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Abstract
We prove Michael-Simon type Sobolev inequalities for n-dimensional submanifolds
in (n + m)-dimensional Riemannian manifolds with nonnegative kth intermedi-
ate Ricci curvature by using the Alexandrov-Bakelman-Pucci method. Here k =
min(n − 1,m − 1). These inequalities extend Brendle’s Michael-Simon type Sobolev
inequalities on Riemannian manifolds with nonnegative sectional curvature Bren-
dle (Commun. Pure Appl. Math. 76(9), 2192–2218 (2022)) and Dong-Lin-Lu’s
Michael-Simon type Sobolev inequalities on Riemannian manifolds with asymptoti-
cally nonnegative sectional curvature Dong et al. (Sobolev inequalities in manifolds
with asymptotically nonnegative curvature, 2022) to the k-Ricci curvature setting. In
particular, a simple application of these inequalities gives rise to some isoperimetric
inequalities for minimal submanifolds in Riemannian manifolds.

Keywords Isoperimetric Inequality · Michael-Simon Inequality · Intermediate Ricci
Curvature · Minimal Submanifold

Mathematics Subject Classification 53C40 · 53C21

1 Introduction

The classical isoperimetric problem is to find the largest possible area for a planar
domain with given perimeter. The attendant isoperimetric inequality also has a long
history and has been developed in many different settings. One of the intriguing direc-
tions is to prove isoperimetric inequality for minimal surfaces (cf. [3–8]). When we
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turn to minimal submanifolds in R
n+1, the isoperimetric inequality is closely related

to the famous Michael-Simon Sobolev inequality (cf. [9]). In a recent breakthrough,
inspired by the Alexandrov-Bakelman-Pucci technique in the proof of isoperimetric
inequality (cf. [10, 11]), Brendle [12] proved an elegant Michael-Simon-type inequal-
ity.When the codimension is atmost 2, this solves the long-standing conjecture that the
(sharp) isoperimetric inequality holds for minimal submanifolds in R

n+1. Moreover,
Brendle [1] generalized the Michael-Simon type inequality as well as the isoperimet-
ric inequality to minimal submanifolds in Riemannian manifolds with nonnegative
sectional curvature. For recent progress about isoperimetric inequality for minimal
submanifolds, we refer to [1, 12, 13] and references therein.

Brendle’s work [1] has been extended to several different curvature settings. For
example, Johne [14] considered the case of nonnegative Bakry-Émery Ricci curvature,
and Dong-Lin-Lu [2] considered the case of asymptotically nonnegative curvature. In
this paper, we focus on the intermediate Ricci curvature (or simply k-Ricci curvature
for the kth intermediate Ricci curvature), which can be regarded as the average of some
sectional curvatures. To the best of our knowledge, the notion of k-Ricci curvature
was introduced by Bishop and Crittenden (cf. [15], p.253). Since the k-Ricci curva-
ture interpolates between the sectional curvature and the Ricci curvature, it is natural
to consider k-Ricci bounds as a weaker curvature condition instead of the sectional
curvature bound. Some early results involving k-Ricci bounds were obtained by Gal-
loway [16], Wu [17] and Shen [18], etc. Recently there has been an increasing interest
in the relations between k-Ricci bounds and the topology and geometry of manifolds
(cf. [19–22]). Remark that the link between intermediate Ricci curvatures and optimal
transport was discussed in [23, 24]. By noticing the definition of intermediate Ricci
curvature, there is different from the above usual one.

One of our main results is the following theorem which extends Theorem 1.4 in [1]
to the k-Ricci setting.

Theorem 1.1 Let M be a complete noncompact (n + m)-dimensional Riemannian
manifold with nonnegative k-Ricci curvature, where k = min(n − 1,m − 1). Let �

be a compact n-dimensional submanifold of M (possibly with boundary ∂�), and let
f be a positive smooth function on �. If m ≥ 2, then

∫
�

√
|D� f |2 + f 2|H |2 +

∫
∂�

f ≥ n

(
(n + m)|Bn+m |

m|Bm |
) 1

n

θ
1
n

(∫
�

f
n

n−1

) n−1
n

,

(1.1)
where θ denotes the asymptotic volume ratio of M and H denotes the mean curvature
vector of �.

