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Abstract
In this paperwe prove someKollár–Enoki type injectivity theorems on compactKähler
manifolds using the Hodge theory, the Bochner–Kodaira–Nakano identity and the
analytic method provided by Fujino (Osaka J Math 49(3):833–852, 2012), Fujino and
Matsumur (Trans AmMath Soc Ser B 8(27):849–884, 2021), Matsumura (J Algebraic
Geom 27(2):305–337, 2018), Matsumura (Complex analysis and geometry, Springer,
Tokyo, 2015). We have some straightforward corollaries. In particular, we will show
that our injectivity theorem implies several Nadel type vanishing theorems on smooth
projective manifolds.
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1 Introduction

The subject of cohomology vanishing theorems for holomorphic vector bundles on
complex manifolds occupies a role of central importance in several complex variables
and algebraic geometry (cf. [9, 10, 18, 20, 22, 27]). Among various vanishing the-
orems the Kodaira vanishing theorem [26] is one of the most celebrated results in
complex geometry and his original proof is based on his theory of harmonic integrals
on compact Kähler manifolds. The injectivity theorem as one of the most important
generalizations of the Kodaira vanishing theorem plays an important role when we
study fundamental problems in higher dimensional algebraic geometry (cf. [11, 16, 19,
29, 30, 34]). Kollár obtained in [28] his famous injectivity theorem, which is one of the
most important generalizations of the Kodaira vanishing theorem for smooth complex
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projective varieties. After Kollár’s important work, Enoki recovered and generalized
Kollár’s injectivity theorem in [8] as an easy application of the theory of harmonic
integrals on compact Kähler manifolds.

Recently, Fujino andMatsumura in [13, 14, 23, 31–33, 35] have obtained a series of
important injectivity theorems on compact Kähler manifolds formulated by singular
hermitian metrics and multiplier ideal sheaves by using the transcendental method
based on the theory of harmonic integrals on complete noncompact Kähler manifolds.
As is well known, the transcendental method often provides us some very powerful
tools not only in complex geometry but also in algebraic geometry (cf. [6, 24, 37–42]).
Thus it is natural and of interest to study various vanishing theorems, injectivity theo-
rems and other related topics by using the transcendental method. For a comprehensive
and further description about this method, we recommend the reader to see the papers
[4, 5, 11, 12, 15–17, 21] and also the references therein.

In this paper, we consider some Kollár–Enoki type injectivity theorems on compact
Kählermanifolds byusing theHodge theory, theBochner–Kodaira–Nakano identity on
compactKählermanifolds and the analyticmethod provided by Fujino andMatsumura
in [13, 23, 32, 35]. Our first main result is the following Theorem 1.1 which contains
the famous Enoki injectivity theorem as a special case.

Theorem 1.1 Let L be a semi-positive holomorphic line bundle over a compact Kähler
manifold X with a smooth hermitian metric hL satisfying

√−1�hL (L) ≥ 0. If F
(resp. E) is a holomorphic line (resp. vector) bundle over X with a smooth hermitian
metric hF (resp. hE ) such that

(1)
√−1�hF (F) − a

√−1�hL (L) ≥ 0
(2)

√−1�hE (E) + (a − b)I dE ⊗ √−1�hL (L) ≥Nak 0 in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s ∈ H0(X , L) the
multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F) −→ Hq(X , K X ⊗ E ⊗ F ⊗ L),

is injective for every q ≥ 0, where K X is the canonical line bundle of X.

Although the assumptions in Theorem 1.1 may look a little bit artificial it is very
useful and has some interesting applications. For instance, by applying Theorem 1.1
we obtain the following Corollaries 1.2 and 1.3. Corollary 1.2 is just the original Enoki
injectivity theorem. Corollary 1.3 generalizes the Enoki injectivity theorem to the case
twisted by Nakano semi-positive vector bundles.

