( f ) + ρ(g);
(iv) if 0 ≤ f ≤ g a.e., then ρ( f ) ≤ ρ(g);
(v) if 0 ≤ fn � f a.e., then ρ( fn) � ρ( f );
(vi) if E is a measurable set such that |E | < ∞, then ρ(χE ) < ∞ and

∫
E f dx ≤

CEρ( f ) for some constant 0 < CE < ∞, depending on E and ρ, but indepen-
dent of f , where χE represents the characteristic function of E .

The collection X = X(ρ) defined by

X = { f ∈ M : ‖ f ‖X := ρ(| f |) < ∞}

is called a Banach function space. Besides, by means of a function norm ρ, we can
define its associate norm ρ′ : M+ → [0,∞] by

ρ′( f ) = sup

{∫
Rn

f (x)g(x) dx : g ∈ M+, ρ(g) ≤ 1

}
,

which is itself a functionnorm.This allowsus to define the associate spaceofX = X(ρ)

to be the Banach function space X
′ = X(ρ′) (see [10, Ch. 1-Theorem 2.2]).

A function norm ρ is called rearrangement invariant (r.i. in short) if ρ( f ) = ρ(g)
for every pair of functions f and g that satisfy λ f (y) = λg(y) for every y > 0. In
this case, we say that X = X(ρ) is a r.i. Banach function space (see [10, 27] for more
details on those spaces). For instance, since the decreasing rearrangement on (0,∞) of
f satisfy λ f ∗(y) = λ f (y) for every y > 0, in fact it can be obtained a representation
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of X on (R+, dt) (see [10, Ch. 2-Theorem 4.10]) as follows: there exists a r.i. Banach
function space X over (R+, dt) such that f ∈ X if and only if f ∗ ∈ X with

‖ f ‖X = ∥∥ f ∗∥∥
X

:= sup
‖g‖

X′≤1

∫ ∞

0
f ∗(t)g∗(t) dt .

Moreover, when restricted to a r.i. Banach function space X it is possible to define a
weighted version of X as

X(u) = { f ∈ M : ‖ f ‖X(u) := ∥∥ f ∗
u

∥∥
X

< ∞},

for some weight u.
Now, as a consequence of [26, Theorem 4.10], it is known that the Rubio de Francia

operators also satisfy boundedness over the weighted version of a r.i. Banach function
spaces X where, for the sake of simplicity, here we state a different version of that
theorem consisting on introducing the maximal operator M and its dual induced by a
weight u ∈ A∞ defined as

M ′
u f (x) = M( f u)(x)

u(x)
, f ∈ L1

loc(R
n), x ∈ R

n, (2)

and where we have kept track of the involved norm constants.

Theorem 1.2 Given a Rubio de Francia operator T for some exponent p0 > 1. Let X

be a r.i. Banach function space and let u ∈ A∞ such that

M : X(u) → X(u) and M ′
u : X(u)′ → X(u)′, (3)

where X(u)′ is the associate space of X(u) defined by those functions f that satisfy

‖ f ‖X(u)′ := sup
‖g‖X(u)≤1

∣∣∣∣
∫
Rn

f (x)g(x)u(x) dx

∣∣∣∣ < ∞.

Then,

T : X(u) → X(u),

with constant less than or equal to C1ϕ
(
C2
∥∥M ′

u

∥∥
X(u)′ ‖M‖p0−1

X(u)

)
, where ‖M‖X(u)

and
∥∥M ′

u

∥∥
X(u)′ represent the norm constants of (3) respectively.

The previous result is very useful to prove the boundedness of operators for which
condition (1) has beenwidely studiedwhile this is not the case in other contexts such as,
for example, weighted classical Lorentz spaces or more generally r.i. Banach function
spaces. However, in order to get estimates over X(u) we first must study whether X is
a r.i. Banach function space and when (3) holds.
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For our goal, we will consider X = �p(w), for p > 0 and w being a weight in R
+,

so that X(u) = �
p
u (w) and X(u)′ = (�

p
u (w))′ is defined by

‖ f ‖(�
p
u (w))′ := sup

‖g‖
�
p
u (w)

≤1

∣∣∣∣
∫
Rn

f (x)g(x)u(x) dx

∣∣∣∣ < ∞.

As a first approach, let us consider the particular case u = 1:
i) Ariño and Muckenhoupt [6] proved that for p > 1,

M : �p(w) −→ �p(w) ⇐⇒ w ∈ Bp, (4)

where

w ∈ Bp ⇐⇒ ||w||Bp := sup
t>0

∫∞
0 w(r)min

(
1, t p

r p
)
dr

W (t)
< ∞,

with W (t) = ∫ t
0 w(r) dr . This class of weights has been widely studied (see for

instance [7, 8, 13, 39, 40]) and now it is known that the same result in (4) holds for
every p > 0 (see [19]). Further, although for 0 < p < 1, �p(w) is never a Banach
function space (see [45, Remark 3.2]) for p ≥ 1, �p(w) is a Banach function space
when w ∈ Bp, and the reciprocal is also true whenever p > 1 (see [15, 43]).

ii) The characterization of the boundedness of M on (�p(w))′ (see [8]) is a con-
sequence of the Lorentz-Shimogaki theorem (see, for instance, [10, Ch.3 p. 154]). In
particular, if w ∈ Bp then

M : (�p(w))′ −→ (�p(w))′ ⇐⇒ w ∈ B∗∞, (5)

where [39]

w ∈ B∗∞ ⇐⇒ ||w||B∗∞ := sup
t>0

1

W (t)

∫ t

0

W (r)

r
dr < ∞.

