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Abstract
In this article, we prove two global existence and full convergence theorems for flow
lines of the Möbius-invariant Willmore flow, and we use the latter result in order to
prove that fully and smoothly convergent flow lines of the Möbius-invariant Willmore
flow are stable with respect to small perturbations of their initial immersions in any
C4,γ -norm, provided they converge to a umbilic-free C4-local minimizer of the Will-
more functional among C4-immersions of a smooth compact torus into either R3 or
S3. The proofs of our two main theorems rely on the author’s recent achievements
about the Möbius-invariant Willmore flow, on Weiner’s investigation of the stabil-
ity of the Clifford torus with respect to the Willmore functional, and on Escher’s,
Mayer’s, and Simonett’s work from the 1990s on invariant center manifolds for uni-
formly parabolic quasilinear evolution equations and their special applications to the
Willmore- and surface diffusion flow near round 2-spheres in R3.
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1 Introduction andMain Results

The central mathematical object of this article is theWillmore functional

W( f ) :=
∫
Σ

KM
f +

1

4
| H f |2 dμ f , (1)

which can be defined for C2-immersions f : Σ −→ M , mapping any closed smooth
Riemannian orientable surface Σ into an arbitrary smooth Riemannian manifold M ,
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where the function x �→ KM
f (x) in (1) denotes the sectional curvature of M with

respect to the “immersed tangent plane” Dfx (TxΣ) in T f (x)M and H f the mean
curvature vector along the immersion f ; see here Definition (6) below. Regarding the
aims of this article,wewill only have to consider the simple casesM = Rn orM = Sn -
especially for n = 3—in which there simply holds KM

f ≡ 0 or KM
f ≡ 1, respectively.

In this paper, the author aims to continue his investigation of the Möbius-invariant
Willmore flow (MIWF) in [17] and [19], which is the evolution equation

∂t ft = −1

2

1

|A0
ft
|4

(
�⊥ftH ft + Q(A0

ft )(H ft )
)
≡ − 1

|A0
ft
|4 ∇L2W( ft ), (2)

being well defined for differentiable families of sufficiently smooth and umbilic-free
immersions ft of some arbitrarily fixed smooth compact torus Σ into Rn or Sn .
We recall here from [17] and [19] that the MIWF (2) exists uniquely at least for a
very short time, if it starts moving in a sufficiently smooth and umbilic-free surface
of genus 1, and that the MIWF can only decrease the Willmore energy, although it
is not the L2-gradient flow (3) of W . Here, one should also recall from [17], that
the existence of a smooth immersion f of a compact surface Σ into Rn satisfying
minx∈Σ |A0

f |2(x) > 0 yields a non-vanishing section of the bundle T ∗Σ ⊗ T ∗Σ ,
implying that the Euler-characteristic of Σ vanishes and thus that Σ can only be
a compact torus. This might appear to be a tough restriction, regarding differential-
geometric applications of theMIWF. On the other hand, theMIWF has the remarkable
property, to be conformally invariant, which means that any family of smooth immer-
sions { ft }t∈[0,T ] of a fixed smooth torus Σ into Rn solves equation (2) classically on
Σ × [0, T ], if and only if for any Möbius-transformation M ∈ Möb(Rn), for which
the transformed family {M( ft )}t∈[0,T ] is well defined on Σ × [0, T ], {M( ft )}t∈[0,T ]
solves equation (2) on Σ × [0, T ] again; see here also Corollary 1 in [17]. This prop-
erty of the MIWF is particularly desirable because of the well-known invariance of
the Willmore functional W( f ) in (1) with respect to composition f �→ M ◦ f with
any applicable M ∈ Möb(Rn) and it starkly contrasts the behavior of the classical
Willmore flow

∂t ft = −1

2

(
�⊥ftH ft + Q(A0

ft )(H ft )
)
≡ −∇L2W( ft ) (3)

with respect to conformal transformations of the ambient space Rn . The classical
Willmore flow is well defined for smooth immersions ft of any compact, orientable
surface Σ into Rn , but it has only been particularly well studied in the simplest,
e.g., spherical case: Σ ∼= S2. In Simonett’s famous Theorem 1.2 of his paper [44],
he proved exponential attractivity of round 2-spheres within sufficiently small h2+β -
neighborhoods for the classicalWillmore flow (3), and nearly at the same time Kuwert
and Schätzle started to publish their series of seminal papers [22]– [24], in which
they estimated the life span of general flow lines of (3), characterized singular flow
lines in terms of curvature concentration, and finally proved global existence and
smooth convergence of any flow line { ft } of (3), which starts moving in a spherical
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immersion f0 : S2 −→ R3 with energyW( f0) ≤ 8π .1 We actually know on account
of [32], Theorem 1.4, and [30], Theorem A, that there is only a finite number of
critical values of the Willmore functional— considered as a map from the set of
smooth, closed and orientable surfaces inR3 intoR+—within the interval (2π2, 8π−
δ), for any fixed small δ > 0. But still any sort of global existence and smooth
convergence result that only requires an energy condition on the initial immersion
f0 : Σ −→ R3 seems to be out of reach in the general case of genus(Σ) > 0,
both for the classical Willmore flow and also for the MIWF in R3. The deeper reason
for this lack of concrete knowledge lies in the fact that a sequence of immersions
f j : Σ −→ Rn of fixed positive genus might in general degenerate in moduli space,2

which means that the conformal classes of the pullback metrics f ∗j (geuc) might not
stay in any compact subset of the moduli spaceM(genus(Σ)). And even if such a bad
behavior canbe somehowruledout—for example bymeansof an appropriateWillmore
energy bound3—then still the conformal factors u j , appearing in Poincaré’s identity

f ∗j (geuc) = e2u j gPoin, j , might be unbounded in L∞(Σ), at least if we cannot correct
the immersions f j in terms of appropriate Möbius-transformations, which is exactly
the statement ofTheorem4.2 in [25].Obviously aflow line { ft }t∈[0,TMax) of the classical
Willmore flow cannot be corrected by general Möbius-transformations, and therefore,
the conformal factors ut of the immersions { ft } indeedmight be unbounded in L∞(Σ),
and in this case, the genera of the images ft (Σ)would have to finally drop in the limit,
as t ↗ TMax, on account of Proposition 2.4 in [37], even if the initial energy was
supposed to be smaller than 8π or any other reasonable threshold.

Now, in spite of the conformal invariance of the MIWF, we cannot simply apply
Theorem 4.2 in [25] to sequences { ft j } along a general flow line { ft } of the MIWF
neither. However, the flow lines of the MIWF can be conformally mapped—by means
of stereographic projection—from Rn into Sn . Of special interest is here the 3-sphere
S3, because it contains the Clifford torus C := 1√

2
(S1 × S1), an embedded closed

minimal surface in S3 with constant intrinsic Gaussian curvature −1—thus in par-
ticular an embedded closed Willmore surface—which can be isometrically mapped
onto a very simple trapezoid in the complex plane. Hence, especially the spectrum
and the dimension of each eigenspace of the Beltrami-Laplacian�C can be computed
precisely, and in addition its most basic eigenspaces Eig−2(�C) and Eig−4(�C) can
be explicitly described in terms of conformal vector fields on S3 restricted to C4—a
striking insight going back to Simons’ [45] seminal investigation of closed minimal
submanifolds of n-spheres—which will play a very important role in the proof of the
first main theorem of this paper, Theorem 1.

At this point, we should also mention that there are actually concrete examples
of singular flow lines of the classical Willmore flow moving rotationally symmetric
immersions into R3 whose initial Willmore energies are only slightly bigger than
8π ; see [7] for the important genus-0-case and [9] for the genus-1-case, respectively.

1 See Definition 2 (b), (d) and (e) in [19], where the terms “flow line”, “life span” and “singular time” have
been introduced.
2 See here Sect. 5.1 in [36] for a very nice exposition.
3 See here Theorem 5.1 in [25].
4 Compare here with our Lemma 3 and also with the proof of our Lemma 4 below.
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Unfortunately, such a concrete divergence result is stillmissing for theMIWF, although
the existence of singular flow lines of the MIWF should be expected in view of its
singular evolution equation (2).

Moreover, we mention here, that the author has proved in the third part of The-
orem 1.2 in [18], that—up to smooth reparametrizations—the unique flow lines of
the classical Willmore flow (3) in S3 converge smoothly and fully to immersions F∗,
which parametrize conformally transformed Clifford tori in S3, provided those flow
lines start moving in a smooth parametrization F0 : Σ −→ S3 of a Hopf-torus with
initial Willmore energy W(F0) ≤ 8π2√

2
.5 Interestingly, such a result does not seem to

hold for flow lines of the MIWF (2), meeting the same start conditions, since even this
narrow class of flow lines of the MIWF might develop curvature singularities, even
under the condition that their initial Willmore energies are smaller than the prominent
threshold 8π . One should see here Theorem 1.3 in [20] for a precise criterion for full
convergence of global flow lines of theMIWFwhich start moving in smooth Hopf-tori
in S3 with Willmore energies smaller than 8π . Actually, the proof of Theorem 1.3 in
[20] strongly relies on the result of our Theorem 1 below.

Now in this article, we will show the first two global existence and convergence
results for the MIWF and derive a stability result for fully convergent flow lines of the
MIWF to local minimizers of the Willmore functional in S3, respectively R3. Firstly,
in Theorem 1 below, we will prove an analog—here for the MIWF near the Clifford
torus—of Simonett’s Theorem 1.2 in [44], which we had already mentioned above.
Our proof of Theorem 1 relies on a combination of particular computations due to
Weiner [48] and Simons [45] with Escher’s, Mayer’s, and Simonett’s technique in
[13], [14], [42], [43], and [44] of invariant center manifolds for uniformly parabolic
quasilinear evolution equations and their special application to theWillmore flow near
round 2-spheres in R3.

Theorem 1 (Full Convergence Theorem I) Let Σ be a smooth compact torus, and

let F∗ : Σ ∼=−→ M
( 1√

2

(
S1 × S1

))
be a smooth diffeomorphic parametrization of a

compact torus in S3, which is conformally equivalent to the standard Clifford torus
1√
2

(
S1 × S1

)
via some conformal transformation M ∈ Möb(S3), and let some β ∈

(0, 1) and k ∈ N be fixed. Then, there is some small neighborhood W = W (Σ, F∗, k)
about F∗ in h2+β(Σ,R4), such that for every C∞-smooth initial immersion F1 :
Σ −→ S3, which is contained in W, the unique flow line {P(t, 0, F1)}t≥0 of theMIWF
exists globally and converges—up to smooth reparametrization—fully to a smooth and
diffeomorphic parametrization of a torus in S3, which is again conformally equivalent
to the Clifford torus 1√

2

(
S1 × S1

)
. This full convergence takes place with respect to

the Ck(Σ,R4)-norm and at an exponential rate. ��
In Theorem 1, the symbol “h2+β(Σ,R)” denotes the “little Hölder space,” modeled
on Σ , of differentiation order 2 + β, see here e.g., [13], p. 1419, or [40], p. 219,

5 Here and in the sequel, “full convergence of a flow line” { ft }t∈[0,∞) of either evolution equation (2) or
equation (3) in a Banach space (X , ‖ · ‖X ) means that ‖ ft − f ∗ ‖X−→ 0 for a unique limit f ∗ ∈ X , as
t →∞, in contrast to “subconvergence” of { ft }t∈[0,∞) with respect to ‖ · ‖X , which means that only for
certain sequences t j ↗∞ the immersions ft j converge to certain limits in X , that might in general depend
on those special sequences {t j }.
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for a precise definition. It should also be noted here, that the proof of Theorem 1
does not require any type of Lojasiewicz-Simon gradient inequality for the Willmore
functional.

However, we are going to prove the following full convergence theorem by means
of the well-known trick using the Lojasiewicz-Simon gradient inequality for a certain
real-analytic functional F—see e.g., [8] or [41]—in order to obtain simultaneously
global existence of a flow line of the corresponding L2-gradient flow and also its full
Ck-convergence.

Theorem 2 (Full Convergence Theorem II) LetΣ be a smooth compact torus, k ∈ N,
with k ≥ 4, and α ∈ (0, 1) be given, and let F∗ : Σ −→ S3 be a umbilic-free and
C∞-smooth Willmore immersion, which locally minimizes the Willmore functional in
the Ck(Σ,R4)-norm, in the sense that there exists some δ > 0, such that for any
immersion f : Σ −→ S3 with ‖ f − F∗ ‖Ck (Σ,R4)< δ there holds

W( f ) ≥W(F∗). (4)

Then there exists some ε = ε(Σ, F∗, k, α) ∈ (0, δ), such that for any C∞-smooth
immersion f0 : Σ −→ S3 with ‖ f0 − F∗ ‖Ck,α(Σ,R4)< ε the corresponding flow
line {P(t, 0, f0)}t≥0 of the MIWF exists globally and converges fully with respect to
the Ck(Σ,R4)-norm—up to smooth reparametrization— to a umbilic-free Willmore
immersion F∞, as t → ∞, and this limit immersion is a Ck-local minimizer of the
Willmore energy as well, satisfying W(F∞) =W(F∗). ��
Hence, the MIWF can be used in order to detect Ck-local minimizers of the Willmore
energy in both S3 and R3. One can quickly check that Theorem 2 is in exact analogy
with Theorem 1.2 in [8] for the classical Willmore flow (3).

Remark 1 (1) Employing the conformal invariance of the Willmore functional, of its
L2-gradient and of the MIWF-equation (2) it does not matter, if we state Theo-
rems 1 and 2 for the MIWF in S3 or inR3, and this flexibility will turn out crucial,
at least for the proof of Theorem 2 in its present form above. As we will see below,
Theorem 1 cannot be proven directly for the MIWF in R3, whereas vice versa
Theorem 2 should not be proven directly for the MIWF in S3, as it is actually
stated above. We will therefore prove Theorem 2 for the MIWF in R3 and then
project the entire result back into S3 by means of inverse stereographic projection
S−1. See here also the comments at the beginning of the proof of Theorem 2.

(2) We should also mention here, that the limit Willmore immersion F∞ in Theo-
rem 2—and also in Theorem 4 below—is actually C∞-smooth, and not only of
classCk(Σ,R4), respectivelyC4(Σ,R4)—according to the types of convergence
obtained in these two theorems. In order to see this, we replace F∞ by its com-
position S ◦ F∞ with stereographic projection into R3, and we use Lemma 4.1,
respectively, Theorem 4.3 in [36], in order to construct a conformal structure c on

Σ by means of only finitely many isothermal charts {ψ j : B2
1 (0)

∼=−→ Ω j } j=1,...,N
with respect to F∞. Hence, there is actually a conformal atlas {ψ j } j=1,...,N of Σ
with the additional property that each composition S ◦F∞◦ψ j : B2

1 (0) −→ R3 is
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conformal, whichmeans that the constructed conformal structure respects the con-
formal class of (S ◦ F∞)∗geuc. Now only using the fact that the immersion F∞ is
classically Willmore and at least of classCk with k ≥ 4, we can write down locally
in the chartsψ j both the Euler–Lagrange equation�⊥F∞HF∞+Q(A0

F∞)(F∞) = 0
of theWillmore functional for F∞ and also the general identityHF∞ = �F∞(F∞)

for the mean curvature vector of F∞, in order to infer from ordinary Schauder reg-
ularity theory that F∞ is actually of class Cl+γ , for each l ≥ k and any fixed
γ ∈ (0, 1). This result already proves our claim above, because every complex
structure on Σ automatically determines a smooth structure on Σ , and moreover,
there is only one smooth structure on Σ on account of the well-known classifica-
tion of compact, orientable, smooth 2-manifolds. Lemma 4.1 and Theorem 4.3 of
Rivière’s lecture notes [36] originate from Hélein’s, Müller’s, and Sverák’s semi-
nal work in [16] and [31] combining the method of moving frames and ideas from
Gauge Theory with the phenomenon of integrability by compensation; see here
Sects. 3.1–3.4, Theorem 5.1.1 and also Sect. 5.4 in [16] and Sects. 3 and 4 in [31],
and for further technical improvements also Sect. 6 of [25] and Appendix A of
[37]. ��

2 Preparations for the Proofs of Theorems 1 and 2

Definition 1 Let Σ be a smooth compact torus, and let M = R3 or M = S3. We
denote by C∞Imm(Σ,M) the set of C∞-smooth immersions F : Σ −→ M of the torus
Σ into M . ��
Now, given any such immersion f of Σ into M , we endow the torus Σ with the
pullback f ∗geuc of the Euclidean metric of either R3 or R4, i.e., with coefficients
gi j := 〈∂i f , ∂ j f 〉, and we let (A f )R3 and (A f )S3 denote the second fundamental
form of the immersion f , either mapping into R3 or into S3, defined on pairs of
tangent vector fields X ,Y on Σ by:

(A f )R3(X ,Y ) := DX (DY ( f ))− PTan( f ),R3
(DX (DY ( f ))) ≡ (DX (DY ( f )))

⊥ f ,R3

(A f )S3(X ,Y ) := DX (DY ( f ))− PTan( f ),S3(DX (DY ( f ))) ≡ (DX (DY ( f )))
⊥ f ,S3

where DX (V )�x denotes the projection of the classical derivative of a vector field
V : Σ −→ R3, respectively, V : Σ −→ R4 in direction of the tangent vector field
X ∈ Γ (TΣ) onto the respective fiber T f (x)R3 = R3 of TR3, respectively, T f (x)S3

of TS3, and where

PTan( f ),R3 :
⋃
x∈Σ
{x} × R3 −→

⋃
x∈Σ
{x} × T f (x)( f (Σ)) =: Tan( f )

PTan( f ),S3 :
⋃
x∈Σ
{x} × T f (x)S3 −→

⋃
x∈Σ
{x} × T f (x)( f (Σ)) = Tan( f ) (5)

denote the bundle morphisms which project the entire tangent spacesR3, respectively,
T f (x)S3 orthogonally into their subspaces T f (x)( f (Σ))—the tangent spaces of the
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immersion f in the points f (x) for every x ∈ Σ . Furthermore, (A0
f )R3 and (A0

f )S3

denote the tracefree parts of (A f )R3 and (A f )S3 , respectively, i.e.,

(A0
f )S3(X ,Y ) := (A f )S3(X ,Y )− 1

2
g f (X ,Y )H f ,S3

with

H f ,S3 := trace((A f )S3) ≡ (A f )S3(ei , ei ) (6)

(“Einstein’s summation convention”) denotes the mean curvature vector of the immer-
sion f : Σ −→ S3, where {ei } denotes a local orthonormal frame along the tangent
bundle TΣ . Finally, in both settings Q(A f ), respectively, Q(A0

f ) operate on vector
fields φ which are sections of the normal bundle of f , i.e., which are normal along f ,
by assigning

Q(A f )(φ) := A f (ei , e j )〈A f (ei , e j ), φ〉,

which is by definition again a section of the normal bundle of f . Moreover, in equa-
tion (2), we consider the normal Beltrami–Laplace operator �⊥f for an arbitrary

C2-immersion f : Σ −→ S3. As introduced in Sect. 1 of [45] or also in Sect. 1 of
[48], this is a differential operator of 2nd order acting on those sections of the pullback-
bundle f ∗(TS3), which are normal along f within TS3, and again outputting such
sections, i.e., sections of the normal subbundle N f of f ∗(TS3). The operator �⊥f is

constructed by means of the composition of the unique Riemannian connection ∇S3

on f ∗(TS3)with pointwise orthogonal projection of each fiber of the pullback bundle
f ∗(TS3) into the corresponding fiber of its normal subbundle N f . Alternatively, this
notion can be defined via coordinate patches on Σ , as for example in Definition 3.1
of [18].

