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Abstract
Let A ∈ M2(Z) be an expanding integer matrix and D = {d1 = 0, d2, d3} ⊂ Z

2. It
follows fromHutchinson (IndianaUnivMath J 30:713–747, 1981) that the generalized
Sierpinski self-affine set T(A, D) is the unique compact set determined by the pair
(A, D) satisfing the set-valued equation AT(A, D) = ⋃3

i=1(T(A, D) + di ). In this
paper, we show that Fuglede’s conjecture holds onT(A, D), which states thatT(A, D)

is a spectral set if and only ifT(A, D) is a translational tile. For the classical Sierpinski
self-affine setT(A, Dc)with Dc = {(0, 0)t , (1, 0)t , (0, 1)t }, a finer characterization of
tiling set is given. As an application, we find that the classical Sierpinski self-affine tile
T(A, Dc) is suitable for Kolountzakis’ conjecture on product domain. This enriches
the results that are now known.
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1 Introduction

1.1 A Review of the Fuglede Problem on Spectral Sets and Tiles

Definition 1.1 Let μ be a Borel probability measure on R
n with compact support �,

and let 〈·, ·〉 denote the standard inner product on R
n . We say that μ is a spectral

measure if there exists a countable set � ⊂ R
n such that the exponential function

system

E� :=
{
e2π i〈λ,x〉 : λ ∈ �

}

forms an orthonormal basis for the Hilbert space L2(�,μ). In this case, we call � a
spectrum ofμ and (μ,�) a spectral pair. In particular, ifμ is the normalized Lebesgue
measure supported on a Borel set �, then � is called a spectral set.

The most classical example of spectral set is the cube
[− 1

2 ,
1
2

]n
, and its spectrum

is the integer lattice Z
n . Spectral sets have long fascinated mathematicians, which

can date back to Fuglede [20], who conjectured a connection between the notation of
spectrality and another geometrical notation of tiling.

Definition 1.2 We say � is a translational tilewith respect to a countable set T ⊂ R
n

if the set � satisfies

∑

t∈T
χ�(x − t) = 1, a.e. x ∈ R

n,

or equivalently, � ⊕T = R
n and the translates � + t, t ∈ T , partition R

n up to null
sets. In this case, T is called a translational tiling set of � and the set {� + t}t∈T is a
tiling of R

n .

In 1974, Fuglede [20] conjectured that the spectral sets could be characterized in
geometric terms using the concept of translational tile in the following way.

Fuglede’s conjecture: � ⊂ R
n is a spectral set if and only if � is a translational

tile.
This conjecture (also called Spectral set conjecture in some literatures) inspired exten-
sive research over the years, revealing a wealth of connections to functional analysis,
combinatorics, commutative algebra, number theory and Fourier analysis. The fol-
lowing partial results of this conjecture are known.

• Fuglede’s conjecture holds for lattice tiling [20].
• Iosevich et al. [25] proved the conjecture holds for convex planar domains.
• Lev and Matolcsi [48] completely settled this conjecture for convex domains in
all dimensions.
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• The non-convex case is considerably more complicated, and is not understood
even in dimension one. Łaba [35] established the conjecture for the union of two
intervals on the real line. Fu et al. [18] proved that the conjecture holds for the
self-similar set T(4, D) = ∑∞

k=1 4
−k D with the digit set D = {0, a, b, c} ⊂ Z.

• In general setting for finite abelian groups, Fuglede’s conjecture is known to be
true for cyclic groups Zpnqk , where n, k ∈ N and k ≤ 6 [50], for Zpn [36], for
Zpnq [51], for Zpqrs [31], for Zpnqr [54, 58], where p, q, r , s are different primes.
For product of cyclic groups it is known that the conjecture holds for Zpn × Z

[57], for Zp ×Zp [26], for Z
2
p ×Z

2
q [15] and for Z

3
p for p = 5, 7 [2, 16], and does

not hold for Z
4
p [19, 52], where p is an odd prime. The conjecture is also true for

p-adic field Qp [17].
• The first counterexample was given by Tao [56], which displayed a non-tiling
spectral set of R

n (n ≥ 5).
• More results of non-tiling spectral sets and non-spectral tiles were also found by
Matolcsi [49], Kolountzakis and Matolcsi [33, 34].

• Fuglede’s conjecture remains open in dimensions one and two.

Although Fuglede’s conjecture in its original formwas disproved for n ≥ 3, it plays
a key role in bringing many branches of mathematics closer together. A significant
contribution of Fuglede’s conjecture is creating a bridge between fractal theory and
spectral theory. The primary aim of this paper is to establish a connection between
tiling and spectrality of a class of fractal sets, and our main results will be presented
in Sect. 2.

1.2 IFS and Fractal Measures

The problem of spectral measures is intriguing when we consider fractal measures
such as self-similar/self-affine measures, and readers may refer to e.g. [14] for more
general background of fractal theory.

Definition 1.3 ([14, 24]) Let {φd(x)}d∈D be an iterated function system (IFS) defined
by

φd(x) = A−1(x + d), x ∈ R
n,

where A ∈ Mn(R) is an expanding real matrix (that is, all the eigenvalues of A are
larger than one in module), and D ⊂ R

n is a finite digit set. The self-affine measure is
the unique probability measure μ := μA,D satisfying

μ = 1

#D

∑

d∈D
μ ◦ φ−1

d , (1.1)

where #D is the cardinality of the digit set D. Such a measure μA,D is supported on
the self-affine set (or attractor) T(A, D), which is the unique nonempty compact set
that satisfies
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T(A, D) =
⋃

d∈D
φd(T(A, D)).

Moreover, T(A, D) can be expressed by the following radix expansion

T(A, D) =
⎧
⎨

⎩

∞∑

j=1

A− j d j : d j ∈ D for all j ∈ N

⎫
⎬

⎭
. (1.2)

In particular, if A is a multiple of an orthonormal matrix, T(A, D) and μA,D are often
called self-similar set and self-similar measure, respectively.

It is somewhat surprising that He, Lai and Lau [23] proved that if a self-affine measure
μ is spectral, then it must be of pure type, i.e., μ is discrete with finite support,
singularly continuous or absolutely continuous with respect to Lebesgue measure.
A general result was proved by Dutkay and Lai [12] that an absolutely continuous
measure is a spectral one only if it is a normalized Lebesgue measure restricting on a
domain�. In particular, if we take� as some attractor T(A, D), in terms of Fuglede’s
conjecture, then one can consider its tiling and related properties. We say T(A, D) a
self-affine tile if it has positive Lebesgue measure and | det(A)| = #D. In this case, the
associated digit set D is called a tile digit set. Lagarias and Wang [38, 40] studied in
detail the structure and tiling properties of self-affine tiles. On the other hand, there are
few works on characterizing the digit sets yielding the self-affine tiles. Lagarias and
Wang [39] and Odlyzko [53] investigated the related problem about some product-
form tile digit sets on R, which are extension of standard digit set. After that, Lai et al.
[41, 42], Lau and Rao [43] extended product form to certain modulo product forms.

Definition 1.4 Let A ∈ Mn(Z) be an expanding matrix and D ⊂ Z
n be a digit set.

We call D a standard digit set for A if D is a complete set of coset representatives of
Z
n/AZ

n .

For the singularly continuous case, it can be traced back to 1998, Jorgensen and
Pedersen [27] constructed the first example of singular, non-atomic spectral measure
(sometimes we call this JP-spectral measure). They proved that the one-fourth Cantor
measure is a spectralmeasurewith the spectrum�JP := {∑d

k=0 4
k�k : �k ∈ {0, 1}, d ∈

N}, but the standard one-third Cantor measure is non-spectral. Since then, the study
of the spectrality of singular measures becomes an active research field, see [1, 5–7,
9, 11, 18, 23, 28, 37, 44, 55] and the references therein.

Given a self-affine measure μA,D , the most fundamental problem is to determine
its spectrality or non-spectrality. In general research of spectrality, one needs to show
the existence of infinite orthogonal sets and figure out which can be considered as
Fourier bases in L2(μA,D). Up to now, all these studying has closely related to the
Fourier transform μ̂A,D of the measure μA,D [see (3.1) for the definition of Fourier
transform]. This observation follows from the well-known fact [27] that μA,D is a
spectral measure with a spectrum � if and only if

∑
λ∈� |μ̂A,D(ξ + λ)|2 = 1 for all

ξ ∈ R
n . Moreover, in the process of studying spectrality, following the terminology

of Hadamard triple [55], leads the research to another approachable way.
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Definition 1.5 Let A ∈ Mn(Z) be an expanding matrix, and let D, S ⊂ Z
n be two

finite digit sets with the same cardinality. We say that (A, D, S) forms a Hadamard
triple (or (A−1D, S) forms a compatible pair or (A, D) is admissible) if the matrix

H = 1√
#D

[
e2π i〈A−1d,s〉]

d∈D,s∈S

is unitary, i.e., H∗H = I , where H∗ denotes the conjugate transposed matrix of H .

Jorgensen and Pedersen [27] proved that if (A, D, S) is a Hadamard triple,
then E�(A,S) is an infinite orthogonal system in L2(μA,D), where �(A, S) =
{∑k−1

j=0 A
∗ j s j : k ≥ 1, s j ∈ S}. Moreover, Dutkay and Jorgensen [11, 13] believed

that μA,D is always a spectral measure if (A, D) is admissible. Łaba and Wang [37]
first corroborated it on R. The situation becomes more complicated when dimension
n > 1. This problem has been considered actively under some additional assumptions
[11, 55], and it was eventually addressed by Dutkay et al. [9].

Theorem 1.6 ([9]) Suppose that (A, D) is admissible on R
n, then μA,D is a spectral

measure.