By putting f ≡ 1 and H ≡ 0 in Theorem 1.1, we obtain an isoperimetric inequality.

Corollary 1.2 Let M be a complete noncompact (n + m)-dimensional Riemannian
manifold with nonnegative k-Ricci curvature, where k = min(n − 1,m − 1). Let �

be a compact minimal n-dimensional submanifold of M with boundary ∂�. If m ≥ 2,
then

|∂�| ≥ n

(
(n + m)|Bn+m |

m|B|m
) 1

n

θ
1
n |�| n−1

n , (1.2)
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where θ denotes the asymptotic volume ratio of M. In particular, if m = 2, then

|∂�| ≥ n|Bn| 1n θ
1
n |�| n−1

n . (1.3)

Remark 1.3 We should mention thatWang [24] recently provided an optimal transport
proof of theMichael-Simon inequality using a different definition for the intermediate
Ricci curvature.

Another main result is a generalization of Theorem 1.1, which extends Theorem
1.5 in [2] to the case that the ambient manifold has asymptotically nonnegative k-Ricci
curvature.

Theorem 1.4 Let M be a complete noncompact n+m-dimensional Riemannian man-
ifold of asymptotically nonnegative k-Ricci curvature with respect to a base point o
in M, where k = min(n − 1,m − 1). Let � be a compact n-dimensional submanifold
of M (possibly with boundary ∂�), and let f be a positive smooth function on �. If
m ≥ 2, then

∫
�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f +
∫

∂�

f

≥ n

(
(n + m)|Bn+m |

m|Bm |
) 1

n

θ
1
n
h

(
1 + b0
e2r0b1+b0

) n+m−1
n

(∫
�

f
n

n−1

) n−1
n

,

(1.4)

where r0 = max{d(o, x)|x ∈ �}, θh denotes the asymptotic volume ratio of M with
respect to h, H denotes the mean curvature vector of �, and b0, b1 are defined by
(2.1) and (2.2).

In particular, we can also obtain an isoperimetric type inequality by putting f ≡ 1
and H ≡ 0 in Theorem 1.4.

Corollary 1.5 Assuming same conditions as in Theorem 1.4, we have

|∂�| ≥ n|�| n−1
n

⎡
⎣
(

(n + m)|Bn+m |
m|Bm |

) 1
n

θ
1
n
h

(
1 + b0
e2r0b1+b0

) n+m−1
n − 2b1|�| 1n

⎤
⎦ . (1.5)

This paper is organized as follows. Section 2 contains some basic concepts. In Sect.
3, we deal with the k-Ricci curvature and prove Theorem 1.1. Using similar argument,
we prove a Michael-Simon type Sobolev inequality (Theorem 1.4) for manifolds with
asymptotic nonnegative k-Ricci curvature in Sect. 4.

2 Preliminaries

2.1 k-Ricci Curvature

Let M be a Riemannian manifold. The k-Ricci curvature is the average of sectional
curvature over a k-dimensional subspace of the tangent space. Let X ∈ TpM be a unit
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tangent vector and V ⊂ TpM be a k-dimensional subspace such that X ⊥ V . The
k-Ricci curvature of (X , V ) is defined by

Rick(X , V ) =
k∑

i=1

〈R(ei , X)ei , X〉,

where R is the Riemann curvature tensor and {ei } is an orthonormal basis of V . It is
worth noting that Ric1 is just sectional curvature and Ricn−1 is just Ricci curvature.
We say a manifold M has nonnegative k-Ricci curvature (denoted by Rick ≥ 0) if at
each point p ∈ M , for any unit tangent vector X ∈ TpM and k-dimensional subspace
V such that X ⊥ V , we have Rick(X , V ) ≥ 0.

Remark 2.1 There is another definition for the intermediate Ricci curvature, say
R̃ick(X , V ), without the restriction X⊥V (e.g., [23, 24]). We remark that R̃ick ≥ 0
is equivalent to Rick−1 ≥ 0 for each k ≥ 2.