In order to transfer the method in [13], [14], [43], and [44] to the MIWF (2) for
families of immersions ft : Σ −→ S3, we have to establish “Fermi coordinates”
in a sufficiently small open neighborhood U of the standard Clifford torus C :=
1√
2
(S1 × S1) in S3. Intentionally, we will work in S3 and not in R3 throughout the

entire proof of Theorem 1. This is due to the circumstance that the stereographic
projection of the Clifford torus into R3 is not a minimal surface anymore and neither
satisfies |A0|2 ≡ const. But these are key properties of the standard Clifford torus in
S3 which will turn out crucial in the proof of our central Lemma 2, yielding a fairly
simple linearization of our basic differential operatorG from (25), respectively, (28) at
ρ = 0 and thus paving the path to Lemma 4; see here also Remark 2 below Lemma 2.
Firstly, we recall from [26], p. 108, that the tangent bundle of S3 splits along C into a
direct sum of vector bundles

TS3�C= TC ⊕ NC (7)

namely into the tangent bundle and the normal bundle of C within TS3. Now we can
construct Fermi coordinates in a canonical way by means of the restriction of the
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exponential map exp ≡ expS
3 : D(expS

3
) ⊂ TS3 −→ S3 to the normal bundle NC -

a smooth subbundle of TS3:

exp�NC : dom(exp) ∩ NC −→ S3,

because the proof of Theorem 5.1 in [26] guarantees, that there is a small open neigh-
borhood Z of the zero-section in the total space of NC and an open neighborhood U
of the torus C in S3, such that

exp�NC : Z
∼=−→ U (8)

is a smooth diffeomorphism. Hence, the restriction exp�NC to a sufficiently small open
neighborhood Z of the zero-section of the bundle NC −→ C is a tubular map, and the
corresponding open neighborhood U of C thus turns out to be a tube about C, in the
language of differential topology, see e.g., [26], p. 108. In other words, having chosen
a global unit normal field νC along the orientable surface C, i.e., a smooth section of the
bundle NC of constant length 1, any point p ∈ U can be written as p = expx (r νC(x))
for a unique point x = x(p) ∈ C and a unique real number r = r(p), thus yielding
globally defined Fermi coordinates (x, r) ∈ C × R for points p ∈ U . Hence, having
chosen a unit normal field νC along C, statement (8) yields a smooth diffeomorphism

X : C × (−a, a) ∼=−→ image(X) =: Ua, X(x, r) := expx (r νC(x)), (9)

onto an open neighborhood Ua of the torus C in S3, provided a > 0 is chosen suffi-
ciently small,more precisely smaller than thewidth of the tube Z about the zero-section
in NC.6 Taking the inverse of the smooth diffeomorphism X in (9), we obtain a well-
defined and unique pair of smooth coordinate functions

S : Ua −→ C and Λ : Ua −→ (−a, a). (10)

Now, suppose there is some smooth manifold Ξ in Ua , which has the property that
the coordinate function S mapsΞ bijectively onto C. We thus obtain a unique smooth
function

ρ ≡ ρΞ : C −→ (−a, a) by setting ρ(x) := Λ ◦ (S�Ξ)−1(x), x ∈ C, (11)

where Λ and S are the smooth coordinate functions from line (10). Obviously, the
function ρΞ measures the pointwise “signed geodesic distance” between the set Ξ
and any chosen point x ∈ C, and we therefore recover Ξ as a graph over C:

Ξ = image
([C � x �→ X(x, ρ(x))])

6 See here also Sect. 4.1 in [35] for the construction of the map X in Euclidean space, and especially
formulae (27) and (34) in [35] for a simple upper bound on a in terms of the maximal principle curvature
of the base surface, which is here the Clifford torus C ↪→ S3.
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just by construction of the diffeomorphism X in (9), of S and Λ in (10), and of ρ

in (11). Conversely, suppose that there is some function ρ : C −→ (−a, a) of class
h2+α(C), for some arbitrarily fixed α ∈ (0, β)—where β ∈ (0, 1) is already given by
the asserted statement of Theorem 1—then the set

Ξ(ρ) := image
([C � x �→ X(x, ρ(x))]) ⊂ Ua (12)

is a 2-dimensional manifold of class h2+α—provided a > 0 is sufficiently small—and
moreover, Ξ(ρ) is the level set {p ∈ Ua |Φρ(p) = 0 } of the function

Φρ : Ua −→ R defined by Φρ(p) := Λ(p)− ρ(S(p)). (13)

Obviously, the functionΦρ is just as smooth as the function ρ is, thus here it is of class
h2+α(Ua). Suppose now that we have a time-dependent function ρ : C × [0, T ) −→
(−a, a) of classC0([0, T ); h2+α(C)) for the above fixed α ∈ (0, β). We thus consider
the time-dependent function

Φρt (p, t) := Λ(p)− ρ(S(p), t),

and we obtain closed and compact h2+α-manifolds Ξ(ρt ), for t ∈ [0, T ), in the
neighborhood Ua of C in S3 as level sets:

Ξ(ρt ) = {p ∈ Ua |Φρt (p, t) = 0}. (14)

In combination with equation (12), we have the equation

Φρt (X(x, ρ(x, t)), t) = 0 ∀(x, t) ∈ C × [0, T ). (15)

Now, provided the distance function ρ is sufficiently smooth in t ∈ (0, T ), then
differentiating (15) with respect to t and the chain rule yield:

0 =
〈
∇S3

p Φρt (X(x, ρ(x, t)), t),
∂

∂t
(X(x, ρ(x, t)))

〉
+ ∂

∂t
Φρt (X(x, ρ(x, t)), t)

= ±
∣∣∣∇S3

p Φρt (X(x, ρ(x, t)), t)
∣∣∣
∣∣∣(∂t )⊥X (X(x, ρ(x, t)))

∣∣∣− ∂ρ

∂t
(x, t) (16)

for (x, t) ∈ C × (0, T ), where “ ∂
∂tΦρt (X(x, ρ(x, t)), t)” means ∂

∂tΦρt

(p, t)�p=X(x,ρ(x,t)). Here, “(∂t )⊥X (X(x, ρ(x, t)))” denotes the normal component
of the velocity vector ∂t (X( ·, ρ( ·, t))) of the family {Ξ(ρt )}t∈[0,T ) of parametrized
moving manifolds from (14), evaluated in their points X(x, ρ(x, t)), and this vector
is actually parallel to the gradient ∇S3

p Φρt (X(x, ρ(x, t)), t) on account of formulae
(12)–(15). Furthermore, the sign in (16) depends on the direction of the normal velocity
(∂t )

⊥X (X(x, ρ(x, t))) of the surfaces Ξ(ρt ) compared to the direction of the chosen
unit normal νC along the Clifford torus because of (9), (10) and (13). Now, flipping
νC to −νC would force us to also change ρt to −ρt—according to the introduction of
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the signed distance function ρΞ in formula (11)—and the “signed speed” V (x, t) of
(∂t )

⊥X (X(x, ρ(x, t))) should be positive if and only if ∂ρ
∂t (x, t) is. We therefore infer

from (16) as on p. 1423 in [13] or as on p. 272 in [14] the fundamental description

V (x, t) =
∂ρ
∂t (x, t)

|∇S3
p Φρt (X(x, ρ(x, t)), t)| , for (x, t) ∈ C × (0, T ), (17)

of the speed of the surfaces Ξ(ρt ) in normal direction of motion—with respect to the
chosen orientation of C - provided our distance function ρ is sufficiently smooth in t . In
view of Theorem 3 below, we can actually assume until the formulation of Lemma 1,
that our distance function ρ will additionally be of class C∞((0, T );C∞(C)), thus
giving rise to the smooth family

θρt (x, t) := expx (ρ(x, t) νC(x)), for (x, t) ∈ C × (0, T ), (18)

ofC∞-smooth and diffeomorphic parametrizations of smooth surfacesΞ(ρt ), moving
according to (17).Moreover, since for any fixed t ∈ [0, T ), the normal bundle NΞ(ρt )

of the submanifold Ξ(ρt ) ↪→ S3 is only one-dimensional and possesses the non-
vanishing section νΞ(ρt ) of constant length 1 with respect to gS3 , any smooth section
V ∈ Γ (NΞ(ρt )) can be written in the form

V = fV νΞ(ρt ) on Ξ(ρt ) (19)

for a uniquely determined smooth function fV : Ξ(ρt ) −→ R. Hence, we obtain a
linear bijection

Γ (NΞ(ρt )) � V ←→ fV ∈ C∞(Ξ(ρt )) (20)

between the set of smooth sections of NΞ(ρt ) and functions of class C∞(Ξ(ρt )).
Now, the connection ∇⊥ in the normal bundle NΞ(ρt )—see Sect. 2.1 in [45]—maps
sections of NΞ(ρt ) into NΞ(ρt ) again and maps the unit normal νΞ(ρt ) to 0. Hence,

defining covariant differentiation “∇Ξ(ρt )
∂i

” of smooth functions f ∈ C∞(Ξ(ρt )) in

the direction of some locally defined partial derivative ∂i by ∇Ξ(ρt )
∂i

( f ) := ∂i ( f ) and

(∇Ξ(ρt ))2∂i ,∂ j
( f ) := ∂i j ( f )−(ΓΞ(ρt ))

k
i j ∂k( f ), where (ΓΞ(ρt ))

k
i j denote theChristoffel

symbols of the Euclidean metric induced by the injectionΞ(ρt ) ↪→ S3, we infer from
the Leibniz-rule for linear connections:

∇⊥∂i ( f νΞ(ρt )) = ∇Ξ(ρt )
∂i

( f ) νΞ(ρt ) on Ξ(ρt ),

and thus by definition of the Beltrami-Laplace operator, associated both to the linear
connection ∇⊥ in the normal bundle NΞ(ρt ) and to the covariant derivative ∇Ξ(ρt )

on Ξ(ρt ):

�⊥Ξ(ρt )
( f νΞ(ρt )) = gi jΞ(ρt )

(∇⊥)2∂i ,∂ j ( f νΞ(ρt ))

= gi jΞ(ρt )
(∇Ξ(ρt ))2∂i ,∂ j ( f ) νΞ(ρt ) = �Ξ(ρt )( f ) νΞ(ρt ) (21)
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for any function f ∈ C∞(Ξ(ρt )). Now we infer from (21) that

�⊥Ξ(ρt )
HΞ(ρt ) = �⊥Ξ(ρt )

(HΞ(ρt ) νΞ(ρt )) = �Ξ(ρt )(HΞ(ρt )) νΞ(ρt ). (22)

Moreover, we have

|A0
Ξ(ρt )

|2 HΞ(ρt ) =
(1
2
|HΞ(ρt )|2 − 2 KΞ(ρt )

)
HΞ(ρt ) νΞ(ρt ) (23)

onΞ(ρt ), for every t ∈ [0, T ), where the symbols HΞ(ρt ) and KΞ(ρt ) denote the trace
and the determinant, respectively, of the scalar second fundamental form (AΞ(ρt ))S3

of the submanifold Ξ(ρt ) ↪→ S3 with respect to a fixed unit normal νΞ(ρt ); see here
formula (5) on p. 22 in [48].

Now we fix an arbitrary family of compact surfaces Ξ(ρt ) which are contained in
the open neighborhood Ua of C in S3 and implicitly given by equation (14) in terms
of a time-dependent distance function ρ : C × [0, T )→ (−a, a) of class

ρ ∈ C0([0, T ); h2+β(C)) ∩ C∞((0, T );C∞(C)),

where β ∈ (0, 1) had been prescribed in the statement of Theorem 1. Exactly as
in formulae (1.1)–(2.2) of [13], we infer now from a combination of formulae (2),
(17), (21), (22), and (23), that a family of immersions ft : Σ −→ S3, t ∈ [0, T ),
parametrizing the compact h2+β -manifolds Ξ(ρt ), moves according to the “relaxed
variant”

(∂t )
⊥ ft ( ft ) = −1

2

1

|A0
ft
|4

(
�⊥ftH ft + Q(A0

ft )(H ft )
)
≡ − 1

|A0
ft
|4 ∇L2W( ft ) (24)

of theMIWF (2) onΣ×(0, T ), if and only if the prescribed distance function ρ = {ρt }
satisfies the evolution equation

∂ρ

∂t
(x, t) = −|∇

S3
p Φρt (θρt (x, t), t)|

2 |A0
Ξ(ρt )

(θρt (x, t))|4
(
θ∗ρt

(�Ξ(ρt )HΞ(ρt )

)
(x, t)

+(1
2
|HΞ(ρt )(θρt (x, t))|2 − 2 KΞ(ρt )(θρt (x, t))

)
HΞ(ρt )(θρt (x, t))

)

=: G(ρt )(x) (25)

for (x, t) ∈ C × (0, T ), whose initial value ρ0 is determined by the initial h2+β -
manifold Ξ0 ⊂ Ua on account of formulae (9)–(12),7 In view of formula (25) and of

7 We can easily infer from formula (5) in [48] that—on the one hand—the values on both sides of (22)
and (23) do not change if we flip the unit normal from νΞ(ρt ) to −νΞ(ρt ). On the other hand, in equation
(25) we have simply dropped the unit normal νΞ(ρt ) appearing in equations (22) and (23). Therefore the

±-ambiguity in (16), leading to V (x, t) = ±|(∂t )⊥X (X(x, ρ(x, t)))| on account of (17), disappears in (25),
if we choose a continuous field of unit normals νΞ(ρt ) along the moving surfacesΞ(ρt ) in such a way that
νΞ(ρt ) = νC holds for ρt ≡ 0, just as asserted in [38], formula (1.1), or in [39], formula (5.1).
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Lemma 1 below, we recall here the transformation law

θ∗ρt
(�Ξρt

(h)
) ≡ (�Ξρt

(h)
) ◦ θρt = �θ∗ρt (gS3�Ξ(ρt ))

(h ◦ θρt ), (26)

for h ∈ C∞(Ξρt ), between the Beltrami–Laplacian�Ξρt
on the submanifold Ξρt ↪→

S3, endowed with the Euclidean metric, and the Laplacian �θ∗ρt (gS3�Ξ(ρt ))
on C with

respect to the metric σ(ρt ) := θ∗ρt (gS3�Ξ(ρt )) pulled back by the diffeomorphism

θρt ( · , t) : C
∼=−→ Ξ(ρt ) from line (18), for any fixed time t ∈ [0, T ). We shall adopt

the notation in [13, 38, 39, 44] and abbreviate in the sequel

�ρt ( f ) := �θ∗ρt (gS3�Ξ(ρt ))
( f ) = σ jk(ρt )

(
∂ jk( f )− γ i

jk(ρt ) ∂i ( f )
)
, (27)

for f ∈ C∞(C) and for every fixed t ∈ [0, T ), using the coefficients σ jk(ρt ) of the
dual metric tensor σ ∗(ρt ) and the Christoffel-symbols γ i

jk(ρt ), i, j, k = 1, 2, with
respect to σ(ρt ). Now we choose some β0 ∈ (α, β), where α ∈ (0, β) was arbitrarily
fixed above line (12), and we define the open subset

Ua
β0
:= {ρ ∈ h2+β0(C) | ‖ ρ ‖L∞(C)< a }

of the Banach space h2+β0(C), for some sufficiently small a > 0 as in (9). Closely
following the proofs of Lemma 2.1 in [13] and of Lemma 3.1 in [14], we will prove
here the following fundamental result.

Lemma 1 The differential operator

G(ρ) ≡ −|∇
S3
p Φρ ◦ θρ |
2 |A0

ρ |4
(
�ρHρ + Hρ (

1

2
H2

ρ − 2Kρ)
)

(28)

from line (25), having abbreviated here A0
ρ := A0

Ξ(ρ) ◦ θρ , Hρ := HΞ(ρ) ◦ θρ and
Kρ := KΞ(ρ) ◦ θρ , is a uniformly elliptic quasilinear operator. More precisely, G can
be decomposed in the following way:

G(ρ) = −P(ρ).ρ + F(ρ) (29)

for every ρ ∈ Va
α := h4+α(C) ∩ Ua

β0
, where

P : Ua
β0
−→ L(h4+α(C), hα(C))

is a uniformly elliptic quasilinear operator of class C∞(Ua
β0
,L(h4+α(C), hα(C))), and

F ∈ C∞(Ua
β0
, hβ0(C)) is a non-linear operator of only second order, satisfying F(0) =

0 on C. In particular, −P(ρ) generates a strongly continuous analytic semigroup on
hα(C), i.e., P(ρ) ∈ H(h4+α(C), hα(C)), for every ρ ∈ Ua

β0
.
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Proof : First of all, as in the beginning of the proof of Lemma 2.1 in [13], we choose
an atlas {Ol | l = 1, . . . ,m } of open coordinate neighborhoods Ol on C, yielding
partial derivatives ∂ j , j = 1, 2, on Ol , and we pull back the Euclidean metric gS3 via
the diffeomorphism

Xl := X�Ol×(−a,a): Ol × (−a, a) ∼=−→ image(X�Ol×(−a,a)) =: Rl(a) ⊂ S3

which is a restriction of the diffeomorphism X in line (9) to Ol × (−a, a). Now, on
account of one of Gauss’s famous results in Riemannian Geometry, the exponential
map expx : TxS3 −→ S3 yields a radial isometry, at least locally about 0 in TxS3 for
any fixed x ∈ C; see here Lemma 3.5 in [10]. We can therefore verify by means of
formula (9) and the usual chain rule that we actually obtain a smooth product metric

gl := X∗l (gS3�Rl (a)) = wl(r)+ dr ⊗ dr on T (Ol × (−a, a)), (30)

where wl(r) is the metric on T (Ol ×{r}) ∼= TOl whose coefficients can be explicitly
given by

(wl(r)) jk(x) = gS3(∂ j Xl(x, r), ∂k Xl(x, r)), for (x, r) ∈ Ol × (−a, a)

and for l = 1, . . . ,m, where ∂ j , ∂k are the partial derivatives onOl introduced above.
Moreover, for ρ ∈ Ua

β0
, we use the notion of the metrics wl(r) in order to globally

define the metric w(ρ) on TC by

(w(ρ)) jk(x) := (wl(ρ(x))) jk(x) ≡ gS3(∂ j X(x, ρ(x)), ∂k X(x, ρ(x))), for x ∈ Ol ,

and for l = 1, . . . ,m. Compare here also with [13], p. 1424, and [14], p. 275. In other
words, w(ρ) is the unique metric η on TC such that there holds:

