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Abstract

In this article, we prove two global existence and full convergence theorems for flow
lines of the Mobius-invariant Willmore flow, and we use the latter result in order to
prove that fully and smoothly convergent flow lines of the Mobius-invariant Willmore
flow are stable with respect to small perturbations of their initial immersions in any
C*7 -norm, provided they converge to a umbilic-free C*-local minimizer of the Will-
more functional among C*-immersions of a smooth compact torus into either R or
S3. The proofs of our two main theorems rely on the author’s recent achievements
about the Mobius-invariant Willmore flow, on Weiner’s investigation of the stabil-
ity of the Clifford torus with respect to the Willmore functional, and on Escher’s,
Mayer’s, and Simonett’s work from the 1990 s on invariant center manifolds for uni-
formly parabolic quasilinear evolution equations and their special applications to the
Willmore- and surface diffusion flow near round 2-spheres in R3.
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1 Introduction and Main Results

The central mathematical object of this article is the Willmore functional
M 1 2
W= | KJ S TH P day, M

which can be defined for C%-immersions f : ¥ —> M, mapping any closed smooth
Riemannian orientable surface X into an arbitrary smooth Riemannian manifold M,
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where the function x — K }” (x) in (1) denotes the sectional curvature of M with
respect to the “immersed tangent plane” Df,(TyX) in Ty )M and Hy the mean
curvature vector along the immersion f; see here Definition (6) below. Regarding the
aims of this article, we will only have to consider the simplecases M = R or M = S" -
especially for n = 3—in which there simply holds K }’1 =0orK ]1}’1 = 1, respectively.
In this paper, the author aims to continue his investigation of the Mobius-invariant
Willmore flow (MIWF) in [17] and [19], which is the evolution equation
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being well defined for differentiable families of sufficiently smooth and umbilic-free
immersions f; of some arbitrarily fixed smooth compact torus ¥ into R"” or S”.
We recall here from [17] and [19] that the MIWF (2) exists uniquely at least for a
very short time, if it starts moving in a sufficiently smooth and umbilic-free surface
of genus 1, and that the MIWF can only decrease the Willmore energy, although it
is not the Lz—gradient flow (3) of WW. Here, one should also recall from [17], that
the existence of a smooth immersion f of a compact surface X into R” satisfying
Miny ey |A(}|2(x) > 0 yields a non-vanishing section of the bundle 7*X ® T*X,
implying that the Euler-characteristic of X' vanishes and thus that X' can only be
a compact torus. This might appear to be a tough restriction, regarding differential-
geometric applications of the MIWE. On the other hand, the MIWF has the remarkable
property, to be conformally invariant, which means that any family of smooth immer-
sions { fi};e[0,77 of a fixed smooth torus X' into R” solves equation (2) classically on
X x [0, T'], if and only if for any Mobius-transformation M € Mob(R"), for which
the transformed family {M (f7)}:c(0,7] 1s well defined on X' x [0, T'], {M (f;)}:ef0,7]
solves equation (2) on X x [0, T'] again; see here also Corollary 1 in [17]. This prop-
erty of the MIWF is particularly desirable because of the well-known invariance of
the Willmore functional W( f) in (1) with respect to composition f +— M o f with
any applicable M € Mob(R") and it starkly contrasts the behavior of the classical
Willmore flow

1
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with respect to conformal transformations of the ambient space R". The classical
Willmore flow is well defined for smooth immersions f; of any compact, orientable
surface X' into R”, but it has only been particularly well studied in the simplest,
e.g., spherical case: ¥ = S?. In Simonett’s famous Theorem 1.2 of his paper [44],
he proved exponential attractivity of round 2-spheres within sufficiently small #2+5-
neighborhoods for the classical Willmore flow (3), and nearly at the same time Kuwert
and Schitzle started to publish their series of seminal papers [22]- [24], in which
they estimated the life span of general flow lines of (3), characterized singular flow
lines in terms of curvature concentration, and finally proved global existence and
smooth convergence of any flow line {f;} of (3), which starts moving in a spherical
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immersion f : 82 — R3 with energy W(fy) < 87.! We actually know on account
of [32], Theorem 1.4, and [30], Theorem A, that there is only a finite number of
critical values of the Willmore functional— considered as a map from the set of
smooth, closed and orientable surfaces in R3 into R —within the interval (2712, 8r —
3), for any fixed small § > 0. But still any sort of global existence and smooth
convergence result that only requires an energy condition on the initial immersion
fo : ¥ — R3 seems to be out of reach in the general case of genus(X) > 0,
both for the classical Willmore flow and also for the MIWF in R3. The deeper reason
for this lack of concrete knowledge lies in the fact that a sequence of immersions
fi + ¥ —> R" of fixed positive genus might in general degenerate in moduli space,?
which means that the conformal classes of the pullback metrics f ]?“ (geuc) might not
stay in any compact subset of the moduli space M (genus(X)). And even if such a bad
behavior can be somehow ruled out—for example by means of an appropriate Willmore
energy bound®>—then still the conformal factors u j» appearing in Poincaré’s identity

f j“ (geue) = €24 8Poin, j» Might be unbounded in L°°(X), at least if we cannot correct
the immersions f; in terms of appropriate Mdbius-transformations, which is exactly
the statement of Theorem 4.2in [25]. Obviously a flow line { f; };¢[0, 73,x) Of the classical
Willmore flow cannot be corrected by general Mobius-transformations, and therefore,
the conformal factors u; of the immersions { f; } indeed might be unbounded in L°°(X’),
and in this case, the genera of the images f; (X') would have to finally drop in the limit,
ast /" Twmax, on account of Proposition 2.4 in [37], even if the initial energy was
supposed to be smaller than 87 or any other reasonable threshold.

Now, in spite of the conformal invariance of the MIWE, we cannot simply apply
Theorem 4.2 in [25] to sequences {f;;} along a general flow line { f;} of the MIWF
neither. However, the flow lines of the MIWF can be conformally mapped—by means
of stereographic projection—from R” into S§”. Of special interest is here the 3-sphere
S3, because it contains the Clifford torus C := \/LE(Sl x S1), an embedded closed

minimal surface in §* with constant intrinsic Gaussian curvature —I—thus in par-
ticular an embedded closed Willmore surface—which can be isometrically mapped
onto a very simple trapezoid in the complex plane. Hence, especially the spectrum
and the dimension of each eigenspace of the Beltrami-Laplacian A¢ can be computed
precisely, and in addition its most basic eigenspaces Eig_,(A¢) and Eig_,(A¢) can
be explicitly described in terms of conformal vector fields on S* restricted to C*—a
striking insight going back to Simons’ [45] seminal investigation of closed minimal
submanifolds of n-spheres—which will play a very important role in the proof of the
first main theorem of this paper, Theorem 1.

At this point, we should also mention that there are actually concrete examples
of singular flow lines of the classical Willmore flow moving rotationally symmetric
immersions into R® whose initial Willmore energies are only slightly bigger than
8m; see [7] for the important genus-0-case and [9] for the genus-1-case, respectively.

! See Definition 2 (b), (d) and (e) in [19], where the terms “flow line”, “life span” and “singular time” have
been introduced.

2 See here Sect. 5.1 in [36] for a very nice exposition.
3 See here Theorem 5.1 in [25].
4 Compare here with our Lemma 3 and also with the proof of our Lemma 4 below.
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Unfortunately, such a concrete divergence result is still missing for the MIWF, although
the existence of singular flow lines of the MIWF should be expected in view of its
singular evolution equation (2).

Moreover, we mention here, that the author has proved in the third part of The-
orem 1.2 in [18], that—up to smooth reparametrizations—the unique flow lines of
the classical Willmore flow (3) in S* converge smoothly and fully to immersions F*,
which parametrize conformally transformed Clifford tori in 83, provided those flow
lines start moving in a smooth parametrization Fy : ¥ —> S3 of a Hopf-torus with
initial Willmore energy W(Fy) < %.5 Interestingly, such a result does not seem to
hold for flow lines of the MIWF (2), meeting the same start conditions, since even this
narrow class of flow lines of the MIWF might develop curvature singularities, even
under the condition that their initial Willmore energies are smaller than the prominent
threshold 8. One should see here Theorem 1.3 in [20] for a precise criterion for full
convergence of global flow lines of the MIWF which start moving in smooth Hopf-tori
in §* with Willmore energies smaller than 87. Actually, the proof of Theorem 1.3 in
[20] strongly relies on the result of our Theorem 1 below.

Now in this article, we will show the first two global existence and convergence
results for the MIWF and derive a stability result for fully convergent flow lines of the
MIWF to local minimizers of the Willmore functional in S3, respectively R3. Firstly,
in Theorem 1 below, we will prove an analog—here for the MIWF near the Clifford
torus—of Simonett’s Theorem 1.2 in [44], which we had already mentioned above.
Our proof of Theorem 1 relies on a combination of particular computations due to
Weiner [48] and Simons [45] with Escher’s, Mayer’s, and Simonett’s technique in
[13], [14], [42], [43], and [44] of invariant center manifolds for uniformly parabolic
quasilinear evolution equations and their special application to the Willmore flow near
round 2-spheres in R>.

Theorem 1 (Full Convergence Theorem 1) Let X be a smooth compact torus, and
let F¥ : ¥ —> M(%(S1 X Sl)) be a smooth diffeomorphic parametrization of a

compact torus in S°, which is conformally equivalent to the standard Clifford torus

%(Sl X Sl) via some conformal transformation M € Mob(S®), and let some B €

(0, 1) and k € N be fixed. Then, there is some small neighborhood W = W (X, F*, k)
about F* in h*P (X, R*), such that for every C*®-smooth initial immersion F) :
¥ —> 83 which s contained in W, the unique flow line {P(t, 0, F1)};>0 of the MIWF
exists globally and converges—up to smooth reparametrization—fully to a smooth and
diffeomorphic parametrization of a torus in S3, which is again conformally equivalent

to the Clifford torus \%(Sl X Sl). This full convergence takes place with respect to

the CX(X, R")-norm and at an exponential rate. O

In Theorem 1, the symbol “p2th (X, R)” denotes the “little Holder space,” modeled
on X, of differentiation order 2 + B, see here e.g., [13], p. 1419, or [40], p. 219,

5 Here and in the sequel, “full convergence of a flow line” { f;};¢[0,00) Of €ither evolution equation (2) or
equation (3) in a Banach space (X, || - ||x) means that || f; — f* ||x—> 0 for a unique limit f* € X, as
1 — 00, in contrast to “subconvergence” of { f1};¢[0,00) With respect to || - || x, which means that only for
certain sequences 7; /' oo the immersions f; ; converge to certain limits in X, that might in general depend
on those special sequences {t;}.
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for a precise definition. It should also be noted here, that the proof of Theorem 1
does not require any type of Lojasiewicz-Simon gradient inequality for the Willmore
functional.

However, we are going to prove the following full convergence theorem by means
of the well-known trick using the Lojasiewicz-Simon gradient inequality for a certain
real-analytic functional F—see e.g., [8] or [41]—in order to obtain simultaneously
global existence of a flow line of the corresponding L?-gradient flow and also its full
C*-convergence.

Theorem 2 (Full Convergence Theorem II) Let X be a smooth compact torus, k € N,
withk > 4, and o € (0, 1) be given, and let F* : ¥ —> S3 be a umbilic-free and
C°°-smooth Willmore immersion, which locally minimizes the Willmore functional in
the C* (X, R4)-n0rm, in the sense that there exists some § > 0, such that for any
immersion f : ¥ —> S3 with || f — F* llck(x R4y < 0 there holds

W(f) = W(F™). “

Then there exists some ¢ = ¢(X, F*, k,a) € (0, 8), such that for any C*°-smooth
immersion fo : ¥ — S® with || fo — F* ke (s vy < € the corresponding flow
line {P(t,0, fo)}i=0 of the MIWF exists globally and converges fully with respect to
the C*(X, R*)-norm—up to smooth reparametrization— to a umbilic-free Willmore
immersion Fo, as t — 00, and this limit immersion is a C k_local minimizer of the
Willmore energy as well, satisfying W(Foo) = W(F*). O

Hence, the MIWF can be used in order to detect C*-local minimizers of the Willmore
energy in both S* and R3. One can quickly check that Theorem 2 is in exact analogy
with Theorem 1.2 in [8] for the classical Willmore flow (3).

Remark 1 (1) Employing the conformal invariance of the Willmore functional, of its
Lz—gradient and of the MIWF-equation (2) it does not matter, if we state Theo-
rems 1 and 2 for the MIWF in S3 or in R3, and this flexibility will turn out crucial,
at least for the proof of Theorem 2 in its present form above. As we will see below,
Theorem 1 cannot be proven directly for the MIWF in R3, whereas vice versa
Theorem 2 should not be proven directly for the MIWF in S3, as it is actually
stated above. We will therefore prove Theorem 2 for the MIWF in R3 and then
project the entire result back into S* by means of inverse stereographic projection
S, See here also the comments at the beginning of the proof of Theorem 2.

(2) We should also mention here, that the limit Willmore immersion Fs, in Theo-
rem 2—and also in Theorem 4 below—is actually C°°-smooth, and not only of
class CK(X, R*), respectively C*( X, R*)— according to the types of convergence
obtained in these two theorems. In order to see this, we replace Fy, by its com-
position S o Fu, with stereographic projection into R, and we use Lemma 4.1,
respectively, Theorem 4.3 in [36], in order to construct a conformal structure ¢ on

yenes

with respect to Fio. Hence, there is actually a conformal atlas {y/;} =1,y of X
with the additional property that each composition So Fog 09 : BIZ(O) — R3is
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conformal, which means that the constructed conformal structure respects the con-
formal class of (S o Fixo)™*geuc. Now only using the fact that the immersion F is
classically Willmore and at least of class C K with k > 4, we can write down locally
in the charts v/ ; both the Euler-Lagrange equation A#DC Hr +0 (A(I)poo JFx) =0
of the Willmore functional for F, and also the generalidentity Hr,, = Afr, (Foo)
for the mean curvature vector of F, in order to infer from ordinary Schauder reg-
ularity theory that F, is actually of class C/*7, for each I > k and any fixed
y € (0, 1). This result already proves our claim above, because every complex
structure on X' automatically determines a smooth structure on X', and moreover,
there is only one smooth structure on X' on account of the well-known classifica-
tion of compact, orientable, smooth 2-manifolds. Lemma 4.1 and Theorem 4.3 of
Riviere’s lecture notes [36] originate from Hélein’s, Miiller’s, and Sverdk’s semi-
nal work in [16] and [31] combining the method of moving frames and ideas from
Gauge Theory with the phenomenon of integrability by compensation; see here
Sects. 3.1-3.4, Theorem 5.1.1 and also Sect. 5.4 in [16] and Sects. 3 and 4 in [31],
and for further technical improvements also Sect. 6 of [25] and Appendix A of
[37]. O

2 Preparations for the Proofs of Theorems 1 and 2

Definition 1 Let X' be a smooth compact torus, and let M = R3or M = S3 We
denote by Ci> (X, M) the set of C*°-smooth immersions F : X — M of the torus
X into M. |
Now, given any such immersion f of X into M, we endow the torus X with the
pullback f*geyue of the Euclidean metric of either R3 or R?, i.e., with coefficients
gij = (0;f,0; f), and we let (Ay)gs and (Ay)gs denote the second fundamental
form of the immersion f, either mapping into R? or into S*, defined on pairs of
tangent vector fields X, Y on X by:

3
(Ap)rs (X, Y) := Dx(Dy(f)) — PR (Dy(Dy(f)) = (Dx(Dy () /¥
3
(Ap)g (X, Y) := Dx(Dy(f)) — PDS (Dy(Dy(f))) = (Dx(Dy (f))" 15
where Dy (V)| denotes the projection of the classical derivative of a vector field
V : ¥ — R3, respectively, V : ¥ —> R* in direction of the tangent vector field

X € I'(T %) onto the respective fiber T7()R? = R? of TR, respectively, T (xS’
of TS3, and where

pTan(f).R* ) x R — | J{x) x T (f(2)) =: Tan(f)

xeX xeX
PTDS" | J ) x TS* — |6} x Treo (F(2) =Tan(f)  (5)
xeX xeX

denote the bundle morphisms which project the entire tangent spaces R, respectively,
Trw S3 orthogonally into their subspaces T (x)(f(2'))—the tangent spaces of the
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immersion f in the points f(x) for every x € X. Furthermore, (A(})R3 and (A(;-)Ss
denote the tracefree parts of (A y)g3 and (A r)g3, Tespectively, i.e., '

1
(ADg (X, Y) = (Apg(X,¥) - S8/ (XN H g
with
H; g3 1= trace((Af)g3) = (Ap)gs(ei, €i) (6)

(“Einstein’s summation convention’) denotes the mean curvature vector of the immer-
sion f : ¥ —> S3, where {¢;} denotes a local orthonormal frame along the tangent
bundle 7" X Finally, in both settings Q(A r), respectively, Q(A(/l) operate on vector
fields ¢ which are sections of the normal bundle of f, i.e., which are normal along f,
by assigning

O(Af)(@) :=Af(ei,ej)(Af(ei, ej), d),

which is by definition again a section of the normal bundle of f. Moreover, in equa-

tion (2), we consider the normal Beltrami—Laplace operator AJ% for an arbitrary

C2-immersion f : ¥ —> S3. As introduced in Sect. 1 of [45] or also in Sect. 1 of
[48], this is a differential operator of 2nd order acting on those sections of the pullback-
bundle f*(T'S?), which are normal along f within 7'S?, and again outputting such
sections, i.e., sections of the normal subbundle Nf of f *(TS3). The operator AJ% is

constructed by means of the composition of the unique Riemannian connection VS’
on f*(TS*) with pointwise orthogonal projection of each fiber of the pullback bundle
£*(T'S?) into the corresponding fiber of its normal subbundle N f. Alternatively, this
notion can be defined via coordinate patches on X, as for example in Definition 3.1
of [18].