Corollary 1.2 (Enoki injectivity theorem cf. [8, 19, 23, 32]) Let L be a semi-positive
line bundle over a compact Kähler manifold X. Then for a nonzero section s ∈
H0(X , Ll) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ Lk) → Hq(X , K X ⊗ Ll+k),

is injective for any k, l ≥ 1 and q ≥ 0.
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Corollary 1.3 Let L (resp. E) be a semi-positive line bundle (resp. a Nakano semi-
positive vector bundle) over a compact Kähler manifold X. Then for a nonzero section
s ∈ H0(X , Ll) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ Lk) → Hq(X , K X ⊗ E ⊗ Ll+k),

is injective for any k, l ≥ 1 and q ≥ 0.

Motivated by the profound work obtained by Fujino and Matsumura in a series of
papers (cf. [13, 23, 32, 35]) we can generalize Theorem 1.1 to the case formulated by
singular hermitian metrics and multiplier ideal sheaves as follows.

Theorem 1.4 Let L be a semi-positive holomorphic line bundle over a compact Kähler
manifold X with a smooth hermitian metric hL satisfying

√−1�hL (L) ≥ 0. If F
(resp. E) is a holomorphic line (resp. vector) bundle over X with a singular hermitian
metric h (resp. a smooth hermitian metric hE ) such that

(1)
√−1�h(F) − a

√−1�hL (L) ≥ 0 in the sense of currents
(2)

√−1�hE (E) + (a − b)I dE ⊗ √−1�hL (L) ≥Nak 0 in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s ∈ H0(X , L) the
multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0, where I(h) is the multiplier ideal sheaf of h.

Herewe remark that Theorem 1.4 hasmany straightforward applications. For instance,
by applying Theorem 1.4 we have the following Corollaries 1.5 and 1.6. Corollary 1.5
is the main injectivity theorem in [23] and Corollary 1.6 is the Theorem 6.6 in [23].

Corollary 1.5 (Theorem A in [23]) Let L be a semi-positive holomorphic line bundle
over a compact Kähler manifold X with a smooth hermitian metric hL satisfying√−1�hL (L) ≥ 0. If F is a holomorphic line bundle over X with a singular hermitian
metric h such that

√−1�h(F)−a
√−1�hL (L) ≥ 0 in the sense of currents for some

positive constants a > 0, then for a nonzero section s ∈ H0(X , L) the multiplication
map induced by ⊗s

×s : Hq(X , K X ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0.

Corollary 1.6 (Theorem 6.6 in [23]) Let L be a semi-positive holomorphic line bundle
over a compact Kähler manifold (X , ω) equipped with a smooth hermitian metric hL

satisfying
√−1�hL (L) ≥ 0 and E a Nakano semi-positive vector bundle over X.

If F is a holomorphic line bundle over X with a singular hermitian metric h such
that

√−1�h(F) − a
√−1�hL (L) ≥ 0 for some positive constants a > 0, then for a

nonzero section s ∈ H0(X , L) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L),
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is injective for every q ≥ 0.

Moreover, by applying Theorem 1.4 we can also prove some vanishing theorems
of Nadel type on smooth projective manifolds.

Corollary 1.7 Let X be a smooth projective manifold with a Kähler form ω and E a
Nakano semi-positive vector bundle on X. Let F be a holomorphic line bundle on X
with a singular hermitian metric h such that

√−1�h(F) ≥ εω in the sense of currents
for some ε > 0. Then for every q > 0 we have

Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) = 0.

In particular we have

Corollary 1.8 (Nadel vanishing theorem due to Demailly: [3, Theorem 4.5]) Let X
be a smooth projective manifold with a Kähler form ω and F be a holomorphic line
bundle on X with a singular hermitian metric h such that

√−1�h(F) ≥ εω in the
sense of currents for some ε > 0. Then for every q > 0 we have

Hq(X , K X ⊗ F ⊗ I(h)) = 0.

This paper is organizied as follows. In Sect. 2, we recall some basic definitions
and collect several preliminary lemmas. Section3 is devoted to the proof of the main
Kollár–Enoki type injectivity theorems on compact Kähler manifolds. We will give
the proof of Theorem 1.1 at first and then generalize Theorems 1.1 to 1.4 by applying
the deep method provided by Fujino and Matsumura in [13, 23, 32, 35].