From (i) and (ii), we can conclude that for every Rubio de Francia operator T and
p ≥ 1,

w ∈ Bp ∩ B∗∞ �⇒ T : �p(w) −→ �p(w),

and it is sharp since it is known [43] that

w ∈ Bp ∩ B∗∞ ⇐⇒ H : �p(w) −→ �p(w),

with H being the Hilbert transform, which is a Rubio de Francia operator defined as

H f (x) = 1

π
lim

ε→0+

∫
|x−y|>ε

f (y)

x − y
dy, f ∈ C∞

c (R) , x ∈ R, (6)
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whenever this limit exists almost everywhere and where C∞
c (R) is the set of infinitely

differentiable functions with compact support.
Now, take a general u ∈ A∞. In [18, Theorem 3.3.5] it was characterized the

weighted strong-type boundedness on�
p
u (w) of the Hardy-Littlewoodmaximal oper-

ator for every p > 0 by

M : �
p
u (w) → �

p
u (w) ⇐⇒ w ∈ Bp(u), (7)

where we say that w ∈ Bp(u) if there exists some ε > 0 such that

sup
E j⊆Q j ,∀1≤ j≤J

(
inf

1≤ j≤J

|E j |
|Q j |

) W
(
u
(⋃J

j=1 Q j

)) 1
p−ε

W
(
u
(⋃J

j=1 E j

)) 1
p−ε

< ∞, (8)

where the supremum is taken over every finite family of cubes {Q j }Jj=1 ⊆ R
n . (We

refer the reader to [1, 18] for more details on this class of weights.)

(i) If u = 1, due to the Bp class of weights satisfy the p − ε property [18, 40] (that
is, for w ∈ Bp there exists some ε > 0 such that w ∈ Bp−ε) we have that (8) is
equivalent to w ∈ Bp.

(ii) If w = 1 and p > 1, then (8) is equivalent to that there exists some 0 < q < p
such that

u
(⋃J

j=1 Q j

)

u
(⋃J

j=1 E j

) � max
1≤ j≤J

( |Q j |
|E j |

)q

,

which agrees with u ∈ Ap (see, for instance, [22, 33]).

Moreover, Bp(u) ⊆ Bp for every p > 0 (see [18, Corollary 3.3.4]) so, for p ≥ 1 and
w ∈ Bp(u) then �p(w) is a r.i. Banach function space.

Therefore, together with (7), if we were able to see when M ′
u is bounded over

(�
p
u (w))′, we could make use of Theorem 1.2 to obtain estimates for a Rubio de

Francia operator T on �
p
u (w), at least for p ≥ 1 and w ∈ Bp(u). Indeed, our main

result on this paper says more:

Theorem 1.3 Given a Rubio de Francia operator T for some exponent p0 > 1. Let
u ∈ A∞ and p > 0. Then,

T : �
p
u (w) → �

p
u (w), ∀w ∈ Bp(u) ∩ B∗∞.

Now, in [4, Theorem 5.5] it was shown that for p > 1,

H : �
p
u (w) → �

p
u (w) ⇐⇒ w ∈ Bp(u) ∩ B∗∞, (9)
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while for 0 < p ≤ 1 it is just known that

w ∈ Bp(u) ∩ B∗∞ �⇒ H : �
p
u (w) → �

p
u (w).

Remark 1.4 At least for p > 1, by means of the Hilbert transform (see (9)) the condi-
tion Bp(u) ∩ B∗∞ on the weight w of Theorem 1.3 is sharp in the sense that it can not
be found a greater class for w.

Now, let �
p,∞
u (w), p > 0, be the space defined by those measurable functions f

such that

‖ f ‖�
p,∞
u (w) = sup

t>0
tW (λuf (t))

1
p < ∞,

and let L p,∞(u) := �
p,∞
u (1), p ≥ 1. In [20] the authors consider as hypothesis

weighted weak-type estimates instead of (1); that is, for some p0 ≥ 1,

T : L p0(v) → L p0,∞(v), ∀v ∈ Ap0 , (10)

and then try to find conditions on p and w for which

T : �p(w) → �p,∞(w)

holds, so it could be interesting to study the previous to weighted classical Lorentz
spaces for a weight u ∈ A∞. However, this is just a consequence of the weighted
strong-type extrapolation settled inTheorem1.3, and the precise result is the following.