In order to transfer the method in [13], [14], [43], and [44] to the MIWF (2) for
families of immersions f; : ¥ —> S3, we have to establish “Fermi coordinates”
in a sufficiently small open neighborhood U of the standard Clifford torus C :=
«/LE(SI x S in S3. Intentionally, we will work in S* and not in R? throughout the
entire proof of Theorem 1. This is due to the circumstance that the stereographic
projection of the Clifford torus into R? is not a minimal surface anymore and neither
satisfies |A?|> = const. But these are key properties of the standard Clifford torus in
S* which will turn out crucial in the proof of our central Lemma 2, yielding a fairly
simple linearization of our basic differential operator G from (25), respectively, (28) at
o = 0 and thus paving the path to Lemma 4; see here also Remark 2 below Lemma 2.
Firstly, we recall from [26], p. 108, that the tangent bundle of S? splits along C into a
direct sum of vector bundles

TS |c=TC® NC 7

namely into the tangent bundle and the normal bundle of C within 7S>. Now we can
construct Fermi coordinates in a canonical way by means of the restriction of the
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24 Page8of51 R. Jakob

exponential map exp = exps3 : D(expSS) C TS? — § to the normal bundle NC -
a smooth subbundle of 7'S>:

explyc: dom(exp) N NC — S3,

because the proof of Theorem 5.1 in [26] guarantees, that there is a small open neigh-
borhood Z of the zero-section in the total space of NC and an open neighborhood U
of the torus C in S3, such that

explyc: Z i U (8)

is a smooth diffeomorphism. Hence, the restriction exp| y¢ to a sufficiently small open
neighborhood Z of the zero-section of the bundle NC — C is a tubular map, and the
corresponding open neighborhood U of C thus turns out to be a tube about C, in the
language of differential topology, see e.g., [26], p. 108. In other words, having chosen
a global unit normal field v¢ along the orientable surface C, i.e., a smooth section of the
bundle NC of constant length 1, any point p € U can be written as p = exp, (r v¢(x))
for a unique point x = x(p) € C and a unique real number r = r(p), thus yielding
globally defined Fermi coordinates (x,r) € C x R for points p € U. Hence, having
chosen a unit normal field v¢ along C, statement (8) yields a smooth diffeomorphism

X:Cx(—a,a) =N image(X) =: Uy, X(x,r) :=exp,(rve(x)), )

onto an open neighborhood U, of the torus C in S*, provided a > 0 is chosen suffi-
ciently small, more precisely smaller than the width of the tube Z about the zero-section
in NC.° Taking the inverse of the smooth diffeomorphism X in (9), we obtain a well-
defined and unique pair of smooth coordinate functions

S:U,—C and A:U, —> (—a,a). (10)

Now, suppose there is some smooth manifold & in U,, which has the property that

the coordinate function S maps & bijectively onto C. We thus obtain a unique smooth
function

p=pz:C—> (—a,a) bysetting p(x):=Ao(Slz) '(x), xeC, (1)

where A and § are the smooth coordinate functions from line (10). Obviously, the

function pz measures the pointwise “signed geodesic distance” between the set &

and any chosen point x € C, and we therefore recover & as a graph over C:

E = image([C S>x > X(x, ,o(x))])

6 See here also Sect. 4.1 in [35] for the construction of the map X in Euclidean space, and especially
formulae (27) and (34) in [35] for a simple upper bound on a in terms of the maximal principle curvature
of the base surface, which is here the Clifford torus C < S3.
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just by construction of the diffeomorphism X in (9), of S and A in (10), and of p
in (11). Conversely, suppose that there is some function p : C — (—a, a) of class
h2+(C), for some arbitrarily fixed @ € (0, B)—where 8 € (0, 1) is already given by
the asserted statement of Theorem 1—then the set

E(p) = image([C >5x— X(x, p(x))]) c U, (12)

is a 2-dimensional manifold of class /> T®—provided a > 0 is sufficiently small—and
moreover, 5 (p) is the level set {p € U, | @,(p) = 0} of the function

@, :U; —> R definedby @,(p) := A(p) — p(S(p)). (13)

Obviously, the function @, is just as smooth as the function p is, thus here it is of class
2t u,). Suppose now that we have a time-dependent function p : C x [0, T) —>
(—a, a) of class C°([0, T); 212 (C)) for the above fixed « € (0, B). We thus consider
the time-dependent function

D, (p, 1) := A(p) — p(S(p), 1),

and we obtain closed and compact h2T%_manifolds & (pr), for t € [0, T), in the
neighborhood U, of C in S? as level sets:

E(p) ={p € Ua| Pp,(p,1) = 0}. (14)
In combination with equation (12), we have the equation
Dy (X(x,p(x,1),1) =0  V(x,1) eCx[0,T). (15)

Now, provided the distance function p is sufficiently smooth in # € (0, T), then
differentiating (15) with respect to ¢ and the chain rule yield:

3 0 d
0 = (V55 (X (x, o, 1), 1), 2 (X (., 95 0D)) + 2By, (X, 1), 1)

0
= 2| V5 0, X o). 0| [@) X (X pe )| - @ 6)

for (x,t) € C x (0,T), where “2&,(X(x,p(x,1)),1)” means L&,
(P, ) p=X(x.p(x,1))- Here, “A)1x (X (x, p(x,1)))” denotes the normal component
of the velocity vector d;(X (-, p(-,1))) of the family {Z (po)}/[0.7) of parametrized
moving manifolds from (14), evaluated in their points X (x, p(x, 1)), and this vector
is actually parallel to the gradient V[S,3 D, (X(x, p(x,1)),t) on account of formulae
(12)—(15). Furthermore, the sign in (16) depends on the direction of the normal velocity
(31X (X (x, p(x, 1))) of the surfaces & (p;) compared to the direction of the chosen
unit normal ve along the Clifford torus because of (9), (10) and (13). Now, flipping
vc to —ve would force us to also change p; to —p;—according to the introduction of
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24 Page 10 of 51 R. Jakob

the signed distance function pz in formula (11)—and the “signed speed” V (x, t) of
(3% (X (x, p(x, 1))) should be positive if and only if g—f(x, t) is. We therefore infer
from (16) as on p. 1423 in [13] or as on p. 272 in [14] the fundamental description

_ L x, 1)
VS ®,, (X (x, p(x, 1)), )]

Vix,t) for (x,t) e C x (0, T), a7

of the speed of the surfaces & (p;) in normal direction of motion—with respect to the
chosen orientation of C - provided our distance function p is sufficiently smooth in z. In
view of Theorem 3 below, we can actually assume until the formulation of Lemma 1,
that our distance function p will additionally be of class C*°((0, T); C*°(C)), thus
giving rise to the smooth family

0, (x, 1) :=exp,(p(x, ) ve(x)), for (x,¢) e Cx(0,T), (18)

of C*°-smooth and diffeomorphic parametrizations of smooth surfaces & (p;), moving
according to (17). Moreover, since for any fixed ¢ € [0, T'), the normal bundle N = (o)
of the submanifold Z(p;) < S3 is only one-dimensional and possesses the non-
vanishing section vz ,,) of constant length 1 with respect to gg3, any smooth section
V € '(N E (py)) can be written in the form

V=frvse) on &(o) (19)

for a uniquely determined smooth function fy : Z(p;) —> R. Hence, we obtain a
linear bijection

LC(NE(p) >V < fv € CT(E(p)) (20)

between the set of smooth sections of N Z (p,;) and functions of class C®° (& (p;)).
Now, the connection V= in the normal bundle N & (p;)—see Sect. 2.1 in [45]—maps
sections of N & (p,) into N Z'(p,) again and maps the unit normal vz ,,) to 0. Hence,

defining covariant differentiation “Vf (®1)> of smooth functions f € C®(E(p)) in

1

the direction of some locally defined partial derivative 9; by V§ (» ’)( f) = 09;(f) and
(VEET o, () = i;(f) —(Fg(p,))jfj 9 (f), where (Fg(pt>){.<j denote the Christoffel

symbols of the Euclidean metric induced by the injection & (p;) < S>, we infer from
the Leibniz-rule for linear connections:

Vi (fv2(0) = Vi " (f)vs(e) on E(p).

and thus by definition of the Beltrami-Laplace operator, associated both to the linear
connection V= in the normal bundle N Z (p;) and to the covariant derivative V= ()

on Z(pr):
1 ij 152
Ag(p,)(f VE(pz)) = gl_:{'(pr) 0% )3,-,3]. (f VE(p,))

= g’é(m (VE(p’))%,-,aj(f) VE(p) = Bz () vae) CD
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for any function f € C*°(&(p;)). Now we infer from (21) that
1 1
Dz e = BE(p) (Hz o) VE()) = Dz (Hz (o) VE(p)- (22)

Moreover, we have

1AL 1’H = (A Hz -2k H 23
Z(p) E<p1>—(2| 2o 5(o0) Hz (o) Va0 (23)

on E(p;), forevery t € [0, T), where the symbols Hz(,,) and K 5(,,) denote the trace
and the determinant, respectively, of the scalar second fundamental form (Az(,,))s3
of the submanifold & (p;) < S* with respect to a fixed unit normal Vg (p,); see here
formula (5) on p. 22 in [48].

Now we fix an arbitrary family of compact surfaces & (p;) which are contained in
the open neighborhood U, of C in S* and implicitly given by equation (14) in terms
of a time-dependent distance function p : C x [0, T) — (—a, a) of class

p € CU[0, T); h*TF(C)) N C™((0, T); C™(C)),

where 8 € (0, 1) had been prescribed in the statement of Theorem 1. Exactly as
in formulae (1.1)—(2.2) of [13], we infer now from a combination of formulae (2),
(17), (21), (22), and (23), that a family of immersions f; : ¥ —> S3. 1 e0,7),
parametrizing the compact 22+#-manifolds Z (p;), moves according to the “relaxed
variant”

1
(al)#h(fl) - _

L 0 1
2ja0 (A.f}Hfz +0o ~,><Hﬁ>) =——37 VW) 24

1A% 14

of the MIWF (2) on X' x (0, T), if and only if the prescribed distance function p = {p;}
satisfies the evolution equation

*

05 (85 (o) Ha (o) (%, 1)

3
@&”_Jﬁ¢w%mmm(
ar 21A% ) 0p (x, D)4

1
+(§ |Hz (o) 0, (6, DI = 2 K29y (0, (X, 1)) Hz () (0, (x, l)))
=: G(p)(x) (25)

for (x,1) € C x (0, T), whose initial value po is determined by the initial A>+#-
manifold &y C U, on account of formulae (9)—(12),” In view of formula (25) and of

7 We can easily infer from formula (5) in [48] that—on the one hand—the values on both sides of (22)
and (23) do not change if we flip the unit normal from vz (,,) to —vz (). On the other hand, in equation
(25) we have simply dropped the unit normal vz (,,) appearing in equations (22) and (23). Therefore the
+-ambiguity in (16), leading to V (x, 1) = il(a,)LX (X (x, p(x,1)))| onaccount of (17), disappears in (25),
if we choose a continuous field of unit normals vz (,,) along the moving surfaces & (p;) in such a way that
Vg (p;) = v holds for p; = 0, just as asserted in [38], formula (1.1), or in [39], formula (5.1).
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Lemma 1 below, we recall here the transformation law

9;[ (AEﬂt (h)) = (AEpr (h)) 0 bp, = Doy (8g3 LE(pt))(h 0 6p,)s (26)

Pt

for h € C*°(&),), between the Beltrami-Laplacian Az, on the submanifold &), <
S3, endowed with the Euclidean metric, and the Laplacian A@;{ (863 Lz (o)) O C with
respect to the metric o (p;) = 9; (85315 (o)) pulled back by the diffeomorphism

Op (- 1) :C = EZ (py) from line (18), for any fixed time ¢ € [0, 7). We shall adopt
the notation in [13, 38, 39, 44] and abbreviate in the sequel

B (1) = Ba e ts () = 0700 (060D = Vi (D). @)

for f € C*(C) and for every fixed ¢ € [0, T), using the coefficients o/ (p;) of the
dual metric tensor o*(p;) and the Christoffel-symbols y}k (o), i, j, k = 1,2, with
respect to o (p;). Now we choose some Sy € («, 8), where a € (0, 8) was arbitrarily
fixed above line (12), and we define the open subset

Ug, = 1o € PO | 1l p =)< a)

of the Banach space h*tPo(C), for some sufficiently small a > 0 as in (9). Closely
following the proofs of Lemma 2.1 in [13] and of Lemma 3.1 in [14], we will prove
here the following fundamental result.

Lemma 1 The differential operator

3
|V @, 06,

1
R (ApHp + H, (5 H] —2Kp)) (28)
0

G(p) =

from line (25), having abbreviated here Ag = A%(p) 06, H, = Hg) o0, and

K, = Kz(p) 06, is a uniformly elliptic quasilinear operator. More precisely, G can
be decomposed in the following way:

G(p) =—P(p).p+ F(p) (29)
for every p € V¢ := h*t*(C) N L{go, where
P: Z/{go — L(™M(C), h*(C))
is a uniformly elliptic quasilinear operator of class C*° (U “0 , L(h*(C), h%(C))), and
F eC®™® (ngo, hPo(C)) is a non-linear operator of only second order, satisfying F (0) =

0 on C. In particular, — P (p) generates a strongly continuous analytic semigroup on

h*(C), i.e., P(p) € H(h*t¥(C), h%(C)), for every p € Ug,.
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Proof : First of all, as in the beginning of the proof of Lemma 2.1 in [13], we choose
an atlas {O; |l = 1,...,m} of open coordinate neighborhoods O; on C, yielding
partial derivatives 9;, j = 1, 2, on O}, and we pull back the Euclidean metric gg3 via
the diffeomorphism

X = X10;x(~a,0): O x (—a,a) — image(X LOyx(—a,a0)) =1 Ri(a) C s’

which is a restriction of the diffeomorphism X in line (9) to O; x (—a, a). Now, on
account of one of Gauss’s famous results in Riemannian Geometry, the exponential
map exp, : T.S? — 83 yields a radial isometry, at least locally about 0 in 7,,S? for
any fixed x € C; see here Lemma 3.5 in [10]. We can therefore verify by means of
formula (9) and the usual chain rule that we actually obtain a smooth product metric

g = Xl*(gs3 LR)(@) = wi(r) + dr ®dr on T(O; x (—a,a)), (30)

where w; () is the metric on T (O; x {r}) = T O; whose coefficients can be explicitly
given by

(wi(r) jr(x) = gs3(9; Xy (x, 1), kX (x,r)), for (x,r) € O x (—a,a)

andfor!/ =1, ..., m, where 9;, d are the partial derivatives on O introduced above.
Moreover, for p € L{go, we use the notion of the metrics w;(r) in order to globally
define the metric w(p) on TC by