2.2 Asymptotic k-Ricci Curvature

The notion of asymptotically nonnegative curvature was first introduced by Abresch
[25]. Let λ : [0,+∞) → [0,+∞) be a nonnegative nonincreasing continuous
function satisfying

b0 :=
∫ +∞

0
sλ(s)ds < +∞, (2.1)

and

b1 :=
∫ +∞

0
λ(s)ds < +∞. (2.2)

A complete noncompact n-dimensional Riemannian manifold (M, g) is said to have
asymptotically nonnegative Ricci curvature (sectional curvature, respectively) if there
is a base point o ∈ M such that

Ric(·, ·) ≥ −(n − 1)λ(d(o, q))g (Sec ≥ −λ(d(o, q)), respectively),

at each point q ∈ M . Similarly, we can define the concept of asymptotically non-
negative k-Ricci curvature in the sense that there exists a base point o ∈ M such
that

Rick ≥ −kλ(d(o, q))

at each point q ∈ M . Remark that if k1 ≤ k2 and Rick1 ≥ −k1λ(d(o, q)), then
Rick2 ≥ −k2λ(d(o, q)). By definition, a manifold whose (Ricci, sectional or k-Ricci,
respectively) curvature is either nonnegative outside a compact domain or asymptot-
ically flat has asymptotically nonnegative (Ricci, sectional or k-Ricci, respectively)
curvature.

123



Sobolev Inequalities in Manifolds With Nonnegative Page 5 of 16 93

2.3 Asymptotic Volume Ratio

Let M be a complete noncompact n-dimensional Riemannian manifold. The asymp-
totic volume ratio θ can be regarded as the ratio of the volume of geodesic ball in M
to the volume of Euclidean ball in R

n with same, arbitrary large radius. Precisely, the
asymptotic volume ratio θ is defined as

θ := lim
r→∞

|{p ∈ M : d(p, q) < r}|
|Bn|rn ,

where q is an arbitrary fixed point in M and Bn is the unit ball in R
n+1. If M has non-

negative Ricci curvature, the Bishop-Gromov volume comparison theorem indicates
that θ exists and θ ≤ 1.

Similarly, let h(t) be the unique solution of

{
h′′(t) = λ(t)h(t),
h(0) = 0, h′(0) = 1,

(2.3)

where λ is the nonnegative function given in Section 2.2. The asymptotic volume ratio
of M with respect to h is defined by

θh := lim
r→+∞

|{q ∈ M : d(o, q) < r}|
n|Bn| ∫ r0 hn−1(t)dt

. (2.4)

3 ManifoldsWith Nonnegative k-Ricci Curvature

In this section, we assume that (M, g) is a complete noncompact (n+m)-dimensional
Riemannian manifold with nonnegative k-Ricci curvature, where k = min(n−1,m−
1). We also assume that � is a compact n-dimensional submanifold of M (possibly
with boundary ∂�), and f is a positive smooth function on �. Let D̄ and D� denote
the Levi-Civita connection on (M, g) and the induced connection on �, respectively.
Let R̄ denote the Riemann curvature tensor on (M, g). For any tangent vector fields
X , Y on � and normal vector field η along �, the second fundamental form I I of �

is given by

〈I I (X ,Y ), η〉 = 〈D̄XY , η〉.

We only need to prove Theorem 1.1 in the case that � is connected. By scaling, we
assume that ∫

�

√
|D� f |2 + f 2|H |2 +

∫
∂�

f = n
∫

�

f
n

n−1 . (3.1)
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Since � is connected, there exists a solution u to the following Neumann boundary
problem.

⎧⎨
⎩
div�( f D�u) = n f

n
n−1 −√|D� f |2 + f 2|H |2, in�,

〈D�u, ν〉 = 1, on ∂�,

(3.2)

where ν is the outward conormal to ∂�. By standard elliptic regularity theory, u ∈
C2,γ (�) for each 0 < γ < 1 (cf. Theorem 6.30 in [26]).

As in [1], we define

	 :={x ∈ �\∂� : |D�u(x)| < 1},
U :={(x, y) : x ∈ �\∂�, y ∈ T⊥

x �, |D�u(x)|2 + |y|2 < 1}.