η(x)+ dr ⊗ dr = (gl)(x,ρ(x)) on T(x,ρ(x))(Ol × (−a, a)) ∀ x ∈ Ol ,

and for each l = 1, . . . ,m. From w(ρ), we also obtain the metric w∗(ρ) on the
cotangent bundles T ∗(Ol). Throughout this proof, we will simultaneously use the
metric w(ρ) and the other metric σ(ρ) on TC which we had obtained already above
between formulae (26) and (27) and which enters here via the pulled back Laplacian
�ρ on (C, θ∗ρ (gS3�Ξ(ρ))) from lines (27) and (28). Now, exactly as in the proof of
Lemma 2.1 in [13], we can conclude from Φρ(p) = Λ(p) − ρ(S(p)) and from the
definition of the metric w(ρ), that there holds

L2
ρ(x) := |∇S3

p Φρ(Xl(x, ρ(x)))|2 = 1+ w∗(ρ)x (dρ(x), dρ(x)) ∀ x ∈ Ol ,

(31)

and for each l = 1, . . . ,m. Moreover, as in Lemma 3.1 in [14] or as in Lemma 2.1 in
[13], we pull back the scalar mean curvature HΞ(ρ) to Hρ := θ∗ρ HΞ(ρ) ≡ HΞ(ρ) ◦ θρ
and we notice that our introduction of the mean curvature vector in (6)—following
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exactly the conventional, general definition via formula (5) in [48]—coincideswith the
expression in formula (3.1) in [14], p. 274, at least up to aminus sign.We can therefore
follow the lines of the proof of Part B of Lemma 3.1 in [14] and express the function
Hρ in terms of Lρ , the metric w(ρ), and in terms of the Christoffel symbols Γ i

jk of
the product metric gl from formula (30) on each product Ol × (−a, a), evaluated in
the points (x, ρ(x)):

Hρ = P1(ρ).ρ + F1(ρ) on C (32)

for any ρ ∈ Ua
β0
, where we have exactly

− P1(ρ) = 1

L3
ρ

((− L2
ρ w jk(ρ)+ w jl (ρ)wkm(ρ) ∂lρ∂mρ

)
∂ j ∂k

+(
L2
ρ w jk(ρ) Γ i

jk(ρ)+ w jl (ρ)wki (ρ) Γ 3
jk(ρ) ∂lρ + 2wkm(ρ)Γ i

3k(ρ) ∂mρ

−w jl (ρ)wkm(ρ) Γ i
jk(ρ) ∂lρ ∂mρ

)
∂i

)
, (33)

and

F1(ρ) = 1

Lρ

w jk(ρ) Γ 3
jk(ρ), (34)

on account of formula (3.3) in [14]. In formulae (33) and (34), summation only runs
from 1 to 2 for repeated indices, and we have explicitly

Γ 3
jk(ρ)(x) ≡ Γ 3

jk(x, ρ(x)) = gS3(∂ j∂k Xl , ∂3Xl)(x, ρ(x)) for x ∈ Ol (35)

and for each l = 1, . . . ,m, as on p. 275 in [14]. As in the proof of Lemma 2.1 in [13],
one can derive from formulae (31) and (33) and Cauchy–Schwarz inequality that the
symbol pπ1 (ρ) of the leading 2nd order term of the operator P1(ρ) in (33) satisfies

− pπ1 (ρ)(ξ) ≥
1

L3
ρ

w∗(ρ)(ξ, ξ) ∀ ξ ∈ T ∗(C). (36)

Combining now formulae (28) and (32)–(35), one can start proving equation (29) for
any fixed ρ ∈ Va

α ≡ h4+α(C)∩Ua
β0

as in the proof of Lemma 2.1 in [13], p. 1425. First
of all, one can compute by means of formulae (28), (32), and (33) that the leading 4th
order term of the operator P(ρ) on the right hand side of equation (29) is explicitly
given by

Pπ (ρ) := 1

2 L2
ρ |A0

ρ |4
σ rs(ρ)

(
L2
ρ w jk(ρ)− w jl(ρ)wkm(ρ) ∂lρ∂mρ

)
∂r∂s∂ j∂k,

(37)

for any fixed ρ ∈ Ua
β0
. Moreover, one can argue as on p. 1425 in [13] that applying the

Laplacian �ρ to the right hand side in (33) leads to a quasilinear differential operator
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of fourth order, which can be decomposed by means of Pπ (ρ) in (37) in the following
way:

1

2 |A0
ρ |4

Lρ �ρ(P1(ρ).ρ) = Pπ (ρ).ρ + Q(ρ).ρ for ρ ∈ Ua
β0
∩ h4+α(C), (38)

where [ρ �→ Q(ρ).ρ] is a quasilinear differential operator of third order, which acts on
third-order partial derivatives only linearly. Hence, for any fixed ρ ∈ Ua

β0
, we have that

Q(ρ) ∈ L(h3+α(C), hα(C)). Now, comparing the explicit formula (37) with formula
(33), and using estimate (36) for the symbol pπ1 (ρ) of the leading 2nd order term of
the operator P1(ρ) in (33), the symbol pπ (ρ) of the operator Pπ (ρ) from line (37)
turns out to satisfy

pπ (ρ)(ξ) ≥ 1

2 L2
ρ |A0

ρ |4
σ ∗(ρ)(ξ, ξ)w∗(ρ)(ξ, ξ) ∀ ξ ∈ T ∗(C),

proving that the operator Pπ (ρ) is uniformly elliptic of fourth order. Moreover, as in
the proof of Lemma 2.1 in [13], we write the operator P(ρ) on the right hand side of
equation (29) as a sum of the principal quasilinear operator Pπ (ρ) of fourth order and
two further quasilinear operators [ρ �→ Q(ρ).ρ] and [ρ �→ R(ρ).ρ] of third order,
which contain all partial derivatives of third order of the operator G in formula (28),
i.e.,

P(ρ) := Pπ (ρ)+ Q(ρ)+ R(ρ) for ρ ∈ Ua
β0
∩ h4+α(C), (39)

where the quasilinear operator R(ρ) is concretely given by

R(ρ).ρ := Lρ

2 |A0
ρ |4

(
�ρ

( 1

Lρ

))
Lρ F1(ρ) for ρ ∈ Ua

β0
∩ h3+α(C).

Hence, combining formulae (28), (32), (38), and (39), we see as in the proof of Lemma
2.1 in [13] that the remaining term in formula (29) has to be the non-linear operator

F(ρ) := − Lρ

2 |A0
ρ |4

(
�ρF1(ρ)+ Hρ

(1
2
|Hρ |2 − 2Kρ

))

+R(ρ).ρ for ρ ∈ Ua
β0
∩ h3+α(C). (40)

Moreover, it follows as in the proofs of Lemma 2.1 in [13] and of Lemma 2.1 in [44],
that the non-linear operator F in (40) is—just by its construction—of only second
order and smooth, more precisely F is of second order and of class C∞(Ua

β0
, hβ0(C)).

Similarly one can infer from formulae (37)–(39), that P is a non-linear operator of
class C∞(Ua

β0
,L(h4+α(C), hα(C))). This has completed the proof of formula (29).

Furthermore, we can verify that the uniform ellipticity of P(ρ) implies that −P(ρ)

is sectorial in hα(C) by Theorem 3.3 in [40], for any fixed ρ ∈ Ua
β0
. Since h4+α(C)

embeds densely into hα(C),−P(ρ) therefore generates a strongly continuous analytic
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semigroup in hα(C), in classical notation “P(ρ) ∈ H(h4+α(C), hα(C))”, for every
ρ ∈ Ua

β0
; see here alsoTheorem3.5 in [40]. Finally, combining the quasilinear structure

in (29) of the non-linear operator G from lines (25) and (28), which we have just
verified above, with the correspondence between equations (24) and (25) and with the
well-known fact that the Clifford torus C is “Willmore” in S3, we infer indeed that
F(0) = G(0) = 0 on C from simply evaluating formula (29) at ρ = 0, just as asserted
below formula (29). ��
Relying on the proof of Theorem 2.2 in [13], we infer the following fundamental
existence, uniqueness, and regularity result for the quasilinear parabolic equation (25)
from Lemma 1 and Sect. 12 in [3]. See also Theorem 3.1 in [43]. We recall here, that
we have chosen β0 ∈ (α, β) before the statement of Lemma 1, implying that h2+β(C)
embeds compactly into h2+β0(C).

Theorem 3 For any ρ0 ∈ Ua
β := {ρ ∈ h2+β(C) | ‖ ρ ‖L∞(C)< a } there is a unique,

non-extendable solution

[t �→ ρ(t, ρ0)] ∈ C0([0, t+),Ua
β ) ∩ C∞((0, t+),C∞(C))

of the initial value problem

∂ρ

∂t
(x, t) = G(ρt )(x) for t ≥ 0, with ρ(x, 0) = ρ0(x) for every x ∈ C, (41)

where t+ = t+(ρ0) > 0 denotes the “time of maximal existence” of the smooth
solution of problem (41) and where G denotes the quasilinear differential operator
from lines (25) and (28). Moreover, the map [(t, ρ0) �→ ρ(t, ρ0)] defines a smooth
local semiflow on Ua

β in the sense of Sect. 12 in [3]. ��
Now, using some computations from Weiner’s article [48] about the Willmore func-
tional, we obtain the following counterpart to Lemma 3.1 in [13].

Lemma 2 The operator G : Va
α ≡ h4+α(C) ∩ Ua

β0
−→ hα(C) from line (28) is C∞-

smooth, and its Fréchet derivative in ρ = 0 ∈ Va
α is precisely the uniformly elliptic

linear operator

DρG(ρ)�ρ=0≡ DρF(0)− P(0) = −1

8
(�C + 4) ◦ (�C + 2) : h4+α(C) −→ hα(C),

where �C denotes the standard Beltrami–Laplace operator on C with respect to the
Euclidean metric induced by the injection C ↪→ S3, i.e., �C = �ρ�ρ=0 in the termi-
nology of equation (27).

Proof We can immediately infer fromLemma 1 that the operatorG : Va
α −→ hα(C) is

C∞-smooth and thus continuously Fréchet-differentiable in Va
α . Moreover, the man-

ifold Ξ(0) from (12) is simply the Clifford torus C in S3 by the above construction.
We may therefore useWeiner’s computation in [48], pp. 24–25 and p. 34, and formula
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(21), in order to infer that the Fréchet derivative of the non-linear mean curvature
operator [ρ �→ Hρ] of the manifolds Ξρ evaluated in ρ = 0 is concretely given by:8

DρHρ�ρ=0= �C + 4 : h2+α(C) −→ hα(C). (42)

Now we compute the Fréchet derivative of the first term in (28). To this end, we notice
that in our situation, there holds simply L0 ≡ 1, Hρ�ρ=0≡ HC ≡ 0, and |A0

C |2 ≡ 2.
We can therefore proceed exactly as in the proof of Lemma 3.1 in [13], deducing
from the chain rule for bilinear composition of non-linear operators combined with
equation (42) that

Dρ

( Lρ

2 |A0
ρ |4
�ρHρ

)
�ρ=0= 1

8
�C ◦ (�C + 4). (43)

Moreover, in order to compute the Fréchet derivative of the second term in (28), we
can employ again equation (42) and the equations L0 ≡ 1, H0 = HC ≡ 0, and
K0 = KC ≡ −1 and obtain here via the chain rule for bilinear composition:

Dρ

( Lρ

2 |A0
ρ |4

Hρ (
1

2
H2

ρ − 2 Kρ)
)
�ρ=0= 1

8
DρHρ�ρ=0

(1
2
H2
0 − 2 K0

)

= 1

4
(�C + 4). (44)

Hence, adding formulae (43) and (44), we finally obtain

DρG(ρ)�ρ=0= −1

8

(
�2
C + 4�C + 2�C + 8

)
= −1

8
(�C + 4) ◦ (�C + 2),

on account of equation (28). Compare here also with p. 29 in [48]. ��
Remark 2 We should remark here that Lemma 2 would become tremendously
complicated—and additionally useless—if we would start working between for-
mulae (8) and (25) in a tubular neighborhood of the stereographically projected
Clifford torus “Cliff” in R3, being conformally parametrized by the standard embed-

ding F(x, y) := 1√
2−sin(y)

(
cos(x), sin(x), cos(y)

)
, for x, y ∈ [0, 2π ], because

its mean and Gaussian curvatures are non-constant functions, concretely given by
HF (x, y) =

√
2 sin(y) and KF (x, y) =

√
2 sin(y)− 1, and already our formula (42)

would become instead: DρHρ�ρ=0= �Cliff+ (κ21 + κ22 ) on account of Appendix A in
[2], where the principal curvatures along Cliff are concretely given by κ1(x, y) = 1
and κ2(x, y) =

√
2 sin(y)− 1 via F . ��

In view of the proof of Lemma 4 and of Theorem 1 below, we recall here some
differential-geometric key-insights from [45] and [48]. First of all, replacing the
smooth submanifolds Ξ(ρt ) ↪→ S3 in (19)–(21) simply by the Clifford torus C, we

8 Here our procedure clearly differs from the one in [13] and [44], where the authors relied on the compu-
tations in Lemma 3.1 of [14], which we only used in the proof of Lemma 1.

123



24 Page 18 of 51 R. Jakob

have ∇⊥∂i ( f νC) = ∇C
∂i
( f ) νC on C and therefore also �⊥C ( f νC) = �C( f ) νC , for

any function f ∈ C∞(C), where gC and �C denote the Euclidean metric restricted to
TC and the standard Beltrami–Laplace operator on C, which are both induced by the
injection C ↪→ S3. Moreover, following Weiner [48], Sect. 3, we define two different
elementary types of smooth sections of the normal bundle NC of the Clifford torus C
within TS3, recalling here the direct bundle decomposition TS3�C= TC ⊕ NC from
formula (7), splitting each fiber TxS3 of the entire tangent bundle TS3, for x ∈ C, into
the 2-dimensional tangent space TxC of C and its 1-dimensional orthogonal comple-
ment NxC, yielding the bundle morphism

PTan(C),S3 :
⋃
x∈C
{x} × TxS3 −→

⋃
x∈C
{x} × Tx (C) = TC (45)

from formula (5) for Σ = C and f = inclusion : C ↪→ S3.

Definition 2 (1) We term elementsW of the 6-dimensional Lie-algebraΩ of the isom-
etry group Iso(S3) ≡ O(4) Killing fields on S3. We restrict every Killing field
W to the Clifford torus, and we consider its orthogonal projection WN (x) :=
W (x) − PTan(C),S3(W )(x), for x ∈ C, into the fibers NxC of the normal bundle
NC. We denote the linear space of all these sections WN ∈ Γ (NC) by ΩN .

(2) We denote by ∇̄ the standard Euclidean connection on R4, and we call a vector
field V on R4 parallel, if it satisfies ∇̄(V ) ≡ 0 on R4. We restrict any such vector
field V to S3, and then we project each vector V (x), for x ∈ S3, orthogonally into
TxS3, i.e., we consider the tangent vector field Z(x) := V (x)−〈V (x), x〉R4 x , for
x ∈ S3.Wedenote the 4-dimensional vector space of all such tangential projections
Z of parallel vector fields into TS3 by ξ .

(3) We restrict every Z ∈ ξ to the Clifford torus and we consider its orthogonal
projection ZN (x) := Z(x)−PTan(C),S3(Z)(x), for x ∈ C, into the fibers NxC of the
normal bundle NC. We denote the linear space of all these sections ZN ∈ Γ (NC)
by ξ N . ��

Definition 3 (1) We define the subspace of Γ (TS3) consisting of all conformal vector
fields on S3 by

Moeb(S3) := {
V ∈ Γ (TS3)

∣∣ ∃{Φt }t∈R ⊂ Möb(S3) with V = ∂tΦt |t=0
}
.

(2) We define the space of normal conformal directions9 along C by

Moeb⊥(C) := {
V �C−PTan(C),S3(V �C)

∣∣ V ∈Moeb(S3)
}
.

Remark 3 The linear spacesΩ and ξ fromDefinition 2 are vector subspaces ofΓ (TS3)
with trivial intersection, and one can easily check that each element of either of these
vector spaces generates a one-parameter family of Möbius-transformations of S3.
Hence according to Definition 3, Ω and ξ are both contained in the Lie algebra

9 Compare here also with p.31 in [48], with Appendix B in [33] or with Sect. 6 in [46].
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Moeb(S3) ofMöb(S3), which is a 10-dimensional Lie-group because of the isomorphy
Möb(Sn−1) ∼= SO+(1, n), whose dimension is known to be (n+1) n

2 .10 Adding the
dimensions of Ω and ξ—see here Definition 2 above—we therefore obtain that Ω ⊕
ξ =Moeb(S3) exactly holds; see here also pp. 30–33 in [48]. ��
Now, by Lemmata 5.1.3 and 5.1.7 and Theorem 3.3.1 in [45] and by Lemmata 3.3,
3.4, and 3.5 in [48], we have the following fundamental results:

Lemma 3 (1) Any vector field W N ∈ ΩN satisfies the partial differential equation

�⊥C (WN ) = −4WN .

(2) Any vector field Z N ∈ ξ N satisfies the partial differential equation

�⊥C (ZN ) = −2 ZN .

Moreover, both ΩN and ξ N are 4-dimensional R-vector spaces and their direct
sum exactly constitutes the linear spaceMoeb⊥(C) of all normal conformal direc-
tions along C from Definition 3, implying that dimR(Moeb⊥(C)) = 8.

��
Remark 4 The operator −(�⊥C + 4) appearing in Lemma 3 is the Jacobi operator
along the Clifford torus, i.e., corresponds to the second variation of the area functional
evaluated in the Clifford torus C with respect to sections of the normal bundle NC
along the Clifford torus, and a smooth vector field V ∈ Γ (NC) is termed a Jacobi
field along C, iff it satisfies (�⊥C +4)(V ) = 0, i.e., iff V is contained in the eigenspace
Eig−4(�⊥C ). The first part of Lemma 3 therefore shows us that orthogonal projections
WN ∈ ΩN of Killing fields along the Clifford torus C into its normal bundle are Jacobi
fields along C. ��
Combining Lemmata 2 and 3 with ideas from Lemma 3.2 and Corollary 1 in [48],
we finally arrive at the following result, which will substitute Lemmata 3.2 and 3.3 in
[13], [44] or Proposition 5.4 of [14] in the proof of Theorem 1.