It is natural to ask whether the converse is also true, namely, if a self-affine measure
μA,D is a spectral measure, is (A, D) admissible? This question is refuted by an
example with A = 4 and D = {0, 1, 8, 9}. Fu et al. [18] show that μA,D is a spectral
measure, but (A, D) is not an admissible pair. Nevertheless, it holds inmany instances,
such as Dai, He, and Lau [6] proved that the Bernoulli convolution μρ,D , where
D = {0, 1, 2, . . . , N − 1}, is a spectral measure if and only if ρ = 1

q for some integer

q > 1 and N |q, which indicates the admissibility of (ρ−1, D). An et al. [1] proved
that the classical Sierpinski self-affine measureμA,Dc is a spectral measure if and only
if (A, Dc) is admissible, where A ∈ M2(Z) and Dc = {(0, 0)t , (1, 0)t , (0, 1)t }. These
works provide valuable insights for researchers tackling spectral problems.

For the generalized Sierpinski self-affine measure μA,D , where A ∈ M2(Z) and
the digit set D = {d1 = 0, d2, d3} ⊂ Z

2, one may write

D =
{(

0
0

)

,

(
α1
α2

)

,

(
β1
β2

)}

. (1.3)

The first and second author proved that if det(A) /∈ 3Z and α1β2 − α2β1 = 0,
then the mutually orthogonal exponential functions in L2(μA,D) are finite [3]. Last
but not least, Liu et al. [46, 47] further considered the remaining cases and gave the
necessary and sufficient conditions for μA,D to be a spectral measure. We summarize
the spectrality of generalized Sierpinski self-affine measure μA,D in Table 1.

Based on the known results mentioned above, it is not difficult to see that the
spectrality of generalized Sierpinski self-affine measures has been almost completely
solved. To the best of our knowledge, there are few literatures considering Fuglede’s
conjecture among the spectrality of self-affine measures, the corresponding self-affine
sets and their tiling properties. This is the research initial motivation of our paper. We
first show that Fuglede’s conjecture holds on generalized Sierpinski self-affine sets,
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Table 1 Spectrality of generalized Sierpinski self-affine measure μA,D

α1β2 − α2β1 det(A)

det(A) ∈ 3Z det(A) /∈ 3Z

α1β2 − α2β1 /∈ 3Z μA,D is a spectral measure if and
only if (A, D) is admissible

μA,D is a non-spectral measure

α1β2 − α2β1 ∈ 3Z \ {0} μA,D is a spectral measure if and
only if there exists a matrix
Q ∈ M2(R) such that (A′, D′) is
admissible, where A′ = QAQ−1

and D′ = QD

meanwhile, some key techniques shall be given. For the special case of the classical
Sierpinski self-affine set T(A, Dc), where Dc = {(0, 0)t , (1, 0)t , (0, 1)t }, we obtain a
characterization of tiling set. Furthermore, inspired byKolountzakis’ theorem [32], we
find that the classical Sierpinski self-affine tile T(A, Dc) is suitable for Kolountzakis’
conjecture.

2 Main Results

The main results of this paper are summarized in this section. To study Fuglede’s
conjecture on the generalized Sierpinski self-affine setT(A, D), it is natural to require
| det(A)| = #D = 3. Meanwhile, for the sake of convenience, in what follows, we
refer to the spectral measure μA,D as equivalent to saying that T(A, D) is a spectral
set.

Theorem 2.1 LetT(A, D) be the generalized Sierpinski self-affine set defined by (1.2),
where A ∈ M2(Z) with | det(A)| = 3 and D is given by (1.3). Then T(A, D) is a
spectral set if and only if it is a translational tile.

It should be noted that Theorem 2.1 completely settles Fuglede’s conjecture on
generalized Sierpinski self-affine sets. To do so, we divide the proof of Theorem 2.1
into the following two cases.

• D is non-collinear, i.e., α1β2 − α2β1 = 0.
Our main techniques are based on a similarity transformation, which states that
the tiling property of a self-affine set and its spectrality remain unchanged under
some similar transformation (see Theorem 4.2). Using this fact, we prove that the
spectrality of T(M,D) instead of T(A, D), where M and D are corresponding
matrix and digit set after a similarity transformation [for more details, please refer
to (4.1) and (4.2)]. Furthermore, we use some ingenious approaches to prove that
T(M,D) is a spectral set if and only if T(M,D) is a tile when η = 0 and η > 0
in D respectively (see Theorems 4.3 and 4.5). In particular, we point out that our
ideas and techniques are closely related to the entries in the matrix M .

• D is collinear, i.e., α1β2 − α2β1 = 0.
The key to solving this case is to give the equivalent characterization ofZ(mD) =
∅, where Z(mD) = {ξ : mD(ξ) = 1

#D

∑
d∈D e2π i〈d,ξ〉 = 0}. To be more precise,
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there exists an integer vector v ∈ Z
2 \ {0} such that D = {0, n,m}v with n,m ∈ Z

and {n,m} = {1, 2} (mod 3) (see Lemma 4.12). Moreover, the proof is also based
on the fact that the set of vectors {v, Av} is linearly independent.

Owing to the generic of the digit set D, the proof of Theorem 2.1 is not very well
dealt with. However, for the special case that D is the classical digit

Dc =
{(

0
0

)

,

(
1
0

)

,

(
0
1

)}

, (2.1)

we have the following finer results.

Theorem 2.2 Let T(A, Dc) be the classical Sierpinski self-affine set defined by (1.2),
where A ∈ M2(Z) with | det(A)| = 3 and Dc is given by (2.1). Then the following
four statements are equivalent:

(i) T(A, Dc) is a spectral set;

(ii) A =
[
a b
c d

]

satisfies a − c ≡ b − d ≡ 0 (mod 3);

(iii) Dc is a standard digit set for A;
(iv) T(A, Dc) is a translational tile.

Furthermore, if T(A, Dc) is a spectral set, then Z
2 is the unique spectrum containing

0 and it is a tiling set for T(A, Dc).

As an application, we will show that the classical Sierpinski self-affine tile T(A, Dc)

is suitable for Kolountzakis’ conjecture on the product domain.

Conjecture 2.3 (Kolountzakis’ conjecture, [32]) Let U ⊂ R
n and V ⊂ R

m be two
bounded Lebesgue measurable sets. Then � = U × V is a spectral set if and only if
U and V are both spectral sets.

It is known [28] that ifU ⊂ R
n and V ⊂ R

m are both spectral sets, then their Cartesian
product � = U × V is a spectral set in R

n × R
m . However, the “only if" part of this

conjecture is the non-trivial one. The difficulty lies in that we assume the product set
� to be spectral, but we do not make any assumption that the spectrum �� also has
a product structure, so it is not obvious which sets �U and �V may serve as spectra
for the factors U and V , respectively. To our knowledge, there are few results on this
conjecture. Greenfeld and Lev [21] proved that in the case where one of the factors,
say U , is an interval on real line, Conjecture 2.3 holds. In [32], it was established,
using a different approach, that the conjecture is also true if the set U is the union of
two intervals in R. Recently, the conjecture was proved when the factorU is a convex
polygon in R

2 [22].
Interestingly enough, if we substitute the factor U for the classical Sierpinski self-

affine tile T(A, Dc), where Dc is given by (2.1), we can obtain the following Theorem
2.4. Although it is only a class of simple examples, it provides a method to construct
a number of sets which are non-convex, satisfying the spectrality equivalent over the
product domain. In this sense, our result gives a supplement to this problem. For later
statements, we use L(�) to denote the Lebesgue measure of a subset � ⊂ R

n .
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Theorem 2.4 Let T(A, Dc) be the classical Sierpinski self-affine tile defined by (1.2),
where A ∈ M2(Z) and Dc is given by (2.1), and let V be a bounded Lebesgue
measurable set in R

n with L(V ) = 1. Then the product domain � = T(A, Dc) × V
is a spectral set if and only if T(A, Dc) and V are both spectral sets.

This paper is organized as follows. In Sect. 3, we introduce some basic definitions
and several lemmas needed to prove our main results. In Sect. 4, we are committed
to proving Theorem 2.1. As applications, in Sect. 5, we prove Theorems 2.2 and 2.4.
Finally, some further results and remarks are given in Sect. 6.

3 Preliminaries

In this section, we will introduce some standard notations and recall some basic defini-
tions related to self-affine measures. We collect some known results on the properties
of Hadamard triple that we will use in our proof, and others concerning self-affine
tiles.

Let μA,D be a self-affine measure defined by (1.1), the Fourier transform of it is
defined as usual,

μ̂A,D(ξ) =
∫

e2π i〈x,ξ〉dμA,D(x) =
∞∏

k=1

mD(A∗−k
ξ), ξ ∈ R

n, (3.1)

where A∗ denotes the transpose of A and mD(·) = 1
#D

∑
d∈D e2π i〈d,·〉 is the mask

polynomial of D. It is easy to see that mD(·) is a Z
n-periodic function if D ⊂ Z

n . Let
Z( f ) = {x : f (x) = 0} be the zero set of a function f . It follows from (3.1) that

Z(μ̂A,D) =
∞⋃

k=1

A∗k(Z(mD)). (3.2)

For any two distinct λ1, λ2 ∈ R
n , the orthogonality condition means that

0 = 〈e2π i〈λ1,x〉, e2π i〈λ2,x〉〉L2(μA,D) =
∫

e2π i〈λ1−λ2,x〉dμA,D(x) = μ̂A,D(λ1 − λ2).

It is easy to see that for a countable set � ⊂ R
n , E� = {e2π i〈λ,x〉 : λ ∈ �} is an

orthogonal family of L2(μA,D) if and only if

(� − �) \ {0} ⊂ Z(μ̂A,D). (3.3)

As the properties of spectra are invariant under a translation, one may assume 0 ∈ �,
and hence � ⊂ � − �.