For each r > 0, we denote by Ar the contact set, that is the set of all points (x̄, ȳ) ∈ U
with the property that

ru(x) + 1

2
d
(
x, expx̄

(
r D�u(x̄) + r ȳ

))2 ≥ ru(x̄) + 1

2
r2
(
|D�u(x)|2 + |y|2

)
,

for all x in�. Moreover, for each r > 0 we define the transport map
r : T⊥� → M
by


r (x, y) = expx
(
r D�u(x) + r y

)

for all x ∈ � and y ∈ T⊥
x �. For each 0 < γ < 1, since u is of class C2,γ , 
r is of

class C1,γ .
The following four lemmas are due to Brendle [1]. Their proofs are independent of

the curvature condition, so they also hold in our setting and we omit the proofs here.

Lemma 3.1 (Lemma 4.1 in [1])Assume that x ∈ 	 and y ∈ T⊥
x � satisfy |D�u(x)|2+

|y|2 ≤ 1. Then ��u(x) − 〈H(x), y〉 ≤ n f (x)
1

n−1 .

Lemma 3.2 (Lemma 4.2 in [1]) For each 0 ≤ σ < 1, the set

{p ∈ M : σr < d(x, p) < r for all x ∈ �}

is contained in the set


r

({
(x, y) ∈ Ar : |D�u(x)|2 + |y|2 > σ 2

})
.

Lemma 3.3 (Lemma 4.3 in [1]) Assume that (x̄, ȳ) ∈ Ar , and let γ̄ (t) :=
expx̄ (t D

�u(x̄)+ t ȳ) for all t ∈ [0, r ]. If Z is a smooth vector field along γ̄ satisfying
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Z(0) ∈ Tx̄� and Z(r) = 0, then

(∇2
�u)(Z(0), Z(0)) − 〈I I (Z(0), Z(0)), ȳ〉
+
∫ r

0
(|D̄t Z(t)|2 − R̄(γ̄ ′(t), Z(t), γ̄ ′(t), Z(t)))dt ≥ 0.

Lemma 3.4 (Lemma 4.5 in [1]) Assume that (x̄, ȳ) ∈ Ar , and let γ̄ (t) :=
expx̄ (t D

�u(x̄) + t ȳ) for all t ∈ [0, r ]. Moreover, let {e1, . . . , en} be an orthonor-
mal basis of Tx̄�. Suppose that W is a Jacobi field along γ̄ satisfying W (0) ∈ Tx̄�
and 〈D̄tW (0), e j 〉 = (D2

�u)(W (0), e j ) − 〈I I (W (0), e j ), ȳ〉 for each 1 ≤ j ≤ n. IF
W (τ ) = 0 for some τ ∈ (0, r), then W vanishes identically.

Now with the preparation above, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Throughout the proof, we use the following notions of indices

1 ≤ i, j ≤ n, n + 1 ≤ α, β ≤ n + m, 1 ≤ A, B ≤ n + m.

For any r > 0 and (x̄, ȳ) ∈ Ar , let {ei }1≤i≤n be any given orthonormal basis in Tx̄�.
We can choose geodesic normal coordinates (x1, . . . , xn) on � around x̄ such that
∂

∂xi
= ei at x̄ for each 1 ≤ i ≤ n. Let {eα}n+1≤α≤n+m be a local orthonormal frame

of T⊥� around x̄ such that 〈D̄ei eα, eβ〉 = 0 at x̄ . Now a normal vector y can be
written as y = ∑

α yαeα and in this sense (x1, . . . , xn, yn+1, . . . , yn+m) forms a local
coordinate system on the total space of the normal bundle T⊥�.

Let γ̄ (t) := expx̄ (t D
�u(x̄) + t ȳ) for all t ∈ [0, r ]. For each 1 ≤ A ≤ n + m, let

EA(t) be the parallel transport of eA along γ̄ . For each 1 ≤ i ≤ n, let Xi (t) be the
unique Jacobi field along γ̄ satisfying

Xi (0) = ei ,

〈D̄t Xi (0), e j 〉 = (D2
�u)(ei , e j ) − 〈I I (ei , e j ), ȳ〉,

〈D̄t Xi (0), eβ〉 = 〈I I (ei , D�u), eβ〉.