Corollary 1.5 If an operator T satisfies (10) for some p0 ≥ 1 and with constant less
than or equal to ϕ(‖v‖Ap0

), where ϕ is a nonnegative nondecreasing function on
[1,∞), then, for p > 0 and u ∈ A∞,

T : �
p
u (w) → �

p,∞
u (w), ∀w ∈ Bp(u) ∩ B∗∞.

Again, for p > 1 and by means of the Hilbert transform (see [2, Theorem 1.1]) the
condition Bp(u) ∩ B∗∞ on the weight w of Corollary 1.5 is sharp in the sense that it
can not be found a greater class for w.

The paper is organized as follows: in Sect. 2 we study the boundedness of M ′
u over

the associate space of �
p
u (w). The proofs of Theorem 1.3 and Corollary 1.5 will be

given in Sect. 3, and Sect. 4 will be devoted to applying our results to the boundedness
of Calderón-Zygmund operators, sparse operators, the Bochner-Riesz operator and
intrinsic square functions.

As usual, we shall use the symbol A � B to indicate that there exists a universal
positive constant C , independent of all important parameters, such that A ≤ CB.
When A � B and B � A, we will write A ≈ B.
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86 Page 8 of 22 S. Baena-Miret

2 Boundedness on the Associate Space of3p
u(w)

Given u ∈ A∞, our goal is to see for which conditions on p and the weight w

M ′
u : (�

p
u (w))′ → (�

p
u (w))′ (11)

holds, where M ′
u is defined in (2).

(I) If u = 1 and w ∈ Bp, then (11) is equivalent to w ∈ B∗∞ (see (5)).

(II) If w = 1 and p > 1, then (11) is equivalent to M ′
u : L

p
p−1 (u) → L

p
p−1 (u),

which in turn remains true whenever u ∈ Ap.

In order to see the general setting (see Theorem 2.6), it is necessary to establish a few
technical findings initially. In an effort to ensure that the paper is self-contained, we
include these results within its contents. First, for a nonnegative measurable function
h let

Qh(t) :=
∫ ∞

t
h(r)

dr

r
, t > 0.

Therefore, by carefully monitoring the constants involved in [5, Theorem 4] (or even
[40, Theorem 3.3]), the following result holds.

Proposition 2.1 For every p > 0,

Q : L p
dec(w) → L p(w) ⇐⇒ w ∈ B∗∞

with ‖Q‖L p
dec(w)→L p(w) ≤ cn,p ‖w‖B∗∞ and where L p

dec(w) is the set of measurable
decreasing functions f satisfying ‖ f ‖L p(w) < ∞.

We also need some technical results related with the Fefferman-Stein maximal
operator, which is defined, for every h ∈ L1

loc(R
n), by

M#h(x) = sup
Q	x

1

|Q|
∫
Q

∣∣∣∣h(y) − 1

|Q|
∫
Q
h(z) dz

∣∣∣∣ dy, x ∈ R
n,

where the supremum is taken over all cubes Q ⊆ R
n containing the point x (see [30,

41]). Hence, by carefully considering the constants involved in [9, Corollary 4.3 (a)],
the following result can be established.

Proposition 2.2 There exists a nondecreasing function ϕq on [1,∞) such that for
every t > 0,

f ∗
u (t) ≤ ϕq

(
‖u‖Aq

)
Q
((

M# f
)∗
u

)
(t) + lim

r→∞ f ∗
u (r).

And, as a consequence, the next result follows.
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Proposition 2.3 Given u ∈ Aq, q > 1, and w ∈ B∗∞. If limr→∞ f ∗
u (r) = 0, then

‖ f ‖�
p
u (w) ≤ cn,pϕq

(
‖u‖Aq

)
‖w‖B∗∞

∥∥∥M# f
∥∥∥

�
p
u (w)

,

where ϕq is a nonnegative nondecreasing function on [1,∞).

Proof Bymeans of Proposition 2.2, there exists a nondecreasing functionϕq on [1,∞)

such that for every t > 0,

f ∗
u (t) ≤ ϕq

(
‖u‖Aq

)
Q
((

M# f
)∗
u

)
(t).

Therefore, taking into account Proposition 2.1,

‖ f ‖�
p
u (w) ≤ ϕq

(
‖u‖Aq

) ∥∥∥Q ((M# f
)∗
u

)∥∥∥
L p(w)

≤ cn,pϕq

(
‖u‖Aq

)
‖w‖B∗∞

∥∥∥M# f
∥∥∥

�
p
u (w)

.

��
Furthermore, the Fefferman-Steinmaximal operator also satisfy the following state-

ment.

Proposition 2.4 [28] For every f ∈ L1
loc(R

n), there exists a linear operator L f such
that

M f (x) ≈ L f (| f |)(x), a.e. x ∈ R
n .