For a discrete set E ⊂ R
n , let δE = 1

#E

∑
e∈E δe, where δe is the Dirac measure

at the point e. The following lemma gives an effective method to construct spectra of
discrete-type measures.
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Lemma 3.1 ([9, 37]) Let A ∈ Mn(Z) be an expanding matrix, and let D, S ⊂ Z
n be

two finite digit sets with the same cardinality. Then the following three affirmations
are equivalent:

(i) (A, D, S) is a Hadamard triple;
(ii) mD(A∗−1(s1 − s2)) = 0 for any distinct s1, s2 ∈ S;
(iii) (δA−1D, S) is a spectral pair.

The following proposition relates the Hadamard triple to the self-affine tile. It provides
an idea to prove direction of “spectral ⇒ tile" of Fuglede’s conjecture. Although it
can be found in [8], for the sake of readability, we briefly give the proof here.

Proposition 3.2 Suppose that (A, D) is admissible, then the elements of D belong
to different residual classes of Z

2/AZ
2. Moreover, if | det(A)| = #D, then D is a

standard digit set for A.

Proof Since (A, D) is admissible, it follows that there exists S ⊂ Z
n such that

(A, D, S) is a Hadamard triple. This implies that the rank of the matrix

H = 1√
#D

[
e2π i〈A−1d,s〉]

d∈D,s∈S ,

which is recorded as R(H), is equal to the cardinality of D. That is, R(H) = #D.
However, if there exist d1, d2 ∈ D such that d2 = d1 + Az for some z ∈ Z

2, then for
any s ∈ S,

e2π i〈A−1d2,s〉 = e2π i〈A−1(d1+Az),s〉 = e2π i〈A−1d1,s〉.

This means that H has two identical columns, and thus R(H) < #D, a contradiction.
So each element in D must be a distinct representative in Z

2/AZ
2. Moreover, if

| det(A)| = #D, it follows from Definition 1.4 that D is a standard digit set for A.
This ends the proof. ��

Lagarias and Wang [40] gave the following characterization on standard digit set.

Theorem 3.3 ([40]) Every integral1 self-affine tile T(A, D) coming from a standard
digit set gives a lattice tiling of R

n with some lattice T ⊂ Z
n.

In [29], Kenyon provided an effective criterion to determine whether a self-similar
set is a tile or not in dimension one. Inspired by this, Lagarias andWang [39] derived the
following equivalent conditions to verify when a self-affine set has positive Lebesgue
measure.

Theorem 3.4 ([39]) For any expanding matrix A ∈ Mn(Z) and a finite digit set D ⊂
Z
n with #D = | det(A)|, the following three conditions are equivalent:

(i) T(A, D) has positive Lebesgue measure;
(ii) For each k ≥ 1, the set

∑k−1
j=0 A

j D contains (#D)k distinct elements;

1 The “integral” means that A is an integer matrix and D is an integer digit set.
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(iii) For each s ∈ Z
n \ {0}, there exists a nonnegative integer k = k(s) such that s is

the zero of the function hk(x) = 1
#D

∑
d∈D e2π i〈A−kd,x〉.

In order to present some lemmas conveniently, in what follows we define

F :=
{

±
( 1

3
2
3

)

,±
( 1

3
1
3

)

,±
( 1

3
0

)

,±
(
0
1
3

)}

. (3.4)

The following lemma is a special case in [4, Lemma 4.1], which is useful for our
further investigations.

Lemma 3.5 ([4]) Let A ∈ M2(Z) be an expanding matrix and F be given by (3.4).
Then AF = F (mod Z

2) if and only if det(A) /∈ 3Z.

In this paper, we will mainly use the equivalence conditions in Theorem 3.4 to
investigate the tiling property of T(A, D). In fact, by (3.2) and Theorem 3.4, it is not
difficult to find that T(A, D) is a tile if and only if

Z
2 \ {0} ⊂ Z(μ̂A,D) =

∞⋃

k=1

A∗k(Z(mD)). (3.5)

Based on the zero setZ(mD) of generalized Sierpinski self-affine measure μA,D , we
first establish four preparatory lemmas.

Lemma 3.6 Let A ∈ M2(Z) be an expanding matrix with | det(A)| = 3 and F be
given by (3.4). Suppose that Aξ ∈ Z

2 for some ξ ∈ F . Then the following statements
hold.

(i)
⋃∞

j=1 A
j
(± ξ + Z

2
) = Z

2\{0}.
(ii) For any v ∈ Z

2 \ {0}, there exist unique ξ0 ∈ {±ξ}, j ∈ N and u ∈ Z
2 such that

A j (ξ0 + u) = v.

Proof (i) Firstly,
⋃∞

j=1 A
j
( ± ξ + Z

2
) ⊂ Z

2 is directly obtained due to A ∈ M2(Z)

and Aξ ∈ Z
2. Furthermore, we have 0 /∈ ⋃∞

j=1 A
j
(± ξ + Z

2
)
. Indeed, if there exist

j0 ∈ N and v0 ∈ Z
2 such that 0 = A j0(±(ξ + v0)), then we obtain ±(ξ + v0) =

A− j00 = 0, which implies ξ = −v0 ∈ Z
2. This contradicts the fact ξ /∈ Z

2, hence⋃∞
j=1 A

j
(± ξ + Z

2
) ⊂ Z

2\{0}.
Secondly, we devote to proving

⋃∞
j=1 A

j
(± ξ + Z

2
) ⊃ Z

2\{0}. Let

D1 =
{(

0
0

)

,

(
1
0

)

,

(
0
1

)}

, D2 =
{(

0
0

)

,

(
1
0

)

,

(
1
1

)}

,

D3 =
{(

0
0

)

,

(
1
0

)

,

(
2
1

)}

, D4 =
{(

0
0

)

,

(
0
1

)

,

(
1
2

)}

.

By a direct calculation, one can easily get that

Z(mD1) =
{

±
( 1

3
2
3

)

+ Z
2
}

, Z(mD2) =
{

±
( 1

3
1
3

)

+ Z
2
}

,
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Z(mD3) =
{

±
( 1

3
0

)

+ Z
2
}

, Z(mD4) =
{

±
(
0
1
3

)

+ Z
2
}

.

If there exists ξ ∈ F such that Aξ ∈ Z
2, without loss of generality, we suppose ξ =

( 13 ,
2
3 )

t . Then Lemma 3.1 implies that (A, D1) is admissible, and the elements of D1

belong to different residual classes ofZ
2/AZ

2 by Proposition 3.2. Since | det(A)| = 3,
it follows that D1 is a standard digit set for A, and then T(A, D1) is a tile by Theorem
3.3. Therefore, Theorem 3.4 [also see (3.5)] shows that

∞⋃

j=1

A jZ(mD1) =
∞⋃

j=1

A j
(

±
( 1

3
2
3

)

+ Z
2
)

⊃ Z
2 \ {0}.

Similarly, for other ξ ∈ F , one may also find a suitable digit set from D1, D2, D3 and
D4 such that it is a standard digit set for A. Hence we also have

⋃∞
j=1 A

j
(±ξ +Z

2
) =

Z
2\{0}.
(ii) Suppose, on the contrary, that there exist v ∈ Z

2 \ {0}, j1, j2 ∈ N, u1, u2 ∈ Z
2

and ξ1, ξ2 ∈ {±ξ} such that

A j1(ξ1 + u1) = v = A j2(ξ2 + u2).

If j1 = j2, without loss of generality, suppose j1 < j2, then ξ1+u1 = A j2− j1(ξ2+u2).
This is impossible since A j2− j1(ξ2 + u2) ∈ Z

2 and ξ1 + u1 ∈ F + Z
2. Thus j1 = j2

and A j1(ξ1 + u1) = v = A j1(ξ2 + u2). Note that A is a nonsingular matrix, it is easy
to deduce that ξ1 = ξ2 and u1 = u2. This completes the proof of Lemma 3.6. ��
Lemma 3.7 Let A ∈ M2(Z) be an expanding matrix with | det(A)| = 3 and F be
given by (3.4). If there exists an integer r > 1 such that Arξ ∈ Z

2 and Ar−1ξ /∈ Z
2

for some ξ ∈ F , then

∞⋃

j=r

A j (± ξ + Z
2)

� Z
2 \ {0}.

Proof Since A ∈ M2(Z) and Arξ ∈ Z
2, using the same argument as in the proof of

Lemma 3.6, we can easily carry out

∞⋃

j=r

A j (± ξ + Z
2) ⊂ Z

2 \ {0}.

Since Ar−1ξ /∈ Z
2, it follows from A ∈ M2(Z) that Aiξ ∈ F (mod Z

2) for all
1 ≤ i < r . Let Ai (±ξ) = ±ξi (mod Z

2) for 1 ≤ i < r , where ξi ∈ F . This together
with A ∈ M2(Z) implies

∞⋃

j=r

A j (± ξ + Z
2) =

∞⋃

j=1

A j A
(
Ar−2(±ξ) + Ar−2

Z
2)
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5 Page 12 of 32 M.-L. Chen et al.

⊂
∞⋃

j=1

A j A
(± ξr−2 + Z

2)

=
∞⋃

j=1

A j (A(±ξr−2) + AZ
2)

=
∞⋃

j=1

A j (± (ξr−1 + vr−1) + AZ
2), (3.6)

where vr−1 ∈ Z
2. By Arξ ∈ Z

2 and the definition of ξr−1, we can get Aξr−1 ∈ Z
2.