For each n + 1 ≤ α ≤ n + m, let Xα(t) be the unique Jacobi field along γ̄ satisfying

Xα(0) = 0, D̄t Xα(0) = eα.

Lemma 3.4 tells us that {XA(t)}1≤A≤n+m are linearly independent for each t ∈ (0, r).
Thenwedefine two (n+m)×(n+m)-matrix P(t) = (PAB(t)) and S(t) = (SAB(t))

by
PAB(t) = 〈XA(t), EB(t)〉,
SAB(t) = R̄(γ̄ ′(t), EA(t), γ̄ ′(t), EB(t)).

Based on the observation that

∂
t

∂xA
(x̄, ȳ) = XA(t) (3.3)
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for each 1 ≤ A ≤ n + m, we conclude that

| det D̄
t (x̄, ȳ)| = det P(t)

for all t ∈ (0, r). Therefore, we only need to estimate det P(t).
By the definition of the Jacobi fields XA(t), the Jacobi equation reads

P ′′(t) = −P(t)S(t)

with the initial conditions

P(0) =
[

δi j 0
0 0

]

and

P ′(0) =
[

(D2
�u)(ei , e j ) − 〈I I (ei , e j ), ȳ〉 〈I I (ei , D�u), eβ〉

0 δαβ

]
.

Moreover, since

d

dt
(P ′(t)P(t)T ) = −P(t)S(t)P(t)T + P ′(t)P ′(t)T

is symmetric for each t ∈ (0, r), P ′(t)P(t)T is also symmetric for each t . Let Q(t)
be a matrix defined by

Q(t) := P(t)−1P ′(t) = P(t)−1P ′(t)P(t)T (P(t)−1)T ,

which is symmetric for each t ∈ (0, r). Then the Riccati equation reads

Q′(t) = −S(t) − Q2(t). (3.4)

From the asymptotic expansion of P(t)

P(t) =
[

δi j + O(t) O(t)
O(t) tδαβ + O(t2)

]
,

a direct computation gives rise to

Q(t) =
[

(D2
�u)(ei , e j ) − 〈I I (ei , e j ), ȳ〉 + O(t) O(1)

O(1) t−1δαβ + O(1)

]
(3.5)

as t → 0.
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By taking partial trace of Q(t), we reduce the Riccati equation (3.4) to the following
two equations:

∑
i

Q′
i i (t) + 1

n
(
∑
i

Qii (t))
2 ≤

∑
i

Q′
i i (t) +

∑
i

(Q2)i i (t) = −
∑
i

Sii (t),

∑
α

Q′
αα(t) + 1

m
(
∑
α

Qαα(t))2 ≤
∑
α

Q′
αα(t) +

∑
α

(Q2)αα(t) = −
∑
α

Sαα(t),

(3.6)
where we use the Cauchy-Schwarz inequality.

By assumption, M has nonnegative k-Ricci curvature. We claim that
∑

i Sii (t) and∑
α Sαα(t) are nonnegative for any t ∈ [0, r).
In fact, for fixed t ∈ [0, r), without loss of generality, we can choose e1 = D�u(x̄)

|D�u(x̄)|
and en+1 = ȳ

|ȳ| . Denote a := √|D�u(x̄)|2 + |ȳ|2, then there exist an angle s and a
vector field ξ along γ̄ , such that

( 1
a γ̄ ′(t)
1
a ξ(t)

)
=
(

cos s sin s
− sin s cos s

)(
E1(t)

En+1(t)

)
, (3.7)

as well as (
E1(t)

En+1(t)

)
=
(
cos s − sin s
sin s cos s

)( 1
a γ̄ ′(t)
1
a ξ(t)

)
. (3.8)

Now

S11(t) = R̄(γ̄ ′(t), E1(t), γ̄
′(t), E1(t))

= R̄(γ̄ ′(t), cos s · 1
a

γ̄ ′(t) − sin s · 1
a

ξ(t), γ̄ ′(t), cos s · 1
a

γ̄ ′(t) − sin s · 1
a

ξ(t))

= sin2 s R̄(γ̄ ′(t), 1
a

ξ(t), γ̄ ′(t), 1
a

ξ(t)).