2 Preliminaries

In this section, we collect some basic definitions and results from complex analytic
and differential geometry. For details, see, for example, [4, 5].

2.1 Singular HermitianMetrics andMultiplier Ideal Sheaves

Next let us recall the definition of singular hermitian metrics and its multiplier ideal
sheaves. For the details, we recommend the reader to see [4]. Let F be a holomorphic
line bundle on a complex manifold X .

Definition 2.1 A singular hermitian metric on F is a metric hF which is given in every
trivialization θ : F |� � � × C by |ξ |hF = |θ(ξ)|e−ϕ on �, where ξ is a section of
F on � and ϕ ∈ L1

loc(�) is an arbitrary function. Here L1
loc(�) is the space of locally

integrable functions on �. We usually call ϕ the weight function of the metric with
respect to the trivialization θ . The curvature current of a singular hermitian metric hF

is defined by
√−1�hF (F) := 2

√−1∂∂ϕ, where ϕ is a weight function and ∂∂ϕ is
taken in the sense of distributions. It is easy to see that the right hand side does not
depend on the choice of trivializations (cf. [4]).
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Definition 2.2 A holomorphic line bundle F is said to be pseudo-effective if F admits
a singular hermitian metric hF with semi-positive curvature current.

The notion of multiplier ideal sheaves introduced by Nadel in [36] is very important
in the recent developments of complex geometry and algebraic geometry.

Definition 2.3 A quasi-plurisubharmonic function by definition is a function ϕ which
is locally equal to the sum of a plurisubharmonic function and of a smooth function. If
ϕ is a quasi-plurisubharmonic function on a complex manifold X , then the multiplier
ideal sheaf J (ϕ) ⊂ OX is defined by


(U ,J (ϕ)) := { f ∈ OX (U ) | | f |2e−2ϕ ∈ L1
loc(U )},

for every open set U ⊂ X . Then it is known that J (ϕ) is a coherent ideal sheaf ofOX

(see [4, (5.7) Lemma] for example).

Definition 2.4 Let F be a holomorphic line bundle over a complex manifold X and
let hF be a singular hermitian metric on F . We assume

√−1�hF (F) ≥ γ for
some smooth (1, 1)-form γ on X . We fix a smooth hermitian metric h∞ on F .
Then we can write hF = h∞e−2ψ for some ψ ∈ L1

loc(X) and ψ coincides with a
quasi-plurisubharmonic function ϕ on X almost everywhere. In this situation, we put
J (hF ) := J (ϕ). We note that J (hF ) is independent of h∞ and is thus well-defined.

2.2 Equisingular Approximations

The following Lemma 2.5 is the well-known Demailly–Peternell–Schneider equisin-
gular approximation theorem, which is frequently used in this paper. For details, see
[7, Theorem 2.3] and [32, Theorem 2.3].

Lemma 2.5 Let F be a holomorphic line bundle on a compact Kähler manifold (X , ω)

with a singular hermitian metric h with semi-positive curvature current. Then there
exists a countable family {hε}1
ε>0 of singular hermitian metrics on F with the
following properties:

(a) hε is smooth on Yε := X \ Zε, where Zε is a proper closed subvariety on X.
(b) hε′ ≤ hε′′ ≤ h holds on X when ε′ > ε′′ > 0.
(c) I(h) = I(hε) on X.
(d)

√−1�hε (F) ≥ a
√−1�hF (F) − εω on X.

2.3 L2 Spaces and L2 Estimates

Let X be a complex manifold with a positive (1, 1)-form ω and E be a holomorphic
vector bundle over X with a smooth metric h. For E-valued (p, q)-forms u and v,
the point-wise inner product 〈u, v〉h,ω can be defined, and the global inner product
〈〈u, v〉〉h,ω can also be defined by

〈〈u, v〉〉h,ω :=
∫

X
〈u, v〉h,ω dVω,
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where dVω := ωn/n! and n is the dimension of X . Recall that the Chern connection
Dh on E determined by the holomorphic structure and the hermitian metric h can
be written as Dh = D′

h + ∂̄ with the (1, 0)-connection D′
h and the (0, 1)-connection

∂̄ (the ∂̄-operator). The connections D′
h and ∂̄ can be regarded as a densely defined

closed operator on the L2-space L p,q
(2) (X , E)h,ω defined by

L p,q
(2) (X , E)h,ω := {u | u is an E-valued (p, q)-form such that ‖u‖h,ω < ∞}.