In view of Lemma 3.6, we obtain

∞⋃

j=1

A j (± ξr−1 + Z
2) = Z

2 \ {0}. (3.7)

Now we suppose
⋃∞

j=r A
j
( ± ξ + Z

2
) = Z

2\{0}. According to (3.6) and (3.7), one
has

Z
2 \ {0} =

∞⋃

j=r

A j (± ξ + Z
2)

⊂
∞⋃

j=1

A j (± (ξr−1 + vr−1) + AZ
2)

⊂
∞⋃

j=1

A j (± ξr−1 + Z
2) = Z

2 \ {0}. (3.8)

Since Aξr−1 ∈ Z
2, it follows from Lemma 3.6 that for any v ∈ Z

2 \ {0}, there exist
unique j ∈ N, ξ0 ∈ {±ξr−1} and u ∈ Z

2 such that A j (ξ0 + u) = v. So the above
equation holds only if AZ

2 = Z
2, which implies | det(A)| = 1. This contradicts the

assumption | det(A)| = 3. Therefore,
⋃∞

j=r A
j
(± ξ + Z

2
)

� Z
2\{0}. ��

Lemma 3.8 Let A ∈ M2(Z) be an expanding matrix with | det(A)| = 3 and ζ =(
l1

3k1γ1
, l2
3k2γ2

)t
, where li ∈ Z, ki ∈ N and γi ∈ Z \ 3Z for i = 1, 2. If A jζ ∈ Z

2 for

some j ∈ N, then γi | li for i = 1, 2.

Proof Since A jζ ∈ Z
2 for some j ∈ N, there exists a vector v ∈ Z

2 such that

A jζ = A j

( l1
3k1γ1
l2

3k2γ2

)

= v.

Thus we conclude from | det(A)| = 3 that
(

l1
3k1γ1

, l2
3k2γ2

)t = A− jv = 1
3 j A

′v for an

integer matrix A′, which implies that γi | li for i = 1, 2. ��
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Fig. 1 Logical Diagram of Proof for Theorem 2.1

Lemma 3.9 Let A ∈ M2(Z) be an expanding matrix with | det(A)| = 3 and F be
given by (3.4). Then there exists a unique ±ξ ∈ F such that A(±ξ) ∈ Z

2.

Proof We first prove the existence. Suppose otherwise, that A(ξ) /∈ Z
2 for any ξ ∈ F .

Then A ∈ M2(Z) implies that AF ⊂ F + Z
2. It follows from | det(A)| = 3 and

Lemma 3.5 that AF � F (mod Z
2). This illustrates that there exist ξ0, ξ1, ξ2 ∈ F

such that Aξ1 = ξ0 = Aξ2 (mod Z
2), and then A(ξ1 − ξ2) ∈ Z

2. This contradicts the
fact A(ξ1 − ξ2) ∈ A(F + Z

2) ⊂ F + Z
2, and hence there must exist ξ ∈ F such that

Aξ ∈ Z
2.

Next we prove the uniqueness. Suppose there exist two elements η1, η2 ∈ F with
η1 = ±η2 such that Aη1, Aη2 ∈ Z

2, then A(±(η1 +η2)), A(±(η1 −η2)) ∈ Z
2. It can

be easily verified that η1, η2, η1 − η2, η1 + η2 (mod Z
2) are four distinct elements.

Thus AF ⊂ Z
2. Combining this and (1/3, 0)t , (0, 1/3)t ∈ F , it is easy to infer that

the entries of the matrix A belong to 3Z, i.e., A ∈ M2(3Z). This gives 9 | det(A),
which contradicts the fact | det(A)| = 3. The desired result follows. ��

4 Proof of Theorem 2.1

In this section, we focus on proving Theorem 2.1. Our proof is summarized by the
diagram in Fig. 1.

4.1 Non-collinear Digit

4.1.1 Techniques

We first introduce a key technique, which plays an important role in the proof of our
main results.

Lemma 4.1 (Similarity transformation) Let A1, A2 ∈ Mn(R) be two expandingmatri-
ces, and let D1, D2 ⊂ R

n be two finite digit sets with the same cardinality. If there
exists a matrix Q ∈ Mn(R) such that A2 = QA1Q−1 and D2 = QD1, then
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(i) μA1,D1 is a spectral measure with a spectrum � if and only if μA2,D2 is a spectral
measure with a spectrum Q∗−1�.

(ii) T(A1, D1) is a tile with a tiling set T if and only if T(A2, D2) is a tile with a tiling
set QT .

Proof The conclusion (i) can be get directly from Lemma 4.1 in [10]. For (ii), since

T(A2, D2) =
∞∑

k=1

A−k
2 D2 =

∞∑

k=1

QA−k
1 Q−1QD1 = QT(A1, D1)

and

⋃

κ∈QT

(
T(A2, D2) + κ

) =
⋃

γ∈T

(
QT(A1, D1) + Qγ

) = Q
⋃

γ∈T

(
T(A1, D1) + γ

)
,

the assertion follows. ��
Lemma 4.1 tells us that the spectral and tiling properties maintain invariant

under a similarity transformation. Based on this fact, we shall always assume that
gcd(α1, α2, β1, β2) = 1. Below we will give a specific similar matrix. In particular,
it should be noticed that we have designed a similarity transformation so that we can
convert the difficulties in the proof process into some simple cases to reach the desired
result.

Let A ∈ M2(Z) with | det(A)| = 3 and D = {(0, 0)t , (α1, α2)
t , (β1, β2)

t } with
α1β2 − α2β1 = 0. We can write

A =
[
a b
c d

]

∈ M2(Z)

and α1β2−α2β1 = 3ηγ for some integers η ≥ 0 and 3 � γ . Without loss of generality,
assume gcd(α1, α2) = σ with 3 � σ (otherwise, we can choose σ = gcd(β1, β2) with
3 � σ , since gcd(α1, α2, β1, β2) = 1). Letα1 = σ t1 andα2 = σ t2 with gcd(t1, t2) = 1,
then there exist two integers p and q such that pt1 + qt2 = 1. It is easy to check that
σ = pα1 + qα2 and σ | γ . For convenience, we denote ω = pβ1 + qβ2 and
ϑ = γ /σ /∈ 3Z. Take

Q =
[

p q
−t2 t1

]

.

Note that t2α1 = t1α2 and t1β2 − t2β1 = 3ηϑ , then

M = QAQ−1 =
[

(pa + qc)t1 + (pb + qd)t2 (pb + qd)p − (pa + qc)q
(ct1 − at2)t1 + (dt1 − bt2)t2 (dt1 − bt2)p − (ct1 − at2)q

]

:=
[
ã b̃
c̃ d̃

]

(4.1)
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and

D = QD =
[

p q
−t2 t1

]{(
0
0

)

,

(
α1
α2

)

,

(
β1
β2

)}

=
{(

0
0

)

,

(
σ

0

)

,

(
ω

3ηϑ

)}

⊂ Z
2. (4.2)

For the sake of simple symbols, we also write M =
[
a b
c d

]

because it is easy to verify

that M is still expanding and | det(M)| = | det(A)| = 3. By a direct calculation, we
have

Z(mD) = Z1 ∪ Z2, (4.3)

where

Z1 =
{(

1+3k1
3σ

1
3η+1γ

(2σ − ω − 3ωk1 + 3σk2)

)

k1, k2 ∈ Z

}

and

Z2 =
{(

2+3k3
3σ

1
3η+1γ

(σ − 2ω − 3ωk3 + 3σk4)

)

k3, k4 ∈ Z

}

.

According to Lemma 4.1, our aim can be converted to considering the spectral and
tiling properties of T(M,D). So Theorem 2.1 is equivalent to say

Theorem 4.2 LetT(M,D) be defined by (1.2), where M andD are given by (4.1) and
(4.2) respectively. Then T(M,D) is a spectral set if and only if it is a translational
tile.

Notice that after a similarity transformation, the digit set D is converting to a new
one D which is in form of upper triangle, and entry 3ηϑ is closely related to powers
of the variable 3 [see (4.2)]. This observation of D leads us to decompose the proof
of Theorem 4.2 into two cases η = 0 and η > 0.

4.1.2 Case I, � = 0

Theorem 4.3 LetT(M,D) be defined by (1.2), where M andD are given by (4.1) and
(4.2) respectively. If η = 0 in D, then T(M,D) is a spectral set if and only if it is a
translational tile.

Proof Suppose T(M,D) is a translational tile. Applying Theorem 3.4, we know that
for any z ∈ Z

2\{0}, there exists an integer j ≥ 1 such that mD((M∗)− j z) = 0.
This implies Z

2\{0} ⊂ ⋃∞
j=1 M

∗ jZ(mD). As η = 0, it follows from (4.3) that
Z(mD) = Z ′

1 ∪ Z ′
2 with

Z ′
1 =

{(
1+3k1
3σ

1
3γ (2σ − ω − 3ωk1 + 3σk2)

)

k1, k2 ∈ Z

}

(4.4)
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and

Z ′
2 =

{(
2+3k3
3σ

1
3γ (σ − 2ω − 3ωk3 + 3σk4)

)

k3, k4 ∈ Z

}

. (4.5)

For any ξ ∈ Z(mD) satisfying M∗ jξ ∈ Z
2 for a positive integer j , it follows from

(4.4), (4.5) and Lemma 3.8 that ξ ∈ {(l1/3, l2/3)t : l1 ∈ Z\3Z, l2 ∈ Z}. Fur-
thermore, it can be easily checked that ±(ϑ/3, (2σ − ω)/3)t ∈ Z(mD) and any
ξ = (l1/3, l2/3)t ∈ Z(mD) satisfies ξ = ±(ϑ/3, (2σ − ω)/3)t (mod Z

2), where
ϑ = γ /σ ∈ Z \ 3Z. Hence Z

2\{0} ⊂ ⋃∞
j=1 M

∗ jZ(mD) and the Z
2-periodic of mD

implies that

Z
2 \ {0} ⊂

∞⋃

j=1

M∗ j
{

±
(

ϑ
3

2σ−ω
3

)

+ Z
2
}

.

With Lemmas 3.6 and 3.7, we conclude that M∗(ϑ/3, (2σ − ω)/3)t ∈ Z
2. Let S =

{(0, 0)t ,±M∗(ϑ/3, (2σ − ω)/3)t }. In view of Lemma 3.1, one can easily get that
(M,D, S) is a Hadamard triple. Therefore, T(M,D) is a spectral set by Theorem 1.6,
which proves the sufficiency.