(3.9)
Since { 1a γ̄ ′(t), E2(t), . . . , En(t),

1
a ξ(t), En+2(t), . . . , En+m(t)} form an orthogonal

basis, we can compute that

n∑
i=1

Sii (t) =
n∑

i=1

R̄(γ̄ ′(t), Ei (t), γ̄ ′(t), Ei (t))

= R̄(γ̄ ′(t), E1(t), γ̄ ′(t), E1(t)) +
n∑

i=2

R̄(γ̄ ′(t), Ei (t), γ̄ ′(t), Ei (t))

= sin2 s R̄(γ̄ ′(t), 1
a

ξ(t), γ̄ ′(t), 1
a

ξ(t)) +
n∑

i=2

R̄(γ̄ ′(t), Ei (t), γ̄ ′(t), Ei (t))

= sin2 s

⎛
⎝R̄

(
γ̄ ′(t), 1

a
ξ(t), γ̄ ′(t), 1

a
ξ(t)

)
+

n∑
i=2

R̄
(
γ̄ ′(t), Ei (t), γ̄ ′(t), Ei (t)

)
⎞
⎠
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+ cos2 sRicn−1
(
γ̄ ′(t), span{E2(t), . . . , En(t)}

)

≥ sin2 s

⎛
⎝R̄

(
γ̄ ′(t), 1

a
ξ(t), γ̄ ′(t), 1

a
ξ(t)

)
+

n∑
i=2

R̄
(
γ̄ ′(t), Ei (t), γ̄ ′(t), Ei (t)

)
⎞
⎠

= sin2 sRicn

(
γ̄ ′(t), span{ 1

a
ξ(t), E2(t), . . . , En(t)}

)

≥ 0. (3.10)

Analogously we also have
∑

α Sαα(t) ≥ 0.
Therefore, the equations (3.6) become

∑
i

Q′
i i (t) + 1

n

(∑
i

Qii (t)

)2

≤ 0,

∑
α

Q′
αα(t) + 1

m

(∑
α

Qαα(t)

)2

≤ 0.

(3.11)

A standard ODE comparison gives

d

dt
log det P(t) = Tr Q(t)

=
∑
i

Qii (t) +
∑
α

Qαα(t)

≤ n(��u(x̄) − 〈H(x̄), ȳ〉)
t(��u(x̄) − 〈H(x̄), ȳ〉) + n

+ m

t
.

(3.12)

Integrating (3.12) over [ε, t] for 0 < ε < t and letting ε → 0+, we obtain

| det D̄
t (x̄, ȳ)| = det P(t)

≤
(
1 + t

n
(��u(x̄) − 〈H(x̄), ȳ〉)

)n

tm,
(3.13)

for all t ∈ (0, r).
By Lemma 3.1, we have

| det D̄
r (x̄, ȳ)| ≤ rm(1 + r f (x̄)
1

n−1 )n . (3.14)

As in the proof of [1], together with the above estimate, Lemma 3.2 tells us

|{p ∈ M : σr < d(x, p) < r for all x ∈ �}|

≤
∫

	

(∫
{y∈T⊥

x �:σ 2<|D�u(x)|2+|y|2<1}
| det D̄
r (x, y)|1Ar (x, y)dy

)
dvol(x)
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≤
∫

	

(∫
{y∈T⊥

x �:σ 2<|D�u(x)|2+|y|2<1}
rm
(
1 + r f (x)

1
n−1

)n
dy

)
dvol(x)

≤ m

2
|Bm |(1 − σ 2)

∫
	

rm
(
1 + r f (x)

1
n−1

)n
dvol(x), (3.15)

for all r > 0 and all 0 ≤ σ < 1. Now dividing both sides by rn+m and letting r → ∞,
we have

|Bn+m |(1 − σ n+m)θ ≤ m

2
|Bm |(1 − σ 2)

∫
	

f (x)
n

n−1 dvol(x), (3.16)

for all 0 ≤ σ < 1. Finally, dividing both sides by 1 − σ and letting σ → 1, we have

(n + m)|Bn+m |θ ≤ m|Bm |
∫

	

f (x)
n

n−1 dvol(x) ≤ m|Bm |
∫

�

f (x)
n

n−1 dvol(x)

(3.17)
Consequently, it is apparent from the scaling assumption (3.1) that

∫
�

√
|D� f |2 + f 2|H |2 +

∫
∂�

f = n
∫

�

f
n

n−1

≥ n

(
(n + m)|Bn+m |

m|Bm |
) 1

n

θ
1
n

(∫
�

f
n

n−1

) n−1
n

.