Lemma 4 The spectrum of the Fréchet derivative

DρG(ρ)�ρ=0≡ DρF(0)− P(0) = −1

8
(�C + 4) ◦ (�C + 2)

is discrete and non-positive, and its kernel is an 8-dimensional R-vector subspace of
C∞(C), which corresponds to the vector subspaceMoeb⊥(C) of Γ (NC) of all normal
conformal directions along the Clifford torus C from Lemma 3 via the explicit linear
bijection (20):

Ker(DρG(ρ)�ρ=0) ∼= ΩN ⊕ ξ N =Moeb⊥(C). (46)

10 Compare here also with Proposition B.1 in [33].
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Proof Using the particularly simple form of the uniformly elliptic operator

TC := −DρG(ρ)�ρ=0= 1

8
(�C + 4) ◦ (�C + 2) : W 4,2(C) −→ L2(C), (47)

which we had proven in Lemma 2, one can prove as in Sect. 3 of [46] that TC is
a compact perturbation of an isomorphism between W 4,2(C) and L2(C) and thus a
Fredholm operator of index 0. Moreover, integration by parts and Cauchy-Schwarz
inequality show that there is some constant c > 0 such that

TC + c IdW 4,2(C) : W 4,2(C) −→ L2(C)

is injective and thus a topological isomorphism. Since the composition

ι ◦ (TC + c IdW 4,2(C))
−1 : L2(C) −→ L2(C) (48)

of the inverse (TC+c IdW 4,2(C))
−1 with the compact embedding ι : W 4,2(C) ↪→ L2(C)

is a compact and selfadjoint operator, classical spectral theory, e.g., Theorem 12.12 in
[1], guarantees that the spectrum of TC consists of countably many real and isolated
eigenvalues −c < ν1 < ν2 < ν3 < . . . ∈ R and that L2(C) is the closure of
the direct and L2-orthogonal sum of the eigenspaces Eigν j (TC) of TC . Obviously,

the same method applies to the Laplacian �C : W 2,2(C) −→ L2(C) as well, and
we therefore also obtain a direct and L2-orthogonal decomposition of L2(C) into
eigenspaces Eigλk (�C) of �C , yielding

⊕
j∈N

Eigν j (TC)
L2

= L2(C) =
⊕
k∈N

Eigλk (�C)
L2

. (49)

Now, one can easily verify that for each k ∈ N there is a unique j = j(k), such that
Eigλk (�C) ⊆ Eigν j(k) (TC), and that there holds

ν j(k) = 1

8
(λk + 4)(λk + 2) =: p(λk)

for the corresponding eigenvalues. Using the additional fact that all eigenspaces in
(49) are only finite-dimensional, one infers from (49) the stronger statement that every
eigenspace Eigν j (TC) is a finite direct sum of certain eigenspaces of�C , i.e., that there
holds

Eigν j (TC) = Eigλk1( j)
(�C)⊕ . . .⊕ Eigλkr ( j) (�C), (50)

for r ≥ 1 pairwise different eigenvalues λki ( j) of �C , which have to satisfy the
polynomial equation ν j = 1

8 (λki ( j)+4)(λki ( j)+2) = p(λki ( j)). This insight has two
important consequences. Firstly, for any fixed eigenvalue ν ∈ Spec(TC), there has to
be at least one eigenvalue λ ∈ Spec(�C) such that ν = p(λ), proving that exactly
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Spec(TC) =
{1
8
(λ2 + 6λ+ 8)

∣∣ λ ∈ Spec(�C)
}
. (51)

Secondly, since for any fixed ν ∈ Spec(TC), the polynomial equation p(λ) = ν has at
least one and at most two different real solutions, the decomposition in (50) actually
reduces to the two simple cases in which either r = 1 or r = 2. In particular, there
holds

Eigν(TC) = Eigλk1 (�C)⊕ Eigλk2 (�C), (52)

if there is more than only one eigenvalue λ of �C solving the polynomial equation
p(λ) = ν.11 Since we particularly aim to exclude negative eigenvalues of TC , we
should note here that the polynomial p(λ) = 1

8 (λ
2 + 6λ + 8) arising in (51) is only

negative on the open interval (−4,−2) and that its roots are the two endpoints−4 and
−2of this interval.Now, againmotivatedby (51),we should try to locate all eigenvalues
of�C on the Clifford torus. First of all, by Proposition 1 in [34], the Clifford torus can
be isometrically mapped onto the flat torus C/Γ ∗, where the lattice Γ ∗ is spanned by
the two vectors v1 := (2π, 0) and v2 := (π, π) in the complex plane, which reduces
our eigenvalue problem to the simpler one of the Euclidean Laplacian onC/Γ ∗. Now,
motivated by the solution of the eigenvalue problem of the Euclidean Laplacian on
cuboids ΠN

i=1[0, Ri ] in RN—see E.12.5 in [1]—we follow the classical “Ansatz” to
use complex functions of the form exp(i(c1x1 + c2x2)) = exp(ic1x1) exp(ic2x2) or
equivalently linear combinations of the functions sin(c1 x1 + c2 x2) and cos(c1 x1 +
c2 x2), for appropriate c1, c2 ∈ Z and (x1, x2) ∈ C/Γ ∗, in order to determine all
eigenvalues and eigenfunctions of the Euclidean Laplacian onC/Γ ∗. One can quickly
verify that our a-priori condition on any considered function

u(x1, x2) = A sin(c1 x1 + c2 x2)+ B cos(c1 x1 + c2 x2), for A, B ∈ R, (53)

to be actually well defined on C/Γ ∗, implies that u(x1, x2) in (53) can only be an
eigenfunction of the Euclidean Laplacian onC/Γ ∗—and then necessarily with eigen-
value −(c21 + c22)—if the vector c := (c1, c2) ∈ Z2 satisfies the two compatibility
conditions

〈c, v1〉 = 2πk1 and 〈c, v2〉 = 2πk2, (54)

for appropriate k1, k2 ∈ Z. Now, for any pair of natural numbers m, n ∈ N0, we can
choose c1 = m − n and c2 = m + n or vice versa c1 = m + n and c2 = m − n,
yielding in each case an admissible vector c = (c1, c2) in (54) which additionally
satisfies |c|2 = 2(m2 + n2). Hence, at least the inclusion

Spec(�C) ⊇ {−2(m2 + n2) |m, n ∈ N0} (55)

has to hold for the Beltrami–Laplacian on the Clifford torus. Now noting that the area
of the trapezoid spanned by v1 = (2π, 0) and v2 = (π, π) is 2π2, onemight guess that

11 Compare here with the statements of Lemma 3.2 in [48].
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the choices A = 1√
2π

and B = ± 1√
2π

in (53) yield an L2(C/Γ ∗,R)-orthonormal
system

{ 1√
2π

sin((m − n) x1 + (m + n) x2)± 1√
2π

cos((m − n) x1 + (m + n) x2),

1√
2π

sin((m + n) x1 + (m − n) x2)± 1√
2π

cos((m + n) x1 + (m − n) x2)
}
,

(56)

for m, n ∈ N0, of doubly periodic eigenfunctions of the Euclidean Laplacian on
C/Γ ∗ according to condition (54). Our assertion that these functions are additionally
of length 1 and mutually orthogonal in L2(C/Γ ∗,R) can be verified by means of
concrete computation, using the variable transformation (x1, x2) = (z1 + 1

2 z2,
1
2 z2),

for (z1, z2) ∈ [0, 2π ]2, Fubini’s Theorem and the entire discussion of the eigenvalue
problem for the Laplacian on the interval [−π, π ]; see Examples 9.9 and E12.4 in [1].
Moreover, the set (56) constitutes a Schauder basis of L2(C/Γ ∗,R), because the set
of functions

{
(eix1)(m−n) · (eix2)(m+n), (eix1)(m+n) · (eix2)(m−n)

∣∣∣m, n ∈ N0

}

spans a dense subset of L2(C/Γ ∗,C) on account of the complex version of Stone–
Weierstrass’ Theorem. Therefore, the set (56) actually spans each eigenspace of the
Euclidean Laplacian on C/Γ ∗ on account of the Spectral Theorem for compact, self-
adjoint linear operators; see [1], Theorems 12.12 and 12.17. Hence, our first guess in
(55) about the eigenvalues of �C turns out to have been very effective, and our entire
reasoning proves equality in (55), i.e.,12

Spec(�C) = {−2(m2 + n2) |m, n ∈ N0}. (57)

Now, since the intersection of the set {−2(m2 + n2) |m, n ∈ N0} with the inter-
val (−4,−2) is empty, there indeed cannot exist any negative eigenvalues of
TC = −DρG(ρ)�ρ=0 on account of statements (51) and (57). Moreover, the set
{−2(m2 + n2) |m, n ∈ N0} actually contains the two numbers −2 and −4—the two
roots of our polynomial p(λ) = 1

8 (λ
2 + 6λ + 8) from (51)— and we can therefore

infer from (52) and (57) that there holds exactly

Eig0(TC) = Eig−2(�C)⊕ Eig−4(�C). (58)

Moreover, by formulae (19)–(21), our eigenvalue problem �C( f ) = λ f , for f ∈
C∞(C), is equivalent to the eigenvalue problem �⊥C (V ) = λ V , for V ∈ NC. We
therefore recall, that by Lemma 3 there holds

Eig−2(�⊥C ) ⊇ ξ N and Eig−4(�⊥C ) ⊇ ΩN , (59)

12 This result is not new, and it was stated without proof on page 34 in [48].
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and that ξ N and ΩN are two 4-dimensional R-vector spaces, respectively. Moreover,
using our considerations between (54) and (56), we can easily check that exactly
the three vectors c = (1, 1), (−1, 1), (1,−1) have squared distance |c|2 = 2 and
are additionally admissible in (54), and similarly that exactly the two vectors c =
(2, 0), (0, 2) have squared distance |c|2 = 4 and are additionally admissible in (54).
Then one can quickly infer from formula (56) itself by elementary inspection that
both the triplet of vectors c = (1, 1), c = (−1, 1), and c = (1,−1) and also the
pair of vectors c = (2, 0), c = (0, 2) give rise to only two different pairs of linearly
independent eigenfunctions of� on C/Γ ∗, respectively, implying the non-trivial fact
that both Eig−2(�C) and Eig−4(�C) are 4-dimensional; compare here again with [48],
p. 34.Hence, on account of statement (59), the eigenspacesEig−2(�⊥C ) andEig−4(�⊥C )
exactly coincide with the 4-dimensional vector spaces ξ N and ΩN , respectively, i.e.,
there hold two equalities in (59). Hence, combining this again with formulae (21) and
(58), the assertion of the lemma follows. ��

3 Proofs of Theorems 1 and 2

Proof of Theorem 1 Part (i)Without loss of generality, we can assume that F∗ : Σ ∼=−→
1√
2
(S1 × S1) ≡ C is a diffeomorphic parametrization of exactly the Clifford torus in

S3. Following the proof of Theorem 1.2 in [13], respectively, the lines of Sect. 6 in
[14], we are going to use Lemmata 1, 2, and 4 and Theorem 3 and adopt the procedure
in Sect. 4 of [43], in order to construct an invariant “center manifold”Mc for the flow
equation (25) as a graph over the 8-dimensional space Ker(TC). To this end, we use
again the fact that the composition ι◦(TC+c IdW 4,2(C))

−1 from line (48) is compact and
selfadjoint, implying that the Hilbert space L2(C) can be decomposed orthogonally
with respect to 〈 · , · 〉L2(C) into the finite-dimensional eigenspaces Ker(TC) ⊂ C∞(C)
and Eigμ j

(TC) ⊂ C∞(C) of TC , for the positive eigenvalues μ j of the linear operator

TC in L2(C), which means precisely

L2(C) = Ker(TC)⊕
⊕
μ>0

Eigμ(TC)
L2

, (60)

where we have also used Lemma 4. Now, by the second statement of Lemma 4, we
can choose an L2(C)-orthonormal system of 8 smooth eigenfunctions {Yk}k=1,...,8 of
TC in Ker(TC), and we define the continuous linear projection

πc :=
8∑

k=1
〈 ·,Yk〉L2(C) Yk : L2(C) −→ Ker(TC) (61)

of L2(C) onto the center subspace Ker(TC) of the linear operator TC , which is orthog-
onal with respect to 〈 · , · 〉L2(C) on account of (60). The restrictions of πc in (61) to
the Banach spaces hr (C), for r > 0, are still continuous, linear projections onto the
finite-dimensional subspace Ker(TC), and we therefore obtain as in Sect. 4 of [43] a
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unique decomposition of hr (C) into two closed linear subspaces:

hr (C) = range(πc�hr (C))⊕ ker(πc�hr (C)) ≡ Ker(TC)⊕ hrs(C), (62)

for any fixed r > 0, especially for r = α or r = 4+ α. Obviously, TC is a symmetric
operator in L2(C) on account of the concrete formula (47), which implies together
with (61) that

πc(TC( f )) =
8∑

k=1
〈TC( f ),Yk〉L2(C) Yk =

8∑
k=1
〈 f , TC(Yk)〉L2(C) Yk = 0

for every function f ∈ W 4,2(C). In particular, there holds therefore:

TC ◦ πc�h4+α(C)= 0 = πc�hα(C)◦TC on h4+α(C),

i.e., that TC descends to a direct sum T c
C ⊕ T s

C of linear operators, which respects
the direct sum decomposition Ker(TC) ⊕ h4+α

s (C) of h4+α(C) in (62). Obviously,
by (60) and (62), the restriction T s

C of TC to h4+α
s (C) has only positive eigenvalues

0 < μ1 < μ2 < . . .. As in [13], [14], and [43], we shall consider besides the projection
πc in (61) the L2-orthogonal projection π s := idL2(C) − πc of L2(C) onto ker(πc),
whose restriction to hr (C) maps hr (C) onto the “stable subspace” hrs(C) ⊂ hr (C) in
(62) with respect to TC . Now, following Sect. 2 in [42], Sect. 4 of [43], or Sect. 9.2.1
in [27], we rewrite equation (25) in the equivalent form

∂tρt + TC(ρt ) ≡ ∂tρt + (P(0)− DρF(0)).(ρt ) = g(ρt ), (63)

with g(ρ) := (P(0) − P(ρ)).(ρ) + F(ρ) − DρF(0).(ρ), satisfying g(0) = 0 and
Dg(0) = 0, because of F(0) = 0 by Lemma 1. Moreover, as in formula (4.21) in [43]
or as in Sect. 9.2.1 in [27], decomposition (62) yields the equivalent formulation

∂t xt + T c
C (xt ) = πcg(xt , yt )

∂t yt + T s
C (yt ) = π sg(xt , yt ) (64)

of equation (63), respectively, of equation (25) as a coupled system, for two seperate
functions x : [0, T ) −→ Ker(TC) and y : [0, T ) −→ h4+α

s (C). Now we shall
quickly check the assumptions (4.1)–(4.8) of Theorem 4.1 in [43], in order to obtain
a locally invariant center manifold for our evolution equation (63), respectively (64).
To this end, we should firstly follow the proof of Theorem 2.2 in [13] and translate
our framework of Lemma 1 correctly into the specific language of Sects. 2–4 in [43].
In view of our Lemma 1, we should firstly choose the basic pair of Banach spaces
X1 ↪→ X0 in (4.2) of [43] as X1 := h4+α(C) and X0 := hα(C), then we choose
the pair of interpolation parameters 0 < β < α < 1 in [43] as β := 2−α+β0

4 ,

whereas we only rename α := γ ∈ (
2−α+β0

4 , 1) first of all. Finally, we see that here
Uβ := Ua

β0
is an open subset of the interpolation space Xβ = h2+β0(C) between X0
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and X1. On account of Lemma 1 and line (25), we can now immediately verify that the
quasilinear operator A := P and our non-linear operator F satisfy exactly conditions
(4.1) and (4.2) in [43]. Moreover, choosing slightly larger spaces E0 := hα′(C) and
E1 := h4+α′(C), with α′ ∈ (0, α) and fixing now the interpolation parameter γ as

γ := 2−α+β ′0
4 for some β ′0 ∈ (β0, β), we obtain here Xγ = h2+β ′0(C) and its open

subset Uγ := Ua
β0
∩ Xγ = {ρ ∈ h2+β ′0(C) | ‖ ρ ‖L∞(C)< a }, and we can infer from

our Lemma 1, that indeed P(ρ) ∈ H(h4+α′(C), hα′(C)), for any ρ ∈ Uγ , and also
that E1 = h4+α′(C) ↪→ Xβ ≡ h2+β0(C) ↪→ hα′(C) = E0 is an interpolating triple.
Now condition (4.3) in [43], which expresses maximal regularity in the sense that
P(ρ) ∈ Mγ (h4+α(C), hα(C)) for each ρ ∈ Uγ , follows right away from Theorem
2.2 in [43]. Condition (4.5) is true by our Lemma 1, and the linear operator L in
(4.6) is simply our operator TC = P(0) − DρF(0) from line (47), which indeed
satisfies the spectral conditions (4.7) and (4.8) in [43] on account of our Lemma 4.
Hence, Theorem 4.1 in [43] guarantees us, that for some fixed m ∈ N there exists a
neighborhood U = U (m) of 0 in Ker(TC) and a function

γ ∈ Cm(U , h4+α
s (C)), with γ (0) = 0 and Dγ (0) = 0, (65)

such that Mc := graph(γ ) is a “locally invariant center manifold” for the semiflow
generated by the uniquemaximal solutions of equation (25), respectively of the coupled
system (64), provided by Theorem 3 above. Obviously, by construction and statement
(65)Mc is a submanifold of h4+α(C) with tangent space T0(Mc) = Ker(TC), which
is 8-dimensional on account of Lemma 4. In addition, the invariant manifold Mc

is “exponentially attractive” by Theorem 5.8 in [43]. This means here precisely the
following: Due to Lemmata 1, 2, and 4 and Theorem 3, we may apply Theorem 5.8
in [43], and this theorem guarantees us, that there is some appropriate ω ∈ (0, μ1)—
where μ1 is the smallest positive eigenvalue of TC respectively T s

C by decomposition
(62)—a positive constant c = c(ω, β, α) and a neighborhoodW of 0 in h2+β(C), such
that

‖ π s(ρ(t, ρ0))− γ (πc(ρ(t, ρ0))) ‖h4+α(C)

≤ c
e−ω t

t1−θ
‖ π s(ρ0)− γ (πc(ρ0)) ‖h2+β(C) (66)

for each ρ0 ∈ W and for t ∈ (0, t+(ρ0)), as long as there holds πcρ(t, ρ0) ∈ U , and
where we set θ := (2+β−α)

4 . Here, [(t, ρ0) �→ ρ(t, ρ0)], t ∈ [0, t+(ρ0)) denotes the
unique classical and maximal solution of initial value problem (41) from Theorem 3
above.