Moreover, the adjoint of L f , L̃ f , satisfies that for every g ∈ L1
loc(R

n),

M# (L̃ f (|g|)
)
(x) � Mg(x), a.e. x ∈ R

n . (12)

Additionally, we will utilize the following result related with weights properties.

Proposition 2.5 Given u ∈ Aq, q > 1, and w ∈ Bp(u), p > 0. Let, for N ∈ N,
uN = min(u, N ). Then,

(i) uN ∈ Aq with

‖uN‖Aq
≤ 2q+1 ‖u‖Aq

,

(ii) and there exists some constant Cu,w > 0 independent of N such that

‖M‖�
p
uN (w) ≤ Cu,w.
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Proof First, taking an arbitrary cube Q ⊆ R
n ,

(
1

|Q|
∫
Q
uN (x)dx

)(
1

|Q|
∫
Q
uN (x)

1
1−q dx

)q−1

= 1

|Q|q
(∫

Q∩{x :u(x)<N }
u(x)dx + N

∫
Q∩{x :u(x)≥N }

dx

)

×
(∫

Q∩{x :u(x)<N }
u(x)

1
1−q dx + N

1
1−q

∫
Q∩{x :u(x)≥N }

dx

)q−1

≤ 2q ‖u‖Aq
+ 2 ≤ 2q+1 ‖u‖Aq

,

from which (i) follows by taking the supremum overall cubes Q.
To see (ii), let f ∈ �

p
uN (w) and write

f = f χ{x : u(x)<N } + f χ{x : u(x)≥N } := f1 + f2.

Then,

‖M f ‖�
p
uN (w) ≤ C

(
‖M f1‖�

p
uN (w) + ‖M f2‖�

p
uN (w)

)

≤ C
(
‖M f1‖�

p
u (w) + N ‖M f2‖�p(w)

)

≤ C
(
‖M‖�

p
u (w) ‖ f1‖�

p
u (w) + N ‖M‖�p(w) ‖ f2‖�p(w)

)
,

where in the last estimate we are using that w ∈ Bp(u) ⊂ Bp. Now observe that for
every y > 0,

u({x : f1(x) > y}) ≤ uN ({x : f (x) > y})

and

N |{x : f2(x) > y}| ≤ uN ({x : f (x) > y}),

so that ‖ f1‖�
p
u (w) ≤ ‖ f ‖�

p
uN (w) and N ‖ f2‖�p(w) ≤ ‖ f ‖�

p
uN (w). Therefore, the

results follows by taking Cu,w = C
(
‖M‖�

p
u (w) + ‖M‖�p(w)

)
. ��

Finally, with the previous results at hand, we are able to find conditions so that (11)
holds.

Theorem 2.6 Given u ∈ A∞. For every p > 0,

M ′
u : (�p

u (w)
)′ → (

�
p
u (w)

)′
, ∀w ∈ Bp(u) ∩ B∗∞. (13)
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Proof Since w ∈ Bp(u) ⊆ Bp we have that (�
p
u (w))′ �= {0} (see [18]) and, by

definition of associate space,

∥∥∥∥M( f u)

u

∥∥∥∥(
�

p
u (w)

)′ = sup
‖h‖

�
p
u (w)

≤1

∫
Rn

M( f u)(x)h(x) dx, (14)

where we can assume that the supremum is taken over all nonnegative functions h
satisfying that ‖h‖�

p
u (w) ≤ 1. We will see that, for such a function h,

∫
Rn

M( f u)(x)h(x) dx ≤ Cn,p,q,u,w ‖ f ‖(�
p
u (w))′ ‖h‖�

p
u (w) , (15)

from which together with (14), the boundedness of (13) will follow.
First, we observe that h can be chosen to be in L1(Rn). Otherwise, we can take

hk = χB(0,k)h ∈ L1(Rn) (with B(0, k) being the ball of center 0 and radius k) and by
the monotone convergence theorem,

∫
Rn

M( f u)(x)h(x) dx = lim
k→∞

∫
Rn

M( f u)(x)hk(x) dx,

so together with ‖hk‖�
p
u (w) ≤ ‖h‖�

p
u (w), we would obtain (15).

Hence, take such a nonnegative function h in (14) satisfying h ∈ L1(Rn). Further,
take q > 1 such that u ∈ Aq (since u ∈ A∞). Then, by Proposition 2.4,

∫
Rn

M( f u)(x)h(x) dx ≤ Cn

∫
Rn

| f (x)|̃L f u(h)(x)u(x) dx

≤ Cn ‖ f ‖(
�

p
u (w)

)′
∥∥∥̃L f u(h)

∥∥∥
�

p
u (w)

,

and if we are able to see that

lim
t→∞(̃L f u(h))∗u(t) = 0, (16)

by virtue of Proposition 2.3 and estimate (12) we will deduce that

∥∥∥̃L f u(h)

∥∥∥
�

p
u (w)

≤ cn,pϕq

(
‖u‖Aq

)
‖w‖B∗∞

∥∥∥M#
(̃
L f u(h)

)∥∥∥
�

p
u (w)

≤ c̃n,pϕq

(
‖u‖Aq

)
‖w‖B∗∞ ‖Mh‖�

p
u (w)

≤ c̃n,pϕq

(
‖u‖Aq

)
‖w‖B∗∞ ‖M‖�

p
u (w) ‖h‖�

p
u (w) ,

where ‖M‖�
p
u (w) < ∞ since w ∈ Bp(u).