(3.18)
��

4 ManifoldsWith Asymptotically Nonnegative k-Ricci Curvature

Proof of Theorem 1.4 By scaling, we assume that

∫
�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f +
∫

∂�

f = n
∫

�

f
n

n−1 . (4.1)

We use the same notions as in the proof of Theorem 1.1 except that u is a solution
of the following Neumann boundary problem:

⎧⎨
⎩
div�( f D�u) = n f

n
n−1 −√|D� f |2 + f 2|H |2 − 2nb1 f , in�,

〈D�u, ν〉 = 1, on ∂�.

(4.2)

Since we only change the definition of u, Lemma 3.2, Lemma 3.3, and Lemma 3.4
still hold. We also need another version of Lemma 3.1.

Lemma 4.1 (Lemma 3.1 in [2])Assume that x ∈ 	 and y ∈ T⊥
x � satisfy |D�u(x)|2+

|y|2 ≤ 1. Then ��u(x) − 〈H(x), y〉 ≤ n f (x)
1

n−1 − 2nb1.
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By assumption, M has asymptotically nonnegative k-Ricci curvature with respect
to a base point o in M . Analogous to the computation (3.10), we have

∑
i

Sii (t) ≥ (cos2 s − n)λ(d(o, γ̄ (t)))

and

∑
α

Sαα(t) ≥ (sin2 s − m)λ(d(o, γ̄ (t))),

where s is the angle between γ̄ ′(t) and E1(t).
Let φ and φ̃ be defined by

φ := e
1
n

∫ t
0
∑

i Qii (τ )dτ ,

φ̃ := te
1
m

∫ t
0
∑

α(Qαα(τ )− 1
τ
)dτ ,

(4.3)

respectively. Then with the initial condition (3.5), (3.6) reduce to

⎧⎨
⎩

φ′′ ≤ − 1
n

∑
i Sii (t)φ ≤ n−cos2 s

n λ(d(o, γ̄ (t)))φ,

φ(0) = 1, φ′(0) = 1
n (��u(x̄) − 〈H(x̄), ȳ〉),

(4.4)

and ⎧⎨
⎩

φ̃′′ ≤ − 1
m

∑
α Sαα(t)φ̃ ≤ m−sin2 s

m λ(d(o, γ̄ (t)))φ̃,

φ̃(0) = 0, φ̃′(0) = 1.
(4.5)

Next, in order to estimate φ and φ̃, we should compare them with standard ODE
solutions. Let ψ1 and ψ2 be solutions to the following ODEs

⎧⎨
⎩

ψ ′′
1 = n−cos2 s

n λ(d(o, γ̄ (t)))ψ1,

ψ1(0) = 0, ψ ′
1(0) = 1,

(4.6)

⎧⎨
⎩

ψ ′′
2 = n−cos2 s

n λ(d(o, γ̄ (t)))ψ2,

ψ2(0) = 1, ψ ′
2(0) = 0,

(4.7)

respectively. Then the functionψ := ψ1(
1
n (��u(x̄)−〈H(x̄), ȳ〉))+ψ2 is the solution

to ⎧⎨
⎩

ψ ′′ = n−cos2 s
n λ(d(o, γ̄ (t)))ψ,

ψ(0) = 1, ψ ′(0) = 1
n (��u(x̄) − 〈H(x̄), ȳ〉).