Next we prove the necessity. Suppose T(M,D) is a spectral set, it follows from
Table 1 that (M,D) is admissible. Together with Proposition 3.2 and | det(M)| = 3 =
#D, it shows thatD is a standard digit set of M . Thus T(M,D) is a translational tile
by Theorem 3.3. We complete the proof. ��

4.1.3 Case II, � > 0

For Case II, we need to use a different method from Case I to complete the proof. A
key technique is to classify matrices and investigate the properties of corresponding
self-affine sets. Recall that M ∈ M2(Z) is an expanding matrix with | det(M)| = 3,
we use the residue system of modulo 3 and rewrite the matrix M in the following
form:

M = 3

[
a b

3s−1c d

]

+ Mk := M ′ + Mk, (4.6)

where s ≥ 1, a, b, d ∈ Z and c ∈ (Z \ 3Z) ∪ {0}, and the entries of the matrix Mk

belong to the set {0, 1, 2}. It is obvious that s can be any positive integer if c = 0.
Without loss of generality, in the rest of this paper, we always assume s ≥ η in this
case. As | det(M)| = 3, there are nine different classifications of matrices Mk as
follows:
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M1 =
[
p1 0
0 0

]

, M2 =
[
0 p2
0 0

]

, M3 =
[
0 0
p3 0

]

,

M4 =
[
0 0
0 p4

]

, M5 =
[
p1 0
p3 0

]

, M6 =
[
p1 p2
0 0

]

,

M7 =
[
0 0
p3 p4

]

, M8 =
[
0 p2
0 p4

]

, M9 =
[
p1 p2
p3 p4

]

,

where p1, p2, p3, p4 ∈ {1, 2} and p1 p4 − p2 p3 ∈ 3Z.
Fix k ∈ {1, 2, . . . , 9}, denote

Mk = {
M : M = M ′ + Mk

}
.

Furthermore, denote

B1 = {M : M ∈ Mk, k ∈ {1, 6}, s < η} ,

B2 = {M : M ∈ Mk, k ∈ {2, 3, 4, 5, 7, 8, 9}} ,

B3 = {M : M ∈ Mk, k ∈ {1, 2, 4, 6, 8}, s ≥ η} ,

B4 = {M : M ∈ M1, s ≥ η} .

The following theorem gives some necessary and sufficient conditions for μM,D to be
a spectral measure.

Theorem 4.4 ([47]) With the above notations, the following statements hold.

(i) μM,D is a spectral measure if and only if there exists a matrix Q ∈ M2(R) such
that (M̃, D̃) is admissible, where M̃ = QMQ−1 and D̃ = QD.

(ii) If σ − 2ω ∈ 3Z, then μM,D is a spectral measure if and only if M ∈ B1 ∪ B2.
(iii) If σ − 2ω /∈ 3Z and μM,D is a spectral measure, then M ∈ B3.

We now are in a position to present our main result in this subsection as follows.

Theorem 4.5 LetT(M,D) be defined by (1.2), where M andD are given by (4.1) and
(4.2) respectively. If η > 0 in D, then T(M,D) is a spectral set if and only if it is a
translational tile.

Before stating the proof of Theorem 4.5, we need some technical preparations.

Proposition 4.6 Let M =
[

3a 3b
3c + p 3d

]

∈ M2(Z) be an expanding matrix with

| det(M)| = 3 and p /∈ 3Z, and letD be given by (4.2). If η > 0 and σ − 2ω /∈ 3Z in
D, then T(M,D) is not a tile.

Proof In order to prove T(M,D) is not a tile, by Theorem 3.4 and (4.3), we only need
to show that

Z
2 \ {0} � Z(μ̂M,D) =

∞⋃

j=1

M∗ jZ(mD) =
∞⋃

j=1

M∗ j (Z1 ∪ Z2). (4.7)

For this purpose, we first prove the following claim.
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Claim Let λ1, λ2 ∈ Z(mD). If j1, j2 ∈ N are the least positive integers such
that M∗ j1λ1, M∗ j2λ2 ∈ Z

2, then j1 = j2 := j0 ≥ 2 and M∗ j0−1λi ∈ {±( 13 , 0)
t }

(mod Z
2) for i = 1, 2. Moreover, if λ1, λ2 ∈ Zk for k = 1 or 2, then M∗ j0−2λ1 =

M∗ j0−2λ2 ∈ F (mod Z
2).

Proof of Claim We first prove j1 = j2 := j0 ≥ 2. For any j ≥ 1, a simple calculation
gives

M∗ j =
[
3a j 3s1 j c j
3b j 3s2 j d j

]

,

where a j , b j ∈ Z, s1 j , s2 j ∈ N and c j , d j /∈ 3Z. As σ, γ, σ − 2ω /∈ 3Z, it follows

from (4.3) and Lemma 3.8 that λi =
(
li1
3 ,

li2
3η+1

)t
with li1, li2 ∈ Z\3Z, i = 1, 2.

Thus M∗ jλi ∈ Z
2 if and only if min{s1 j , s2 j } ≥ η + 1. Since j1 and j2 are the

least positive integers such that min{s1 j1, s2 j1},min{s1 j2 , s2 j2} ≥ η + 1, it follows
that j1 = j2 := j0. Moreover, using li1, li2 ∈ Z \ 3Z, one may infer that M∗λi =
[
3a 3c + p
3b 3d

]( li1
3
li2
3η+1

)

/∈ Z
2. Therefore, j0 ≥ 2.

Next, we proveM∗ j0−1λi ∈ {±( 13 , 0)
t } (mod Z

2) for i = 1, 2. In fact,M∗ j0−1λi ∈
F (mod Z

2). Suppose otherwise, that M∗ j0−1λi /∈ F + Z
2. Using M ∈ M2(Z) and

M∗ j0−1λi /∈ Z
2, we deduce M∗ j0−1λi =

(
l ′i1
3s ,

l ′i2
3s

)t
with s ≥ 2 and at least one of l ′i1

and l ′i2 belongs to Z \ 3Z. Thus M∗ j0λi ∈ Z
2 implies that

M∗ j0λi = M∗
(

l ′i1
3s
l ′i2
3s

)

= vi

for some integer vector vi ∈ Z
2. Since | det(M)| = 3, it follows that there exists

ui ∈ Z
2 such that

(
l ′i1
3s ,

l ′i2
3s

)t

= M∗−1vi = 1
3ui . This is a contradiction, and hence

M∗ j0−1λi ∈ F (mod Z
2). By a simple calculation and Lemma 3.9, one may infer

that (± 1
3 , 0)

t are the only elements of F satisfying M∗(± 1
3 , 0)

t ∈ Z
2. This means

that M∗ j0−1λi ∈ {±( 13 , 0)
t } (mod Z

2), and the assertion follows.
Finally, we prove M∗ j0−2λ1 = M∗ j0−2λ2 ∈ F (mod Z

2) if λ1, λ2 ∈ Zk for k = 1
or 2. As | det(M)| = 3, it follows b /∈ 3Z. Then for s1 /∈ 3Z and s2 ∈ Z, we have

M∗−1
( s1

3
s2

)

= 1

3

[
3d −3c − p

−3b 3a

]( s1
3
s2

)

=
( ds1−ps2

3−bs1
3

)

∈ F (mod Z
2).

Combining thiswithM∗ j0−1λi ∈ {±( 13 , 0)
t } (mod Z

2), onederivesM∗ j0−2λ1, M∗ j0−2λ2 ∈
F (mod Z

2). Observe that λi =
(
li1
3 ,

li2
3η+1

)t
with li1, li2 ∈ Z\3Z and
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M∗ j0−2 =
[
3a j0−2 3s1 j0−2c j0−2
3b j0−2 3s2 j0−2d j0−2

]

,

we conclude that min{s1 j0−2, s2 j0−2} = η. As λi =
(
li1
3 ,

li2
3η+1

)t ∈ Zk for k = 1 or

2, one has (l11, l12)t = (l21, l22)t (mod 3Z
2) and λ1 − λ2 =

(
l ′1,

l ′2
3s

)t
with s ≤ η.

Consequently,

M∗ j0−2(λ1 − λ2) = M∗ j0−2

(
l ′1
l ′2
3s

)

∈ Z
2.

This illustrates that M∗ j0−2λ1 = M∗ j0−2λ2 ∈ F (mod Z
2). ��

We now continue with the proof of Proposition 4.6. By Claim, we let ξk = F ∩
(M∗ j0−2Zk (mod Z

2)) for k = 1, 2. Then

Z
2 ∩

⎛

⎝
∞⋃

j=1

M∗ jZ(mD)

⎞

⎠ = Z
2 ∩

⎛

⎝
∞⋃

j= j0

(M∗ j Z1 ∪ M∗ j Z2)

⎞

⎠

⊂
∞⋃

i=1

M∗i M∗({ξ1, ξ2} + Z
2)

=
∞⋃

i=1

M∗i ({M∗ξ1, M∗ξ2} + M∗
Z
2). (4.8)

Similar to the proof of Lemma 3.7, onemay get
⋃∞

i=1 M
∗i ({M∗ξ1, M∗ξ2}+M∗

Z
2
)

�

Z
2\{0}. Thus (4.8) shows that (4.7) holds, and henceT(M,D) is not a tile by Theorem

3.4. ��
In order to complete the proof of Theorem 4.2 in Case II, we need to figure out

which matrices M satisfyZ(μ̂M,D) ∩ Z
2 = ∅.

Lemma 4.7 LetμM,D be defined by (1.1), where M andD are given by (4.1) and (4.2)
respectively. If η > 0 inD, then the following assertions hold.