Thus, it all reduces to show that (16) holds. Now, if we assume that u is bounded,
that is u ≤ Cu for some positive constant Cu , then it is just a consequence of that
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by construction it is known that L̃ f u(h) is bounded in L1(Rn) (see [28]) so for every
t > 0,

u
({

x ∈ R
n : |̃L f u(h)| > t

})
≤ Cu

∣∣∣{x ∈ R
n : |̃L f u(h)| > t

}∣∣∣
≤ Cu

t

∥∥∥̃L f u

∥∥∥
L1(Rn)→L1,∞(Rn)

‖h‖L1(Rn) ,

and hence,

(̃L f u(h))∗u(t) ≤ Cu

t

∥∥∥̃L f u

∥∥∥
L1(Rn)→L1,∞(Rn)

‖h‖L1(Rn) −−−→
t→∞ 0.

Finally, if u is not bounded, taking N ∈ N, we just have to observe that uN =
min(u, N ) is a bounded weight that satisfy (see Proposition 2.5)

‖uN‖Aq
≤ 2q+1 ‖u‖Aq

, ‖M‖�
p
uN (w) ≤ Cu,w

and ‖h‖�
p
uN (w) ≤ 1, so that by the monotone convergence theorem,

∫
Rn

M( f u)(x)h(x) dx = lim
N→∞

∫
Rn

M( f uN )(x)h(x) dx

≤ c̃n,pCu,wϕq

(
2q+1 ‖u‖Aq

)
‖w‖B∗∞ ‖ f ‖(�

p
u (w))′ ‖h‖�

p
u (w) .

��

3 Proof of Main Results

Proof of Theorem 1.3 Suppose first that p ≥ 1. Since w ∈ Bp(u) ⊆ Bp, then �p(w)

is a r.i. Banach function space, and so the result follows by means of Theorems 1.2
and 2.6, together with (7).

Now, assume that 0 < p < 1. Since w ∈ Bp(u), there exists some 0 < ε < p such
that w ∈ Bp−ε(u), and we can define

R f (x) =
∞∑
k=0

Mk f (x)(
2 ‖M‖

�
p−ε
u (w)

)k

to be a version of the function resulting from the Rubio de Francia Algorithm [42],

where M0 = I d is the identity operator and Mk = M
k◦ · · · ◦︸ ︷︷ ︸M is the k-fold compo-

sition of M with itself. Then,

(1) f ≤
[
R
(
| f | p

p−ε

)] p−ε
p
,

(2) R
(
| f | p

p−ε

)
∈ A1 with

∥∥∥R (| f | p
p−ε

)∥∥∥
A1

≤ 2 ‖M‖
�

p−ε
u (w)

,
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(3) and

∥∥∥∥
[
R
(
| f | p

p−ε

)] p−ε
p

∥∥∥∥
�

p
u (w)

≤
(

2p−ε

2p−ε − 1

) 1
p

‖ f ‖�
p
u (w) .

Certainly, since Bp(u) ⊆ Bp ⊆ B1 then �1(w) is also a r.i. Banach function space
and property (3) can be established as follows:

∥∥∥∥
[
R
(
| f | p

p−ε

)] p−ε
p

∥∥∥∥
�

p
u (w)

=
∥∥∥∥
[
R
(
| f | p

p−ε

)]p−ε
∥∥∥∥

1
p

�1
u(w)

≤

∥∥∥∥∥∥∥
∞∑
k=0

Mk
(
| f | p

p−ε

)
(x)p−ε

(
2 ‖M‖

�
p−ε
u (w)

)k(p−ε)

∥∥∥∥∥∥∥

1
p

�1
u(w)

≤
⎛
⎜⎝

∞∑
k=0

∥∥∥Mk
(
| f | p

p−ε

)∥∥∥p−ε

�
p−ε
u (w)(

2 ‖M‖
�

p−ε
u (w)

)k(p−ε)

⎞
⎟⎠

1
p

≤ ‖ f ‖�
p
u (w)

( ∞∑
k=0

1

2k(p−ε)

) 1
p

=
(

2p−ε

2p−ε − 1

) 1
p

‖ f ‖�
p
u (w) .

What’s more, by means of Theorem 2.6 we can define for an arbitrary nonnegative
function h ∈ (�1

u(w))′,

Sh(x) =
∞∑
k=0

(M ′
u)

kh(x)(
2
∥∥M ′

u

∥∥
(�1

u(w))′
)k

so that

(1)’ h ≤ Sh,
(2)’ (Sh)u ∈ A1 with ‖(Sh)u‖A1 ≤ 2

∥∥M ′
u

∥∥
(�1

u(w))′ ,
(3)’ and

‖Sh‖(�1
u(w))′ ≤ 2 ‖h‖(�1

u(w))′ .