(w(p)) jk(x) = (wi(p(x))) jk(x) = 8s3(3; X (x, p(x)), KX (x, p(x))), forx e Oy,

and for/ = 1, ..., m. Compare here also with [13], p. 1424, and [14], p. 275. In other
words, w(p) is the unique metric n on 7'C such that there holds:

nx) +dr @dr = (8 (x,p(x)) N T(x p)(O1 X (—a,a)) YxeO,

and for each [ = 1,...,m. From w(p), we also obtain the metric w*(p0) on the
cotangent bundles 7*(O;). Throughout this proof, we will simultaneously use the
metric w(p) and the other metric o (p) on TC which we had obtained already above
between formulae (26) and (27) and which enters here via the pulled back Laplacian
A, on (C,0%(gs3Lz(py)) from lines (27) and (28). Now, exactly as in the proof of
Lemma 2.1 in [13], we can conclude from @,(p) = A(p) — p(S(p)) and from the
definition of the metric w(p), that there holds

3
Ly (x) = |Vy @,(X;(x, p))* =1+ w*(p)x(dp(x), dp(x)) ¥x €O,
3D
and foreach/ = 1, ..., m. Moreover, as in Lemma 3.1 in [14] or as in Lemma 2.1 in
[13], we pull back the scalar mean curvature Hg ) to Hy 1= 07 Hz(p) = Hz(p) 0 6,

and we notice that our introduction of the mean curvature vector in (6)—following
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exactly the conventional, general definition via formula (5) in [48]—coincides with the
expression in formula (3.1) in [14], p. 274, at least up to a minus sign. We can therefore
follow the lines of the proof of Part B of Lemma 3.1 in [14] and express the function
H, in terms of L ,, the metric w(p), and in terms of the Christoffel symbols I ?k of
the product metric g; from formula (30) on each product O; x (—a, a), evaluated in
the points (x, p(x)):

Hy = Pi(p).p + Fi(p) on C (32)

for any p € Ugo, where we have exactly

1

—Pip) =13 (( — Ly w/*(p) + w/ (0) w*" (0) 313 p) 0 B
P
+(L2 wk(p) Tl (p) + w!' (p) w* (p) T (p) dip + 2w (0) T4, () O
—wil(0) Wk (0) [ (0) 81 ) 3 ). (33)
and
1 jk 3
Fi(p) = v () I'j(p), (34

P

on account of formula (3.3) in [14]. In formulae (33) and (34), summation only runs
from 1 to 2 for repeated indices, and we have explicitly

T5(p)(x) = Ty (x, p(x) = gg3(3; 0 X1, 33 X)) (x, p(x)) for x € O (35)

and foreach/ =1, ..., m, ason p. 275 in [14]. As in the proof of Lemma 2.1 in [13],
one can derive from formulae (31) and (33) and Cauchy—Schwarz inequality that the
symbol pT (p) of the leading 2nd order term of the operator P;(p) in (33) satisfies

1
=1 (P)(E) = 5 w*(p)(. &) VEeTHO). (36)
o

Combining now formulae (28) and (32)—(35), one can start proving equation (29) for
any fixed p € V¢ = h*9(0) mugo as in the proof of Lemma 2.1 in [13], p. 1425. First
of all, one can compute by means of formulae (28), (32), and (33) that the leading 4th
order term of the operator P(p) on the right hand side of equation (29) is explicitly
given by

P (p) = 307 (L3 0™ 0) = w7 o) wh™ (o) pin )30

1
2 0
212149
37

for any fixed p € Z/{E’O. Moreover, one can argue as on p. 1425 in [13] that applying the
Laplacian A, to the right hand side in (33) leads to a quasilinear differential operator
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of fourth order, which can be decomposed by means of P (p) in (37) in the following
way:

JA0F Ly 8p(Pi(p).p) = P"(p).p + Q(p).p for p €Uy N h*(C), (38)
]

where [p — Q(p).p]is aquasilinear differential operator of third order, which acts on
third-order partial derivatives only linearly. Hence, for any fixed p € U “O , we have that

Q(p) € L(K3TY(C), h*(C)). Now, comparing the explicit formula (37) with formula
(33), and using estimate (36) for the symbol p7 (p) of the leading 2nd order term of
the operator Pi(p) in (33), the symbol p” (p) of the operator P™ (p) from line (37)
turns out to satisfy

P (P& = o*(P)E. &) w(p)(E.§) YE T (O,

1
2 014
212149

proving that the operator P” (p) is uniformly elliptic of fourth order. Moreover, as in
the proof of Lemma 2.1 in [13], we write the operator P (p) on the right hand side of
equation (29) as a sum of the principal quasilinear operator P” (p) of fourth order and
two further quasilinear operators [p — Q(p).p] and [p +— R(p).p] of third order,
which contain all partial derivatives of third order of the operator G in formula (28),
ie.,

P(p) := P™(p) + Q(p) + R(p)  for p € Ug NH*H(C), (39)

where the quasilinear operator R(p) is concretely given by

L 1 . 3
R(p).p = W (Ap(L—p)) Ly Fi(p) for p € Uy NHH(C).

Hence, combining formulae (28), (32), (38), and (39), we see as in the proof of Lemma
2.1 in [13] that the remaining term in formula (29) has to be the non-linear operator

- LP 1 2
Fo) =~ (8 F1(0) + Hy (51H, = 2K,))
+R(p).p forp €U NPT (C). (40)

Moreover, it follows as in the proofs of Lemma 2.1 in [13] and of Lemma 2.1 in [44],
that the non-linear operator F in (40) is—just by its construction—of only second
order and smooth, more precisely F is of second order and of class C W(ugo, hPo(C)).
Similarly one can infer from formulae (37)—(39), that P is a non-linear operator of
class C OO(M“O, LA (C), h%(C))). This has completed the proof of formula (29).
Furthermore, we can verify that the uniform ellipticity of P(p) implies that — P (p)
is sectorial in 2%(C) by Theorem 3.3 in [40], for any fixed p € L{/‘B‘O. Since At (C)
embeds densely into 2% (C), — P (p) therefore generates a strongly continuous analytic
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semigroup in h%(C), in classical notation “P(p) € H(h*t*(C), h*(C))”, for every
pE Z/{go ; see here also Theorem 3.5 in [40]. Finally, combining the quasilinear structure
in (29) of the non-linear operator G from lines (25) and (28), which we have just
verified above, with the correspondence between equations (24) and (25) and with the
well-known fact that the Clifford torus C is “Willmore” in S°, we infer indeed that
F(0) = G(0) = 0 onC from simply evaluating formula (29) at p = 0, just as asserted
below formula (29). O

Relying on the proof of Theorem 2.2 in [13], we infer the following fundamental
existence, uniqueness, and regularity result for the quasilinear parabolic equation (25)
from Lemma 1 and Sect. 12 in [3]. See also Theorem 3.1 in [43]. We recall here, that
we have chosen fj € (a, B) before the statement of Lemma 1, implying that 2>+#(C)
embeds compactly into h>+5(C).

Theorem 3 For any py € Ug := {p € WP | |l p L)< a} there is a unique,
non-extendable solution

[t p(t, po)] € CO(10, ), Ug) N C=((0,1F), C¥(C))

of the initial value problem
ap .
g(x, t) = G(ps)(x) for t >0, with p(x,0) = po(x) forevery x € C, (41)

where t+ = tT(pg) > 0 denotes the “time of maximal existence” of the smooth
solution of problem (41) and where G denotes the quasilinear differential operator
from lines (25) and (28). Moreover, the map [(t, po) — p(t, po)] defines a smooth
local semiflow on L[g in the sense of Sect. 12 in [3]. O

Now, using some computations from Weiner’s article [48] about the Willmore func-
tional, we obtain the following counterpart to Lemma 3.1 in [13].

Lemma 2 The operator G : Vi = ey n L{go —> h%(C) from line (28) is C°-
smooth, and its Fréchet derivative in p = 0 € Vj is precisely the uniformly elliptic
linear operator

1
D,G(p)|p=0= D, F(0) — P(0) = 3 (Ac +4) o (Ac+2) : k() — hY(0),

where A¢ denotes the standard Beltrami—Laplace operator on C with respect to the
Euclidean metric induced by the injection C — S, i.e., Ac = Aplp=0 in the termi-
nology of equation (27).

Proof We can immediately infer from Lemma 1 that the operator G : V5 — h%(C) is
C>°-smooth and thus continuously Fréchet-differentiable in V. Moreover, the man-
ifold Z(0) from (12) is simply the Clifford torus C in S® by the above construction.
We may therefore use Weiner’s computation in [48], pp. 24-25 and p. 34, and formula
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(21), in order to infer that the Fréchet derivative of the non-linear mean curvature
operator [p — H,] of the manifolds Z, evaluated in p = 0 is concretely given by:8

DyHyl 0= D¢ +4 1 B*T(C) —> h*(C). (42)

Now we compute the Fréchet derivative of the first term in (28). To this end, we notice
that in our situation, there holds simply Lo = 1, H, | p—0= H¢ = 0, and |A2|2 = 2.
We can therefore proceed exactly as in the proof of Lemma 3.1 in [13], deducing
from the chain rule for bilinear composition of non-linear operators combined with
equation (42) that

L 1
D, (—" ApHp) Lp—o= = Ac o (Ac +4). (43)
21A0 8

Moreover, in order to compute the Fréchet derivative of the second term in (28), we
can employ again equation (42) and the equations Lo = 1, Hy = Hg = 0, and
Ko = K¢ = —1 and obtain here via the chain rule for bilinear composition:

D LH(lHZ—zK)L —lDHL (1H2—2K)
P 2|A2|4 4 2 P 4 p=0_8 pHp Lp=0 2 0 0
1
=L +4. (44)

Hence, adding formulae (43) and (44), we finally obtain

1 1
DyG(p)lpmo=—5 (B +48c +28¢ +8) = =3 (Be +4) 0 (B¢ +2).

on account of equation (28). Compare here also with p. 29 in [48]. O

Remark2 We should remark here that Lemma 2 would become tremendously
complicated—and additionally useless—if we would start working between for-
mulae (8) and (25) in a tubular neighborhood of the stereographically projected
Clifford torus “Cliff” in R, being conformally parametrized by the standard embed-

ding F(x,y) = cos(x), sin(x), cos(y) ), for x,y € [0, 2m], because

1
V2—sin(y) (
its mean and Gaussian curvatures are non-constant functions, concretely given by
Hp(x,y) = +/2sin(y) and K (x, y) = +/2sin(y) — 1, and already our formula (42)
would become instead: D, H, | ,—o= Aciiff + (/<12 + K22) on account of Appendix A in
[2], where the principal curvatures along Cliff are concretely given by k1(x, y) = 1

and k2 (x, y) = +/2sin(y) — 1 via F. o

In view of the proof of Lemma 4 and of Theorem 1 below, we recall here some
differential-geometric key-insights from [45] and [48]. First of all, replacing the
smooth submanifolds = (p;) — S3 in (19)-(21) simply by the Clifford torus C, we

8 Here our procedure clearly differs from the one in [13] and [44], where the authors relied on the compu-
tations in Lemma 3.1 of [14], which we only used in the proof of Lemma 1.
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have Vi(f ve) = Vg(f) ve on C and therefore also Aé(f ve) = Ac(f)ve, for
any function f € C°°(C), where g¢ and A¢ denote the Euclidean metric restricted to
TC and the standard Beltrami—Laplace operator on C, which are both induced by the
injection C < S°. Moreover, following Weiner [48], Sect. 3, we define two different
elementary types of smooth sections of the normal bundle NC of the Clifford torus C
within TS, recalling here the direct bundle decomposition 7S*|¢= TC @ NC from
formula (7), splitting each fiber T::S> of the entire tangent bundle 7S, for x € C, into
the 2-dimensional tangent space 7,C of C and its 1-dimensional orthogonal comple-
ment N,C, yielding the bundle morphism

PTan(C),S3 . U{x} x TxS3 N U{x} x T,(C)=TC 45)

xeC xeC

from formula (5) for ¥ = C and f = inclusion : C — S3.

Definition 2 (1) We term elements W of the 6-dimensional Lie-algebra §2 of the isom-
etry group Iso(S?) = O(4) Killing fields on S*. We restrict every Killing field
W to the Clifford torus, and we consider its orthogonal projection WV (x) :=
W(x) — PTa“(C)’S3(W)(x), for x € C, into the fibers N,C of the normal bundle
NC. We denote the linear space of all these sections WY e I'(NC) by 2.

(2) We denote by V the standard Euclidean connection on R?, and we call a vector
field V on R* parallel, if it satisfies V(V) = 0 on R*. We restrict any such vector
field V to S3, and then we project each vector V (x), for x € S3, orthogonally into
T.S3, i.e., we consider the tangent vector field Z(x) := V (x) — (V (x), X)Re X, for
x € S3. We denote the 4-dimensional vector space of all such tangential projections
Z of parallel vector fields into T'S? by &.

(3) We restrict every Z € £ to the Clifford torus and we consider its orthogonal
projection ZV (x) := Z(x)—PTa“(C)'S3 (Z)(x),forx € C,into the fibers N, C of the
normal bundle NC. We denote the linear space of all these sections ZV € I'(NC)
by £V, O

Definition 3 (1) We define the subspace of I (TS?) consisting of all conformal vector
fields on S by

Moeb(S?) := {V € I'(TS?) | 3{®,};er € MBb(S®) with V = 8, P/],—0}.
(2) We define the space of normal conformal directions® along C by
Moeb™(C) := {V[c—P™ S’ (V) | V € Moeb(S%)}.
Remark 3 The linear spaces £2 and & from Definition 2 are vector subspaces of I"( TS
with trivial intersection, and one can easily check that each element of either of these

vector spaces generates a one-parameter family of Mobius-transformations of S3.
Hence according to Definition 3, £2 and £ are both contained in the Lie algebra

9 Compare here also with p.31 in [48], with Appendix B in [33] or with Sect. 6 in [46].
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Moeb(S?) of MGb(S?), which is a 10-dimensional Lie-group because of the isomorphy
M6b(S”*1) =~ SO™(1, n), whose dimension is known to be W.lo Adding the
dimensions of 2 and £€—see here Definition 2 above—we therefore obtain that £2 &
£ = Moeb(S?) exactly holds; see here also pp. 30-33 in [48]. O

Now, by Lemmata 5.1.3 and 5.1.7 and Theorem 3.3.1 in [45] and by Lemmata 3.3,
3.4, and 3.5 in [48], we have the following fundamental results:

Lemma 3 (1) Any vector field WN e 2V satisfies the partial differential equation
AFWNy = —4awh,

(2) Any vector field ZV € &N satisfies the partial differential equation
Ag(zZNy =22V,

Moreover, both 2V and €N are 4-dimensional R-vector spaces and their direct
sum exactly constitutes the linear space Moeb™ (C) of all normal conformal direc-
tions along C from Definition 3, implying that dimg (Moeb™ (C)) = 8.

O

Remark 4 The operator —(Aé + 4) appearing in Lemma 3 is the Jacobi operator
along the Clifford torus, i.e., corresponds to the second variation of the area functional
evaluated in the Clifford torus C with respect to sections of the normal bundle NC
along the Clifford torus, and a smooth vector field V € I'(NC) is termed a Jacobi
field along C, iff it satisfies (Aé‘ +4)(V) = 0,i.e.,iff V is contained in the eigenspace
Eig_4(Aé). The first part of Lemma 3 therefore shows us that orthogonal projections
WV e 2V of Killing fields along the Clifford torus C into its normal bundle are Jacobi
fields along C. O

Combining Lemmata 2 and 3 with ideas from Lemma 3.2 and Corollary 1 in [48],
we finally arrive at the following result, which will substitute Lemmata 3.2 and 3.3 in
[13], [44] or Proposition 5.4 of [14] in the proof of Theorem 1.