Part (ii) Estimate (66) tells us immediately, that the invariant manifoldMc contains
all smooth equilibria ρ of equation (25) which are contained in a sufficiently small
neighborhood of 0 in h2+β(C), because the restriction of the linear projection πc

from (61) to h2+β(C) is particularly a continuous map from h2+β(C) onto ker(TC) by
(62). Now, again following closely the proof of Theorem 1.2 in [13], respectively, of
Proposition 6.4 in [14], we will show that— at least locally about 0—the manifold
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Mc consists only of equilibria of equation (25), and even more precisely: locally
about 0 the 8-dimensional manifold Mc consists only of smooth distance functions
ρ, whose induced maps θρ(x) := expx (ρ(x) νC(x)), x ∈ C, from line (18) yield
C∞-diffeomorphisms between C and embedded tori in S3, which are congruent to the
Clifford torus C modulo the action of Möb(S3). Following the notation of the proof
of Theorem 1.2 in [13], we call the set of these special equilibria of equation (25)
“M”. Now, in order to prove the above assertion, we firstly recall from Remark 3, that
Möb(S3) ∼= SO+(1, 4) is a 10-dimensional Lie-group whose Lie algebraMoeb(S3) is
the direct sum of the particular vector spaces ξ andΩ , introduced in Definition 2. Now
we choose a system of 10 linearly independent conformal vector fields {vk}k=1,...,10 ⊂
ξ ⊕ Ω ⊂ Γ (TS3). For any tuple z = (z1, . . . , z10) ∈ B10

1 (0) ⊂ R10, the linear
combination Vz := ∑10

k=1 zk vk ∈ ξ ⊕Ω is smooth and generates—according to the
first part of Definition 3—a smooth 1-parameter family of conformal transformations
Uz(t) ∈ Möb(S3), t ∈ R, namely in terms of the flow Ψz : S3 × R −→ S3, which is
generated by the flow lines of the initial value problem

∂t y(t) = Vz(y(t)), y(0) = y0 ∈ S3, (67)

for an unknown smooth function y : R −→ S3, and then setting: Uz(t) := Ψz( · , t),
for every fixed z ∈ B10

1 (0). Now, for technical reasons, we extend the above conformal
vector fields {vk}k=1,...,10 ⊂ Γ (TS3)—and thus automatically any linear combination
Vz of them—smoothly and with compact support {y ∈ R4 | dist(y,S3) ≤ 1

4 } from S3

onto entire R4, and we shall not distinguish in our notation between these extensions
and the original vector fields {vk}k=1,...,10. Hence, we can interpret problem (67) as
an initial value problem on both the compact, closed manifold S3 and also on entire
R4 with smooth right hand side, which in both cases additionally depends on the 10
real parameters (z1, . . . , z10). We can therefore infer from Theorem 1.5.3 in [21], i.e.,
from classical theory about ordinary differential equations in Euclidean spaces, that
the map

U( · )(1) : B10
1 (0) −→ Möb(S3) (68)

is C∞-smooth. Now, the images Uz(t)(C) are embedded, compact tori in S3 being
conformally equivalent to C, for any z ∈ B10

1 (0) and for any t ∈ R. In particular, the
tori Uz(t)(C) are Willmore tori, i.e., any immersion fz,t : Σ −→ S3 parametrizing
Uz(t)(C) is a critical point of W . Now we choose some small ε > 0, consider the
tori Cz := Uz(1)(C) for any z ∈ B10

ε (0) and obtain via Fermi coordinates (10),
respectively, via formula (11) a unique smooth function ρz ≡ ρCz , which measures
the pointwise, signed geodesic distance between points x ∈ C and the torus Cz . Hence,
the function [x �→ X(x, ρz(x))], appearing already in formula (12), parametrizes Cz
diffeomorphically, i.e.,

X( ·, ρz( · )) : C
∼=−→ Cz, (69)
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as a graph over C via the exponential map, for any fixed z ∈ B10
ε (0), provided ε > 0

is sufficiently small. On account of the smoothness of the map U( · )(1) in (68), and
on account of formula (11) combined with the smoothness of the Fermi coordinate
functions S and Λ in (10), we easily infer also the smoothness of the non-linear
operator

ρ( · ) : B10
ε (0) −→ h4+α(C), (70)

assigning to z ∈ B10
ε (0) the unique smooth distance function ρz , that we have just

obtained via formula (11). Since the tori Cz are Willmore tori, every distance function
ρz is an equilibrium of the corresponding evolution equation (25), for z ∈ B10

ε (0),
which implies that

ρz ∈Mc ∀ z ∈ B10
ε (0) (71)

according to estimate (66), provided ε > 0 is sufficiently small, where we have used
that U0(1) = idS3 implies that ρ0 = 0 in h4+α(C). As in the proof of Theorem 1.2 in
[13], we consider now the composition

F := πc ◦ ρ( · ) : B10
ε (0) −→ ker(TC), (72)

for ε > 0 as small as in (71).We note here for later use that statement (70) implies, that
the map F is a smooth map between finite-dimensional flat manifolds, and moreover,
we note that ρ0 = 0 implies that F(0) = 0 in ker(TC). Now, the vector spaceΩ⊕ξ ⊂
T (S3) of all conformal vector fields on S3 is 10-dimensional, whereas the vector
space Moeb⊥(C) ≡ ξ N ⊕ ΩN ⊂ Γ (NC) of normal conformal directions along C
is only 8-dimensional by our Lemma 4, and the proofs of Lemmata 3.4 and 3.5 in
[48] show that the kernel of the homomorphism Ω −→ ΩN , mapping V �→ V N , is
two-dimensional, whereas the projection of ξ onto ξ N is isomorphic. Hence, we may
assume without loss of generality that the 10 basis vectors vk of Ω ⊕ ξ are chosen
in such a way that (vk)N ≡ 0, for k = 9, 10, i.e., that {(vk)N }k=1,...,8 constitutes a
basis of the vector space Moeb⊥(C) = ΩN ⊕ ξ N of normal conformal directions
along C. Moreover, we should notice here, that the unique distance function ρz ≡ ρCz
satisfying (69) can be written down more precisely by means of formula (11) and our
definition Cz := Ψz(C, 1):

ρz(x) = Λ ◦ (
S�Ψz(C,1)

)−1
(x), ∀ x ∈ C, (73)

and for any fixed z ∈ B10
ε (0). Taking now also V0 ≡ 0 on S3 and thusΨ0( · , t) ≡ IdS3 ,

∀ t ∈ R, and the definition of the map S in (10) into account, we can compute the
partial derivative with respect to zk of the smooth composition (73) in z = 0 by means
of the chain rule:

Dzkρz(x)�z=0=
〈
(∇S3Λ ◦ IdC)(x), DzkΨz(x, 1)�z=0

〉
S3

= 〈νC(x), DzkΨz(x, 1)�z=0〉S3 ∀ x ∈ C, (74)
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where 〈 ·, · 〉S3 denotes the Euclidean scalar product 〈 · , · 〉R4 restricted to TS3. In (74),
we have also used the general fact that the gradient of the signed distance function,
being defined in a narrow tube about some smooth, orientable, and compact surface
M ↪→ S3 yields exactly one of the two globally defined unit normals in N (M), when
restricted to M itself.13 Again using the fact that our equation (67) can be extended
to an ordinary differential equation in R4 with 10 additional real parameters, we can
apply here formula (1.5.3) in Theorem 1.5.3 in [21] and compute exactly

DzkΨz(x, 1)�z=0 = DzkΨz(x, 1)�z=0−DzkΨz(x, 0)�z=0
=

∫ 1

0

d

dt
(DzkΨz(x, t))�z=0 dt =

∫ 1

0
Dzk Vz(Ψz(x, t))�z=0 dt

=
∫ 1

0
vk(x) dt = vk(x), ∀ x ∈ C,

for k = 1, . . . , 10, where we have used the fact that also the extended vector fields
Vz satisfy V0 ≡ 0 on entire R4 and that therefore Ψ0( ·, t) reduces to IdR4 , for every
t ∈ R. Together with (74), we arrive at the following formula:

Dzkρz(x)�z=0= 〈νC(x), vk(x)〉S3 ≡ 〈νC(x), (vk)N (x)〉S3 , ∀ x ∈ C, (75)

for k = 1, . . . , 10. Using the isomorphism (46) between the vector space ker(TC) and
the 8-dimensional vector space Moeb⊥(C) ≡ ξ N ⊕ΩN , we obtain from the chosen
basis vectors {(vk)N }k=1,...,8 of Moeb⊥(C) unique coordinate functions {vk}k=1,...,8
which form a basis of the vector space ker(TC) andwhich turn out to satisfy by equation
(75):

Dzkρz�z=0= 〈(vk)N , νC〉S3 = vk ∈ ker(TC), for k = 1, . . . , 8.

Hence, on account of the definition of F in (72) and the chain rule, the partial derivative
of F in z = 0 in direction of the coordinate zk reads

Dzk F(0) = πc(Dzkρz�z=0
) = πc(vk) = vk, for k = 1, . . . , 8,

showing that the entire differential

DF(0) : R10 −→ ker(TC)

is an epimorphism. Since we also know already that there holds F(0) = 0, we can
now infer from the classical Open Mapping Theorem for C1-maps between finite-
dimensional vector spaces, that there is some small open ball Bδ(0) ⊂ U about 0
in ker(TC)—where U is as in (65) and δ > 0 depends on the size of ε in (71) and
(72) depending in turn on the size ofU on account of statement (66)—which satisfies
Bδ(0) ⊂ F(B10

ε (0)). By definition of the map F in (72), this means that the projection

13 See here our construction of Fermi coordinates about C in (8)–(10) and formula (35) in [35] for the
similar case in which the ambient space is R3.
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πc of h4+α(C) onto ker(TC) restricted to the set of distance functions {ρz | z ∈ B10
ε (0)}

covers Bδ(0) in ker(TC), i.e.,

πc({ρz | z ∈ B10
ε (0)}) ⊇ Bδ(0), (76)

if δ > 0 is sufficiently small. Furthermore, on account of statement (71), we know
that {ρz | z ∈ B10

ε (0)} is contained in the 8-dimensional center manifold Mc, i.e., in
the graph of the function γ ∈ Cm(U , h4+α

s (C)) in (65) over the neighborhood U of 0
in Ker(TC), provided ε > 0 has been chosen sufficiently small. We can therefore infer
from (76) the sharper statement

Bδ(0) ⊆ πc({ρz | z ∈ B10
ε (0)}) = πc({ρz | z ∈ B10

ε (0)} ∩ graph(γ )). (77)

Now, recalling the direct decomposition (62) of h4+α(C) into the closed subspaces
ker(TC) and h4+α

s (C), we trivially have πc(v, γ (v)) = v for every v ∈ U on account
of the definition of γ in (65). We can therefore refine statements (76) and (77) even
further:

Bδ(0) ⊆ πc({ρz | z ∈ B10
ε (0)} ∩ graph(γ �Bδ(0))

) ⊆ Bδ(0),

implying that the sets {ρz | z ∈ B10
ε (0)} ∩ graph(γ �Bδ(0)) and graph(γ �Bδ(0)) exactly

coincide, provided δ > 0 is sufficiently small. But this is equivalent to the statement
that graph(γ �Bδ(0)) is contained in {ρz | z ∈ B10

ε (0)}. Recalling now the definition of
the set M of particular equilibria of equation (25) at the beginning of Part (ii) of this
proof and the fact that all the tori Cz in (69) are—just by construction—conformally
equivalent to the Clifford torus, we therefore finally conclude that graph(γ �Bδ(0)) is
contained in the set of smooth equilibria of equation (25) of typeM, which means—
again by (65)—that at least locally about the zero-function the center manifoldMc =
graph(γ ) only consists of smooth equilibria of equation (25) of type M.

Part (iii) As in the proof of Theorem 1.2 in [13], we can infer from the result of
step (ii), that the locally “reduced flow” of equation (25) onMc = graph(γ )—which
is determined by flow lines {zt } of class C0([0, t+), ker(TC))∩C∞((0, t+), ker(TC))
of the “reduced evolution equation”

∂t zt + T c
C (zt ) = πcg(zt , γ (zt )), z0 ∈ Bδ(0) ⊂ ker(TC), (78)

according to the decomposition in (64)—consists of equilibria only, i.e., the locally
“reduced flow” of equation (25) does not move at all, if it starts moving in a sufficiently
small neighborhood about 0 in ker(TC). In particular, the zero-function is a stable
equilibrium of the reduced equation (78). Hence, by Proposition 3.2, respectively,
Theorem 3.3 in [42] also the point (0, γ (0)) = (0, 0) is a stable equilibrium of the
original evolution equation (25) in h2+β(C). This means precisely that there exists for
every neighborhood W1 of 0 in h2+β(C) another neighborhood W2 of 0 in h2+β(C)
such that any solution of evolution equation (25) exists globally and stays within W1,
provided its initial value ρ0 is contained in W2. Combining this with statement (66),
we obtain even some more precise information: There is a neighborhood W of 0 in
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h2+β(C), depending on the size of the neighborhood U of 0 in ker(TC) from line (65)
such that any flow line of evolution equation (25), which starts moving in some initial
function ρ0 ∈ W , exists globally and approaches the center manifoldMc = graph(γ )

asymptotically in the h4+α(C)-norm for all t > 0, according to estimate (66). See here
also some technical explanations in the proof of Theorem 6.5 in [14].

Part (iv) Now we can follow exactly the last step of the proof of Theorem 1.2 in
[13], i.e., we can apply the reasoning of the proof of Theorem 6.5(b) in [14]—in which
the statements of Propositions 6.2 and 6.4 and Theorem 6.5(a) of [14] correspond to
the results of our steps (i)-(iii) above—in combination with the bootstrap-technique of
Proposition 6.6 in [14], in order to draw the following conclusions: For any fixed k ∈ N
and for some appropriately chosen ω ∈ (0, μ1)—where μ1 is the smallest positive
eigenvalue of TC respectively of T s

C—there exists a neighborhood W = W (k, ω) of
0 in h2+β(C) with the following properties: Given an initial function ρ0 ∈ W , the
unique maximal and smooth solution {ρ(t, ρ0)}t∈[0,t+(ρ0)) of initial value problem
(41) exists globally, and there exist a constant c = c(k, ω) > 0 and a unique function
z0 = z0(ρ0) ∈ Bδ(0) ⊂ ker(TC), such that

‖ (
πc(ρ(t, ρ0)), π

s(ρ(t, ρ0))
)− (z0, γ (z0)) ‖Ck (C)

≤ c e−ω t ‖ π s(ρ0)− γ (πc(ρ0)) ‖h2+β(C) (79)

holds for all t ≥ 1. Now, again using the result of step (ii), we know that for z0 ∈ Bδ(0)
the pair (z0, γ (z0)) ∈ Mc actually has to be contained in the set of equilibria of
equation (25) of typeM. Hence, (z0, γ (z0)) is a smooth distance function on C, whose
induced map θ(z0,γ (z0))(x) = expx ((z0, γ (z0))(x) νC(x)), x ∈ C, from line (18) yields
a C∞-smooth diffeomorphism between C and some embedded torus in S3, which is
congruent to the Clifford torus C in S3. Thus statement (79) guarantees that having
fixed some k ∈ N and some appropriate ω ∈ (0, μ1), for any initial distance function
ρ0 taken from a sufficiently small neighborhood W = W (k, ω) of 0 in h2+β(C) the
unique maximal and smooth solution ρ( ·, ρ0) of equation (25) exists globally and
converges fully to a smooth distance function (z0, γ (z0)), which yields—via formula

(18)—a smooth diffeomorphic parametrization θ(z0,γ (z0)) : C
∼=−→ S3 of an embedded

torus in S3, which is conformally equivalent to the Clifford torus, and this convergence
is at an exponential rate with respect to theCk(C)-norm as t →∞. Finally, we remark
that we require the initial immersion F1 : Σ −→ S3 to be C∞-smooth. On account of
Theorem 1 in [17], this implies that there is a unique smooth and maximal flow line
{P(t, 0, F1)}t∈[0,Tmax) of the MIWF, starting in F1 at time t = 0, and moreover the
proof of Theorem 1 in [17] shows that any given C∞-smooth solution { ft }t∈[0,T ) of
the “relaxed MIWF-equation” (24) on Σ × [0, T ), with f0 = F1 and with arbitrarily
fixed T > 0, yields the unique smooth flow line {P( ·, 0, F1)}t∈[0,T ) of the original
MIWF, starting in F1 at time t = 0, by means of reparametrization with a C∞-smooth
family of C∞-smooth diffeomorphisms from Σ onto itself. 14 Hence, on account of
the “correspondence” between C∞-smooth flow lines of the relaxed MIWF-equation
(24) and C∞-smooth flow lines of evolution equation (25)—as explained in formulae
(12)–(25) of Sect. 2—the above results prove the assertion of this theorem. ��
14 See here also the second part of Theorem 5 below.
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Proof of Theorem 2 First of all, we fix an integer k ≥ 4 and some α ∈ (0, 1) as in the
statement of the theorem.On account of the compactness of the torusΣ and on account
of the conformal invariance of the MIWF, we may assume that the image f0(Σ) of
any immersion f0 : Σ −→ S3 satisfying ‖ f0 − F∗ ‖Ck,α(Σ,R4)< ε is still contained
in S3 \ {(0, 0, 0, 1)}, for any sufficiently small ε > 0, to be further specified below.
Again on account of the invariance of the MIWF and also of the Willmore functional
itself, we may therefore compose the givenCk-local minimizer F∗ with stereographic
projection S : S3\{(0, 0, 0, 1)} −→ R3 and prove the entire statement of the theorem
for the MIWF in R3. We choose this detour in order to easily adopt the basic ideas of
the proofs of Lemma 4.1 in [8] and of Theorem 1.2 in [10], especially the technique
of Theorem 5.1 in [46], respectively, of Lemma 4.1 in [10] to represent immersions
into Rn as normal graphs over some fixed smooth reference immersion—together
with corresponding estimates—and then to reduce the complexity of the non-linear
MIWF-equation by means of exactly this geometrically motivated graph-ansatz, as
elaborated in formulae (4.3)–(4.6) of [8]. Now, we require by assumption that our
initial immersion f0 : Σ −→ R3 is smooth and satisfies

‖ f0 − F∗ ‖Ck,α(Σ,R3)< ε (80)

for some sufficiently small ε ∈ (0, ε0), to be determined only below in (117). As in
the proof of Lemma 4.1 in [8], we conclude from condition (80) that we can represent
the immersion f0 as a graph over the given Willmore immersion F∗, which means
precisely on account of Theorem 5.1 in [46]: There is a smooth section N0 of the

normal bundle of F∗ and a smooth diffeomorphism Φ0 : Σ
∼=−→ Σ , such that there

holds:

f0 ◦Φ0 = F∗ + N0 on Σ. (81)

Furthermore, we infer from condition (80) and from the proof of Theorem 5.1 in [46]
combined with Lemma 3.1 in [15] for k = 0 = q,15 that there is some continuous and
monotonically increasing function Co : [0, ε0] −→ R+ with Co(0) = 0, depending
on the immersion F∗ and on the above k ≥ 4, such that

‖ N0 ‖Ck,α(Σ)=‖ f0 ◦Φ0 − F∗ ‖Ck,α(Σ)< Co(ε) (82)

holds for the same positive, small ε as the one in (80). In order to smartly use (81) and
(82), we consider now the modified Cauchy-problem

∂
⊥ f̃t
t ( f̃t ) = − 1

|A0
f̃t
|4 ∇L2W( f̃t ), f̃0 = f0 ◦Φ0 on Σ (83)

of the MIWF, which is solved by any smooth reparametrization {P(t, 0, f0) ◦Φt }t≥0
of the smooth flow line P( · , 0, f0) of the MIWF, starting in f0. Now, again Theorem