(4.8)
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By a standard ODE comparison result (cf. [27], Lemma 2.4A), we have

φ′

φ
≤ ψ ′

ψ
. (4.9)

Similarly, let ψ̃ be the solution to

⎧⎨
⎩

ψ̃ ′′ = m−sin2 s
m λ(d(o, γ̄ (t)))ψ̃,

ψ̃(0) = 0, ψ̃ ′(0) = 1.
(4.10)

Then the standard ODE comparison (cf. [27], Lemma 2.4A) gives

φ̃′

φ̃
≤ ψ̃ ′

ψ̃
. (4.11)

Now taking (4.9), (4.11) into consideration, by definition of φ and φ̃, we have

d

dt
log det P(t) = Tr Q(t) = n

φ′

φ
+ m

φ̃′

φ̃
≤ n

ψ ′

ψ
+ m

ψ̃ ′

ψ̃
, (4.12)

for all t ∈ (0, r). Integrating (4.12) over [ε, t] for 0 < ε < t and letting ε → 0+, we
obtain

| det D̄
t (x̄, ȳ)| = det P(t)

≤ ψ(t)nψ̃(t)m =
[
ψ2

ψ1
(t) + 1

n
(��u(x̄) − 〈H(x̄), ȳ〉)

]n
ψ1(t)

nψ̃(t)m,
(4.13)

for all t ∈ (0, r). Moreover, a standard ODE comparison of (4.6), (4.7) and (4.10)
gives

ψ1(t) ≤ te
∫ t
0 τ( n−cos2 s

n λ(d(o,γ̄ (τ ))))dτ ,

ψ̃(t) ≤ te
∫ t
0 τ(m−sin2 s

m λ(d(o,γ̄ (τ ))))dτ ,

ψ2

ψ1
(t) ≤

∫ t

0

(
n − cos2 s

n
λ(d(o, γ̄ (τ )))

)
dτ + 1

t
.

(4.14)

Furthermore, we have

∫ t

0
λ(d(o, γ̄ (τ )))dτ ≤ 2b1 (4.15)
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and ∫ t

0
τλ(d(o, γ̄ (τ )))dτ ≤

∫ t

0
τλ(|d(o, x̄) − d(x̄, γ̄ (τ ))|)dτ

≤
∫ t

0
τλ(|d(o, x̄) − τ |)dτ

≤ 2r0b1 + b0.

(4.16)

By substituting (4.14), (4.15), and (4.16) into (4.13), together with Lemma 4.1, we
have

| det D̄
t (x̄, ȳ)| = det P(t)

≤
[
2b1 + 1

t
+ 1

n
(��u(x̄) − 〈H(x̄), ȳ〉)

]n
tn+me(n+m−1)(2r0b1+b0)

≤ tm(1 + t f (x̄)
1

n−1 )ne(n+m−1)(2r0b1+b0).

(4.17)

Analogous to the proof of Theorem 1.1, Lemma 3.2 tells us

|{p ∈ M : σr < d(x, p) < r for all x ∈ �}|
≤ m

2
|Bm |(1 − σ 2)e(n+m−1)(2r0b1+b0)

∫
	

rm(1 + r f (x)
1

n−1 )ndvol(x).
(4.18)

Now dividing both sides by (n + m)
∫ r
0 h(t)n+m−1dt and letting r → ∞, we have

|Bn+m |(1 − σ n+m)θh ≤ m

2
|Bm |(1 − σ 2)e(n+m−1)(2r0b1+b0)

∫
	

f (x)
n

n−1 dvol(x) lim
r→∞

rn+m

(n + m)
∫ r
0 h(t)n+m−1dt

≤ m

2
|Bm |(1 − σ 2)

(
e2r0b1+b0

1 + b0

)n+m−1 ∫
	

f (x)
n

n−1 dvol(x).

(4.19)

Here we use the fact that h(t) ≥ t and limt→∞h′(t) ≥ 1 + b0 in the last line. Then
dividing both sides by 1 − σ and letting σ → 1, we have

(n + m)|Bn+m |θ ≤ m|Bm |
(
e2r0b1+b0

1 + b0

)n+m−1 ∫
	

f (x)
n

n−1 dvol(x)

≤ m|Bm |
(
e2r0b1+b0

1 + b0

)n+m−1 ∫
�

f (x)
n

n−1 dvol(x).

(4.20)
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Finally, it follows from the scaling assumption 4.1 that

∫
�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f +
∫

∂�

f = n
∫

�

f
n

n−1

≥ n

(
(n + m)|Bn+m |

m|Bm |
) 1

n

θ
1
n
h

(
1 + b0
e2r0b1+b0

) n+m−1
n

(∫
�

f
n

n−1

) n−1
n

.

(4.21)
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