The formal adjoints D′∗
h and ∂̄∗

h agree with the Hilbert space adjoints in the sense of
Von Neumann if ω is a complete metric on X . For the L2-space L p,q

(2) (X , E)h,ω of
E-valued (p, q)-forms on X with respect to the inner product ‖ • ‖h,ω, we define the
L2 cohomology H p,q

(2) (X , E)h,ω by

H p,q
(2) (X , E)h,ω := Ker ∂̄ ∩ L p,q

(2) (X , F)h,ω

Im ∂̄ ∩ L p,q
(2) (X , F)h,ω

.

Finally, we require the following very famous Hörmander L2 estimates, which will
be used in the proof of our vanishing theorems.

Lemma 2.6 ([1, 4, 25]) Let (X , ω) be a complete Kähler manifold. Let (E, h) be an
hermitian vector bundle over X. Assume that A = [i�h(E),
ω] is positive definite
everywhere on 
p,q T ∗ X⊗E, q ≥ 1. Then for any form g ∈ L2(X ,
p,q T ∗ X⊗E) sat-
isfying ∂g = 0 and

∫
X (A−1g, g)dVω < +∞, there exists f ∈ L2(X ,
p,q−1T ∗ X ⊗

E) such that ∂ f = g and

∫
X

| f |2dVω ≤
∫

X
(A−1g, g)dVω.

3 Proof of Injectivity Theorems

Theorem 3.1 (=Theorem 1.1) Let L be a semi-positive holomorphic line bundle
over a compact Kähler manifold X with a smooth hermitian metric hL satisfying√−1�hL (L) ≥ 0. If F (resp. E) is a holomorphic line (resp. vector) bundle over X
with a smooth hermitian metric hF (resp. hE ) such that

(1)
√−1�hF (F) − a

√−1�hL (L) ≥ 0
(2)

√−1�hE (E) + (a − b)I dE ⊗ √−1�hL (L) ≥Nak 0 in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s ∈ H0(X , L) the
multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F) −→ Hq(X , K X ⊗ E ⊗ F ⊗ L),

is injective for every q ≥ 0, where K X is the canonical line bundle of X.
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Proof Let ω be a fixed Kähler metric on X and n = dim X . For simplicity, we denote
hE⊗F = hE ⊗ hF and hE⊗F⊗L = hE ⊗ hF ⊗ hL . By the Hodge theory it is enough
to show the map

× s : Hn,q(X , E ⊗ F) → Hn,q(X , E ⊗ F ⊗ L), (1)

is injective for every q ≥ 0, whereHn,q(X , E ⊗ F) is space of E ⊗ F-valued forms
u such that u is harmonic with respect to the metrics ω and hE⊗F , and the same for
Hn,q(X , E ⊗ F ⊗ G).

We will show below the map (1) is well-defined, from which the injectivity is
obvious to see. In fact, for any u ∈ Hn,q(X , E ⊗ F) we have �′′

E⊗F,hE⊗F
u = 0,

where
�′′

E⊗F,hE⊗F
= ∇′′

E⊗F∇′′∗
E⊗F,hE⊗F

+ ∇′′∗
E⊗F,hE⊗F

∇′′
E⊗F

is the complex Laplace–Beltrami operator of ∇′′
E⊗F . By the Nakano identity

‖∇′′
E⊗F u‖2ω,hE⊗F

+ ‖∇′′∗
E⊗F,hE⊗F

u‖2ω,hE⊗F

= ‖∇′∗
E⊗F u‖2ω,hE⊗F

+ 〈〈√−1�hE⊗F (E ⊗ F)
ωu, u〉〉ω,hE⊗F .