15 See here also Sect. 2 in [12], Sect. 3 in [28] and [11].
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5.1 in [46], condition (80), and equation (81) motivate us to momentarily assume the
existence of a—sufficiently smooth—short-time solution { f̃t } of equation (83) of the
particularly simple form f̃t = F∗ + Nt , for a family of normal sections Nt along F∗,
starting in the smooth immersion F∗ + N0 = f0 ◦Φ0 at time t = 0. In order to prove
this intuitive idea rigorously, we follow the lines of the proof of Lemma 4.1 in [8], that
is we reformulate the short-time existence problem at hand equivalently by means of
the function φt := 〈Nt , νF∗〉R3 , the signed length of any fixed normal section Nt along
F∗, and we argue as in formulae (4.4)–(4.6) of [8] that a sufficiently smooth family
of immersions f̃t = F∗ + Nt solves equation (83) classically on some short-time
interval, if and only if the family of functions {φt } = {〈Nt , νF∗〉R3} classically solves
the uniformly parabolic quasilinear 4th order equation

∂t (φt )+ 1

2

1

|A0
F∗+φtνF∗ |4

gi jF∗+φtνF∗ g
kl
F∗+φtνF∗ ∇F∗

i jkl(φt )

= B( ·, φt , Dxφt , D
2
xφt , D

3
xφt ) on Σ, (84)

on the same time interval, where B : Σ×R1+2+4+8 −→ R denotes a globally defined
function, which is rational in its 15 real arguments and has smooth coefficients—
depending on the fixed smooth immersion F∗ only—at least as long as there holds

‖ Nt ‖C2(Σ)≡‖ f̃t − F∗ ‖C2(Σ)< δ̃(F∗), (85)

for some sufficiently small chosen positive number δ̃(F∗) > 0. Indeed, as in formula
(4.5) of [8], one can compute that inequality (85) implies

|P⊥ f̃t (N̂t )| ≥ 1

2
|N̂t | on Σ (86)

for the projection P⊥ f̃t (N̂t ) of any smooth normal field N̂t along F∗ onto the normal
bundle of f̃t , and obviously inequality (85) also implies

min
Σ
|A0

F∗+φtνF∗ |2 ≥
1

2
min
Σ
|A0

F∗ |2 > 0, (87)

which actually lets us adopt the decisive computation in formulae (4.4) and (4.5) of
[8] without any significant changes. One can check elementarily by means of the
computation in formula (4.4) of [8] that indeed the geometrically motivated idea, to
solve the modified equation (83) by means of functions f̃t = F∗ +φtνF∗ , reduces the
fully non-linear MIWF-equation (2) to the quasilinear parabolic equation (84), thus
yielding the equivalence of the existence of a short-time solution of equation (83) in
graph representation f̃t = F∗ + Nt to the existence of a short-time solution {φt }
of equation (84). As in formula (4.7) of [8], we should note here that condition (82)
implies

‖ φ0 ‖C j,α(Σ)< C(F∗, j)Co(ε), for each j = 1, . . . , k, (88)
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for the initial function of the desired short-time solution {φt } of equation (84), where
Co(ε) denotes here the same function as in (82) and C(F∗, j) some positive constant
only depending on F∗ and j . Now, in order to actually prove the existence of a
unique maximal strict solution 16 {φt }t∈[0,Tmax) of the scalar equation (84)—starting

in 〈N0, νF∗〉R3—with values in the Banach space C4,α(Σ,R), we shall introduce the
parabolic Hölder space

ZT ,β := C4+β,1+ β
4 (Σ × [0, T ],R)

for any fixed β ∈ (α, 1) and T > 0, and its open subsets

UF∗,β,�,T :=
{
{ϕt } ∈ ZT ,β | ‖ ϕt ‖C2(Σ)< � ∀ t ∈ [0, T ]

}
(89)

with 0 < � < δ̃(F∗) that small, such that the normal field Nt := ϕt νF∗ satisfies
inequality (85) ∀ t ∈ [0, T ], for any fixed function ϕ ∈ UF∗,β,�,T . Now, by statements
(85)–(87) and (89), the non-linear differential operator

∂t + 1

2

1

|A0
F∗+ ( · ) νF∗ |4

gi jF∗+ ( · ) νF∗ g
kl
F∗+ ( · ) νF∗ ∇F∗

i jkl :

UF∗,β,�,T ⊂ ZT ,β −→ Cβ,
β
4 (Σ × [0, T ],R) (90)

is well defined for any fixed 0 < � < δ̃(F∗) as in (89), and we can infer exactly as
in Theorem 2 in [17], that it is a C1-map, that the highest order term of its Fréchet
derivative in any chosen ϕ ∈ UF∗,β,�,T is the uniformly parabolic linear operator

∂t + LF∗,ϕ := ∂t + 1

2

1

|A0
F∗+ϕνF∗ |4

gi jF∗+ϕνF∗ g
kl
F∗+ϕνF∗ ∇F∗

i jkl :

ZT ,β −→ Cβ,
β
4 (Σ × [0, T ],R) (91)

for any fixed β ∈ (α, 1) and T > 0, and that this linear operator satisfies all
requirements of Proposition 2 in [19]. We can therefore argue as in the proof of
that proposition, that for any fixed ϕ ∈ UF∗,β,�,T the linear differential operators

LF∗,ϕt :=
1

2

1

|A0
F∗+ϕtνF∗ |4

gi jF∗+ϕtνF∗ g
kl
F∗+ϕtνF∗ ∇F∗

i jkl :

C4,β ′(Σ,R) −→ C0,β ′(Σ,R) (92)

are (E, 3
4π, 4)-elliptic for some appropriate constant E = E(F∗, �) > 1 in the ter-

minology of [40], p. 228, for any fixed β ′ ∈ (0, β] and for any fixed t ∈ [0, T ]. We
can therefore derive from Theorem 3.3 in [40], that the linear operators LF∗,ϕt in (92)

16 See here Definition 4.1.1 in [27].
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are sectorial in the Hölder space C0,β ′(Σ,R)17 with constants ω > 0 and N > 1
depending only on F∗, ‖ ϕ ‖

C4+β,1+ β
4 (Σ×[0,T ])

and β ′, in the terminology of Theorem

3.3 in [40], for any fixed β ′ ∈ (0, β) and uniformly for every fixed t ∈ [0, T ], where
T > 0 and β ∈ (α, 1) have already been chosen above in (89). Taking now β ′ = α

and recalling also the smoothness of the initial function φ0 := 〈N0, νF∗〉R3 , we may
therefore apply Theorems 8.1.1 and 8.1.3 and Proposition 8.2.1 in [27] with Banach
space pair X := C0,α(Σ,R) and D := C4,α(Σ,R), and we obtain the existence of
a unique and maximal strict solution {φt }t∈[0,Tmax) of equation (84) with values in the
Banach space C4,α(Σ,R), meeting the additional condition

‖ φt ‖C2(Σ)< � ∀ t ∈ [0, Tmax) (93)

from line (89) and starting in the initial function φ0 := 〈N0, νF∗〉R3 at time t = 0,
provided ε is sufficiently small in view of condition (88). Moreover, this solution is
of class Cγ ([0, T ],C4,α(Σ,R)) ∩ C1,γ ([0, T ],C0,α(Σ,R)), ∀ γ ∈ (0, 1) and for
every T ∈ (0, Tmax), where 0 < α < 1 had already been chosen at the beginning
of the proof. We may therefore apply Proposition 3 of [17]—successively for every
k ∈ N0—in order to conclude that our maximal solution {φt } of equation (84) satisfies
the following Schauder a-priori estimates:

‖ φt ‖
C4+l+μ,1+ l+μ

4 (Σ×[0,T ])
≤ C

(
‖ B( ·, φ( ·, t), . . . , ∂xxxφ( ·, t)) ‖

Cl+μ,
l+μ
4 (Σ×[0,T ])

+ ‖ φt ‖L∞(Σ×[0,T ]) + ‖ φ0 ‖C4+l+μ(Σ)

)
, (94)

for every fixed T ∈ (0, Tmax), for every l ∈ N0 and every μ ∈ (0, α], and for some
large constant C = C(Σ, F∗, T , μ, l). From this result, we immediately infer the
C∞-smoothness of our constructed, maximal solution {φt } of equation (84) and thus
automatically the existence of a corresponding solution of equation (83) of the special,
desired form f̃t = F∗ + Nt , with Nt = φt νF∗ , being of class C∞(Σ × [0, T ],R3)

for every T ∈ [0, Tmax) and starting in the smooth immersion f̃0 = f0 ◦ Φ0 at time
t = 0. As pointed out in the proofs of Lemma 4.1 in [8] and Theorem 1.2 in [10], this
smooth solution f̃t = F∗ + Nt of equation (84) can be reparametrized by a smooth

family of smooth diffeomorphisms Ψt : Σ
∼=−→ Σ , with Ψ0 = IdΣ , such that

f̃t ◦ Ψt = P(t, 0, f0 ◦Φ0) ≡ P(t, 0, f0) ◦Φ0 for t ∈ [0, Tmax), (95)

which will be of significant importance later on. Now we fix some positive σ <

min{δ, �}—where δ was determined in assumption (4) and � in line (89)—such that
the Lojasiewicz-Simon-gradient-inequality for the Willmore functional, Theorem 3.1
in [8], holds for everyC4-immersion f : Σ −→ R3 with ‖ f −F∗ ‖C4(Σ)≤ σ , andwe
choose the ε > 0 in (80) and (82) that small, such that we have: Co(ε) < σ . As in [8],

17 See here also Definition 2.0.1 in [27].
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p. 359, or as in [10], p. 2190, we shall now choose a possibly smaller “maximal” time
T (σ ) ∈ (0, Tmax]—depending onσ , but not on ε—bymeans of imposing the following
additional, quantitative smallness condition on the normal sections Nt = φt νF∗ :

‖ f̃t − F∗ ‖Ck (Σ,R3)≡‖ Nt ‖Ck (Σ,R3)≤ σ ∀ t ∈ [0, T (σ )). (96)

We should note here, that condition (96) implies the inequality

‖ φt ‖C j (Σ,R)≤ C(F∗, j) σ ∀ t ∈ [0, T (σ )), (97)

for each j = 1, . . . , k, similarly to the relation between estimates (82) and (88).
Comparing initial condition (82) with the additional smallness condition (96) and
recalling that we have Co(ε) < σ , we can conclude that

0 < T (σ ) ≤ Tmax ≤ ∞.

In order to prove that statement (96) actually holds for T (σ ) = ∞, we shall follow
the strategy of the proof of Theorem 1.2 in [9], pp. 2190–2191: We assume firstly,
that the time T (σ ) was finite and that there would hold T (σ ) < Tmax. Now, first of all
our conditions (93) and (96) imply that estimates (85)–(87) do actually hold for the
immersions F∗ + φtνF∗ on [0, T (σ )]. Taking also estimate (97) into account, we can
therefore roughly estimate the right hand side in (84) by

‖ B( ·, φt , Dxφt , D
2
xφt , D

3
xφt ) ‖L∞(Σ)≤ C(Σ, F∗, σ ) ∀ t ∈ [0, T (σ )], (98)

for some appropriate, large constant C = C(Σ, F∗, σ ), and we can easily verify by
the same reasoning that the coefficients on the left hand side of (84), respectively, in
(91) with {ϕt } = {φt } are continuous and uniformly bounded on Σ × [0, T (σ )] by
another large constant C = C(Σ, F∗, σ ). We can therefore apply Proposition 2 in
[19] to the linear operator LF∗,φ in (91)—here on Σ × [0, T (σ )] and with any fixed
p ∈ (1,∞)— and we infer from that proposition, together with estimates (88) and
(98) and with Co(ε) < σ , that the smooth solution {φt } of equation (84) has bounded
norm in the parabolic L p-space18

XT ,p := W 1,p([0, T ]; L p(Σ,R)) ∩ L p([0, T ];W 4,p(Σ,R)), (99)

for any fixed p ∈ (1,∞), precisely

‖ {φt } ‖XT (σ ),p ≤ C(Σ, F∗, σ, T (σ ), p)
(
‖ B( ·, φt , . . . , D3

xφt ) ‖L p([0,T (σ )];L p(Σ,R))

+ ‖ φ0 ‖W 4,p(Σ,R)

)
≤ C∗(Σ, F∗, σ, T (σ ), p), (100)

for some large constant C∗(Σ, F∗, σ, T (σ ), p). Moreover, as explained in Theorem
B.5 in [47], we can use interpolation results from [5], in order to obtain for any

18 See here pp. 88–89 in [4] for an exact definition of parabolic L p-function spaces.
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p ∈ (1,∞) and θ ∈ (0, 1) with 4(1− θ) /∈ N the continuous embedding

XT ,p = W 1,p([0, T ]; L p(Σ,R)) ∩ L p([0, T ];W 4,p(Σ,R))

↪→ (
W 1,p([0, T ]; L p(Σ,R)), L p([0, T ];W 4,p(Σ,R))

)
θ,p

= W θ,p([0, T ];W 4(1−θ),p(Σ,R)), (101)

for any finite T > 0. Furthermore, the proof of Lemma 3.3 in [47] can be slightly
adapted, in order to see that for p ∈ (6,∞), for any small ε > 0 still satisfying
p > 6+4ε and for θ := 1+ε

p ∈ (
0, 1

4

)
the general Sobolev embedding from Theorem

B.4 in [47] yields

W θ,p([0, T ];W 4(1−θ),p(Σ,R)) ↪→ Cq1([0, T ];C3,q2(Σ,R)), (102)

for any finite T > 0 and for sufficiently small exponents q1, q2 ∈ (0, 1
8 ). Hence,

combining embeddings (101) and (102) with estimate (100)—here with any fixed
p ∈ (6,∞)—we obtain the existence of sufficiently small q1, q2 ∈ (0, 1

8 ), such that
the smooth solution φt = 〈Nt , νF∗〉R3 of equation (84) satisfies

‖ {φt } ‖Cq1 ([0,T (σ )],C3,q2 (Σ,R))≤ C(Σ, F∗, q1, q2, p, T (σ ), σ ), (103)

for some appropriate constant C = C(Σ, F∗, q1, q2, p, T (σ ), σ ) > 0. On account
of the mean value theorem, estimate (103) particularly implies the estimate

‖ B( ·, φt , . . . , D3
xφt ) ‖

C μ̄,
μ̄
4 (Σ×[0,T (σ )],R)

≤ C(Σ, F∗, T (σ ), σ, μ̄), (104)

for any small μ̄ ∈ (0, 1
8 ) with μ̄ < min{4 q1, q2} and for another appropriate constant

C = C(Σ, F∗, T (σ ), σ, μ̄), which does not depend on any more data of the solution
{φt }, especially not on the size of ε from lines (80) and (82). Hence, we obtain from the
parabolic Schauder a-priori estimates (94)—here with l = 0 and μ = μ̄—combined
with estimates (88), (97), and (104), that the above smooth solution {φt } of equation
(84) satisfies

‖ {φt } ‖
C4+μ̄,1+ μ̄

4 (Σ×[0,T (σ )],R)
≤ C0(Σ, F∗, T (σ ), σ, μ̄), (105)

for some sufficiently small Hölder-exponent μ̄ ∈ (0, 1
8 ), where the above constant

C0 = C0(Σ, F∗, T (σ ), σ, μ̄) does not depend on the size of ε > 0 from lines (80)
and (82) neither. Nowwe recall, that “k” in conditions (80) and (82) was a fixed integer
≥ 4. If k = 4, then estimate (105) does not have to be improved any more. But if
k > 4, then estimate (105) should be used, in order to improve estimate (104) by
means of another application of the mean value theorem:

‖ B( ·, φt , . . . , D3
xφt ) ‖

C1+μ̄,
1+μ̄
4 (Σ×[0,T (σ )],R)

≤ C̃1(Σ, F∗, T (σ ), σ, μ̄), (106)

123



Existence and Convergence of the Möbius-Invariant Willmore Flow Page 37 of 51 24

for the same exponent μ̄ as in estimate (105) and for another appropriate constant
C̃1 = C̃1(Σ, F∗, T (σ ), σ, μ̄). Since we have proved already that the solution {φt }
of equation (84) is C∞-smooth, estimates (105) and (106) can be combined again
with conditions (88) and (97), in order to infer from another application of Schauder
estimates (94)—but now with l = 1 and μ = μ̄:

‖ φt ‖
C5+μ̄,

5+μ̄
4 (Σ×[0,T (σ )],R)

≤ C1(Σ, F∗, T (σ ), σ, μ̄), (107)

for the same exponent μ̄ as in estimate (105) and for another appropriate constant
C1 = C1(Σ, F∗, T (σ ), σ, μ̄). Hence, by finite induction—stopping after exactly k−4
steps on account of condition (88)—we arrive in this way at the optimal Schauder
estimate

‖ φt ‖
Ck+μ̄,

k+μ̄
4 (Σ×[0,T (σ )],R)

≤ Ck−4(Σ, F∗, T (σ ), σ, μ̄), (108)

for the same exponent μ̄ as in estimate (105) and for another appropriate constant
Ck−4 = Ck−4(Σ, F∗, T (σ ), σ, μ̄), which does not depend on the size of ε > 0 from
(82) and (88) neither. Estimate (108) immediately implies

‖ f̃t − F∗ ‖Ck,μ̄(Σ,R3)≡‖ Nt ‖Ck,μ̄(Σ,R3)

≤ C̃k−4(Σ, F∗, T (σ ), σ, μ̄) ∀ t ∈ [0, T (σ )], (109)

for the corresponding smooth solution f̃t = F∗ + Nt ≡ F∗ +φt νF∗ of equation (83),
for some small exponent μ̄ ∈ (0, 1

8 ), which is exactly the analog of formula (5.13) in
[10]. Now, on account of condition (96), due to the choice σ < min{δ, �} and since
F∗ was supposed to be a Ck-local minimizer of the Willmore functional, we know
that

W( f̃t ) ≥W(F∗) (110)

for t ∈ [0, T (σ )].Moreover, using the fact that the smooth family { f̃t } = {F∗+φt νF∗}
solves equation (83), we can infer that

d

dt
W( f̃t ) =

∫
Σ

〈∂⊥ f̃t
t ( f̃t ),∇L2( f̃t )〉R3 dμ f̃t

= −
∫
Σ

1

|A0
f̃t
|4 |∇L2( f̃t )|2 dμ f̃t

≤ 0 (111)

for t ∈ [0, T (σ )], i.e., thatW( f̃t ) does not increase for t ∈ [0, T (σ )]. Moreover, due
to T (σ ) < Tmax, there holds equation (95) on [0, T (σ )], implying that

W( f̃t ) =W(P(t, 0, f0)) for t ∈ [0, T (σ )]. (112)
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Now, we can combine equations (110)–(112) with the strong regularity result in The-
orem 3 (ii)19 of [19], in order to apply the same argument as on page 360 in [8],
ruling out the special case, in which there might hold W( f̃s) = W(F∗) for some
s ∈ [0, T (σ )). Hence, in the sequel, we can assume without loss of generality, that
there holdsW( f̃t ) > W(F∗) for every t ∈ [0, T (σ )). Finally, we have to observe that
condition (96) implies inequalities (85) and (87) to hold for t ∈ [0, T (σ )], since we
chose σ < � and � < δ̃. Hence, there is some small constant c = c(F∗, σ ) > 0, such
that

c(F∗, σ ) ≤ |A0
f̃t
(x)|2 ≤ 1

c(F∗, σ )
for (x, t) ∈ Σ × [0, T (σ )].