Now, �1(w) is a Banach function space so that for any nonnegative function g (see
[10, Ch. 1 Theorem 2.7]),

‖g‖p
�

p
u (w)

= ∥∥gp
∥∥

�1
u(w)

= sup
‖h‖

(�1
u (w))

′≤1

∫
Rn

g(y)ph(y)u(y) dy. (17)
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Then, taking such a nonnegative function h in (17), by Fubini,

∫
Rn

g(y)ph(y)u(y) dy =
∫ ∞

0

∫
{g(y)p>x}

h(y)u(y) dy dx

=
∫ ∞

0

∫
{
g(y)p>x,

[
R

(
| f |

p
p−ε

)
(y)

]p−ε

>γ x

} h(y)u(y) dy dx

+
∫ ∞

0

∫
{
g(y)p>x,

[
R

(
| f |

p
p−ε

)
(y)

]p−ε

≤γ x

} h(y)u(y) dy dx

:= I1(h) + I2(h).

Let’s work with I1(h) and I2(h) separately. First, by Fubini again,

I1(h) ≤
∫ ∞

0

∫
{[

R

(
| f |

p
p−ε

)
(y)

]p−ε

>γ x

} h(y)u(y) dy dx

= 1

γ

∫
Rn

[
R
(
| f | p

p−ε

)
(y)
]p−ε

h(y)u(y) dy,

and taking the supremum in 0 ≤ h ∈ (�1
u(w)

)′
we have using property (3) that

sup
‖h‖

(�1
u (w))

′≤1

1

γ

∫
Rn

[
R
(
| f | p

p−ε

)
(y)
]p−ε

h(y)u(y) dy= 1

γ

∥∥∥∥
[
R
(
| f | p

p−ε

)]p−ε
∥∥∥∥

�1
u(w)

≤ 1

γ

(
2p−ε

2p−ε − 1

)
‖ f ‖p

�
p
u (w)

.

Now let’s work with I2(h). Observe that since p0 ≥ 1, then p(1−p)
p0−p ≤ p. Hence, if

we take

ε <
p(1 − p)

p0 − p
and p1 := p(1 − p + ε)

ε
,

then, p1 ≥ p0, p1 > 1 and 1 − p1 = (p − ε)(1 − p1/p). Therefore, by [29, Lemma
2.1]

v =
[
R
(
| f | p

p−ε

)](p−ε)(1−p1/p)
(Sh)u =

[
R
(
| f | p

p−ε

)]1−p1
(Sh)u ∈ Ap1

with

‖v‖Ap1
≤ ‖(Sh)u‖A1

∥∥∥R (| f | p
p−ε

)∥∥∥p1−1

A1
≤ 2p1

∥∥M ′
u

∥∥
(�1

u(w))′ ‖M‖p1−1

�
p−ε
u (w)
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and, due Theorem 1.1, if we let g = |T f |,

I2(h) ≤ γ p1/p−1
∫ ∞

0
x p1/p−1

∫
{|T f (y)|p>x}

[
R
(
| f | p

p−ε

)
(y)
](p−ε)(1−p1/p)

Sh(y)u(y) dy dx

= γ p1/p−1 p

p1

∫
Rn

|T f (y)|p1
[
R
(
| f | p

p−ε

)
(y)
]1−p1

Sh(y)u(y) dy

≤ γ p1/p−1
p�

(
‖v‖Ap1

)p1
p1

∫
Rn

f (y)p1
[
R
(
| f | p

p−ε

)
(y)
]1−p1

Sh(y)u(y) dy

≤ γ p1/p−1
p�

(
‖v‖Ap1

)p1
p1

∫
Rn

f (y)pSh(y)u(y) dy

≤ γ p1/p−1
p�

(
‖v‖Ap1

)p1
p1

∥∥ f p∥∥
�1

u(w)
‖Sh‖(�1

u(w))′

≤ 2γ p1/p−1
p�

(
‖v‖Ap1

)p1
p1

‖ f ‖p
�

p
u (w)

‖h‖(�1
u(w))′ .

Therefore,

sup
‖h‖

(�1
u (w))

′≤1
I2(h) ≤ 2γ p1/p−1

p�
(
‖v‖Ap1

)p1
p1

‖ f ‖p
�

p
u (w)

.

Thus,

‖T f ‖p
�

p
u (w)

≤ max

⎛
⎜⎝ 1

γ

2p−ε

2p−ε − 1
, 2γ p1/p−1

p�
(
‖v‖Ap1

)p1
p1

⎞
⎟⎠ ‖ f ‖p

�
p
u (w)

,

and taking the infimum in γ > 0,

‖T f ‖�
p
u (w) � ϕ

(
C2

p(1−p+ε)
ε

∥∥M ′
u

∥∥
(�1

u(w))′ ‖M‖
(1−p)(p−ε)

ε

�
p−ε
u (w)

)
‖ f ‖�

p
u (w) .