We note that �′′
E⊗F,hE⊗F

u = 0 ⇔ ∇′′
E⊗F u = ∇′′∗

E⊗F,hE⊗F
u = 0. Thus for any

u ∈ Hn,q(X , E ⊗ F) we have

0 = ‖∇′∗
E⊗F u‖2ω,hE⊗F

+ 〈〈√−1�hE⊗F (E ⊗ F)
ωu, u〉〉ω,hE⊗F . (2)

But

√−1�hE⊗F (E ⊗ F)

= √−1�hE (E) + I dE ⊗ √−1�hF (F)

≥Nak
√−1�hE (E) + I dE ⊗ a

√−1�hL (L)

= √−1�hE (E) + I dE ⊗ ((a − b)
√−1�hL (L) + b

√−1�hL (L))

= √−1�hE (E) + (a − b)I dE ⊗ √−1�hL (L) + bI dE ⊗ √−1�hL (L)

≥Nak 0

whichmeans that E ⊗F is Nakano semi-positive. It follows that the curvature operator

[√−1�hE⊗F (E ⊗ F),
ω]u = √−1�hE⊗F (E ⊗ F)
ωu

is semi-positive for any (n, q)-forms u on X . Thus we obtain

‖∇′∗
E⊗F u‖2ω,hE⊗F

= 〈〈√−1�hE⊗F (E ⊗ F)
ωu, u〉〉ω,hE⊗F = 0

by equation (2). It follows that

∇′∗
E⊗F u = 〈√−1�hE⊗F (E ⊗ F)
ωu, u〉ω,hE⊗F = 0, (3)
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where 〈•〉ω,hE⊗F means the pointwise inner product on X with respect toω and hE⊗F .
Therefore

∇′∗
E⊗F⊗L(su) = − ∗ ∇′′

E⊗F⊗L ∗ (su) = s∇′∗
E⊗F u = 0, (4)

since s is a holomorphic L-valued (0,0)-form, where ∗ is the Hodge star operator with
respect to the metric ω. By the Nakano identity again

‖∇′′
E⊗F⊗Lsu‖2ω,hE⊗F⊗L

+ ‖∇′′∗
E⊗F⊗L,hE⊗F⊗L

su‖2ω,hE⊗F⊗L

= ‖∇′∗
E⊗F⊗Lsu‖2ω,hE⊗F⊗L

+ 〈〈√−1�hE⊗F⊗L (E ⊗ F ⊗ L)
ωsu, su〉〉ω,hE⊗F⊗L .

∇′′
E⊗F⊗Lsu = 0 by the Leibnitz rule, since s is holomorphic and u is harmonic. It

follows that

‖∇′′∗
E⊗F⊗L,hE⊗F⊗L

su‖2ω,hE⊗F⊗L
= 〈〈√−1�hE⊗F⊗L (E ⊗ F ⊗ L)
ωsu, su〉〉ω,hE⊗F⊗L .

On the other hand, we compute
√−1�hE⊗F (E ⊗ F)

= √−1�hE (E) + I dE ⊗ √−1�hF (F)

≥Nak
√−1�hE (E) + I dE ⊗ a

√−1�hL (L)

= √−1�hE (E) + I dE ⊗ ((a − b)
√−1�hL (L) + b

√−1�hL (L))

= √−1�hE (E) + (a − b)I dE ⊗ √−1�hL (L) + bI dE ⊗ √−1�hL (L)

≥Nak bI dE ⊗ √−1�hL (L)

that is,

I dE ⊗ √−1�hL (L) ≤Nak
1

b

√−1�hE⊗F (E ⊗ F).

It follows that
√−1�hE⊗F⊗L (E ⊗ F ⊗ L)

= √−1�hE⊗F (E ⊗ F) + I dE ⊗ √−1�hL (L)

≤Nak (1 + 1

b
)
√−1�hE⊗F (E ⊗ F).

Therefore, by equation (3) we have

〈√−1�hE⊗F⊗L (E ⊗ F ⊗ L)
ωsu, su〉ω,hE⊗F⊗L

≤ (1 + 1

b
)〈√−1�hE⊗F (E ⊗ F)
ωsu, su〉ω,hE⊗F⊗L

= (1 + 1

b
)|s|2hL

〈√−1�hE⊗F (E ⊗ F)
ωu, u〉ω,hE⊗F

= 0
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and

‖∇′′∗
E⊗F⊗L,hE⊗F⊗L

su‖2ω,hE⊗F⊗L
= 〈〈√−1�hE⊗F⊗L (E ⊗ F ⊗ L)
ωsu, su〉〉ω,hE⊗F⊗L ≤ 0.