Lemma4 The spectrum of the Fréchet derivative
1
DyG(p)Lp=0= DpF(0) — P(0) = ~3 (Ac+4)o(Ac+2)

is discrete and non-positive, and its kernel is an 8-dimensional R-vector subspace of
C(C), which corresponds to the vector subspace Moeb™ (C) of I'(NC) of all normal
conformal directions along the Clifford torus C from Lemma 3 via the explicit linear
bijection (20):

Ker(D,G(p)|p=0) = 2" & £V = Moeb™(C). (46)

10 Compare here also with Proposition B.1 in [33].
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Proof Using the particularly simple form of the uniformly elliptic operator
1
Te = =DpG(p)Lp=0= 5 (Bc +4) o (e +2): WH(C) — L7(©0),  (47)

which we had proven in Lemma 2, one can prove as in Sect. 3 of [46] that T¢ is
a compact perturbation of an isomorphism between W42(C) and L?(C) and thus a
Fredholm operator of index 0. Moreover, integration by parts and Cauchy-Schwarz
inequality show that there is some constant ¢ > 0 such that

Te + cldyazey : WH(C) — L*(C)
is injective and thus a topological isomorphism. Since the composition
to(Te +cldyare) ™ 1 LA(C) — L*(C) (48)

of the inverse (T¢ +cIdW4,z(c))_1 with the compact embedding ¢ : W*2(C) — L*(C)
is a compact and selfadjoint operator, classical spectral theory, e.g., Theorem 12.12 in
[1], guarantees that the spectrum of T consists of countably many real and isolated
eigenvalues —c < v < v» < v3 < ... € R and that L*>(C) is the closure of
the direct and Lz-orthogonal sum of the eigenspaces Eigvj (Tg) of Tg. Obviously,
the same method applies to the Laplacian A¢ : W22(C) — L2(C) as well, and
we therefore also obtain a direct and LZ-orthogonal decomposition of L*(C) into
eigenspaces Eig, (Ac) of Ac, yielding

2 2

—L L
PeEig,,(Te) =L*(C) = PEig;, (2¢c) - (49)

jeN keN

Now, one can easily verify that for each k € N there is a unique j = j(k), such that
Eig,\k (Ac) < Eigv/(k) (T¢), and that there holds

1
Vit =g A+ D +2) = p(hi)

for the corresponding eigenvalues. Using the additional fact that all eigenspaces in
(49) are only finite-dimensional, one infers from (49) the stronger statement that every
eigenspace Eigvj_ (T¢) is a finite direct sum of certain eigenspaces of Ac, i.e., that there
holds

Eigvj(TC) = Eig)%l(j) (L)@ ... d Eigxk,(j> (Ac), (50)
for r > 1 pairwise different eigenvalues A, (j) of Ac, which have to satisfy the
polynomial equation v; = % (M () + B (A, () +2) = p(Ag ). This insight has two

important consequences. Firstly, for any fixed eigenvalue v € Spec(7¢), there has to
be at least one eigenvalue A € Spec(A¢) such that v = p(L), proving that exactly
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Spec(Te) = {é(ﬂ +61+8) | 1 € Spec(Ac) } (51)

Secondly, since for any fixed v € Spec(7¢), the polynomial equation p(A) = v has at
least one and at most two different real solutions, the decomposition in (50) actually
reduces to the two simple cases in which either » = 1 or r = 2. In particular, there
holds

Eig,(T¢c) = Eigkk, (Ac) @ Eigkk2 (Ae), (52)

if there is more than only one eigenvalue A of A¢ solving the polynomial equation
p(A) = v.'! Since we particularly aim to exclude negative eigenvalues of T¢, we
should note here that the polynomial p(A) = %(Az + 61 + 8) arising in (51) is only
negative on the open interval (—4, —2) and that its roots are the two endpoints —4 and
—2 of this interval. Now, again motivated by (51), we should try to locate all eigenvalues
of A¢ on the Clifford torus. First of all, by Proposition 1 in [34], the Clifford torus can
be isometrically mapped onto the flat torus C/I"*, where the lattice " is spanned by
the two vectors v := (27, 0) and v, := (7, ) in the complex plane, which reduces
our eigenvalue problem to the simpler one of the Euclidean Laplacian on C/I"*. Now,
motivated by the solution of the eigenvalue problem of the Euclidean Laplacian on
cuboids Hlfil [0, R;] in RN —see E.12.5 in [1]—we follow the classical “Ansatz” to
use complex functions of the form exp(i(c1x1 + c2x2)) = exp(ic1x1) exp(icaxy) or
equivalently linear combinations of the functions sin(cy x1 + ¢ x2) and cos(cy x1 +
¢y x2), for appropriate c¢1,c; € Z and (x1,x2) € C/I'*, in order to determine all
eigenvalues and eigenfunctions of the Euclidean Laplacian on C/I"*. One can quickly
verify that our a-priori condition on any considered function

u(xy, x2) = A sin(cy x; + c2 x) + B cos(cy x1 + ¢y x2), for A, B e R, (53)

to be actually well defined on C/I'*, implies that u(x1, x3) in (53) can only be an
eigenfunction of the Euclidean Laplacian on C/I"*—and then necessarily with eigen-
value —(c% + c%)—if the vector ¢ := (¢, c2) € Z? satisfies the two compatibility
conditions

(c,v1) = 2mky and (c, va) = 27ks, (54)

for appropriate k1, ko € Z. Now, for any pair of natural numbers m, n € Ny, we can
choose ciy = m —nandcy = m +norvice versacy = m +n and cp = m — n,
yielding in each case an admissible vector ¢ = (c1, ¢2) in (54) which additionally
satisfies |c|? = 2(m? + n2). Hence, at least the inclusion

Spec(A¢) 2 {—2(m? +n®) |m, n € Ny} (55)

has to hold for the Beltrami—Laplacian on the Clifford torus. Now noting that the area
of the trapezoid spanned by v; = (27, 0) and vy = (i, ) is 2772, one might guess that

11 Compare here with the statements of Lemma 3.2 in [48].
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i R = 41 i 2 * R)-
the choices A = N and B = + 75, 0 (53) yield an L~(C/I"*, R)-orthonormal
system

1 1
[ sin((m —n)x; 4+ (m +n)x2) £ cos((m —n)xy + (m +n) x2),

ﬁn «/571
1

7 sin((m +n)x; + (m —n) xp) +
T

f;n cos((m +m) x1 + (m —m) )|,

(56)
for m,n € Np, of doubly periodic eigenfunctions of the Euclidean Laplacian on
C/I'* according to condition (54). Our assertion that these functions are additionally
of length 1 and mutually orthogonal in L?(C/I'*, R) can be verified by means of
concrete computation, using the variable transformation (x1, x2) = (z1 + %Zz, %Zz),
for (z1, z2) € [0, 2712, Fubini’s Theorem and the entire discussion of the eigenvalue
problem for the Laplacian on the interval [—, 7 ]; see Examples 9.9 and E12.4 in [1].
Moreover, the set (56) constitutes a Schauder basis of LZ(C/ I'*, R), because the set
of functions

[(eixl)(mfn) . (eixz)(ern)’ (eix|)(m+n) . (eixz)(mfn)

m,neNo}

spans a dense subset of L2(C/I"*, C) on account of the complex version of Stone—
Weierstrass’ Theorem. Therefore, the set (56) actually spans each eigenspace of the
Euclidean Laplacian on C/I™* on account of the Spectral Theorem for compact, self-
adjoint linear operators; see [1], Theorems 12.12 and 12.17. Hence, our first guess in
(55) about the eigenvalues of A¢ turns out to have been very effective, and our entire
reasoning proves equality in (55), i.e.,!?

Spec(A¢) = {—=2(m? +n?) |m, n € No}. (57)

Now, since the intersection of the set {—2(m> + n?) |m,n € Ny} with the inter-
val (—4,—2) is empty, there indeed cannot exist any negative eigenvalues of
Tc = —D,G(p)|p=0 on account of statements (51) and (57). Moreover, the set
{(=2(m?* + n?) | m, n € No} actually contains the two numbers —2 and —4—the two
roots of our polynomial p(A) = %()@ + 61 + 8) from (51)— and we can therefore
infer from (52) and (57) that there holds exactly

Eigy(Te) = Eig_»(Ac) @ Eig_g(Ac). (58)
Moreover, by formulae (19)—(21), our eigenvalue problem Ac(f) = A f, for f €
C°°(C), is equivalent to the eigenvalue problem Aé(V) = AV, forV € NC. We

therefore recall, that by Lemma 3 there holds

Eig_,(A%) 2 &Y and Eig_4(0%) 2 2V, (59)

12 This result is not new, and it was stated without proof on page 34 in [48].
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and that £V and £2% are two 4-dimensional R-vector spaces, respectively. Moreover,
using our considerations between (54) and (56), we can easily check that exactly
the three vectors ¢ = (1, 1), (—1, 1), (1, —1) have squared distance |c|2 = 2 and
are additionally admissible in (54), and similarly that exactly the two vectors ¢ =
(2, 0), (0, 2) have squared distance lc|? = 4 and are additionally admissible in (54).
Then one can quickly infer from formula (56) itself by elementary inspection that
both the triplet of vectors ¢ = (1,1), ¢ = (=1, 1), and ¢ = (1, —1) and also the
pair of vectors ¢ = (2,0), ¢ = (0, 2) give rise to only two different pairs of linearly
independent eigenfunctions of A on C/I"*, respectively, implying the non-trivial fact
that both Eig_, (A¢) and Eig_4(A¢) are 4-dimensional; compare here again with [48],
p. 34. Hence, on account of statement (59), the eigenspaces Eig_, (Aé) and Eig74(Aé)
exactly coincide with the 4-dimensional vector spaces &% and 2%, respectively, i.e.,
there hold two equalities in (59). Hence, combining this again with formulae (21) and
(58), the assertion of the lemma follows. O

3 Proofs of Theorems 1 and 2

I

Proof of Theorem 1 Part (i) Without loss of generality, we can assume that F* : ¥ —
«/LE(S1 x S1) = C is a diffeomorphic parametrization of exactly the Clifford torus in

S3. Following the proof of Theorem 1.2 in [13], respectively, the lines of Sect. 6 in
[14], we are going to use Lemmata 1, 2, and 4 and Theorem 3 and adopt the procedure
in Sect. 4 of [43], in order to construct an invariant “center manifold” M€ for the flow
equation (25) as a graph over the 8-dimensional space Ker(7¢). To this end, we use
again the fact that the composition to (T ¢ IdW4,z(c))_1 from line (48) is compact and
selfadjoint, implying that the Hilbert space L>(C) can be decomposed orthogonally
with respectto (-, -) L2(C) into the finite-dimensional eigenspaces Ker(7¢) € C*(C)
and Eig 0 (Tg) C C*°(C) of T¢, for the positive eigenvalues 1 ; of the linear operator

Tc in L*(C), which means precisely
L2
L*(C) = Ker(Tp) ® EPEig, (Te) . (60)

u>0

where we have also used Lemma 4. Now, by the second statement of Lemma 4, we

can choose an L2(C )-orthonormal system of 8 smooth eigenfunctions {Y;}x=1,.. g of
T¢ in Ker(7¢), and we define the continuous linear projection
8
7= (-~ Yi)2e Ye 0 LA(C) — Ker(Te) (61)

k=1

of L2(C) onto the center subspace Ker(T¢) of the linear operator T, which is orthog-
onal with respect to (-, )72 on account of (60). The restrictions of 7 in (61) to
the Banach spaces i’ (C), for r > 0, are still continuous, linear projections onto the
finite-dimensional subspace Ker(7¢), and we therefore obtain as in Sect. 4 of [43] a
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unique decomposition of 4" (C) into two closed linear subspaces:
h"(C) = range(n“ | (¢)) ® ker(“ [y ¢)) = Ker(Te) @ hi(0), (62)

for any fixed r > 0, especially for r = o or r = 4 4 «. Obviously, T¢ is a symmetric
operator in L2(C) on account of the concrete formula (47), which implies together
with (61) that

8 8

T (Te(f) = Y (Teh): Yidpaey Ye = D (2 Te(Vi)) 2y Ye =0

k=1 k=1
for every function f € W*2(C). In particular, there holds therefore:
TC om® I-h4+’1(C)= 0=n° Lh“(C)OTC on h4+a (C),

i.e., that Ty descends to a direct sum TCC fa) Té of linear operators, which respects
the direct sum decomposition Ker(T¢) @ h4+%(C) of h*+*(C) in (62). Obviously,
by (60) and (62), the restriction Té of T¢ to h?"’“ (C) has only positive eigenvalues
0 < p1 < pa <....Asin[13],[14], and [43], we shall consider besides the projection
7€ in (61) the L>-orthogonal projection 7% := idj2c) — 7€ of L%(C) onto ker(r¢),
whose restriction to 2" (C) maps h"(C) onto the “stable subspace” h%(C) C h"(C) in
(62) with respect to Tz. Now, following Sect. 2 in [42], Sect. 4 of [43], or Sect. 9.2.1
in [27], we rewrite equation (25) in the equivalent form

dipr + Te(pr) = 9pr + (PO) — D F(0)).(0) = g(pr), (63)

with g(p) = (P(0) — P(p)).(p) + F(p) — D, F(0).(p), satisfying g(0) = 0 and
Dg(0) = 0, because of F(0) = 0 by Lemma 1. Moreover, as in formula (4.21) in [43]
or as in Sect. 9.2.1 in [27], decomposition (62) yields the equivalent formulation

O xr + Tg (xy) = g (xe, i)
Oy + To(ye) = ' g(xs, yr) (64)

of equation (63), respectively, of equation (25) as a coupled system, for two seperate
functions x : [0, T) —> Ker(T¢) and y : [0,T) —> h*T%(C). Now we shall
quickly check the assumptions (4.1)—(4.8) of Theorem 4.1 in [43], in order to obtain
a locally invariant center manifold for our evolution equation (63), respectively (64).
To this end, we should firstly follow the proof of Theorem 2.2 in [13] and translate
our framework of Lemma 1 correctly into the specific language of Sects. 2—4 in [43].
In view of our Lemma 1, we should firstly choose the basic pair of Banach spaces
X; — Xpin (4.2) of [43] as X := h*®(C) and X := h%(C), then we choose

the pair of interpolation parameters 0 < 8 < o < 1 in [43] as B = %,

whereas we only rename o := y € (2_°+ﬁ°, 1) first of all. Finally, we see that here
Ug := Z/lgo is an open subset of the interpolation space Xg = h>*Po(C) between X
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and X. On account of Lemma 1 and line (25), we can now immediately verify that the
quasilinear operator A := P and our non-linear operator F satisfy exactly conditions
(4.1) and (4.2) in [43]. Moreover, choosing slightly larger spaces Ey := h* (C) and
Ey = h*¥(C), with &’ € (0, «) and fixing now the interpolation parameter y as
y = 2—02_—5—/30 for some ,36 € (Bo, B), we obtain here X, = h2tFo (C) and its open
subset Uy, := L[go NX, ={pe h2tP(C) | I p llL=cy< a}, and we can infer from

our Lemma 1, that indeed P(p) € H(h4+"‘/ ©), h"‘/(C)), for any p € U,, and also
that E; = h*+'(C) — Xg = h*h(C) — h* (C) = E, is an interpolating triple.
Now condition (4.3) in [43], which expresses maximal regularity in the sense that
P(p) € ./\/ly(h4+“ (C), h*(C)) for each p € U,, follows right away from Theorem
2.2 in [43]. Condition (4.5) is true by our Lemma 1, and the linear operator L in
(4.6) is simply our operator 7oz = P(0) — D, F(0) from line (47), which indeed
satisfies the spectral conditions (4.7) and (4.8) in [43] on account of our Lemma 4.
Hence, Theorem 4.1 in [43] guarantees us, that for some fixed m € N there exists a
neighborhood U = U (m) of 0 in Ker(7¢) and a function

y € C™(U, h**%(C)), with y(0) = 0 and Dy (0) =0, (65)

such that M€ := graph(y) is a “locally invariant center manifold” for the semiflow
generated by the unique maximal solutions of equation (25), respectively of the coupled
system (64), provided by Theorem 3 above. Obviously, by construction and statement
(65) M€ is a submanifold of 44+ (C) with tangent space To(M¢) = Ker(T¢), which
is 8-dimensional on account of Lemma 4. In addition, the invariant manifold M¢
is “exponentially attractive” by Theorem 5.8 in [43]. This means here precisely the
following: Due to Lemmata 1, 2, and 4 and Theorem 3, we may apply Theorem 5.8
in [43], and this theorem guarantees us, that there is some appropriate w € (0, u)—
where 11 is the smallest positive eigenvalue of T¢ respectively 7; by decomposition
(62)—a positive constant ¢ = c(w, B, &) and a neighborhood W of 0 in h2+P(C), such
that

| 75 (p(t, po)) — y (T (p(t, po))) ”h4+"‘(C)

—wt

e
sc g | 7* (o) — v (@ (p0)) llp2+(c) (66)

for each pp € W and for ¢ € (0, 17 (pp)), as long as there holds w€p(t, pg) € U, and
where we set 0 := %;_a). Here, [(t, po) — p(t, po)], t € [0, 1T (pp)) denotes the
unique classical and maximal solution of initial value problem (41) from Theorem 3
above.