��
Proof of Corollary 1.5 Observe that

‖T f ‖L p0,∞(v) ≤ ϕ
(
‖v‖Ap0

)
‖ f ‖L p0 (v) , ∀v ∈ Ap0 ,

implies that for every y > 0,

∥∥yχ{|T f |>y}
∥∥
L p0 (v)

≤ ϕ
(
‖v‖Ap0

)
‖ f ‖L p0 (v) , ∀v ∈ Ap0 .
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Fix y > 0 and define Ty f := yχ{|T f |>y}. Hence, by means of Theorem 1.3 we obtain
that, for every p > 0 and u ∈ A∞,

∥∥yχ{|T f |>y}
∥∥

�
p
u (w)

= ∥∥Ty f ∥∥�
p
u (w)

≤ Cn,p0,p,u,w ‖ f ‖�
p
u (w) , ∀w ∈ Bp(u) ∩ B∗∞.

Therefore, taking the supremum over all y > 0, we obtain the desired result.

4 Examples and Applications

4.1 Calderón-Zygmund Operators and Commutators

A function K (x, y) on R
n ×R

n \ {(x, x) : x ∈ R
n} is called a standard kernel if there

exists A, δ > 0 satisfying the size condition

|K (x, y)| ≤ A

|x − y|n ,

and the regularity conditions

∣∣K (x, y) − K (x ′, y)
∣∣ ≤ A|x − x ′|δ

(|x − y| + |x ′ − y|)n+δ
,

when |x − x ′| ≤ 1
2 max(|x − y|, |x ′ − y|) and

∣∣K (x, y) − K (x, y′)
∣∣ ≤ A|y − y′|δ

(|x − y| + |x − y′|)n+δ
,

when |y − y′| ≤ 1
2 max(|x − y|, |x − y′|). Now, given a standard Kernel K , TK is

called a Calderón-Zygmund operator associated with K if it is defined on the class of
Schwartz functions S(Rn) (that is, the space of functions in C∞

c (Rn) that decreases
rapidly), which admits a bounded extension on L2(Rn)

‖TK ‖L2(Rn) ≤ C ‖ f ‖L2(Rn) , ∀ f ∈ L2(Rn),

and

TK f (x) =
∫
Rn

K (x, y) f (y) dy, ∀ f ∈ C∞
c (Rn) and x /∈ supp( f ),

for C∞
c (Rn) being the space of infinitely differentiable functions with compact support

(see [31, Ch. 4] for more details on these operators). Also, for a locally integrable
function b, the commutator of TK and b is defined as

[b, TK ]( f ) = bTK ( f ) − TK (b f ).
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For a general Calderón-Zygmund operator TK , it is well known that it is bounded
on L p(Rn), for all p > 1 (see [31, Theorem 4.2.2]). Moreover, R.R. Coifman and C.
Fefferman [24] proved that TK is bounded on the weighted Lebesgue space L p(v) for
v ∈ Ap and p > 1. Indeed, T.P. Hytönen proved in [32] that

‖TK f ‖L2(v) � ‖v‖A2
‖ f ‖L2(v) , ∀v ∈ A2. (18)

For the commutator, R.R. Coifman, R. Rochberg and G. Weiss [25] proved that
[b, TK ] is bounded on L p(Rn), p > 1, if b is a BMO(Rn) function, where the space
of functions of bounded mean oscillation BMO(Rn) is defined by

BMO(Rn) =
{
b ∈ L1

loc(R
n) : ‖ f ‖BMO(Rn) = sup

Q

1

|Q|
∫
Q

∣∣b(y) − bQ
∣∣ dy < ∞

}
,

where the supremum is taken over all cubes Q ∈ R
n with sides parallel to the axes

and bQ = 1
|Q|
∫
Q b(x) dx . An analogue of (18) for the commutator [b, TK ] with a

BMO(Rn) function b is due to D. Chung, C. Pereyra and C. Pérez (see [21]), who
proved that

‖[b, TK ] f ‖L2(v) � ‖b‖BMO ‖v‖2A2
‖ f ‖L2(v) , ∀v ∈ A2.

Therefore, as a consequence of Theorem 1.3:

Corollary 4.1 Let K be a standard kernel. Given u ∈ A∞ and p > 0,

TK : �
p
u (w) → �

p
u (w), ∀w ∈ Bp(u) ∩ B∗∞ (19)

and, for b ∈ BMO(Rn),

[b, TK ] : �
p
u (w) → �

p
u (w), ∀w ∈ Bp(u) ∩ B∗∞. (20)

Remark 4.2 This extends the results on [17, Theorems 1.1 and 1.2] where the authors
saw (19) and (20) for p > 1. Moreover, we recall that an example of a Calderón-
Zygmund operator is the Hilbert transform (see (6) for its definition).