(i) If σ − 2ω ∈ 3Z and M ∈ B4, then Z(μ̂M,D) ∩ Z
2 = ∅.

(ii) If σ − 2ω /∈ 3Z and M ∈ M5, then Z(μ̂M,D) ∩ Z
2 = ∅.

Proof The proof follows directly from the proofs of Lemma 3.2 and Proposition 4.3
in [47]. ��
Proposition 4.8 Let T(M,D) be defined by (1.2), where M andD are given by (4.1)
and (4.2) respectively. If T(M,D) is a translational tile and η > 0 in D, then the
following assertions hold.

(i) If σ − 2ω ∈ 3Z, then M ∈ B1 ∪ B2.
(ii) If σ − 2ω /∈ 3Z, then M ∈ B3.
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Proof To complete the proof of this proposition, it suffices to prove that T(M,D) is
not a tile if M ∈ B5 or M ∈ B6 ∪B7 for σ − 2ω ∈ 3Z or σ − 2ω /∈ 3Z respectively,
where

B5 = {M : M ∈ Mk, k ∈ {1, 6}, s ≥ η} ,

B6 = {M : M ∈ Mk, k ∈ {3, 5, 7, 9}} ,

B7 = {M : M ∈ Mk, k ∈ {1, 2, 4, 6, 8}, s < η} .

It is clear that B5 = {Mk}9k=1 \ (B1 ∪ B2) and B6 ∪ B7 = {Mk}9k=1 \ B3.
(i) If M ∈ B5 ∩ M1, one may deduce from Lemma 4.7 that Z(μ̂M,D) ∩ Z

2 = ∅.
In view of Theorem 3.4, T(M,D) is not a tile.

If M ∈ B5 ∩ M6, it follows from (4.6) that M =
[
3a + p1 3b + p2
3sc 3d

]

, where

s ≥ η, a, b, d ∈ Z, c ∈ (Z \ 3Z) ∪ {0} and p1, p2 ∈ {1, 2}. It is clear that there exists
τ ∈ {1, 2} such that p2 − τ p1 ∈ 3Z. Take Q1 =

[
1 τ

0 1

]

, thus one has

M1 = Q1MQ−1
1 =

[
3(3s−1τc + a) + p1 3(−3s−1cτ2 − (a − d)τ + b) + p2 − τ p1

3sc 3(d − 3s−1τc)

]

and

D1 = Q1D =
{(

0
0

)

,

(
σ

0

)

,

(
ω + 3ητϑ

3ηϑ

)}

.

Using p1 ∈ {1, 2} and p2 − τ p1 ∈ 3Z, we see that M1 ∈ B5 ∩ M1. Moreover, it
follows from σ − 2ω ∈ 3Z and η > 0 that σ − 2(ω + 3ητϑ) ∈ 3Z, thus D1 has
the same property as D. Applying Lemma 4.7 and Theorem 3.4, one may infer that
T(M,D) is not a tile.

According toB5 = {Mk}9k=1 \ (B1 ∪B2) and T(M,D) is not a tile for M ∈ B5,
we obtain M ∈ B1 ∪ B2. This proves (i).

(ii)Wefirst proveT(M,D) is not a tile forM ∈ B6 = {M : M ∈ Mk, k ∈ {3, 5, 7, 9}}.
1© If M ∈ M3, it yields from the facts η > 0, σ − 2ω /∈ 3Z and Proposition 4.6.
2© If M ∈ M5, using Lemma 4.7, we obtainZ(μ̂M,D) ∩ Z

2 = ∅. Hence Theorem
3.4 shows that T(M,D) is not a tile.

3© If M ∈ M7 ∪ M9, using (4.6), one can write M as

M =
[

a′ b′
3sc + p3 3d + p4

]

,

where s ≥ 1, a′, b′, d ∈ Z, c ∈ (Z \ 3Z) ∪ {0}, p3, p4 ∈ {1, 2} and a′ p4 − b′ p3 ∈
3Z. Then we can choose τ ∈ {1, 2} such that τ p3 + p4 ∈ 3Z. This together with
a′ p4 − b′ p3 ∈ 3Z yields that

(τa′ + b′)p3 = (τ p3 + p4)a
′ − (a′ p4 − b′ p3) ∈ 3Z. (4.9)
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Notice that p3 ∈ {1, 2}, so (4.9) implies τa′ + b′ ∈ 3Z. Take Q2 =
[
1 −τ

0 1

]

. Then

one has

M2 = Q2MQ−1
2 =

[
3scτ + a′ − τ p3 −3scτ 2 − 3dτ + τa′ + b′ − τ(τ p3 + p4)

3sc + p3 3scτ + 3d + τ p3 + p4

]

,

and

D2 = Q2D =
{(

0
0

)

,

(
σ

0

)

,

(
ω − 3ητϑ

3ηϑ

)}

.

As τ, p3 ∈ {1, 2} and τa′ + b′, τ p3 + p4 ∈ 3Z, it follows that

M2 ∈
{
M3, if a′ − τ p3 ∈ 3Z;
M5, if a′ − τ p3 /∈ 3Z.

On the other hand,we deduce fromσ −2ω /∈ 3Z and η > 0 thatσ −2(ω−3ητϑ) /∈ 3Z,
which means that D2 has the same property as D. By Theorem 3.4, Proposition 4.6
and Lemma 4.7, we infer that T(M,D) is not a tile. Therefore, T(M,D) is not a tile
for M ∈ B6.

Next, we prove T(M,D) is not a tile for M ∈ B7. If M ∈ B7, (4.6) implies that
M can be expressed as

M =
[
a′ b′
3sc d ′

]

,

where 1 ≤ s < η, a′, b′, d ′ ∈ Z, c ∈ Z \ 3Z and a′d ′ ∈ 3Z. Take Q3 =
[
1 0
0 1

3s

]

. Thus

M3 = Q3MQ−1
3 =

[
a′ 3sb′
c d ′

]

and D3 = Q3D =
{(

0
0

)

,

(
σ

0

)

,

(
ω

3η−sϑ

)}

.

Note that a′d ′ ∈ 3Z and η − s ≥ 1, one can easily see that M3 ∈ B6, andD3 has the
same property as D. According to the previous proof, we conclude that T(M,D) is
not a tile. Hence we complete the proof of Proposition 4.8. ��

Having established the above preparations, now we can prove Theorem 4.5.

Proof of Theorem 4.5 Suppose T(M,D) is a spectral set, it follows from Theorem
4.4 that there exists a matrix Q ∈ M2(R) such that (M̃, D̃) is admissible, where
M̃ = QMQ−1 and D̃ = QD. In view of Proposition 3.2, D̃ is a standard digit set for
M̃ . By Theorem 3.3 and Lemma 4.1, we conclude that T(M,D) is a translational tile.

Conversely, suppose T(M,D) is a translational tile. If σ − 2ω ∈ 3Z in D, then
Proposition 4.8 shows M ∈ B1 ∪ B2. Hence T(M,D) is a spectral set by Theorem
4.4. On the other hand, if σ − 2ω /∈ 3Z in D, using Proposition 4.8 again, one has
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M ∈ B3. According to the definition ofB3 and (4.6), we canwrite thematrixM ∈ B3
as

M =
[
a′ b′
3sc d ′

]

,

where s ≥ η, a′, b′, d ′ ∈ Z, c ∈ (Z \ 3Z) ∪ {0} and a′d ′ ∈ 3Z. Let Q4 =
[
1 0
0 1

3η

]

, we

get

M4 = Q4MQ−1
4 =

[
a′ 3ηb′

3s−ηc d ′
]

and D4 = Q4D =
{(

0
0

)

,

(
σ

0

)

,

(
ω

ϑ

)}

.

Since T(M,D) is a translational tile, we infer from Lemma 4.1 that T(M4,D4) is a
translational tile. Together with σϑ /∈ 3Z and Theorem 4.3, it gives that T(M4,D4) is
a spectral set. By Lemma 4.1 again,T(M,D) is also a spectral set. Thus the sufficiency
follows. ��

4.2 Collinear Digit

In this subsection, we investigate the remaining case where the digit set D is collinear.
That is, D = {(0, 0)t , (α1, α2)

t , (β1, β2)
t } satisfies α1β2 − α2β1 = 0. The following

is our main result.

Theorem 4.9 LetT(A, D) be the generalized Sierpinski self-affine set defined by (1.2),
where A ∈ M2(Z) with | det(A)| = 3 and D is given by (1.3). If α1β2 − α2β1 = 0 in
D, then T(A, D) is a spectral set if and only if it is a translational tile.

To complete the proof of Theorem 4.9, we first introduce the following lemma,
which has been proved by the second author and Luo [45, Lemma 3.1] and plays an
important role in the proof of direction “tile ⇒ spectral" of Fuglede’s conjecture.

Lemma 4.10 Let A ∈ Mn(Z) be an integer matrix with characteristic polynomial
f (x) = xn + a1xn−1 + · · · + an−1x + an and v = (x1, . . . , xn)t ∈ Z

n\{0}. If
{v, Av, . . . , An−1v} is a linearly independent set, then there exists an integer matrix
B such that

B−1AB =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...

−an−1 0 0 · · · 1
−an 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and B−1v = (0, . . . , 0, 1)t .

For more general collinear digit set D, Kirat and Lau [30] gave a criterion for such
a self-affine set T(A, D) to be a tile.
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Theorem 4.11 ([30]) Suppose that A ∈ Mn(Z) is an expanding matrix with
| det(A)| = q, where q ≥ 2 is a prime. Let D = {d1v, . . . , dqv} with v ∈ R

n\{0}
and di ∈ Z. Then T(A, D) is a self-affine tile if and only if {v, Av, . . . , An−1v} is a
linearly independent set and {d1, . . . , dq} = ql{d ′

1, . . . , d
′
q}, where l is a nonnegative

integer with {d ′
1, . . . , d

′
q}, is a complete set of coset representatives of Zq .