This means that

‖∇′′∗
E⊗F⊗L,hE⊗F⊗L

su‖2ω,hE⊗F⊗L
= 0 and ∇′′∗

E⊗F⊗L,hE⊗F⊗L
su = 0.

Recall that ∇′′
E⊗F⊗Gsu = 0. Thus we conclude that the E ⊗ F ⊗ L-valued form su is

harmonicwith respect to themetricsω and hE⊗F⊗L , that is, su ∈ Hn,q(X , E⊗F⊗L).

This means that the map (1) is well-defined. The proof is finished. ��
Corollary 3.2 (=Corollary 1.2) Let L be a semi-positive line bundle over a compact
Kähler manifold X. Then for a nonzero section s ∈ H0(X , Ll) the multiplication map
induced by ⊗s

×s : Hq(X , K X ⊗ Lk) → Hq(X , K X ⊗ Ll+k),

is injective for any k, l ≥ 1 and q ≥ 0.

Proof Let E be the trivial line bundle on X . For the semi-positive line bundle L we
set F = Lk and L ′ = Ll . Then the conditions (1) and (2) in Theorem 3.1 are easy
to check for small positive constants a > 0, b > 0 with a = b. By Theorem 3.1 we
know that for a nonzero section s ∈ H0(X , L ′) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F) −→ Hq(X , K X ⊗ E ⊗ F ⊗ L ′),

that is,
×s : Hq(X , K X ⊗ Lk) −→ Hq(X , K X ⊗ Ll+k),

is injective for every q ≥ 0. ��
Corollary 3.3 (=Corollary 1.3) Let L (resp. E) be a semi-positive line bundle (resp. a
Nakano semi-positive vector bundle) over a compact Kähler manifold X. Then for a
nonzero section s ∈ H0(X , Ll) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ Lk) → Hq(X , K X ⊗ E ⊗ Ll+k),

is injective for any k, l ≥ 1 and q ≥ 0.

Proof For a semi-positive line bundle L and a Nakano semi-positive vector bundle E
on X we let F = Lk and L ′ = Ll . Then the conditions (1) and (2) in Theorem 3.1 are
easy to check for small positive constants a > 0, b > 0 with a = b. By Theorem 3.1
we know that for a nonzero section s ∈ H0(X , L ′) the multiplication map induced by
⊗s

×s : Hq(X , K X ⊗ E ⊗ F) −→ Hq(X , K X ⊗ E ⊗ F ⊗ L ′),

that is,
×s : Hq(X , K X ⊗ E ⊗ Lk) → Hq(X , K X ⊗ E ⊗ Ll+k),

is injective for any k, l ≥ 1 and q ≥ 0. ��
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Theorem 3.4 (=Theorem 1.4) Let L be a semi-positive holomorphic line bundle
over a compact Kähler manifold X with a smooth hermitian metric hL satisfying√−1�hL (L) ≥ 0. If F (resp. E) is a holomorphic line (resp. vector) bundle over X
with a singular hermitian metric h (resp. a smooth hermitian metric hE ) such that

(1)
√−1�h(F) − a

√−1�hL (L) ≥ 0 in the sense of currents
(2)

√−1�hE (E) + (a − b)I dE ⊗ √−1�hL (L) ≥Nak 0 in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s ∈ H0(X , L) the
multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0, where I(h) is the multiplier ideal sheaf of h.