We can therefore introduce the smooth, non-increasing, and positive function [t �→
(W( f̃t ) −W(F∗))θ ], for t ∈ [0, T (σ )), where θ = θ(F∗) ∈ (0, 1/2] denotes the
exponent appearing in the Lojasiewicz-Simon-gradient-inequality for the Willmore
functional, Theorem 3.1 in [8], in order to compute by means of Hölder’s inequality,
again equation (83) and by the usual chain rule:

− d

dt
(W( f̃t )−W(F∗))θ = −θ (W( f̃t )−W(F∗))θ−1

∫
Σ

〈∇L2W( f̃t ), ∂
⊥ f̃t ( f̃t )〉 dμ f̃t

= θ (W( f̃t )−W(F∗))θ−1
∫
Σ

1

|A0
f̃t
|4 |∇L2W( f̃t )|2 dμ f̃t

≥ c(F∗, σ )4 θ (W( f̃t )−W(F∗))θ−1
( ∫

Σ

|∇L2W( f̃t )|2 dμ f̃t

)1/2 ·
·
( ∫

Σ

1

|A0
f̃t
|8 |∇L2W( f̃t )|2 dμ f̃t

)1/2

≥ c(F∗, σ )4 θ

C∗1 (F∗)
‖ ∂

⊥ f̃t
t ( f̃t ) ‖L2(μ f̃t

) for t ∈ [0, T (σ )), (113)

where we have been able to apply the Lojasiewicz-Simon-gradient inequality in line
(113) in a C4-ball of radius σ about the Willmore immersion F∗ with appropriate
constants C∗1 = C∗1 (F∗) > 0 and θ = θ(F∗) ∈ (0, 1/2], taking estimate (96)
for t ∈ [0, T (σ )] into account. Now, estimate (96) also implies inequality (86) for
t ∈ [0, T (σ )], on account of σ < � < δ̃, and the time derivative ∂t f̃t ≡ ∂t Nt

is actually a smooth section of the normal bundle of F∗, just as Nt is, for every
t ∈ [0, T (σ )]. Hence, we infer from an integration of inequality (113) with respect to
time and again from estimate (96) that

∫ s

0
‖ ∂t f̃t ‖L2(μF∗ ) dt

≤ C(σ )

∫ s

0
‖ ∂t f̃t ‖L2(μ f̃t

) dt

19 It should be stressed here that this theorem indeed holds already for C∞-smooth, umbilic-free initial
immersions.
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≤ 2C(σ )

∫ s

0
‖

(
∂t f̃t

)⊥ f̃t ‖L2(μ f̃t
) dt

≤ − 2C(σ )C∗1
c(F∗, σ )4 θ

∫ s

0

d

dt

(
(W( f̃t )−W(F∗))θ

)
dt

= 2C(σ )C∗1
c(F∗, σ )4 θ

(
(W( f̃0)−W(F∗))θ − (W( f̃s)−W(F∗))θ

)

≤ 2C(σ )C∗1
c(F∗, σ )4 θ

(
W(F∗ + N0)−W(F∗)

)θ

<∞ ∀ s ∈ [0, T (σ )). (114)

Now, we can derive from a combination of condition (96) and estimate (114), together
with the triangle inequality for the L2(μF∗)-norm:

‖ f̃s − F∗ ‖L2(μF∗ ) ≤ ‖ N0 ‖L2(μF∗ ) +
2C(σ )C∗1
c(F∗, σ )4 θ

(W(F∗ + N0)−W(F∗))θ

≤ C ‖ N0 ‖θC2(Σ,R3)
∀ s ∈ [0, T (σ )], (115)

for some appropriate constant C = C(Σ, F∗, θ, σ ) > 0. By Theorem 6.4.5 (iii)
in [6], we can interpolate the Besov space Bβ (k+μ̄)

p∗,p∗ (Σ,R3), for p∗ = 2
1−β

>> 1

and β ∈ (0, 1) close to 1, between the spaces Ck,μ̄(Σ,R3) = Bk+μ̄∞,∞(Σ,R3) and

L2(Σ,R3) = B0
2,2(Σ,R3), andwe can then use the fact that Bβ (k+μ̄)

p∗,p∗ (Σ,R3) embeds

into Ck(Σ,R3) by the fractional Sobolev embedding theorem, provided there holds
β (k + μ̄) − 2

p∗ ≡ β (k + μ̄) + β − 1 > k. Consequently, we infer from estimates
(82), (109), and (115) that

‖ f̃s − F∗ ‖Ck (Σ,R3) ≤ C ‖ f̃s − F∗ ‖β
Ck,μ̄(Σ,R3)

‖ f̃s − F∗ ‖1−β

L2(μF∗ )

≤ C ‖ N0 ‖(1−β) θ

C2(Σ,R3)
≤ C∗ (Co(ε))(1−β) θ ∀ s ∈ [0, T (σ )],

(116)

for some appropriately large constant C∗ = C∗(Σ, F∗, μ̄, k, β, θ, T (σ ), σ ), which
is independent of ε. It therefore turns out now, that we should choose ε > 0 above in
estimate (80) that small, such that

C∗ (Co(ε))(1−β) θ ≤ σ

2
(117)

holds, implying by estimate (116) that we thus would have

‖ f̃t − F∗ ‖Ck (Σ,R3) �t=T (σ )≤ σ

2
.

But this contradicts the fact that ‖ f̃t − F∗ ‖Ck (Σ,R3) �t=T (σ )= σ would have to
hold at time t = T (σ ) on account of condition (96), if the “maximal time” T (σ )

in (96) would have actually been finite and also smaller than Tmax. In the remaining
special case “T (σ ) = Tmax <∞” we could infer, that estimates (96), (97),f and (109)
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would hold on every compact interval [0, T ] with T < Tmax < ∞. Since we also
know that σ < �, a comparison of conditions (93) and (97) shows us, that in this
situation the smooth solution {φt } of the quasilinear parabolic equation (84) could be
extended—using e.g., the methods of Theorems 2 and 3 in [17]—fromΣ × [0, Tmax)

to Σ × [0, T ′], for some T ′ > Tmax, of class C4+μ,1+μ
4 (Σ × [0, T ′],R), for any

fixed μ ∈ (0, μ̄), and thus also of class C∞(Σ × [0, T ′],R) on account of the above
bootstrap argument employing estimates (94), but without violating condition (93)
for t ∈ [0, T ′]. This contradicts the definition of the maximal time Tmax. Hence, we
have proved that there actually has to hold “T (σ ) = ∞” in estimate (96), i.e., that the
particular smooth solution f̃t = F∗ + Nt of equation (83) exists globally and satisfies
the smallness condition (96) at arbitrarily large times t :

‖ f̃t − F∗ ‖Ck (Σ,R3)≤ σ ∀ t ∈ [0,∞), (118)

provided the initial immersion f̃0 satisfies condition (82) with ε > 0 chosen that small
in condition (80), such that inequality (117) finally holds. Combining now statement
(118) with the entire reasoning which led us to estimate (109) on Σ × T (σ ), one can
exchange T (σ ) by any positive time T and then prove inductively—using (109) and
(118) both in the induction basis and in the induction step—that there is a constant
K = K (Σ, F∗, σ, k, μ̄) such that

‖ f̃t − F∗ ‖Ck,μ̄(Σ,R3)≤ K ∀ t ∈ [0,∞). (119)

Moreover, since we especially know now that Tmax = ∞, we obtain equation (95) for

every t ≥ 0, i.e., there is a smooth family of smooth diffeomorphisms Ψt : Σ
∼=−→ Σ ,

Ψ0 = IdΣ , such that

f̃t = P(t, 0, f0) ◦Φ0 ◦ Ψ−1
t ∀ t ∈ [0,∞). (120)

Now, having chosen ε > 0 in (80) sufficiently small, we can let tend s → ∞ in
estimate (114) and obtain

∫ ∞

0
‖ ∂t f̃t ‖L2(μF∗ ) dt ≤ 2C(σ )C∗1

c(F∗, σ )4 θ

(
W(F∗ + N0)−W(F∗)

)θ

<∞, (121)

implying the existence of a unique function F∞ ∈ L2((Σ,μF∗),R3), such that

f̃t ≡ F∗ + Nt −→ F∞ in L2(Σ,μF∗) (122)

as t →∞. Inserting now convergence (122) and estimate (119) into the first inequality
in (116), we obtain together with equation (120):

P(t, 0, f0) ◦Φ0 ◦ Ψ−1
t = f̃t −→ F∞ in Ck(Σ,R3) (123)
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as t → ∞, where the limit function F∞ satisfies additionally estimate (118) in the
limit, i.e.,

‖ F∞ − F∗ ‖Ck (Σ,R3)≤ σ, (124)

and thus turns out to be a umbilic-free Ck-immersion, because estimate (118) implies
inequalities (85) and (87) to hold for every t ≥ 0. It remains to prove, that the limit
immersion F∞ of convergence (123) is “Willmore” and a Ck-local minimizer of the
Willmore functional W . Indeed, for any fixed k ≥ 4, we infer from convergences
(121) and (123) that

0←−‖ ∂
⊥ f̃t
t ( f̃t ) ‖2L2(μ f̃t

)
�t=ti=

∫
Σ

1

|A0
f̃t
|8 |∇L2W( f̃t )|2 dμ f̃t

�t=ti

−→
∫
Σ

1

|A0
F∞|8

|∇L2W(F∞)|2 dμF∞ ,

for some appropriate sequence ti ↗ ∞, showing that F∞ is indeed a umbilic-free
Willmore immersion, satisfying statement (124) for the considered k ≥ 4.

Moreover, combining statement (124) again with the Lojasiewicz-Simon-gradient-
inequality, Theorem 3.1 in [8], F∞ turns out to satisfy W(F∞) = W(F∗), proving
that F∞ is actually a Ck-local minimizer ofW as well, for any k ≥ 4. Using now the
conformal invariance of both the MIWF and the Willmore functional, we can project
statements (123) and (124) back into S3 via inverse stereographic projection and thus
obtain the entire assertion of Theorem 2. ��
Remark 5 In contrast to the final steps of the proof of Lemma 4.1 in [8], we could
not combine neither estimates (118), (119) nor the full Ck-convergence in (123) with
localized L∞-estimates of covariant derivatives ∇m A f̃t

of the second fundamental

forms of the converging immersions f̃t in (122) and (123), in order to improve the
quality of convergence (123) furthermore, e.g., from Ck- to smooth convergence,
because such strong estimates have—so far—only been proven for flow lines of the
classical and inverse Willmore flow in Rn ; see here Sect. 4 in [23], respectively Sect.
3 in [22] and also Sects. 7–12 in [29]. The only available proof of such estimates
relies strongly on the structural similarity between the leading term of the Willmore
flow equation (3) and the simple heat equation of fourth order: ∂tΦt = −�2

g(Φt ), for
some fixed smooth metric g on Σ . It is actually this structure of the leading fourth
order term of the Willmore flow equation, which leads to a fairly simple, inductive

computation of the expressions ∂
⊥ ft
t (∇m A ft )+�2

g ft
(∇m A ft ) for any smooth solution

{ ft }t∈[0,T ) of equation (3), for each order m ∈ N0, yielding both L2( f −1t (Bn
r (x0)))—

and even L∞( f −1t (Bn
r (x0)))—estimates for the covariant derivatives ∇m A ft of any

order m ∈ N, locally about some arbitrarily fixed x0 ∈ Rn and uniformly in time
t ∈ [0, T ), provided

∫
f −1t (Bn

2r (x0))
|A ft |2 dμg ft

stays sufficiently small, for t ∈ [0, T ),
i.e., provided there is no quantum of curvature that concentrates about some fixed
point x0 in Rn , as t ↗ T . Because of the fairly degenerate structure of the left hand
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side of the MIWF-equation (2), one can neither adopt here the strategy of Sects. 2 and
4 in [23] nor its generalization and improvement in Sects. 7–12 of [29], treating the
inverse Willmore flow. ��

4 Stability of Converging Flow Lines

Combining Theorem2with Theorem5 below,we obtain a stability result for fully con-
vergent flow lines of the MIWF into C4-local minimizers of the Willmore functional.

Theorem 4 (Stability Theorem) Suppose that Σ is a smooth compact torus and that
F0 : Σ −→ S3 is a C∞-smooth and umbilic-free immersion, whose correspond-
ing flow line {P(t, 0, F0)}t≥0 of the MIWF exists globally and converges fully and
smoothly—up to smooth reparametrization—to a C∞-smooth parametrization F∗ of
a umbilic-free C4-local minimizer of the Willmore functional W , in the sense of for-
mula (4) with k = 4. Then, for any fixed α ∈ (0, 1), there is an open ball B4,α

r (F0)
about F0 in C4,α(Σ,R4), with r = r(Σ, F0, F∗, α) > 0, such that For every C∞-
smooth immersion F : Σ −→ S3 being contained in the open ball B4,α

r (F0), there

is a smooth family of smooth diffeomorphisms Ψ F
t : Σ ∼=−→ Σ , for t ≥ 0, such that

the reparametrized flow line {P(t, 0, F) ◦Ψ F
t }t≥0 of the MIWF converges fully in the

C4(Σ,R4)-norm to a umbilic-free Willmore immersion F∞, as t →∞, and this limit
immersion is a C4-local minimizer of the Willmore functional W as well, satisfying
W(F∞) =W(F∗). ��
In order to prepare the proof of Theorem 4, we shall adopt the methods of Theorems
1–4 in [19], but using here parabolic Hölder spaces and parabolic Schauder theory
instead of optimal L p-Lq -estimates, in order to apply the regularity bootstrap method
of Theorem 3 (ii) in [17], via Schauder a-priori estimates. To this end, we consider
evolution equations (2) and (24) for immersions ft : Σ −→ R3, and we recall from
the author’s article [17] as in Sect. 2 of [19], that the differential operator

2 | A0
f |−4 ∇L2W( f ) ≡| A0

f |−4
(
�⊥f H f + Q(A0

f )(H f )
)

=| A0
f |−4

(
(� fH f )

⊥ f + 2 Q(A f )(H f )− 1

2
| H f |2 H f

)
(125)

arising on the right hand side of evolution equations (2) and (24) is not uniformly
elliptic and that its leading term (� fH f )

⊥ f can be written as

(� fH f )
⊥ f = gi jf gklf ∇ f

i jkl( f )− gi jf gklf 〈∇ f
i jkl( f ), ∂m f 〉 gmr

f ∂r ( f ) (126)

at least locally, in local coordinates on Σ , for any W 4,2-immersion f : Σ −→ R3,
where g f := f ∗(geuc) denotes the pullback-metric of the Euclidean metric of R3.
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Applying DeTurck’s trick as in Sect. 2 of [19], we add the globally well-defined
differential operator20 of fourth order

TF0( f ) := gi jf gklf gmr
f 〈∇ f

i jkl( f ), ∂m f 〉 ∂r f − gi jf g
kl
f ∇ f

i j

(
(ΓF0)

m
kl − (Γ f )

m
kl

)
∂m( f ),

for some fixed smooth immersion F0 : Σ −→ R3, to the right hand side of equa-
tion (125) and obtain a quasilinear operator of fourth order whose leading term is
gi jf gklf ∇F0

i jkl( f ), having a uniformly elliptic linearization in any umbilic-free C4,γ -

immersion f : Σ −→ R3. We are thus led to consider here the evolution equation

∂t ( ft ) = −1

2
| A0

ft |−4
(
2 ∇L2W( ft )+ TF0( ft )

) =:MF0( ft ), (127)

for some arbitrarily fixed C∞-smooth immersion F0 : Σ −→ R3, where the right-
hand side MF0( ft ) of equation (127) can be expressed in local coordinates on Σ

by

MF0( ft )(x) = −
1

2
| A0

ft |−4 gi jft g
kl
ft ∇ ft

i j ∇F0
kl ( ft )(x)

+B(x, Dx ft (x), D
2
x ft (x), D

3
x ft (x)), (128)

for (x, t) ∈ Σ × [0, T ]. Here, the symbols Dx ft , D2
x ft , D

3
x ft abbreviate the matrix-

valued functions (∂1 ft , ∂2 ft ), (∇F0
i j ft )i, j∈{1,2} and (∇F0

i jk ft )i, j,k∈{1,2}, and B : Σ ×
R6×R12×R24 → R3 is a globally defined function, whose 3 components are rational
functions in their 42 real variables. Following the lines of the author’s articles [17]
and [19], we will collect some basic properties of the linearization of equation (127)
or equivalently of equation

∂t ( ft ) = −1

2
| A0

ft |−4 gi jft g
kl
ft ∇ ft

i j ∇F0
kl ( ft )+ B( ·, Dx ft , D

2
x ft , D

3
x ft ) (129)

in any family of C4,γ -immersions ft : Σ −→ R3, which is sufficiently close to a
prescribed flow line of the MIWF (2) in the parabolic Hölder space C4+γ,1+ γ

4 (Σ ×
[0, T ],R3), γ ∈ (0, 1), below in Proposition 1. To this end, we fix some umbilic-
free immersion F0 ∈ C∞(Σ,R3) and denote by Tmax(F0) the maximal time such
that the corresponding unique smooth solution P( ·, 0, F0) of the MIWF exists on
Σ × [0, Tmax(F0)). 21 We recall from the proof of Theorem 1 in [17] that there is a
unique smooth family of smooth diffeomorphisms φ

F0
t : Σ −→ Σ with φ0 = IdΣ ,

such that the reparametrization {P(t, 0, F0) ◦ φ
F0
t } solves evolution equations (127)

and (129) onΣ×[0, T ], for every final time T ∈ (0, Tmax(F0)). Nowwe fix some T ∈
20 Compare here also with p. 1156 in [17] and with formula (12) in [19], where the tensorial character of
the expressions (ΓF0 )

m
kl − (Γ f )

m
kl and TF0 ( f ) had been explained.

21 Compare here with Definition 2 (d) in [19], introducing the life span of a flow line.
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(0, Tmax(F0)) and γ ∈ (0, 1) arbitrarily, and we also choose some open neighborhood
WF0,T ,γ of the above smooth solution {P(t, 0, F0)◦φF0

t } of (127) in the Banach space

XT ≡ XT ,γ := C4+γ,1+ γ
4 (Σ × [0, T ],R3),

and we shall follow the strategy of [19] and [47]: using the fact that the restriction of
elements of XT ,γ at time t = 0:

r0 : XT ,γ −→ C4,γ (Σ,R3)

is a linear and continuous operator, i.e., that the trace of the Banach space XT at time
t = 0 is exactly

Trace(XT ) = C4,γ (Σ,R3), (130)

and considering the continuous, non-linear product operator

Ψ F0,T : WF0,T ,γ ⊂ XT −→ C4,γ (Σ,R3)× Cγ,
γ
4 (Σ × [0, T ],R3) =: YT ,γ ≡ YT

defined by

Ψ F0,T ({ ft }t∈[0,T ]) := ( f0, {∂t ( ft )−MF0( ft )}t∈[0,T ]). (131)

Now following the proofs of Theorem 1 in [19] and Theorem 2 in [17]—substituting
here Proposition 2 in [19] by Corollary 3 in [17]—we can prove the following counter-
part of Theorem 1 in [19] in the setting of parabolic Schauder Theory, aiming at basic
properties of the Fréchet derivative of the operator Ψ F0,T from (131) at the smooth
solution {P(t, 0, F0) ◦ φF0

t }t∈[0,T ] of equation (129) in view of the proof of Theorem
5 (1) below.