In particular, if v ∈ Z
n\{0}, then {v, Av, . . . , An−1v} is automatically a linearly

independent set. HenceT(A, D) is a self-affine tile if and only if the above {d ′
1, . . . , d

′
q}

is a complete set of coset representatives of Zq .

The following lemma is a fundamental fact by a simple calculation.

Lemma 4.12 Let D be given by (1.3). If α1β2 − α2β1 = 0, then Z(mD) = ∅ if and
only if there exists an integer vector v ∈ Z

2 \ {0} such that D = {0, n,m}v with
n,m ∈ Z and {n,m} = {1, 2} (mod 3).

Proof Since α1β2 − α2β1 = 0, we can always express D as D = {0, n,m}v, where
v ∈ Z

2 \ {0}, n,m ∈ Z and gcd(n,m) = 1. Next, we prove {n,m} = {1, 2} (mod 3).
Let v = (v1, v2)

t . According toZ(mD) = 1+e2π in(v1x1+v2x2)+e2π im(v1x1+v2x2) = 0
if and only if

{
n(v1x1 + v2x2) = 1/3 + k1,
m(v1x1 + v2x2) = 2/3 + k2,

or

{
n(v1x1 + v2x2) = 2/3 + k3,
m(v1x1 + v2x2) = 1/3 + k4,

(4.10)

where k1, k2, k3, k4 ∈ Z, it is easy to see that (4.10) holds if and only if {n,m} = {1, 2}
(mod 3). This finishes the proof. ��

With the above preparations, now we can prove Theorem 4.9.

Proof of Theorem 4.9 Suppose T(A, D) is a spectral set, then L2(μA,D) admits an
infinite orthogonal set. Together with (3.2) and (3.3), it gives Z(mD) = ∅. In view
of Lemma 4.12, we have D = {0, n,m}v, where {n,m} = {1, 2} (mod 3) and v ∈
Z
2 \ {0}. This implies that {0, n,m} is a complete set of coset representatives of Z3,

thus T(A, D) is a translational tile by Theorem 4.11. Hence the necessity follows.

Conversely, suppose T(A, D) is a translational tile and let A =
[
a b
c d

]

. By

| det(A)| = 3 and a simple calculation, we get that the characteristic polynomial
of A is f (x) = x2− (a+d)x +ad−bc, where |ad−bc| = 3. According to Theorem
3.4, it can be easily seen thatZ(mD) = ∅.With Lemma 4.12, one has D = {0, n,m}v,
where {n,m} = {1, 2} (mod 3) and v ∈ Z

2\{0}. Using Theorem 4.11, we obtain that
{v, Av} is a linearly independent set. Then by Lemma 4.10, there exists an integer
matrix C such that

Ã = C−1AC =
[

a + d 1
bc − ad 0

]

and D̃ = C−1D =
{(

0
0

)

,

(
0
n

)

,

(
0
m

)}

.

Using |ad−bc| = 3 and {n,m} = {1, 2} (mod 3), it is easy to check that±(0, 1/3)t ∈
Z(mD̃) and Ã∗(0, 1/3)t ∈ Z

2. Thus ( Ã, D̃) is admissible. In view of Theorem 1.6
and Lemma 4.1, T(A, D) is a spectral set. We complete the proof. ��
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5 A Finer Characterization and Its Application

In this section, we will give some interesting applications on Theorem 2.1. We first
restrict the digit set to the classical digit set, and in this case we obtain some more
refined results. Also for such self-affine tiles, we further prove that they are suitable
for Kolountzakis’ conjecture.

5.1 The Classical Sierpinski Self-Affine Set

LetT(A, Dc) be the classical Sierpinski self-affine set andμA,Dc be the corresponding
Sierpinski self-affine measure, where

A ∈ M2(Z), and Dc =
{(

0
0

)

,

(
1
0

)

,

(
0
1

)}

.

A known fact is that the spectrality of μA,Dc has been completely characterized by
An et al. [1]. In this subsection, we further study its tiling property and characterize
the tiling set of T(A, Dc). To achieve this goal, we need to introduce the definition of
dual lattice.

Definition 5.1 Let� be a full rank lattice in R
n , i.e.,� = QZ

n for some Q ∈ Mn(R).
The dual lattice �� of � is defined as

�� := {
ξ ∈ R

n : 〈ξ, λ〉 ∈ Z for all λ ∈ �
}
.

In [20], Fuglede proved that if � is a tile (or a spectral set) with a lattice tiling set
(or spectrum) � ⊂ R

n , then � is a spectral set (or a tile), and the dual lattice �� is
a spectrum (or a tiling set) of it. For the classical Sierpinski self-affine set T(A, Dc),
we get the following interesting result.

Theorem 5.2 Let T(A, Dc) be the classical Sierpinski self-affine set defined by (1.2),
where A ∈ M2(Z) with | det(A)| = 3 and Dc is given by (2.1). Then the following
statements are equivalent:

(i) T(A, Dc) is a spectral set;

(ii) A =
[
a b
c d

]

satisfies a − c ≡ b − d ≡ 0 (mod 3);

(iii) Dc is a standard digit set for A;
(iv) T(A, Dc) is a translational tile.

Furthermore, if T(A, Dc) is a spectral set, then Z
2 is the unique spectrum containing

0 and it is a tiling set for T(A, Dc).

Proof Note that | det(A)| = 3, then the assertions (i) ⇒ (ii), (iii) ⇒ (iv) and (iv) ⇒
(i) follow immediately from [1, Theorem 1.2], Theorems 3.3 and 2.1, respectively. It
suffices to prove (ii) ⇒ (iii).
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Suppose A =
[
a b
c d

]

satisfies a − c ≡ b − d ≡ 0 (mod 3), and let

S =
{(

0
0

)

,

( a−c
3

b−d
3

)

,

( c−a
3

d−b
3

)}

.

It is clear that S ⊂ Z
2. Since ±(1/3,−1/3)t ∈ Z(mDc) and A∗(1/3,−1/3)t =

((a − c)/3, (b − d)/3)t ∈ Z
2, it follows from S ⊂ Z

2 and Lemma 3.1 that (A, D, S)

is a Hadamard triple. Then Proposition 3.2 shows that Dc is a standard digit set for A,
which proves (ii) ⇒ (iii).

Finally, if T(A, Dc) is a spectral set, we show that Z
2 is the unique spectrum

containing 0 and it is a tiling set for T(A, Dc). By a simple calculation, we obtain

Z(mDc) =
{

±
( 1

3− 1
3

)}

+ Z
2. (5.1)

SinceT(A, Dc) is a spectral set, it follows that A =
[
a b
c d

]

satisfies a−c ≡ b−d ≡ 0

(mod 3). Then for ξ = (1/3,−1/3)t , a simple calculation gives A∗ξ ∈ Z
2. Applying

(3.2) and Lemma 3.6, one may get

Z(μ̂A,Dc ) =
∞⋃

j=1

A∗ j (Z(mDc)) =
∞⋃

j=1

A∗ j (± ξ + Z
2) = Z

2 \ {0}. (5.2)

Let � be a spectrum of μA,Dc with 0 ∈ �. From (3.3) and (5.2), we have � ⊂ Z
2. If

� = Z
2, we have a⊥�2 for any a ∈ Z

2\�. This is a contradiction, and hence Z
2 is

the unique spectrum containing 0. Moreover, μA,Dc is a spectral measure implies that
T(A, Dc) is a tile. Since Z

2 is the unique spectrum of T(A, Dc), it follows from [20]
that its dual lattice (Z2)� = Z

2 is a tiling set for T(A, Dc). We complete the proof. ��

5.2 Application to Kolountzakis’ Conjecture on Product Domain

Let � = U × V be the cartesian product of two bounded Lebesgue measurable set
U ⊂ R

n, V ⊂ R
m . We are interested in the spectral relationship among �,U and

V . In dimension 2 + m, Greenfeld and Lev [22] showed that where the factor U is a
convex polygon inR

2,� is a spectral set if and only ifU , V are all spectral sets. As an
application, in this subsection, we consider the case that one of factor is the classical
Sierpinski self-affine tile T(A, Dc), where A ∈ M2(Z) with | det(A)| = 3 and Dc is
given by (2.1). We prove

Theorem 5.3 Let T(A, Dc) be the classical Sierpinski self-affine tile, and V be a
bounded Lebesgue measurable set in R

n with L(V ) = 1. Then the product domain
� = T(A, Dc) × V is a spectral set if and only if T(A, Dc) and V are both spectral
sets.

2 The symbol “a⊥�” means < ea , eλ >= 0 for any λ ∈ �, where eξ = e2π i<ξ,·>.
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In order to prove Theorem 5.3, we begin with the notion of orthogonal packing
region.

Definition 5.4 LetW andU be two bounded Lebesgue measurable sets in R
n . We say

that W is an orthogonal packing region for U if (W − W ) ∩ Z(χ̂U ) = ∅.

In the above definition, χ̂U denotes the Fourier transform of the characteristic
function χU . For an absolutely continuous measure μ, we have the following.

Lemma 5.5 Let μ be a Borel probability measure on R
n and K ⊂ R

n be a compact
set. Suppose thatμ is absolutely continuous with respect to the Lebesgue measure and
supported on K , then Z(μ̂) = Z(χ̂K ).

Proof From the definition of Fourier transform, we have

μ̂(ξ) =
∫

e2π i〈x,ξ〉dμ(x) =
∫

K
e2π i〈x,ξ〉dx =

∫

χK (x)e2π i〈x,ξ〉dx = χ̂K (ξ).

This impliesZ(μ̂) = Z(χ̂K ), the assertion follows. ��
The following result comes from Kolountzakis [32], which provides a method for

proving in certain situations that the spectrality of a product set � = A × B yielding
the spectrality of factors A and B. On the other hand, it gives a geometrically intuitive
way to verify the spectrality.