Part (ii) Estimate (66) tells us immediately, that the invariant manifold M€ contains
all smooth equilibria p of equation (25) which are contained in a sufficiently small
neighborhood of 0 in h2*#(C), because the restriction of the linear projection ¢
from (61) to K2A(C) is particularly a continuous map from h?*8(C) onto ker(T¢) by
(62). Now, again following closely the proof of Theorem 1.2 in [13], respectively, of
Proposition 6.4 in [14], we will show that— at least locally about O—the manifold
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M€ consists only of equilibria of equation (25), and even more precisely: locally
about 0 the 8-dimensional manifold M€ consists only of smooth distance functions
0, whose induced maps 6,(x) = exp,(p(x)vc(x)), x € C, from line (18) yield
C°-diffeomorphisms between C and embedded tori in S, which are congruent to the
Clifford torus C modulo the action of M6b(S?). Following the notation of the proof
of Theorem 1.2 in [13], we call the set of these special equilibria of equation (25)
“M?”. Now, in order to prove the above assertion, we firstly recall from Remark 3, that
M&b(S?) = SO (1, 4) is a 10-dimensional Lie-group whose Lie algebra Moeb(S?) is
the direct sum of the particular vector spaces & and £2, introduced in Definition 2. Now
we choose a system of 10 linearly independent conformal vector fields {vi}x=1,...10 C
£® 2 c I'(TS%. For any tuple z = (z1,...,210) € BIIO(O) C R, the linear
combination V, := Z}Ci 1 Zk Vi € & @ £2 is smooth and generates—according to the
first part of Definition 3—a smooth 1-parameter family of conformal transformations
U. (1) € Mdb(S?), t € R, namely in terms of the flow ¥, : 83 x R — 83, which is
generated by the flow lines of the initial value problem

dy(1) = V.(y(1), y(0) =y €S, (67)

for an unknown smooth function y : R — S3, and then setting: U, (t) := W,(-, 1),
for every fixed z € Bl10 (0). Now, for technical reasons, we extend the above conformal
vector fields {vi}x=1,...10 C I'( TS?)—and thus automatically any linear combination
V, of them—smoothly and with compact support {y € R* | dist(y, $) < JT} from S3
onto entire R#, and we shall not distinguish in our notation between these extensions
and the original vector fields {vi}x=1....10. Hence, we can interpret problem (67) as
an initial value problem on both the compact, closed manifold S3 and also on entire
R* with smooth right hand side, which in both cases additionally depends on the 10
real parameters (z1, ..., 210). We can therefore infer from Theorem 1.5.3 in [21], i.e.,
from classical theory about ordinary differential equations in Euclidean spaces, that
the map

Ucy(1) : B{°(0) — Mob(S?) (68)

is C*-smooth. Now, the images U, (r)(C) are embedded, compact tori in 8> being
conformally equivalent to C, for any z € B 110(0) and for any ¢ € R. In particular, the
tori U, (¢)(C) are Willmore tori, i.e., any immersion f;, : ¥ —> S3 parametrizing
U.(t)(C) is a critical point of YW. Now we choose some small ¢ > 0, consider the
tori C, := U,(1)(C) for any z € Bem(O) and obtain via Fermi coordinates (10),
respectively, via formula (11) a unique smooth function p, = p¢_, which measures
the pointwise, signed geodesic distance between points x € C and the torus C;. Hence,
the function [x +— X (x, p,(x))], appearing already in formula (12), parametrizes C,
diffeomorphically, i.e.,

X(-pa()) 1 C > C., (69)
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as a graph over C via the exponential map, for any fixed z € Bglo(O), provided ¢ > 0
is sufficiently small. On account of the smoothness of the map U(.)(1) in (68), and
on account of formula (11) combined with the smoothness of the Fermi coordinate
functions § and A in (10), we easily infer also the smoothness of the non-linear
operator

ocy : BI0) — h*e(0), (70)

assigning to z € BQO(O) the unique smooth distance function p,, that we have just
obtained via formula (11). Since the tori C, are Willmore tori, every distance function
p is an equilibrium of the corresponding evolution equation (25), for z € BSIO(O),
which implies that

p. € MS  Vze B0 (71)

according to estimate (66), provided ¢ > 0 is sufficiently small, where we have used
that Up(1) = idgs implies that pgp = 0 in h*t(C). As in the proof of Theorem 1.2 in
[13], we consider now the composition

F:=7°0o o) - BSIO(O) —> ker(T¢), (712)

for ¢ > 0 as small asin (71). We note here for later use that statement (70) implies, that
the map F is a smooth map between finite-dimensional flat manifolds, and moreover,
we note that pg = 0 implies that F'(0) = 0 in ker(7¢). Now, the vector space 2 & C
T(S3) of all conformal vector fields on S is 10-dimensional, whereas the vector
space Moeb>(C) = &N @ 2N ¢ I'(NC) of normal conformal directions along C
is only 8-dimensional by our Lemma 4, and the proofs of Lemmata 3.4 and 3.5 in
[48] show that the kernel of the homomorphism 2 — 2V, mapping V - V'V, is
two-dimensional, whereas the projection of £ onto £” is isomorphic. Hence, we may
assume without loss of generality that the 10 basis vectors v; of §£2 @ & are chosen
in such a way that (Vk)N = 0, for k = 9, 10, i.e., that {(vk)N}k=1 ,,,,, g constitutes a
basis of the vector space Moeb~(C) = 2V @ &N of normal conformal directions
along C. Moreover, we should notice here, that the unique distance function p, = e,
satisfying (69) can be written down more precisely by means of formula (11) and our
definition C, := ¥, (C, 1):

po(x) = Ao (Slu.cny) (),  V¥xeC, (73)

and for any fixed z € Bglo(O). Taking now also Vy = O on S3 and thus ¥y (-, 1) = Idgs,
YVt € R, and the definition of the map S in (10) into account, we can compute the
partial derivative with respect to z; of the smooth composition (73) in z = 0 by means
of the chain rule:

Dy 02 () Lmo= (VS A 0 1de) (%), Doy W (x, 1) o)y
— (ve(x), Dy W (x, Dlsmo)gs Vx €C, (74)
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where ( -, - )g3 denotes the Euclidean scalar product (-, - )gs restricted to TS3.1In(74),
we have also used the general fact that the gradient of the signed distance function,
being defined in a narrow tube about some smooth, orientable, and compact surface
M < S yields exactly one of the two globally defined unit normals in N (M), when
restricted to M itself.!> Again using the fact that our equation (67) can be extended
to an ordinary differential equation in R* with 10 additional real parameters, we can
apply here formula (1.5.3) in Theorem 1.5.3 in [21] and compute exactly

Dzk Vo (x, D=0 = Dzk v, (x, 1)Lz=0_Dzk ¥, (x,0)[;=0
1 d 1
= /O a(Dzk Vo (x, 1)) ;=0 dt = /(; Dzk Vo (W, (x, 1)) ;=0 dt

1
:/ vi(x)dt = vp(x), VYxeC,
0

for k = 1, ..., 10, where we have used the fact that also the extended vector fields
V, satisfy Vo = 0 on entire R* and that therefore Wy (-, 1) reduces to Idgs, for every
t € R. Together with (74), we arrive at the following formula:

Dy, pr(x) Lz=0= (ve(x), ik (0))g3 = (ve(x), vV ())gz, Yxel, (75

fork =1, ..., 10. Using the isomorphism (46) between the vector space ker(7¢) and
the 8-dimensional vector space Moeb*(C) = £V @ 2V, we obtain from the chosen
basis vectors {(vi)V bk=1,...8 of Moeb " (C) unique coordinate functions {vk}r=1....8
which form a basis of the vector space ker(7¢) and which turn out to satisfy by equation
(75):

D p:La=0= (V)N , ve)gs = v € ker(Tg), fork=1,...,8.

Hence, on account of the definition of F in (72) and the chain rule, the partial derivative
of F in z = 0 in direction of the coordinate z; reads

D, F(0) =7(Dyprlz=0) =7°(vp) =, fork=1,...,8,
showing that the entire differential
DF(0) : R'® — ker(Tp)

is an epimorphism. Since we also know already that there holds F(0) = 0, we can
now infer from the classical Open Mapping Theorem for C'-maps between finite-
dimensional vector spaces, that there is some small open ball Bs(0) C U about 0
in ker(7¢)—where U is as in (65) and § > 0 depends on the size of ¢ in (71) and
(72) depending in turn on the size of U on account of statement (66)—which satisfies
Bs(0) C F (BgO(O)). By definition of the map F in (72), this means that the projection

13 See here our construction of Fermi coordinates about C in (8)—(10) and formula (35) in [35] for the
similar case in which the ambient space is R
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7€ of h*+%(C) onto ker(7¢) restricted to the set of distance functions {p. | z € Bglo(O)}
covers Bs(0) in ker(T¢), i.e.,

7¢({p; |z € B°(0)}) 2 B5(0), (76)

if § > 0 is sufficiently small. Furthermore, on account of statement (71), we know
that {p, |z € Bglo(O)} is contained in the 8-dimensional center manifold M, i.e., in
the graph of the function y € C™ (U, h?""" (C)) in (65) over the neighborhood U of 0
in Ker(7¢), provided ¢ > 0 has been chosen sufficiently small. We can therefore infer
from (76) the sharper statement

Bs(0) € n°({p; |z € BO(O)) = 7°({p: | z € BI°(0)) N graph(y)).  (77)

Now, recalling the direct decomposition (62) of h*t(C) into the closed subspaces
ker(T¢) and h}”“ (C), we trivially have 7(v, y (v)) = v for every v € U on account
of the definition of y in (65). We can therefore refine statements (76) and (77) even
further:

Bs(0) € n°({p: | z € BL°(0)} N graph(y L 5,(0))) S Bs(0),

implying that the sets {p, |z € BgO(O)} M graph(y | Bs(0)) and graph(y | g;(0)) exactly
coincide, provided § > 0 is sufficiently small. But this is equivalent to the statement
that graph(y | g;(0y) is contained in {p; |z € Bglo(O)}. Recalling now the definition of
the set M of particular equilibria of equation (25) at the beginning of Part (ii) of this
proof and the fact that all the tori C; in (69) are—just by construction—conformally
equivalent to the Clifford torus, we therefore finally conclude that graph(y [ g;(0)) is
contained in the set of smooth equilibria of equation (25) of type M, which means—
again by (65)—that at least locally about the zero-function the center manifold M =
graph(y) only consists of smooth equilibria of equation (25) of type M.

Part (iii) As in the proof of Theorem 1.2 in [13], we can infer from the result of
step (ii), that the locally “reduced flow” of equation (25) on M€ = graph(y) —which
is determined by flow lines {z;} of class cO([o, t1), ker(T)) N C((0, t1), ker(T¢))
of the “reduced evolution equation”

Oz +Tp(z) = mg(zr, v (@), 2o € Bs(0) C ker(Tp), (78)

according to the decomposition in (64)—consists of equilibria only, i.e., the locally
“reduced flow” of equation (25) does not move at all, if it starts moving in a sufficiently
small neighborhood about 0 in ker(7¢). In particular, the zero-function is a stable
equilibrium of the reduced equation (78). Hence, by Proposition 3.2, respectively,
Theorem 3.3 in [42] also the point (0, y(0)) = (0, 0) is a stable equilibrium of the
original evolution equation (25) in 42*#(C). This means precisely that there exists for
every neighborhood Wy of 0 in h*tB(C) another neighborhood W, of 0 in 2B ()
such that any solution of evolution equation (25) exists globally and stays within Wy,
provided its initial value pq is contained in W,. Combining this with statement (66),
we obtain even some more precise information: There is a neighborhood W of 0 in
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2B (), depending on the size of the neighborhood U of 0 in ker(7¢) from line (65)
such that any flow line of evolution equation (25), which starts moving in some initial
function py € W, exists globally and approaches the center manifold M¢ = graph(y)
asymptotically in the /*+%(C)-norm for all # > 0, according to estimate (66). See here
also some technical explanations in the proof of Theorem 6.5 in [14].

Part (iv) Now we can follow exactly the last step of the proof of Theorem 1.2 in
[13],1i.e., we can apply the reasoning of the proof of Theorem 6.5(b) in [14]—in which
the statements of Propositions 6.2 and 6.4 and Theorem 6.5(a) of [14] correspond to
the results of our steps (i)-(iii) above—in combination with the bootstrap-technique of
Proposition 6.6 in [14], in order to draw the following conclusions: For any fixedk € N
and for some appropriately chosen w € (0, ;1)—where p; is the smallest positive
eigenvalue of T¢ respectively of 7;;—there exists a neighborhood W = W (k, w) of
0 in A>*#(C) with the following properties: Given an initial function pg € W, the
unique maximal and smooth solution {o(t, po)};ef0,1+(py)) Of initial value problem
(41) exists globally, and there exist a constant ¢ = c¢(k, w) > 0 and a unique function
z0 = z0(po) € Bs(0) C ker(T¢), such that

“ (nc(p(l, ,00))7 rrs(,O(f’ )00))) — (ZOv V(ZO)) “Ck(C)
<™ I (o0) — ¥ (oo)) vy 7

holds for all # > 1. Now, again using the result of step (ii), we know that for zg € Bs(0)
the pair (zo, ¥ (z0)) € MC actually has to be contained in the set of equilibria of
equation (25) of type M. Hence, (29, ¥ (zo)) is a smooth distance function on C, whose
induced map 6. (o)) (¥) = exp, (2. ¥ (20)) (x) ve (1)), x € C. from line (18) yields
a C*®-smooth diffeomorphism between C and some embedded torus in S3, which is
congruent to the Clifford torus C in S3. Thus statement (79) guarantees that having
fixed some k € N and some appropriate w € (0, i), for any initial distance function
po taken from a sufficiently small neighborhood W = W (k, w) of 0 in 2B (C) the
unique maximal and smooth solution p(-, pg) of equation (25) exists globally and
converges fully to a smooth distance function (zo, ¥ (zo)), which yields—via formula

(18)—a smooth diffeomorphic parametrization 0, , (zo)) : C —> §° of an embedded
torus in 83, which is conformally equivalent to the Clifford torus, and this convergence
is at an exponential rate with respect to the C*(C)-norm as t — oc. Finally, we remark
that we require the initial immersion F} : ¥ —> S3 to be C*-smooth. On account of
Theorem 1 in [17], this implies that there is a unique smooth and maximal flow line
{P(,0, F1)}t€[0, T, ©Of the MIWE, starting in F at time ¢ = 0, and moreover the
proof of Theorem 1 in [17] shows that any given C°°-smooth solution { f;},¢[0,7) of
the “relaxed MIWF-equation” (24) on X' x [0, T), with fo = F| and with arbitrarily
fixed T > 0, yields the unique smooth flow line {P(-, 0, F1)};c[0,1) of the original
MIWE, starting in F at time r = 0, by means of reparametrization with a C°°-smooth
family of C*°-smooth diffeomorphisms from X onto itself. '* Hence, on account of
the “correspondence” between C°°-smooth flow lines of the relaxed MIWF-equation
(24) and C*°-smooth flow lines of evolution equation (25)—as explained in formulae
(12)—(25) of Sect.2—the above results prove the assertion of this theorem. O

14 See here also the second part of Theorem 5 below.
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Proof of Theorem 2 First of all, we fix an integer k > 4 and some « € (0, 1) as in the
statement of the theorem. On account of the compactness of the torus X' and on account
of the conformal invariance of the MIWF, we may assume that the image fo(X) of
any immersion fy : ¥ — S3 satisfying | fo — F* | che R4y < € is still contained
in 83\ {(0, 0, 0, 1)}, for any sufficiently small ¢ > 0, to be further specified below.
Again on account of the invariance of the MIWF and also of the Willmore functional
itself, we may therefore compose the given C*-local minimizer F* with stereographic
projection S : $3\{(0,0,0, 1)} — R3and prove the entire statement of the theorem
for the MIWF in R3. We choose this detour in order to easily adopt the basic ideas of
the proofs of Lemma 4.1 in [8] and of Theorem 1.2 in [10], especially the technique
of Theorem 5.1 in [46], respectively, of Lemma 4.1 in [10] to represent immersions
into R"” as normal graphs over some fixed smooth reference immersion—together
with corresponding estimates—and then to reduce the complexity of the non-linear
MIWF-equation by means of exactly this geometrically motivated graph-ansatz, as
elaborated in formulae (4.3)—(4.6) of [8]. Now, we require by assumption that our
initial immersion fy : ¥ — R is smooth and satisfies