4.2 Sparse Operators

These operators have become very popular due to their role in the often-called A2
conjecture consisting in proving, for instance, (18). This result was first obtained by
T.P. Hytönen [32] and then simplified by Lerner [34, 35], who proved that the norm
of a Calderón-Zygmund operator in a Banach function space X is dominated by the
supremum of the norm in X of all the possible sparse operators, and then proved
that every sparse operator is bounded in L2(v) for every weight v ∈ A2 with sharp
constant.

Let us give the precise definition. First, a general dyadic grid D is a collection of
cubes in R

n satisfying the following properties:

123



86 Page 18 of 22 S. Baena-Miret

(i) For any cube Q ∈ D, its side length is 2k for some k ∈ Z.
(ii) Every two cubes in D are either disjoint or one is wholly contained in the other.
(iii) If Dk ⊆ D is the subfamily of cubes formed by the cubes of exactly side length

2k , k ∈ Z, then Dk form a partition of R
n .

Hence, let 0 < η < 1 and let D be a family of dyadic cubes. A collection of cubes
S ⊆ D is called η-sparse if one can choose pairwise disjoint measurable sets EQ ⊆ Q
with |EQ | ≥ η|Q|, where Q ∈ S (see [30, 37] for more details). Hence, given a
η-sparse family of cubes S ⊆ D , the sparse operatorAS corresponding to the family
S is defined by

AS f (x) =
∑
Q∈S

1

|Q|
∫
Q

| f (y)| dyχQ(x), x ∈ R
n .

Therefore, as a consequence of Theorem 1.3:

Corollary 4.3 Given u ∈ A∞ and p > 0,

AS : �
p
u (w) → �

p
u (w), ∀w ∈ Bp(u) ∩ B∗∞.

4.3 Bochner-Riesz Operator

Let n > 1 and

f̂ (ξ) =
∫
Rn

f (x)e−2π i x ·ξ dx, ξ ∈ R
n,

be the Fourier transform of a function f ∈ L2 (Rn). For λ > 0, the Bochner-Riesz
operator is defined as

Bλ f
∧

(ξ) =
(
1 − |ξ |2

)λ

+ f̂ (ξ), ξ ∈ R
n, f ∈ L2(Rn).

These operators were first introduced by Bochner in [11] and, since then, they have
been widely studied (see [12, 14, 23, 31, 46]).

When λ > n−1
2 , it is well known that Bλ is controlled by the Hardy-Littlewood

maximal operator M . As a consequence, all weighted inequalities for M are also
satisfied by Bλ. The value λ = n−1

2 is called the critical index. In this case, Shi and
Sun [44] proved that Bn−1

2
is bounded in L p(v) for every p > 1 and v ∈ Ap.Moreover,

in [38, Theorem 1.6] the authors obtained the following quantitative result.

Proposition 4.4 Let n > 1. Then,

Bn−1
2

: L2(v) → L2(v), ∀v ∈ A2,

with constant less than or equal to C ‖v‖2A2
.
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Therefore, as a consequence of Theorem 1.3:

Corollary 4.5 Let λ ≥ n−1
2 . Given u ∈ A∞ and p > 0,

Bλ : �
p
u (w) → �

p
u (w), ∀w ∈ Bp(u) ∩ B∗∞.

4.4 Intrinsic Square Functions

For 0 < α ≤ 1, let Cα be the family of functions φ supported in B(0, 1) (the n-th
dimensional open ball of center 0 and radius 1) such that

∫
B(0,1)

φ(x) dx = 0 and |φ(x) − φ(x ′)| < |x − x ′|α, ∀x, x ′ ∈ R
n .

Then, given f ∈ L1
loc(R

n), set

Aα f (y, t) = sup
φ∈Cα

|(φt ∗ f )(y)|, (y, t) ∈ R
n+1+ ,

where we are using φt to denote the usual L1(Rn) dilatation of φ; that is φt (x) =
t−nφ

( x
t

)
.

The intrinsic square function (of order α) introduced byM.Wilson in [47] is defined
by

Gα f (x) =
(∫

�α(x)
|Aα( f )(y, t)|2 dydt

tn+1

) 1
2

, x ∈ R
n,

with �α(x) = {(y, t) : |x − y| < αt}. In [36] it was proved that

‖Gα f ‖L3(v) � ‖v‖
1
2
A3

‖ f ‖L3(v) , ∀v ∈ A3.

Therefore, as a consequence of Theorem 1.3:

Corollary 4.6 Let 0 < α ≤ 1. Given u ∈ A∞ and p > 0,

Gα : �
p
u (w) → �

p
u (w), ∀w ∈ Bp(u) ∩ B∗∞.

Remark 4.7 In [47] was proved thatGα dominates pointwise (modulo constant) opera-
tors such as theLusin area integral, theLittlewood-Paley g-function and the continuous
square function (see also [16]). Therefore, analogous results as in Corollary 4.6 can
be derived for those operators as well.
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