Theorem 5.6 (Kolountzakis’ theorem, [32]) Suppose that � = U × V ⊂ R
n × R

m

hasL(U ) = L(V ) = 1, and suppose the bounded Lebesgue measurable set W ⊂ R
n

is an orthogonal packing region for U. If L(W ) = 1 and � is a spectral set, then V
is also a spectral set.

If � = T(A, Dc)×V is a spectral set in R
2+m , where T(A, Dc) is a classical Sier-

pinski self-affine set with positive Lebesgue measure and V is a bounded measurable
set in R

m with L(V ) = 1, by Theorem 5.6, we only need to find a suitable packing
region W for T(A, Dc).

Proof of Theorem 5.3 Let T(A, Dc) be the classical Sierpinski self-affine tile. Accord-
ing to Lemma 3.6, Theorem 5.2 and Lemma 5.5, one has

Z(χ̂T(A,Dc)) = Z(μ̂A,Dc ) =
∞⋃

k=1

A∗kZ(mDc) =
∞⋃

k=1

A∗k
{

±
( 1

3
2
3

)

+ Z
2
}

= Z
2 \ {0}.

Using Theorem 2.2, and by the Poisson Summation formula, we have

1 =
∑

k∈Z2

χT(A,Dc)(x + k) =
∑

m∈Z2

χ̂T(A,Dc)(m)e2π i<m,x> = χ̂T(A,Dc)(0) = L(T(A, Dc)).

Take W = (0, 1) × (0, 1), then it is easy to check that W is a packing region for
T(A, Dc) and L(W ) = 1. Therefore, we derive that V is a spectral set. At the same
time, Theorem 5.2 shows that the self-affine tileT(A, Dc) is a spectral set. This proves
the necessity. The sufficiency is a trivial result. ��
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6 Further Results and Remarks

For a given expanding matrix A, characterize all digit sets D such that T(A, D) has
positive Lebesgue measure appears to be a difficult question. If the determinant of
matrix A is prime, Lagarias and Wang [39] gave a complete characterization for this
problem under some additional conditions.

Theorem 6.1 ([39]) Let A ∈ Mn(Z) be an expanding matrix such that | det (A)| = p
is prime, and suppose that

pZ
n

� A2
Z
n . (6.1)

If D ⊂ Z
n is a digit set with #D = p, then L(T(A, D)) > 0 if and only if D is a

standard digit set.

Remark 6.2 We focus on the following two aspects.

1. Theorem 6.1 can be regarded as giving an equivalent characterization of tiles
T(A, D) under the assumption (6.1) when | det(A)| = p is a prime. It is worth
noting that the assumption (6.1) is always satisfied in dimension one by Kenyon
[29]. For the high-dimensional case, Lagarias and Wang [39] thought that the
conclusion of Theorem 6.1 may well be true without the assumption (6.1).

2. We have to say that the definition of standard digit set in Theorem 6.1 is actually
more widely. In other words, let A ∈ Mn(Z) be an expanding matrix and D ⊂ Z

n

be a digit set. Suppose that there exists an invertible matrix Q such that

T(A, D) = QT( Ã, D̃). (6.2)

D is called a standard digit for A if the pair ( Ã, D̃) given by (6.2) has D̃ being
a complete set of coset representatives of Z

n/ ÃZ
n . Coincidentally, by Theorems

4.2, 4.4 and 4.9, we can immediately obtain the following concise result, which
illustrates that for prime p = 3, the assumption (6.1) in dimension two can be
removed in the sense of this extensive definition.

Corollary 6.3 LetT(A, D) be the generalized Sierpinski self-affine set defined by (1.2),
where A ∈ M2(Z) with | det(A)| = 3 and D is given by (1.3). Then T(A, D) is a
spectral set ⇔ T(A, D) is a translational tile ⇔ D is a standard digit set for A.

Much more can be said here, we give an example below to illustrate that Theorem 6.1
still holds without the assumption (6.1).

Example 6.4 Let A =
[
1 2
1 −1

]

and Dc be given by (2.1). Theorem 2.2 tells us that the

classical Sierpinski self-affine setT(A, Dc) is a tile if and only if Dc is a standard digit

for A. However, it is clear to see that p := | det (A)| = #D = 3 and A2 =
[
3 0
0 3

]

,

which implies pZ
2 = A2

Z
2. Thus (6.1) does not hold.
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So far as we know, the majority of studies of Fuglede’s problem on higher dimen-
sion are under the assumption of convex sets. From Fig. 3, we can see that some
Sierpinski self-affine sets which generated by non-collinear digits are non-convex and
have a complex internal structure. However, the following result indicates that some
Sierpinski self-affine tiles with collinear digits have a “good" geometrical property.

Proposition 6.5 Let T(A, D) be the generalized Sierpinski self-affine set defined by
(1.2), where A ∈ M2(Z) with the characteristic polynomial f (x) = x2 ± 3 and
D = {0, 1, 2}v with v ∈ Z

2 \ {0}. Then T(A, D) is a parallelogram.

Proof By Lemmas 4.1 and 4.10, there exists an integer matrix B such that

A′ := B−1AB =
[
0 1

±3 0

]

and D′ := B−1D =
{(

0
0

)

,

(
0
1

)

,

(
0
2

)}

.

By a simple calculation, we obtain

T(A, D) =
∞∑

k=1

A−k D =
∞∑

k=1

BA′−k B−1BD′ = BT(A′, D′).

Since the image of a parallelogram under a linear transformation is also a parallel-
ogram, it is sufficient to prove that T(A′, D′) is a parallelogram. The proof will be
divided into the following two cases.

(i) If A′ =
[
0 1
3 0

]

, a simple calculation gives

A′−1 = 1

3

[
0 1
3 0

]

, A′−2 = 1

32

[
3 0
0 3

]

, A′−3 = 1

33

[
0 3
9 0

]

, A′−4 = 1

34

[
9 0
0 9

]

, · · · .

Hence, using the definition of T(A′, D′), one may get

T(A′, D′) =
⎧
⎨

⎩

∞∑

j=1

A′− j d j : d j ∈
{(

0
0

)

,

(
0
1

)

,

(
0
2

)}

for all j ∈ N

⎫
⎬

⎭

=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

∑

i∈N
si
3i

∑

j∈N
r j
3 j

⎞

⎟
⎠ : si , r j ∈ {0, 1, 2}

⎫
⎪⎬

⎪⎭
= [0, 1] × [0, 1].

(ii) If A′ =
[
0 1

−3 0

]

, we can similarly get T(A′, D′) = [−3/4, 1/4] × [−3/4, 1/4].

From the above two cases, we conclude that T(A, D) is a parallelogram. ��
The following example effectively illustrates Theorem 6.5.
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Fig. 2 T(A, D{0,1,2}) is a parallelogram

Fig. 3 The Sierpinski self-affine tiles T(A1, Dc) and T(A2, Dc)

Example 6.6 Let A =
[
1 2
1 −1

]

and D{0,1,2} =
{(

0
0

)

,

(
1
1

)

,

(
2
2

)}

. By Theorem 6.5,

we know that the corresponding self-affine set T(A, D{0,1,2}) is a parallelogram, as
shown in Fig. 2.

In the study of tiling, the periodicity, uniqueness (up to a translation) and other related
properties of tiling sets have been of interest to scholars. Theorem 6.5 gives a class of
self-affine sets generated by collinear digit sets, and we know that all parallelograms
are tiles, and the tiling sets are not unique. However, the situation is quite different if
the self-affine tile is generated by a non-collinear digit set. Even for the classical digit
set Dc, it is hard to find another tiling set for the classical Sierpinski self-affine tile
besidesZ

2. The following two examples give a vision of tiling process of two classical
Sierpinski self-affine tiles T(A, Dc).

Example 6.7 Let Dc be given by (2.1) and

A1 =
[
0 1

−3 1

]

and A2 =
[
1 2
1 −1

]

.

Figure3 presents two different classical Sierpinski self-affine tiles T(A1, Dc) and
T(A2, Dc), see the first and third picture in Fig. 3 respectively. And the second and
last picture in Fig. 3 correspond to the translation of the first and third picture via the
set {(1, 0)t , (0, 1)t , (−1, 0)t , (0,−1)t }. By observation and using Theorem 2.2, it is
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Fig. 4 T(A, Dc) and T(A, D{0,1,2})

evident that

T(A1, Dc) ⊕ Z
2 = R

2 and T(A2, Dc) ⊕ Z
2 = R

2,

and Z
2 is their unique spectrum containing 0.

Example 6.7 gives two classical Sierpinski self-affine tiles. It follows from the
spectrality of T(A, Dc) and duality criterion that for such classical Sierpinski self-
affine tiles T(A, Dc), we can take Z

2 as their tiling sets. By plotting and analyzing,
we think that the uniqueness of tiling sets is essentially related to the regularity of
self-affine tiles (“regularity" we means that one of the edges of self-affine sets is a line
segment). That is, the self-affine tiles generated by the non-collinear digit set Dc are
“irregular”. The following question is naturally raised.

Question:Whether Z
2 is the unique tiling set of the classical Sierpinski self-affine

tile T(A, Dc) up to a translation?
At the end of this paper, we give a more concrete example to exhibit the different

tiling properties between collinear and non-collinear digit sets for their corresponding
Sierpinski self-affine sets.

Example 6.8 Let A =
[
0 −1
3 1

]

, D{0,1,2} =
{(

0
0

)

,

(
1
1

)

,

(
2
2

)}

and let Dc be given by

(2.1). From Fig. 4, it is not difficult to see that two self-affine sets T(A, D{0,1,2}) and
T(A, Dc) have completely different properties. By Theorems 2.2 and 4.9, we know
that T(A, D{0,1,2}) is spectral set (or a tile) but T(A, Dc) is not.
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