I fo—F* llckaz ry< € (80)

for some sufficiently small ¢ € (0, &p), to be determined only below in (117). As in
the proof of Lemma 4.1 in [8], we conclude from condition (80) that we can represent
the immersion fy as a graph over the given Willmore immersion F*, which means
precisely on account of Theorem 5.1 in [46]: There is a smooth section Ny of the

normal bundle of F* and a smooth diffeomorphism & : ¥ = X, such that there
holds:

foo®y=F"+ Ny on X. (81)
Furthermore, we infer from condition (80) and from the proof of Theorem 5.1 in [46]
combined with Lemma 3.1 in [15] fork =0 = q,15 that there is some continuous and

monotonically increasing function C° : [0, 9] —> R with C?(0) = 0, depending
on the immersion F* and on the above k > 4, such that

I No ||ckva(2)=|| foo®@y— F* ||ck~a(z)< C°(e) (82)

holds for the same positive, small € as the one in (80). In order to smartly use (81) and
(82), we consider now the modified Cauchy-problem

P 1 - -
87 (f) = ~ara VEWd). o= foodo on 3 (83)
y

of the MIWE, which is solved by any smooth reparametrization {P(z, 0, fo) o @;};>0
of the smooth flow line P( -, 0, fo) of the MIWE, starting in f. Now, again Theorem

15 See here also Sect. 2 in [12], Sect. 3 in [28] and [11].
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5.1 in [46], condition (80), and equation (81) motivate us to momentarily assume the
existence of a—sufficiently smooth—short-time solution { f;} of equation (83) of the
particularly simple form ft = F* + Ny, for a family of normal sections N; along F*,
starting in the smooth immersion F* + No = fo o @ at time ¢ = 0. In order to prove
this intuitive idea rigorously, we follow the lines of the proof of Lemma 4.1 in [8], that
is we reformulate the short-time existence problem at hand equivalently by means of
the function ¢; := (N;, vr+)Rg3, the signed length of any fixed normal section N; along
F*, and we argue as in formulae (4.4)—(4.6) of [8] that a sufficiently smooth family
of immersions ft = F* 4+ N, solves equation (83) classically on some short-time
interval, if and only if the family of functions {¢;} = {{N:, vr+)g3} classically solves
the uniformly parabolic quasilinear 4th order equation

1 ij kl F*
(@) + = |4 gp*.,.@vl,* 8 F* ¢y vpx Vijk1(¢t)

0
2 1A Ftprvpx

= B(-, ¢1, Dx¢y, D2¢y, D) on X, (84)

on the same time interval, where B : ¥ x R11t2+4+8 __ R denotes a globally defined
function, which is rational in its 15 real arguments and has smooth coefficients—
depending on the fixed smooth immersion F* only—at least as long as there holds

I Ne llezesy=Il fi = F* lle2esy < 8(F™), (85)

for some sufficiently small chosen positive number §(F*) > 0. Indeed, as in formula
(4.5) of [8], one can compute that inequality (85) implies

A 1 -
|Plfr<N,>|zE|Nt| on ¥ (86)

for the projection pti (Ny) of any smooth normal field N, along F* onto the normal
bundle of f;, and obviously inequality (85) also implies

min 1A% s gy = % min 14912 > 0, (87)
which actually lets us adopt the decisive computation in formulae (4.4) and (4.5) of
[8] without any significant changes. One can check elementarily by means of the
computation in formula (4.4) of [8] that indeed the geometrically motivated idea, to
solve the modified equation (83) by means of functions ft = F*+ ¢,;vp«, reduces the
fully non-linear MIWF-equation (2) to the quasilinear parabolic equation (84), thus
yielding the equivalence of the existence of a short-time solution of equation (83) in
graph representation f; = F* + N, to the existence of a short-time solution {¢;}
of equation (84). As in formula (4.7) of [8], we should note here that condition (82)
implies

I 0 lciecs)< C(F*,j)C°&), foreach j=1,...,k, (83)
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for the initial function of the desired short-time solution {¢,} of equation (84), where
C?(¢e) denotes here the same function as in (82) and C(F*, j) some positive constant
only depending on F* and j. Now, in order to actually prove the existence of a
unique maximal strict solution '® {¢},[0.7;,,,) Of the scalar equation (84)—starting

in (Np, vp=)gs—with values in the Banach space C 4(x R), we shall introduce the
parabolic Holder space

B
Zr g = C4+5’1+Z(2 x [0,T],R)
for any fixed B € («, 1) and T > 0, and its open subsets

Urpor = {lo € Zrgl o lom=<e Yrel0.T1) (89

with 0 < o < S(F*) that small, such that the normal field N; := ¢; vp+ satisfies
inequality (85) V¢ € [0, T'], for any fixed function ¢ € UF+ g o 7. Now, by statements
(85)—(87) and (89), the non-linear differential operator

1 ij kl F*
af+§ A0 7 8F 4 (Yvpx 8F*+ () vps Vi
| *+(')”F*|
B
Urs gor C Zr.p — CP3(X¥ x[0,T],R) (90)

is well defined for any fixed 0 < ¢ < s (F*) as in (89), and we can infer exactly as
in Theorem 2 in [17], that it is a C 1-map, that the highest order term of its Fréchet
derivative in any chosen ¢ € U= g o r is the uniformly parabolic linear operator

1 1 i7 *

— J kl F* .

8[ + EF*,(,D -— at + z 0 4 gF*+(ﬂvF* gF*_,_(va* Vl]kl .
A%y |

F

Zrp —> CP5(Z % [0, T, R) ©1)

for any fixed B € («,1) and T > 0, and that this linear operator satisfies all
requirements of Proposition 2 in [19]. We can therefore argue as in the proof of
that proposition, that for any fixed ¢ € U+ g o 1 the linear differential operators

1

*

o ij ki F* o
Lreg = 4 8 gvps 8F*+gvps Vijkl *

N =

| 0
F*+@rvp«
c*f (2, R) — C*F (¥, R) (92)

are (&, %n, 4)-elliptic for some appropriate constant £ = E(F*, o) > 1 in the ter-
minology of [40], p. 228, for any fixed 8’ € (0, 8] and for any fixed ¢ € [0, T]. We
can therefore derive from Theorem 3.3 in [40], that the linear operators Lgx 4, in (92)

16 See here Definition 4.1.1 in [27].

@ Springer



24 Page 34 of 51 R. Jakob

are sectorial in the Holder space Co'ﬂ/(E, R)!7 with constants @ > 0 and N/ > 1

depending only on F*, and #’, in the terminology of Theorem
p g only Il e ”c4+f’~l+§<zx[o,r]) B gy

3.3 in [40], for any fixed B’ € (0, B) and uniformly for every fixed r € [0, T], where
T > 0and B € (a, 1) have already been chosen above in (89). Taking now B’ = «
and recalling also the smoothness of the initial function ¢o := (No, vF+)g3, we may
therefore apply Theorems 8.1.1 and 8.1.3 and Proposition 8.2.1 in [27] with Banach
space pair X := C% (¥, R) and D := C*%(X, R), and we obtain the existence of
a unique and maximal strict solution {¢; };¢[0,7;,,,) Of equation (84) with values in the
Banach space C4’°‘(2, R), meeting the additional condition

I & llc2zy< e Vi €O, Tmax) (93)

from line (89) and starting in the initial function ¢o := (Np, Vp=)g3 at time t = 0,
provided ¢ is sufficiently small in view of condition (88). Moreover, this solution is
of class C? ([0, T], C**(X,R)) N C7 ([0, T], C®*(X,R)), Vy € (0, 1) and for
every T € (0, Thmax), where 0 < « < 1 had already been chosen at the beginning
of the proof. We may therefore apply Proposition 3 of [17]—successively for every
k € No—in order to conclude that our maximal solution {¢,} of equation (84) satisfies
the following Schauder a-priori estimates:

” ¢t ||C4+l+)ll,1+l+7“

4 (Zx[0,T])
= C (1 BC A0, (ot
<C(IBCOCD, o b O e
111 ez xio.r) + 1 9o llessisncs) ) (94)

for every fixed T € (0, Thax), for every [ € Ng and every u € (0, o], and for some
large constant C = C(X, F*, T, u, ). From this result, we immediately infer the
C°°-smoothness of our constructed, maximal solution {¢,} of equation (84) and thus
automatically the existence of a corresponding solution of equation (83) of the special,
desired form ﬂ = F* + N;, with N, = ¢, vp+, being of class C*®°(X x [0, T], R?)
for every T € [0, Tmax) and starting in the smooth immersion fo = fo o Do at time
t = 0. As pointed out in the proofs of Lemma 4.1 in [8] and Theorem 1.2 in [10], this
smooth solution f; = F* + N; of equation (84) can be reparametrized by a smooth

family of smooth diffeomorphisms ¥; : ¥ = ¥, with Yy = Idy, such that
fioW, =P(t,0, fo o Dy) = P(1,0, fo) o @y for t € [0, Tpax), (95)

which will be of significant importance later on. Now we fix some positive 0 <
min{§, o}—where § was determined in assumption (4) and o in line (89)—such that
the Lojasiewicz-Simon-gradient-inequality for the Willmore functional, Theorem 3.1
in [8], holds for every C*-immersion f : ¥ — R3with | f—F* lc4¢x)< o,and we
choose the ¢ > 01in (80) and (82) that small, such that we have: C°(¢) < o. Asin [8],

17 See here also Definition 2.0.1 in [27].
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p- 359, or as in [10], p. 2190, we shall now choose a possibly smaller “maximal” time
T (o) € (0, Tmax]—depending on ¢, but not on e—by means of imposing the following
additional, quantitative smallness condition on the normal sections N; = ¢; vp=:

I fr — F* ek r)H=N Ne llckzryy< o Vi €[0,T(0)). (96)
We should note here, that condition (96) implies the inequality
I ¢ llciz < C(F*, j)o ¥t e[0,T(0)), o7)

for each j = 1,...,k, similarly to the relation between estimates (82) and (88).
Comparing initial condition (82) with the additional smallness condition (96) and
recalling that we have C’(¢) < o, we can conclude that

0<T(0) < Thmax < o0.

In order to prove that statement (96) actually holds for T (o) = oo, we shall follow
the strategy of the proof of Theorem 1.2 in [9], pp. 2190-2191: We assume firstly,
that the time 7 (o) was finite and that there would hold T (o) < Tiax. Now, first of all
our conditions (93) and (96) imply that estimates (85)—(87) do actually hold for the
immersions F* + ¢;vp+ on [0, T (0)]. Taking also estimate (97) into account, we can
therefore roughly estimate the right hand side in (84) by

Il B(-, ¢r, Dx¢y, D2y, Digy) |lLoo(sy< C(Z, F*,0) Vit e[0,T(a)], (98)

for some appropriate, large constant C = C(X, F*, 0), and we can easily verify by
the same reasoning that the coefficients on the left hand side of (84), respectively, in
(91) with {¢;} = {¢;} are continuous and uniformly bounded on X' x [0, T'(c)] by
another large constant C = C(X, F*, o). We can therefore apply Proposition 2 in
[19] to the linear operator L+ ¢ in (91)—here on X' x [0, T (¢')] and with any fixed
p € (1, 00)— and we infer from that proposition, together with estimates (88) and
(98) and with C°(¢e) < o, that the smooth solution {¢,} of equation (84) has bounded
norm in the parabolic L”-space'®

Xr,p = WhP([0, T1; LP(Z, R) N LP([0, T1; WP (2, R)), (99)
for any fixed p € (1, 00), precisely

1490 1z, = CEF 0, T(@), p) (1 B 1o DI lirqoronircs vy

+ 11 60 oz ) < (5, F*0.T(@), p), (100)

for some large constant C*(X, F*, o, T (0), p). Moreover, as explained in Theorem
B.5 in [47], we can use interpolation results from [5], in order to obtain for any

18 See here pp- 88-89 in [4] for an exact definition of parabolic L”-function spaces.
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p € (l,00)and 0 € (0, 1) with 4(1 — ) ¢ N the continuous embedding

X7, =WhP(0, T1; LP(Z,R)) N LP([0, T]; W*P (2, R))

= (WHP([0, T1; LP(2, R)), LP([0, T): WP (2. R)),

= WOrqo. T wHI="P(2. Ry, (101)

for any finite 7 > 0. Furthermore, the proof of Lemma 3.3 in [47] can be slightly
adapted, in order to see that for p € (6, 00), for any small € > O still satisfying
p > 6+4eandfor6 := 1% € (O, }T) the general Sobolev embedding from Theorem
B.4 in [47] yields

wor o0, T]; W*-9r(x R)) < C? ([0, T];: C>%2 (X, R)), (102)

for any finite 7 > 0 and for sufficiently small exponents g1, g2 € (0, %). Hence,
combining embeddings (101) and (102) with estimate (100)—here with any fixed
p € (6, co)—we obtain the existence of sufficiently small g1, g € (0, %), such that
the smooth solution ¢; = (N, vr+)Rr3 of equation (84) satisfies

Il {&:} ||C‘11([O’T(U)]’CS'qZ(E’R))S C(x, F*, q1,q2, p, T(0),0), (103)

for some appropriate constant C = C(X, F*, q1,q2, p, T(0),0) > 0. On account
of the mean value theorem, estimate (103) particularly implies the estimate

” B(.7¢l‘v'~-7D)3;¢l‘) ” ﬁﬂ SC(Ea F*7T(O—)’O—7l1)’ (104)
Cc” 4 (¥ x[0,T(0)],R)

for any small u € (0, %) with & < min{4 q1, g2} and for another appropriate constant
C=C(X, F* T(0),o0, 1), which does not depend on any more data of the solution
{¢#:}, especially not on the size of ¢ from lines (80) and (82). Hence, we obtain from the
parabolic Schauder a-priori estimates (94)—here with / = 0 and © = jt—combined
with estimates (88), (97), and (104), that the above smooth solution {¢,} of equation
(84) satisfies

< Co(Z, F*, T(0),0, 1), (105)

e

_ I
HEITT (2 X[0,T(0)],R)

for some sufficiently small Holder-exponent i € (0, %), where the above constant
Co = Co(X, F*, T(0), 0, 1) does not depend on the size of ¢ > 0 from lines (80)
and (82) neither. Now we recall, that “.k” in conditions (80) and (82) was a fixed integer
> 4. If k = 4, then estimate (105) does not have to be improved any more. But if
k > 4, then estimate (105) should be used, in order to improve estimate (104) by
means of another application of the mean value theorem:

B(-,&,,...,D3 L <Ci(Z,F*T(0),0,1), (106
| B(-, ¢ D) ”clml%(zx[o,r(a)],nr 1( (0),0,), (106)
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for the same exponent i as in estimate (105) and for another appropriate constant
Ci = C\(X, F*,T(0), 0, f1). Since we have proved already that the solution {¢,}
of equation (84) is C°°-smooth, estimates (105) and (106) can be combined again
with conditions (88) and (97), in order to infer from another application of Schauder
estimates (94)—but now with/ = 1 and p = [:

Il &1 IICM, < Ci(Z,F*,T(0),0, 1), (107)

S+
4 (X x[0,T(0)],R)

for the same exponent i as in estimate (105) and for another appropriate constant
Cy = C(X, F*, T(0), 0, ). Hence, by finite induction—stopping after exactly k —4
steps on account of condition (88)—we arrive in this way at the optimal Schauder
estimate

I Il ., ke < Cia(Z, F*, T(0), 0, j1), (108)
C 4 (X x[0,T(0)],R)

for the same exponent & as in estimate (105) and for another appropriate constant
Ci—q = Cy_4(X, F*, T(0), 0, 1), which does not depend on the size of ¢ > 0 from
(82) and (88) neither. Estimate (108) immediately implies

l ﬁ —F" ||ckﬁ():,R3)E|| N; ||ck-ﬁ(2,R3)
< Cra(Z,F*,T(0),0, 1) V1 €[0,T(0)], (109)

for the corresponding smooth solution f; = F*+ N; = F* 4+ ¢, v+ of equation (83),
for some small exponent & € (0, %), which is exactly the analog of formula (5.13) in
[10]. Now, on account of condition (96), due to the choice 0 < min{d, o} and since
F* was supposed to be a C¥-local minimizer of the Willmore functional, we know
that

W(fr) = W(F*) (110)

fort € [0, T(0)]. Moreover, using the fact that the smooth family { f;} = {F*+¢; v}
solves equation (83), we can infer that

d ~ Lio = ~
d—W(fz) / (0 " (1), V2 (f))gs dpe
t b !