Proposition 1 Let Σ be a smooth compact torus and F0 : Σ −→ R3 a C∞-smooth
and umbilic-free immersion, and let 0 < T < Tmax(F0) and γ ∈ (0, 1) be chosen
arbitrarily, where Tmax(F0) denotes the time of maximal existence of the flow line
{P(t, 0, F0)}t≥0 of the MIWF (2). There is a sufficiently small open neighborhood
WF0,T ,γ about the smooth solution {P(t, 0, F0) ◦ φF0

t }t∈[0,T ] of the modified MIWF-
equation (129) in the Banach space XT , such that the following three statements
hold:

(1) The map Ψ F0,T : WF0,T ,γ −→ YT , defined in line (131), is of class C1 on the
open subset WF0,T ,γ of the Banach space XT .

(2) The Fréchet derivative of the second component of Ψ F0,T at any fixed family
{ ft }t∈[0,T ] ∈ WF0,T ,γ is a linear, uniformly parabolic operator of order 4 whose
leading operator acts diagonally, i.e., on each component of f = { ft }t∈[0,T ]
separately:
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(D(Ψ F0,T )2( f )).(η) ≡ ∂t (η)− D(MF0)( f ).(η)

= ∂t (η)+ 1

2
| A0

ft |−4 gi jft g
kl
ft ∇F0

i jkl(η)+ Bi jk
3 · ∇F0

i jk(η)

+Bi j
2 · ∇F0

i j (η)+ Bi
1 · ∇F0

i (η) (132)

on Σ × [0, T ], for any element η = {ηt } of the tangent space T f WF0,T ,γ = XT .

Here, the coefficients | A0
ft
|−4 gi jft g

kl
ft
of the leading order term are of class

C2+γ,
2+γ
4 (Σ × [0, T ],R3), Bi j

2 and Bi
1 are the coefficients of Mat3,3(R)-valued,

contravariant tensor fields of degrees 2 and 1, depending on x, Dx ft , D2
x ft , D

3
x ft

and on D4
x ft and therefore being of class Cγ,

γ
4 (Σ × [0, T ],Mat3,3(R)). Finally

Bi jk
3 are the coefficients of aMat3,3(R)-valued, contravariant tensor field of degree

3, which depends on x, Dx ft and D2
x ft only and is therefore of classC

2+γ,
2+γ
4 (Σ×

[0, T ],Mat3,3(R)).
(3) The Fréchet derivative of Ψ F0,T yields a topological isomorphism

DΨ F0,T ( f ) : T f WF0,T ,γ = XT
∼=−→ YT

in any fixed family of immersions f ≡ { ft }t∈[0,T ] ∈ WF0,T ,γ .

��
Proof The first two parts of the proposition are essentially repetitions of the first two
parts of Theorem 2 in [17], up to exchanging the neighborhoodWF0,T ,γ of the smooth

solution {P(t, 0, F0) ◦ φF0
t }t∈[0,T ] of evolution equation (127) by the open subset

XU0,γ,δ,T := {{ ft } ∈ XT ,γ | ‖ ft −U0 ‖C4(Σ)< δ for t ∈ [0, T ], f0 = U0 on Σ}

- appearing on p. 1157 and in Theorem 2 of [17]—of the affine closed subspace

Aγ,T ,U0 := {{ ft }t∈[0,T ] ∈ XT ,γ | f0 = U0 on Σ} (133)

of our basic Banach space XT ≡ XT ,γ = C4+γ,1+ γ
4 (Σ × [0, T ],R3), for any fixed

umbilic-free initial immersionU0 ∈ C4,γ (Σ,R3).22 The third statement of the propo-
sition now follows in three fairly simple steps. First of all, we know from the first two
parts of this proposition that the non-linear operator

∂t −MF0 : WF0,T ,γ −→ Cγ,
γ
4 (Σ × [0, T ],R3)

is of class C1 and that its Fréchet derivative at an arbitrary family f = { ft }t∈[0,T ] ∈
WF0,T ,γ is a continuous linear operator from T f WF0,T ,γ = XT to Cγ,

γ
4 (Σ ×

22 The interested reader might also want to compare the first two parts of our Proposition 1 with the first
three parts of Theorem 1 in [19], whose proofs are based on formulae (24)–(28) within the preparatory
Lemma 1 in [19], where the quasilinear structure of the non-linear operator [ f �→ MF0 ( f )] from lines
(127), (128) and (131) above has been precisely analyzed.
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[0, T ],R3), being of the concrete, uniformly parabolic form (132) with Hölder-
continuous coefficients. We can therefore apply Propositions 1 and 2 and Corollaries
2 and 3 of [17], in order to conclude that the restriction

D(∂t −MF0)( f ) : Aγ,T ,0 −→ Cγ,
γ
4 (Σ × [0, T ],R3)

of this Fréchet derivative to the linear Banach subspace Aγ,T ,0 of XT from (133),
with U0 = 0, is an isomorphism, just as the biharmonic heat operator ∂t + �2

F0
is.

Then it easily follows from this fact and from (130) that the Fréchet derivative of
the entire product operator Ψ F0,T : WF0,T ,γ −→ YT is a bijective linear map from
T f WF0,T ,γ = XT to YT , and the assertion follows from the open mapping theorem
for continuous linear operators between Banach spaces.

Combining Proposition 1 with the proof of Theorem 3 (ii) in [17] via Proposition 3 in
[17], we obtain the following theorem, similarly to Theorem 4 (i) in [19]. In Theorem 5
and also below in the proof of Theorem 4, we will abbreviate by “B4,γ

ρ (F0)” the open
ball of radius ρ > 0 about any fixed immersion F0 in the Banach space C4,γ (Σ,R3),
for any fixed γ ∈ (0, 1).

Theorem 5 Let Σ be a smooth compact torus and F0 : Σ −→ R3 a C∞-smooth
and umbilic-free immersion, and let 0 < T < Tmax(F0) and γ ∈ (0, 1) be chosen
arbitrarily, where Tmax(F0) denotes the time of maximal existence of the flow line
P( ·, 0, F0) of the MIWF (2).

(1) There is some smallρ = ρ(Σ, F0, T , γ ) > 0, such that for every initial immersion
F ∈ C4,γ (Σ,R3) with ‖ F − F0 ‖C4,γ (Σ,R3)< ρ there is a unique solution
{P∗(t, 0, F)}t∈[0,T ] of the “DeTurck modification” (127), respectively, (129) of

the MIWF (2) in the Banach space XT = C4+γ,1+ γ
4 (Σ × [0, T ],R3), starting to

move in the immersion F at time t = 0, and the resulting evolution operator

P∗( ·, 0, · ) : B4,γ
ρ (F0) ⊂ C4,γ (Σ,R3) −→ XT , (134)

mapping any element F of the open ball B4,γ
ρ (F0) about F0 to the unique solution

{P∗(t, 0, F)}t∈[0,T ], is of class C1.

(2) If the initial immersion F ∈ B4,γ
ρ (F0) from part (1) is additionally of class

C∞(Σ,R3), then the resulting solution {P∗(t, 0, F)}t∈[0,T ] of evolution equation
(129) from line (134) is of class C∞(Σ × [0, T ],R3), and furthermore there is a
smooth family of C∞-smooth diffeomorphisms ψ F

t : Σ → Σ , with ψ F
0 = IdΣ ,

such that the composition P∗(t, 0, F) ◦ ψ F
t solves again evolution equation (2)

on Σ × [0, T ], i.e., such that there holds:

P∗(t, 0, F) ◦ ψ F
t = P(t, 0, F) on Σ, ∀ t ∈ [0, T ].

Proof (1) Here, we can argue exactly as in the proof of Theorem 4 (i) in [19]. We
assume that F0 : Σ −→ R3 is a C∞-smooth and umbilic-free immersion which
produces a maximal smooth flow line P( ·, 0, F0) of the MIWF, starting in F0 at
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time t = 0. Hence, the proof of Theorem 1 in [17] shows that there is a unique
smooth family of smooth diffeomorphisms φ

F0
t : Σ −→ Σ with φ

F0
0 = IdΣ ,

such that the reparametrization {P(t, 0, F0) ◦ φF0
t }t≥0 is the unique and maximal

smooth solution of evolution equation (127) on Σ . Moreover, we know from
Proposition 1 above, that there is some open neighborhood WF0,T ,γ about the

solution {P(t, 0, F0)◦φF0
t }t∈[0,T ] of equation (127), respectively, (129) in the space

XT , such that the operator Ψ F0,T from line (131) is a C1-map from WF0,T ,γ to

YT , whose Fréchet derivative in the particular element {P(t, 0, F0)◦φF0
t }t∈[0,T ] ∈

WF0,T ,γ is a topological isomorphism between XT and YT . Noting also that there
holds

Ψ F0,T ({P(t, 0, F0) ◦ φF0
t }t∈[0,T ]) = (F0, 0) ∈ YT ,

by definition of the operator Ψ F0,T in (131) and since {P(t, 0, F0) ◦ φ
F0
t }t∈[0,T ]

solves equation (127), we can infer from the inverse mapping theorem for non-
linear C1-operators, that there is some small open ball Bρ((F0, 0)) ⊂ YT , with
ρ = ρ(F0, T , γ ) > 0, and an appropriate further open neighborhood W ∗

F0,T ,γ ⊂
WF0,T ,γ about the smooth solution {P(t, 0, F0) ◦ φF0

t }t∈[0,T ] of equation (129) in
XT , such that

Ψ F0,T : W ∗
F0,T ,γ

∼=−→ Bρ((F0, 0)) (135)

is a C1-diffeomorphism. Hence, by definition of the map Ψ F0,T and by Theorem
2 (ii) of [19], the restriction of the inverse mapping (Ψ F0,T )−1 from line (135) to
the product B4,γ

ρ (F0) × {0} ⊂ Bρ((F0, 0)) yields exactly the evolution operator
of the parabolic evolution equation (127):

XT ⊃ W ∗
F0,T ,γ � {P∗(t, 0, F)}t∈[0,T ] = (Ψ F0,T )−1((F, 0))

∀ F ∈ B4,γ
ρ (F0) ⊂ C4,γ (Σ,R3), (136)

and it consequently has to be of class C1 as an operator from C4,γ (Σ,R3) to XT .
Here, {P∗(t, 0, F)}t∈[0,T ] denotes the restriction of the unique maximal solution
{P∗(t, 0, F)}t∈[0,t+(F)] of equation (127) from Theorem 2 (ii) in [19] to the inter-

val [0, T ], noting that C4,γ (Σ,R3) ⊂ W 4− 4
p ,p(Σ,R3) and also C4+γ,1+ γ

4 (Σ ×
[0, T ],R3) ⊂ W 1,p([0, T ]; L p(Σ,R3)) ∩ L p([0, T ];W 4,p(Σ,R3)), for any
fixed p ∈ (3,∞).

(2) The second statement of the theorem now follows immediately from the first
statement of the theorem, combined with Theorem 3 (i) in [19] and with another
application of DeTurck’s trick relating smooth solutions of evolution equations (2)
and (127); see also the proof of Theorem 1 in [17]. ��

Proof of Theorem 4 Onaccount of the assumptions of the theorem there is some smooth

family of smooth diffeomorphismsΨt : Σ
∼=−→ Σ , t > 0, such that the reparametrized
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flow line {P(t, 0, F0) ◦ Ψt }t>0 of the MIWF in S3 converges smoothly and fully
to a smooth parametrization F∗ of a umbilic-free C4-local minimizer of the Will-
more functional. Now we choose some α ∈ (0, 1) and we obtain from Theorem 2
of this article some small number ε = ε(Σ, F∗, α) > 0, such that for any smooth
immersion f0 : Σ −→ S3 with ‖ f0 − F∗ ‖C4,α(Σ,R4)< ε the unique smooth
flow line {P(t, 0, F0)}t≥0 of the MIWF exists globally and converges—up to smooth
reparametrization—fully in C4(Σ,R4) to a parametrization F∞ = F∞( f0) of a
umbilic-freeWillmore immersion in S3 which is aC4-local minimizer of theWillmore
functional as well, satisfyingW(F∞) =W(F∗). Now using the fact that the flow line
{P(t, 0, F0)◦Ψt } of theMIWF inS3 converges smoothly and fully to theC4-localmin-
imizer F∗ of W , we can choose some large but finite time T = T (F0, F∗, α) >> 1,
such that the immersionP(T , 0, F0)◦ΨT is contained in the specified ε-ballB4,α

ε (F∗)
about the local minimizer F∗ in C4,α(Σ,R4). Now we recall that the stereographic
projectionS from S3\{(0, 0, 0, 1)} intoR3 is a conformal diffeomorphism.Moreover,
on account of the compactness ofΣ and on account of the conformal invariance of the
MIWF, we may assume that the image of the initial immersion F0 : Σ −→ S3 does
not contain the north pole (0, 0, 0, 1) of S3. Now, again using the conformal invariance
of the MIWF, the entire technique of Theorem 5 can be transported from R3 to S3

by means of stereographic projection S : S3\{(0, 0, 0, 1)} −→ R3 and its conformal
inverse S−1. To this end, we firstly see that the requirements of Theorem 5 are trivially
satisfied here for the initial immersion F̃0 := S ◦F0 : Σ −→ R3 and for any final time
T > 0. Hence, the first part of Theorem 5 guarantees, that there is for F̃0 and for any
fixed γ ∈ (0, 1) and T > 0 some small ρ = ρ(Σ, F̃0, T , γ ) > 0, such that for every
immersion F̃ ∈ C4,γ (Σ,R3)with ‖ F̃− F̃0 ‖C4,γ (Σ,R3)< ρ there is a unique solution

{P∗(t, 0, F̃)}t∈[0,T ] of the “DeTurck modification” (129) of the MIWF-equation (2)
in the parabolic Hölder space XT ,γ ≡ C4+γ,1+ γ

4 (Σ × [0, T ],R3), starting to move
in the immersion F̃ at time t = 0, and such that this unique solution of equation
(129) in XT ,γ depends in a C0-fashion on its initial immersion F̃ , in the sense of
statement (134) in Theorem 5. Now, combining this information with the second part
of Theorem 5 and then applying again inverse stereographic projection S−1, we can
therefore infer that in our situation, there is for any ε > 0 some sufficiently small
r = r(Σ, F0, T , ε, γ ) > 0, such that for everyC∞-smooth immersion F : Σ −→ S3

with ‖ F − F0 ‖C4,γ (Σ,R4)< r the unique, maximal flow line P( ·, 0, F) of the MIWF
in S3 exists at least onΣ×[0, T ], and such that the flow lines {P(t, 0, F0)}t∈[0,T ] and
{P(t, 0, F)}t∈[0,T ] of the MIWF in S3 can be reparametrized by families of smooth
diffeomorphisms φ

F0
t : Σ −→ Σ and φF

t : Σ −→ Σ in such a way, that their
reparametrizations {P(t, 0, F0) ◦ φF0

t }t∈[0,T ] and {P(t, 0, F) ◦ φF
t }t∈[0,T ] satisfy

‖ P(t, 0, F) ◦ φF
t − P(t, 0, F0) ◦ φF0

t ‖C4,γ (Σ,R4)< ε, (137)

for every t ∈ [0, T ]. Now, we had chosen T = T (F0, F∗, α) that large such
that the immersion P(T , 0, F0) ◦ ΨT was contained in the ε-ball B4,α

ε (F∗) about
the limit immersion F∗ in C4,α(Σ,R4). Hence, by estimate (137) the diffeomor-

phism Θ
F0
T := (φ

F0
T )−1 ◦ ΨT : Σ

∼=−→ Σ has the property that both immersions
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P(T , 0, F0) ◦ φ
F0
T ◦ Θ

F0
T = P(T , 0, F0) ◦ ΨT and P(T , 0, F) ◦ φF

T ◦ Θ
F0
T are con-

tained in B4,α
ε (F∗), at time t = T , provided ε > 0 was chosen sufficiently small in

estimate (137), the initial smooth immersion F : Σ −→ S3 was contained in the
open ball B4,γ

r (F0) about F0 in C4,γ (Σ,R4), and provided r = r(Σ, F0, T , ε, γ ) =
r(Σ, F0, F∗, ε, γ, α) > 0 had also been chosen sufficiently small in estimate (137).
Here, we have also used the obvious embedding C4,γ (Σ,R4) ↪→ C4,α(Σ,R4), pro-
vided we have chosen γ ≥ α above. Hence, we should simply take γ = α in (137)
and in the sequel. Recalling from the statement of Theorem 2 that the size of the
ε-ball B4,α

ε (F∗) only depends here on Σ , F∗, and α, we finally see that the above
radius r = r(Σ, F0, F∗, ε, γ, α) actually only depends here onΣ, F0, F∗ and on the
parameterα, i.e., r = r(Σ, F0, F∗, α), andwe conclude if this number r is chosen suf-
ficiently small, then for any smooth immersion F : Σ −→ S3 being contained in the
open ballB4,α

r (F0), the reparametrized immersionP(T , 0, F)◦φF
T ◦ΘF0

T is an element
of the prescribed ε-ball B4,α

ε (F∗) about the limit immersion F∗. Now since we know
already from above that the entire reparametrized flow line {P(t, 0, F) ◦ φF

t }t∈[0,T ]
of the MIWF in S3 is of class C∞(Σ × [0, T ],R4), we especially conclude that the
immersion P(T , 0, F) ◦ φF

T ◦ΘF0
T is C∞-smooth and certainly also umbilic-free on

Σ . We can therefore choose the above initial immersion f0 from the statement of
Theorem 2 of this article as f0 := P(T , 0, F) ◦ φF

T ◦ΘF0
T and infer from Theorem 2

that the unique flow line {P(t, 0,P(T , 0, F) ◦ φF
T ◦ Θ

F0
T )}t≥0 of the MIWF in S3,

starting in the smooth immersionP(T , 0, F)◦φF
T ◦ΘF0

T at time t = 0, converges—up
to smooth reparametrization—fully in C4(Σ,R4) to a umbilic-free parametrization
F∞ = F∞( f0) of a C4-local minimizer of the Willmore functional W in S3 with
W(F∞) = W(F∗), provided F : Σ −→ S3 is a smooth immersion being con-
tained in the open ball B4,α

r (F0) about F0 in C4,α(Σ,R4) and r = r(Σ, F0, F∗, α) is
sufficiently small. On account of the invariance of both the MIWF and the Willmore
functional with respect to time-independent smooth reparametrizations thismeans that
any flow line {P(t, 0, F)}t≥0 of the MIWF in S3, which starts moving in some arbi-
trarily chosen smooth immersion F : Σ −→ S3 belonging to the open ball B4,α

r (F0),
converges—up to smooth reparametrization—fully in C4(Σ,R4) to a umbilic-free
parametrization F∞ of a C4-local minimizer of the Willmore functional W in S3,
satisfyingW(F∞) =W(F∗), provided r = r(Σ, F0, F∗, α) was chosen sufficiently
small. ��
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