1 ~
Z—/Ew|VL2(ft)|2dlLﬁ <0 (11
;i

fort € [0, T (0)], i.e., that W(ft) does not increase for ¢ € [0, T (0)]. Moreover, due
to T(0) < Tmax, there holds equation (95) on [0, T ()], implying that
W(f) =W(P(t.0, fo)) for te[0,T(o)]. (112)
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Now, we can combine equations (110)—(112) with the strong regularity result in The-
orem 3 (ii)'? of [19], in order to apply the same argument as on page 360 in [8],
ruling out the special case, in which there might hold W( fs) = W(F*) for some
s € [0, T(0)). Hence, in the sequel, we can assume without loss of generality, that
there holds W( f,) > W(F*) forevery t € [0, T (0)). Finally, we have to observe that
condition (96) implies inequalities (85) and (87) to hold for ¢ € [0, T (0)], since we
chose o < p and ¢ < &. Hence, there is some small constant ¢ = ¢(F*, o) > 0, such
that

c(F* o) < |A%(x)|2 < C(F—ia) for (x,1) € X x [0, T(o)].

We can therefore introduce the smooth, non-increasing, and positive function [f
OV(f)) = W(EF*)?], for t € [0, T(0)), where § = 6(F*) e (0, 1/2] denotes the
exponent appearing in the Lojasiewicz-Simon-gradient-inequality for the Willmore
functional, Theorem 3.1 in [8], in order to compute by means of Holder’s inequality,
again equation (83) and by the usual chain rule:

d . ~ - L.
= G WU = WED) = =6 W(f) = WEF)"™! /E (Ve W), 047 (F) dug,
b
A 14
fi

0 W(f) — W(F*)'! /E VWP dp;

%

. . 1/2
e(F*0)* 0 OW(f) = WE)' ! ( /E VWP duy)

1 ~ 1/2
(//S o Ve WP i)
fi

* 4

> % 18 G g, for t€l0. @), (113)
where we have been able to apply the Lojasiewicz-Simon-gradient inequality in line
(113) in a C*-ball of radius o about the Willmore immersion F* with appropriate
constants C{ = C{(F*) > O and 6 = 6(F*) € (0, 1/2], taking estimate (96)
for t € [0, T(0)] into account. Now, estimate (96) also implies inequality (86) for
t € [0,T(0)], on account of 0 < p < 8, and the time derivative 8tf, = O/ NV;
is actually a smooth section of the normal bundle of F*, just as N; is, for every
t € [0, T (0)]. Hence, we infer from an integration of inequality (113) with respect to
time and again from estimate (96) that

N
/ 0 fr Nl22qupm dt
0

S
< C(G)/O I 9 f 2 ) dt

19 1t should be stressed here that this theorem indeed holds already for C°°-smooth, umbilic-free initial
immersions.
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s e
F\ Tt
<20@) [ 1 (07) " iz @

_2COCE [T E e
C(F*,o)49[) dt <(W(ft) W(F™)) >dt
_M fo) — ) — £y — *\\0
T c(F*,0)*0 <(W<f0> W(F*)? — OWV(f) = W(F )))

2C(0)Cy WE* + Ne) — WF* 0 et »
_m< (F" + No) = W( )> <00 Vsel0,T(o)). (114)

Now, we can derive from a combination of condition (96) and estimate (114), together
with the triangle inequality for the L?(jt z+)-norm:

£ _ % ZC(G)C* * _ *y\\ 0
1Fs = F iy = 10N l2gu) + o yng OV + No) = W(E™)
< C Ul No sz sy Vs €10, T(@)], (115)

for some appropriate constant C = C(X, F*,0,0) > 0. By Theorem 6.4.5 (iii)
in [6], we can interpolate the Besov space Bﬁ (k+ﬁ)(2 R?Y), for p* = %ﬂ >> 1
and B € (0, 1) close to 1, between the spaces CK# (X, R3) = Bk+“ (¥,R3) and
L*(Z, R = BS,Z(Z‘, R3), and we can then use the fact that Bﬁ*(,’;t“)(z, R3) embeds
into C¥(X, R?) by the fractional Sobolev embedding theorem, provided there holds

Bk + ) — % = B(k+ n) 4+ B — 1 > k. Consequently, we infer from estimates
(82), (109), and (115) that

I fs = F lermmyy < € I fs = F* Woa ooy | s = F* 50
1 0 _
< C I No Iy ke = € (€2 =P? Vs g0, T(o)],
(116)

for some appropriately large constant C* = C*(X, F*, i, k, 8,6, T (o), o), which
is independent of ¢. It therefore turns out now, that we should choose ¢ > 0 above in
estimate (80) that small, such that

C* (C2(e))17P? < % (117

holds, implying by estimate (116) that we thus would have

~ o
I fi = F* llckz r3) Li=T (@)= 7

But this contradicts the fact that || f, — F* lck(zr3) Li=r(@)= o would have to
hold at time ¢t = T (o) on account of condition (96), if the “maximal time” T (o)
in (96) would have actually been finite and also smaller than Tpax. In the remaining
special case “T (o) = Tmax < 00~ we could infer, that estimates (96), (97),f and (109)

@ Springer



24 Page 40 of 51 R. Jakob

would hold on every compact interval [0, T] with T < Tpax < 00. Since we also
know that o < o, a comparison of conditions (93) and (97) shows us, that in this
situation the smooth solution {¢;} of the quasilinear parabolic equation (84) could be
extended—using e.g., the methods of Theorems 2 and 3 in [17]—from X x [0, Trax)
to X x [0, T'], for some T’ > Tmax, Of class C4+“’1+%(Z‘ x [0, T'], R), for any
fixed u € (0, 1), and thus also of class C*®°(X x [0, T'], R) on account of the above
bootstrap argument employing estimates (94), but without violating condition (93)
for t € [0, T’]. This contradicts the definition of the maximal time Tyy,x. Hence, we
have proved that there actually has to hold “T (o) = 00” in estimate (96), i.e., that the
particular smooth solution f, = F* 4 N; of equation (83) exists globally and satisfies
the smallness condition (96) at arbitrarily large times #:

I fi = F* ks gn=<0 Yt €[0,00), (118)

provided the initial immersion fo satisfies condition (82) with ¢ > 0 chosen that small
in condition (80), such that inequality (117) finally holds. Combining now statement
(118) with the entire reasoning which led us to estimate (109) on X' x T (o), one can
exchange 7 (o) by any positive time 7 and then prove inductively—using (109) and
(118) both in the induction basis and in the induction step—that there is a constant
K = K(X, F*, 0, k, i) such that

I fi = F* ks pey< K Vit €0, 00). (119)

Moreover, since we especially know now that Trax = 00, we obtain equation (95) for

every t > 0, i.e., there is a smooth family of smooth diffeomorphisms ¥; : ¥ =5 ,
Yy = Idx, such that

fi =P,0, fo) oo, Vie[0,00). (120)

Now, having chosen ¢ > 0 in (80) sufficiently small, we can let tend s — 00 in
estimate (114) and obtain

2C(0)C}

%
W(W(F + No) = W(F") <00, (121)

00 ~
/0 0 fr N2qupmy dt =

implying the existence of a unique function F, € L2((X, wp+), R3), such that
fi=F*+ N, — Fs in L*(Z, pup*) (122)

ast — oo. Inserting now convergence (122) and estimate (119) into the first inequality
in (116), we obtain together with equation (120):

P(t,0, fo) oPpo ¥, = f; — Fy in CX(Z,R%) (123)
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as t — oo, where the limit function F, satisfies additionally estimate (118) in the
limit, i.e.,

| Foo — F* lekiz = 0, (124)

and thus turns out to be a umbilic-free C*-immersion, because estimate (118) implies
inequalities (85) and (87) to hold for every ¢+ > 0. It remains to prove, that the limit
immersion F, of convergence (123) is “Willmore” and a C k_local minimizer of the
Willmore functional V. Indeed, for any fixed & > 4, we infer from convergences
(121) and (123) that

Lo w2 1 N
0 <«—II 3 "(fo) IILz(Mf_) L= = . A V2 W(DI"d g L=,
t -
fi

1
— | ——— [V 2 W(Fso)|? dur..,
leA(}w|8| P W(Fa) P di,

for some appropriate sequence #; /' 0o, showing that F is indeed a umbilic-free
Willmore immersion, satisfying statement (124) for the considered k > 4.

Moreover, combining statement (124) again with the Lojasiewicz-Simon-gradient-
inequality, Theorem 3.1 in [8], F turns out to satisfy W(Fs) = W(F™), proving
that Fo, is actually a C¥-local minimizer of W as well, for any k > 4. Using now the
conformal invariance of both the MIWF and the Willmore functional, we can project
statements (123) and (124) back into S* via inverse stereographic projection and thus
obtain the entire assertion of Theorem 2. O

Remark 5 In contrast to the final steps of the proof of Lemma 4.1 in [8], we could
not combine neither estimates (118), (119) nor the full Ck-convergence in (123) with
localized L°°-estimates of covariant derivatives V" A i of the second fundamental
forms of the converging immersions f; in (122) and (123), in order to improve the
quality of convergence (123) furthermore, e.g., from C*- to smooth convergence,
because such strong estimates have—so far—only been proven for flow lines of the
classical and inverse Willmore flow in R”; see here Sect. 4 in [23], respectively Sect.
3 in [22] and also Sects. 7-12 in [29]. The only available proof of such estimates
relies strongly on the structural similarity between the leading term of the Willmore
flow equation (3) and the simple heat equation of fourth order: d;®; = —A?((bt), for
some fixed smooth metric g on X'. It is actually this structure of the leading fourth
order term of the Willmore flow equation, which leads to a fairly simple, inductive

computation of the expressions af revma £+ Aé P (V™A y,) for any smooth solution
{fi}ie0,7) of equation (3), for each order m € Ny, yielding both Lz(ft_1 (B (x0)))—
and even L*°(f, ,_1 (B} (xp)))—estimates for the covariant derivatives V" A, of any
order m € N, locally about some arbitrarily fixed xo € R” and uniformly in time
t € [0,T), provided fft_l(Bé,r(xo)) |A g, |2 d,u,gf[ stays sufficiently small, for ¢ € [0, T),
i.e., provided there is no quantum of curvature that concentrates about some fixed
point xg in R”, as t " T. Because of the fairly degenerate structure of the left hand

@ Springer



24 Page 42 of 51 R. Jakob

side of the MIWF-equation (2), one can neither adopt here the strategy of Sects. 2 and
4 in [23] nor its generalization and improvement in Sects. 7—12 of [29], treating the
inverse Willmore flow. O

4 Stability of Converging Flow Lines

Combining Theorem 2 with Theorem 5 below, we obtain a stability result for fully con-
vergent flow lines of the MIWF into C*#-local minimizers of the Willmore functional.

Theorem 4 (Stability Theorem) Suppose that X is a smooth compact torus and that
Fo : ¥ — S3 is a C®-smooth and umbilic-free immersion, whose correspond-
ing flow line {P(¢, 0, Fo)}i>0 of the MIWF exists globally and converges fully and
smoothly—up to smooth reparametrization—to a C*°-smooth parametrization F* of
a umbilic-free C*-local minimizer of the Willmore functional W, in the sense of for-
mula (4) with k = 4. Then, for any fixed a € (0, 1), there is an open ball Bf’a(Fo)
about Fy in C4""(Z‘, R4), withr = r(X, Fy, F*,a) > 0, such that For every C°-
smooth immersion F : ¥ —> S3 being contained in the open ball Bf’a(Fo), there

is a smooth family of smooth diffeomorphisms llftF 1 X — X, fort > 0, such that
the reparametrized flow line {P(t,0, F) o lI/tF }i>0 of the MIWF converges fully in the
CHX,RY-normtoa umbilic-free Willmore immersion Fso, ast — 00, and this limit
immersion is a C*-local minimizer of the Willmore functional W as well, satisfying

W(Fso) = W(F™). O

In order to prepare the proof of Theorem 4, we shall adopt the methods of Theorems
1-4 in [19], but using here parabolic Holder spaces and parabolic Schauder theory
instead of optimal L”-L4-estimates, in order to apply the regularity bootstrap method
of Theorem 3 (ii) in [17], via Schauder a-priori estimates. To this end, we consider
evolution equations (2) and (24) for immersions f; : ¥ —> R3, and we recall from
the author’s article [17] as in Sect. 2 of [19], that the differential operator

2 1A 17 VW) = A 1Y (A;Hf+ Q(A%)(Hﬂ)
: 1
=AY 17 (@ /HpY +204pH)) — 3 [Hy P Hy)  (129)

arising on the right hand side of evolution equations (2) and (24) is not uniformly
elliptic and that its leading term (A fH f)Lf can be written as

(A H)Y =g el () = e VL () a0 () (126)

at least locally, in local coordinates on X, for any W42 immersion f:XY — R3,
where g 1= f*(geuc) denotes the pullback-metric of the Euclidean metric of R3.
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Applying DeTurck’s trick as in Sect. 2 of [19], we add the globally well-defined
differential operator®” of fourth order

Ty (f) = & &8 &1 (VL (). m ) 0 £ — 8 g5 W ((Tril = (D)) O ()

for some fixed smooth immersion Fy : ¥ — R?>, to the right hand side of equa-
tion (125) and obtain a quasilinear operator of fourth order whose leading term is
g}{ g’}l V;‘}(l( f), having a uniformly elliptic linearization in any umbilic-free C*7 -

immersion f : ¥ —> R3. We are thus led to consider here the evolution equation

1
0 (f)=—7 | AL 7Y (2 VW) + Tr(f)) =t MR (f), (127)

for some arbitrarily fixed C°°-smooth immersion Fy : ¥ —> R3, where the right-
hand side MF,(f;) of equation (127) can be expressed in local coordinates on X
by

1 ii
Mry(f)0) = =5 | AG 17 g &}l VIV ()0
+B(x, Dy f;(x), DX fi(x), D} fi(x)), (128)

for (x,t) € ¥ x [0, T]. Here, the symbols D, f;, D)% fts Di f; abbreviate the matrix-
valued functions (91 f;, 92 f;), (Vg(’f,),-,je{l,z} and (Vg‘}(f,)i,j,ke{l,z}, and B : ¥ X
R x R'?2 x R** — R? is a globally defined function, whose 3 components are rational
functions in their 42 real variables. Following the lines of the author’s articles [17]
and [19], we will collect some basic properties of the linearization of equation (127)
or equivalently of equation

1 T 3
0(f)=—5 | A% 17 & & VIVl (f0 + BC. Dufi. DY DY) (129)

in any family of C*”-immersions f; : ¥ —> R, which is sufficiently close to a
prescribed flow line of the MIWF (2) in the parabolic Holder space CcHrI+g (X x
[0, T], R3), y € (0, 1), below in Proposition 1. To this end, we fix some umbilic-
free immersion Fy € C®°(X, R3) and denote by Tmax(Fp) the maximal time such
that the corresponding unique smooth solution P(-, 0, Fp) of the MIWF exists on
X x [0, Tihax (Fp)). 21 We recall from the proof of Theorem 1 in [17] that there is a
unique smooth family of smooth diffeomorphisms ¢,F . ¥ — X with ¢p = Id5,
such that the reparametrization {P(z, 0, Fp) o ¢,F %} solves evolution equations (127)
and (129) on ¥ x [0, T'], for every final time T € (0, Tax (Fp)). Now we fix some 7' €

20 Compare here also with p. 1156 in [17] and with formula (12) in [19], where the tensorial character of
the expressions (FFO)Z; —(r f)i’} and 7f, (f) had been explained.

2 Compare here with Definition 2 (d) in [19], introducing the life span of a flow line.
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(0, Tnax (Fo)) and y € (0, 1) arbitrarily, and we also choose some open neighborhood
WE,, T,y of the above smooth solution {P(z, 0, Fp) o¢,FO} of (127) in the Banach space

X7 = X7, = CH7 i (2 x [0, T],RY),

and we shall follow the strategy of [19] and [47]: using the fact that the restriction of
elements of X7 , at time t = 0:

ro: Xr, — CH(Z,R?)

is a linear and continuous operator, i.e., that the frace of the Banach space X7 at time
t = 01is exactly

Trace(X7) = C*7 (X, RY), (130)
and considering the continuous, non-linear product operator
whl Wi, C Xr — CH(Z,RY) x CV5(Z x [0, T].R?) =: Y7, = Y7
defined by

e T fiicio.m) = (fo, 18:(fr) — ME,(f)}eero.1))- (131)

Now following the proofs of Theorem 1 in [19] and Theorem 2 in [17]—substituting
here Proposition 2 in [19] by Corollary 3 in [17]—we can prove the following counter-
part of Theorem 1 in [19] in the setting of parabolic Schauder Theory, aiming at basic
properties of the Fréchet derivative of the operator ¥ -7 from (131) at the smooth
solution {P(t, 0, Fp) o ¢IF°},E[0,T] of equation (129) in view of the proof of Theorem
5 (1) below.

Proposition 1 Let X be a smooth compact torus and Fy : ¥ —> R> a C®-smooth
and umbilic-free immersion, and let 0 < T < Tnax(Fo) and y € (0, 1) be chosen
arbitrarily, where Tmax(Fo) denotes the time of maximal existence of the flow line
{P(t,0, Fo)}i=0 of the MIWF (2). There is a sufficiently small open neighborhood
WE,.,1,y about the smooth solution {P(t, 0, Fy) o ¢>;F0}ze[0,T] of the modified MIWF -
equation (129) in the Banach space Xr, such that the following three statements
hold:

(1) The map wh.T . WEyr,y —> Yr, defined in line (131), is of class C! on the
open subset Wg, 1, of the Banach space Xr.

(2) The Fréchet derivative of the second component of WFoT at any fixed family
{fi}ier0,11 € WEy, 1.y is a linear, uniformly parabolic operator of order 4 whose
leading operator acts diagonally, i.e., on each component of f = {fi}ie0,1]
separately:
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(DT (£)).(0) = 8:(n) — DME)(f)-(0)

1 _ ik
=) + 5 | A% 17 g & ViR )+ B Vi)
+B - VG + B - V() (132)

on X x [0, T], for any element n = {n,} of the tangent space TfWg, 1, = Xr.
Here, the coefficients | A |4 glfj gl}l of the leading order term are of class

C2+V (Z‘ x [0, T1, R3) B” and B‘ are the coefficients of Mats, 3(R) valued,
contravariant tensor fields of degrees 2 and 1, depending on x, Dy f;, D> < i D3 fi

and on D;Lft and therefore being of class cri (¥ x [0, T], Mat3 3(R)). Finally
Béj K are the coefficients of a Mat3 3(R)-valued, contravariant tensor field of degree

2
3, whichdepends on x, Dy f; and D,% f; only and is therefore of class C*7> = (X x
[0, T'], Mat3 3(R)).
(3) The Fréchet derivative of ¥ T yields a topological isomorphism

DURT (Y Ty Wry 1, = X1 — Y7

in any fixed family of immersions f = {fi}icj0,11 € WEy,T,y-

]

Proof The first two parts of the proposition are essentially repetitions of the first two
parts of Theorem 2 in [17], up to exchanging the neighborhood W, 7, of the smooth

solution {P(t, 0, Fp) o ¢tF %},¢p0.77 of evolution equation (127) by the open subset
Xvgysr =UfiteXryl Il fi —Uo lca(zy<é fort €[0,T], fo = Up on X'}
- appearing on p. 1157 and in Theorem 2 of [17]—of the affine closed subspace

Ay 1.vy = U Sfiieto,r1 € X1,y | fo=Up on X} (133)
of our basic Banach space X7 = X1, = CHYI+E (¥ x[0,T11, R3), for any fixed
umbilic-free initial immersion Uy € C*7 (X, R?).2? The third statement of the propo-

sition now follows in three fairly simple steps. First of all, we know from the first two
parts of this proposition that the non-linear operator

- Mp  Wrr,y — C”‘%(ZJ x [0, T], R®)

is of class C! and that its Fréchet derivative at an arbitrary family f = { filiero.11 €
. . . v
Wr,, 1,y is a continuous linear operator from T¢Wp, 7, = X7 to CV*(X x

22 The interested reader might also want to compare the first two parts of our Proposition 1 with the first
three parts of Theorem 1 in [19], whose proofs are based on formulae (24)—(28) within the preparatory
Lemma 1 in [19], where the quasilinear structure of the non-linear operator [ f +— M Fo(f )] from lines
(127), (128) and (131) above has been precisely analyzed.
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[0, TT, R3), being of the concrete, uniformly parabolic form (132) with Holder-
continuous coefficients. We can therefore apply Propositions 1 and 2 and Corollaries
2 and 3 of [17], in order to conclude that the restriction

D@ — Mp)(f): Ayro — CV (X x [0, T, RY)

of this Fréchet derivative to the linear Banach subspace A, 7o of X7 from (133),
with Uy = 0, is an isomorphism, just as the biharmonic heat operator 9, + A%O is.
Then it easily follows from this fact and from (130) that the Fréchet derivative of
the entire product operator ¥ 0T : Wg, 7, — Yr is a bijective linear map from
TyWg,1,, = X7 to Y7, and the assertion follows from the open mapping theorem
for continuous linear operators between Banach spaces.

Combining Proposition 1 with the proof of Theorem 3 (ii) in [17] via Proposition 3 in
[17], we obtain the following theorem, similarly to Theorem 4 (i) in [19]. In Theorem 5
and also below in the proof of Theorem 4, we will abbreviate by “Bﬁ’y (Fp)” the open
ball of radius p > 0 about any fixed immersion Fy in the Banach space C*? (X, R3),
for any fixed y € (0, 1).

Theorem 5 Let X be a smooth compact torus and Fy : ¥ —> R3 a C®-smooth
and umbilic-free immersion, and let 0 < T < Tnax(Fp) and y € (0, 1) be chosen
arbitrarily, where Tmax(Fo) denotes the time of maximal existence of the flow line
P(-,0, Fy) of the MIWF (2).

(1) Thereissomesmallp = p(X, Fy, T, y) > 0, such that for every initial immersion
F e C*"(Z,R) with | F — F llcar(zr3)< p there is a unique solution
{P*(t, 0, F)}tefo,1] of the “DeTurck modification” (127), respectively, (129) of
the MIWF (2) in the Banach space X1 = cHrI+y (X x [0, T1, R3), starting to
move in the immersion F at time t = 0, and the resulting evolution operator

P*(-.0, ) : ByY (Fo) € C* (2, R?) — X, (134)

mapping any element F of the open ball Bé’y (Fo) about Fy to the unique solution
{P*(t,0, F)}iefo,17, is of class cl

(2) If the initial immersion F € B;‘,’V (Fo) from part (1) is additionally of class
C®(X, RY), then the resulting solution {P*(t, 0, F)}iel0,1] of evolution equation
(129) from line (134) is of class C® (X x [0, T1, R3), and furthermore there is a
smooth family of C°-smooth diffeomorphisms 1/ftF X — X, with W(f = Idy,
such that the composition P*(¢t,0, F) o 1//,F solves again evolution equation (2)
on X x [0, T], i.e., such that there holds:

P*(t,0, F) oyl =Pt,0,F) on X, Vtel0,Tl.
Proof (1) Here, we can argue exactly as in the proof of Theorem 4 (i) in [19]. We

assume that Fy : ¥ —> R3 is a C®°-smooth and umbilic-free immersion which
produces a maximal smooth flow line P( -, 0, Fp) of the MIWE, starting in Fy at
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(@)

time ¢ = 0. Hence, the proof of Theorem 1 in [17] shows that there is a unique
smooth family of smooth diffeomorphisms ¢/° : ¥ —> X with d)g 0 = Idy,

such that the reparametrization {P(¢, 0, Fp) o ¢ZF %}/>0 is the unique and maximal
smooth solution of evolution equation (127) on X'. Moreover, we know from
Proposition 1 above, that there is some open neighborhood Wg, 7, about the
solution {P(¢, 0O, F())od)tF %}sef0.77 of equation (127), respectively, (129) in the space
X7, such that the operator ¥ 0T from line (131) is a C'-map from Wg, 7., to
Y7, whose Fréchet derivative in the particular element {P(z, 0, Fp) o ¢tF 0y 1€[0,T] €
WE,, T,y is a topological isomorphism between X7 and Yr. Noting also that there
holds

v T (P, 0, Fo) o ¢ }ic0.11) = (Fo, 0) € Yr,

by definition of the operator ¥ 70-7 in (131) and since {P(t, 0, Fo) o ¢, }ier0.7]
solves equation (127), we can infer from the inverse mapping theorem for non-
linear C'-operators, that there is some small open ball B,((Fp,0)) C Yr, with
p = p(Fy, T,y) > 0, and an appropriate further open neighborhood W;O,T,y -

W, T,y about the smooth solution {P(z, 0, Fp) o ¢tFo}ze[o,T] of equation (129) in
X7, such that

il wi o+ — B,((Fo,0)) (135)

is a C!-diffeomorphism. Hence, by definition of the map ¥ 07 and by Theorem
2 (ii) of [19], the restriction of the inverse mapping (¥ Fo.Ty=1 from line (135) to
the product Bﬁ’y(Fo) x {0} C B, ((Fo, 0)) yields exactly the evolution operator
of the parabolic evolution equation (127):

X7 D Wi ., 3 {P*(t.0. F)liejo.r) = @1 7I(F,0))
VFeBy(Fp)cC"(Z,R),  (136)

and it consequently has to be of class C! as an operator from C*? (X, R?) to X7.
Here, {P*(t, 0, F)};c[0,77 denotes the restriction of the unique maximal solution
{P*(t,0, F)}e0.4+ () of equation (127) from Theorem 2 (ii) in [19] to the inter-

_4 )2

val [0, T], noting that C*+? (¥, R3) ¢ W* 7P (X, R?) and also C*7- 145 (2 x
[0, T],R% < wW'r(0,T]; LP(X,R3) N LP([0, T]; WP (X, R3)), for any
fixed p € (3, 00).

The second statement of the theorem now follows immediately from the first
statement of the theorem, combined with Theorem 3 (i) in [19] and with another
application of DeTurck’s trick relating smooth solutions of evolution equations (2)
and (127); see also the proof of Theorem 1 in [17]. O

Proof of Theorem 4 On account of the assumptions of the theorem there is some smooth

family of smooth diffeomorphisms ¥; : X —;> X, t > 0, such that the reparametrized
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flow line {P(t, 0, Fy) o ¥};~0 of the MIWF in S3 converges smoothly and fully
to a smooth parametrization F* of a umbilic-free C*-local minimizer of the Will-
more functional. Now we choose some o € (0, 1) and we obtain from Theorem 2
of this article some small number ¢ = ¢(X, F*, «) > 0, such that for any smooth
immersion fy : ¥ — S% with || fo — F* 4oz r4y< € the unique smooth
flow line {P(¢, 0, Fp)}:>0 of the MIWF exists globally and converges—up to smooth
reparametrization—fully in C*(X, R*) to a parametrization Foy = Fao(fo) of a
umbilic-free Willmore immersion in S3 which is a C*-local minimizer of the Willmore
functional as well, satisfying W(Fso) = W(F*). Now using the fact that the flow line
{P(t,0, Fo)o¥;} of the MIWF in S° converges smoothly and fully to the C*-local min-
imizer F* of YW, we can choose some large but finite time 7 = T (Fy, F*, @) >> 1,
such that the immersion P(T', 0, Fp) oWt is contained in the specified e-ball Bﬁ’“ (F*)
about the local minimizer F* in C*% (X, R*). Now we recall that the stereographic
projection S from 83\ {(0, 0, 0, 1)} into R is a conformal diffeomorphism. Moreover,
on account of the compactness of X' and on account of the conformal invariance of the
MIWEF, we may assume that the image of the initial immersion Fy : ¥ —> S does
not contain the north pole (0, 0, 0, 1) of S3. Now, again using the conformal invariance
of the MIWF, the entire technique of Theorem 5 can be transported from R3 to S3
by means of stereographic projection S : 82\ {(0, 0, 0, 1)} — R3 and its conformal
inverse S~!. To this end, we firstly see that the requirements of Theorem 5 are trivially
satisfied here for the initial immersion F := So Fy : ¥ —> R and for any final time
T > 0. Hence, the first part of Theorem 5 guarantees, that there is for Fp and for any
fixed y € (0, 1) and T > 0 some small p = p(X, Fo. T, y) > 0, such that for every
immersion F € C*¥ (X, R3) with || F — Fp lc4r (x r3)< p there is a unique solution
{P*(,0, F )}ieq0, 71 of the “DeTurck modification” (129) of the MIWF-equation (2)
in the parabolic Holder space X7, = CH7 15 (2 x [0, T], R3), starting to move
in the immersion F at time t = 0, and such that this unique solution of equation
(129) in X7, depends in a C O_fashion on its initial immersion F, in the sense of
statement (134) in Theorem 5. Now, combining this information with the second part
of Theorem 5 and then applying again inverse stereographic projection S~!, we can
therefore infer that in our situation, there is for any € > 0 some sufficiently small
r=r(X, Fy, T,¢,y) > 0, such that for every C°°-smooth immersion F : ¥ —> S3
with || F — Fp ||c4r (x r#) < r the unique, maximal flow line P(-, 0, F') of the MIWF
in S3 exists at least on X x [0, T, and such that the flow lines {P(t,0, Fo)}tefo, 71 and
{P(t,0, F)}eqo,77 of the MIWF in S3 can be reparametrized by families of smooth
diffeomorphisms ¢>tF .Y — X and ¢>tF : ¥ —> X in such a way, that their

reparametrizations {P(t, 0, Fo) o ¢; *}efo,7) and {P(t, 0, F) o ¢} }cp0,7) satisfy

1P, 0, F) ol —P(t,0, F) 0 ¢ llcar (s rty< €, (137)

for every t € [0, T]. Now, we had chosen T = T (Fy, F*, ®) that large such
that the immersion P(T, 0, Fy) o ¥r was contained in the g-ball B‘“"(F ) about
the limit immersion F* in C*% (X, R4) Hence, by estimate (137) the diffeomor-

phism © Fo . (¢T ylowr : ¥ = X has the property that both immersions
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P(T,0, Fp) o 1 0 O = P(T, 0, Fy) o Wy and P(T, 0, F) o ¢F o OL0 are con-
tained in B;‘*"‘(F *), at time ¢t = T, provided € > 0 was chosen sufficiently small in
estimate (137), the initial smooth immersion F : ¥ —> S was contained in the
open ball BH? (Fy) about Fy in C*7 (X, R*), and provided r = (¥, Fo, T, €, ) =
r(X, Fy, F*, &, y,a) > 0 had also been chosen sufficiently small in estimate (137).
Here, we have also used the obvious embedding C*7(Z,RY — C**(X,R%Y), pro-
vided we have chosen y > « above. Hence, we should simply take y = « in (137)
and in the sequel. Recalling from the statement of Theorem 2 that the size of the
e-ball B;"“(F *) only depends here on X, F*, and «, we finally see that the above
radius r = r(X, Fy, F*, €, y, ) actually only depends here on X', Fy, F* and on the
parameter o, i.e.,r = r(X, Fy, F*, ), and we conclude if this number r is chosen suf-
ficiently small, then for any smooth immersion F : ¥ —> S being contained in the
open ball Bf’“ (Fp), the reparametrized immersion P(T', 0, F) oqbf o@?o is an element
of the prescribed e-ball Bg"" (F*) about the limit immersion F*. Now since we know
already from above that the entire reparametrized flow line {P(z, 0, F) o qth }rel0.7]
of the MIWF in $3 is of class C (X x [0, T], R4), we especially conclude that the
immersion P(T, 0, F) o 4)1; ) @?0 is C*°-smooth and certainly also umbilic-free on
Y. We can therefore choose the above initial immersion fy from the statement of
Theorem 2 of this article as fy := P(T,0, F) o qbf o @io and infer from Theorem 2
that the unique flow line {P(¢, 0, P(T,0, F) o ¢7€ o @io)}tzo of the MIWF in S3,
starting in the smooth immersion P(T, 0, F)o qbﬁ o @5" attime t = 0, converges—up
to smooth reparametrization—fully in C*(X, R*) to a umbilic-free parametrization
Fso = Fso(fo) of a C*-local minimizer of the Willmore functional W in S* with
W(Fs) = W(F™*), provided F : ¥ —> S3 is a smooth immersion being con-
tained in the open ball B}*%(Fy) about Fy in C**(X, R*) and r = r(X, Fy, F*,a) is
sufficiently small. On account of the invariance of both the MIWF and the Willmore
functional with respect to time-independent smooth reparametrizations this means that
any flow line {P(z, 0, F)};>0 of the MIWF in S3, which starts moving in some arbi-
trarily chosen smooth immersion F : ¥ — S3 belonging to the open ball Bf’a(Fo),
converges—up to smooth reparametrization—fully in C*(X, R*) to a umbilic-free
parametrization Fn, of a C*-local minimizer of the Willmore functional WV in S,
satisfying W(Foo) = W(F*), provided r = r(X, Fy, F*, «) was chosen sufficiently
small. O
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