Proof We may assume q > 0 since the case q = 0 is obvious. For the proof, it is
sufficient to show that an arbitrary cohomology class η ∈ Hq(X , K X ⊗ E ⊗ F ⊗I(h))

satisfying sη = 0 ∈ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L) is actually zero. We fix
a Kähler form ω on X throughout the proof and represent the cohomology class
η ∈ Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) by a ∂-closed E ⊗ F-valued (n, q)-form u with
‖u‖hE h,ω < ∞ by using the standard De Rham–Weil isomorphism

Hq(X , K X ⊗ E ⊗ F ⊗I(h)) ∼=
Ker ∂ : Ln,q

(2) (E ⊗ F)hE h,ω → Ln,q+1
(2) (E ⊗ F)hE h,ω

Im ∂ : Ln,q−1
(2) (E ⊗ F)hE h,ω → Ln,q

(2) (E ⊗ F)hE h,ω

.

For the given singular hermitian metric h on F , by the Demailly-Peternell-Schneider
equisingular approximation theorem (Lemma 2.5), there is a countable family
{hε}1
ε>0 of singular hermitian metrics on F with the following properties:

(a) hε is smooth on Yε := X \ Zε, where Zε is a proper closed subvariety on X .
(b) hε′ ≤ hε′′ ≤ h holds on X when ε′ > ε′′ > 0.
(c) I(h) = I(hε) on X .
(d)

√−1�hε (F) ≥ a
√−1�hF (F) − εω on X .

By [13, Section 3] we can take a complete Kähler form ωε on Yε such that: ωε is a
complete Kähler form on Yε, ωε ≥ ω on Yε and ωε = √−1∂∂�ε for some bounded
function �ε on a neighborhood of every p ∈ X . We define a Kähler form ωε,δ on Yε

by

ωε,δ := ω + δωε

for ε and δ with 0 < δ � ε. The following properties are easy to check

(A) ωε,δ is a complete Kähler form on Yε = X \ Zε for every δ > 0.
(B) ωε,δ ≥ ω on Yε for every δ > 0.
(C) �+δ�ε is a bounded local potential function ofωε,δ and converges to� as δ → 0

where � is a local potential function of ω.
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In the proof of Theorem1.4,we actually consider only a countable sequence {εk}∞k=1
(resp. {δ�}∞�=1) converging to zero since we need to apply Cantor’s diagonal argument,
but we often use the notation ε (resp. δ) for simplicity. In the following, we mainly
consider the L2-space Ln,q

(2) (Yε, E ⊗ F)hE hε,ωε,δ of E ⊗ F-valued (n, q)-forms on Yε.

We denote Ln,q
(2) (E ⊗ F)ε,δ := Ln,q

(2) (Yε, E ⊗ F)hE hε,ωε,δ and ‖ • ‖ε,δ := ‖ • ‖hE hε,ωε,δ

for simplicity. The following inequality is easy to check

‖u‖ε,δ ≤ ‖u‖hE h,ωε,δ ≤ ‖u‖hE h,ω < ∞. (5)

In particular, the norm ‖u‖ε,δ is uniformly bounded with respect to ε, δ. ��
There are various formulations for L2-estimates for ∂-equations, which originated

from Hörmander’s paper [25]. The following one is suitable for our purpose.

Lemma 3.5 (cf. [2, 4.1Théorème]) Assume that B is a Stein open set in X such that
ωε,δ = √−1∂∂(�+δ�ε) on a neighborhood of B. Then, for an arbitrary α ∈ Ker ∂ ⊂
Ln,q

(2) (B\Zε, E ⊗ F)ε,δ , there exist β ∈ Ln,q−1
(2) (B\Zε, E ⊗ F)ε,δ and a positive

constant Cε,δ (independent of α) such that: (1) ∂β = α and ‖β‖2ε,δ ≤ Cε,δ‖α‖2ε,δ; (2)

limδ→0 Cε,δ is finite and is independent of ε.

Proof of Lemma 3.5 We may assume ε < 1/2. For the smooth hermitian metric Hε,δ

on E ⊗ F over B \ Zε defined by Hε,δ := hE hεe−(�+δ�ε), the curvature satisfies

√−1�Hε,δ (E ⊗ F) ≥Nak 1/2 · I dE ⊗ ωε,δ

by property (B) and
√−1�hE hε (E ⊗ F) ≥ −ε I dE ⊗ ω. The L2-norm ‖α‖Hε,δ,ωε,δ

with respect to Hε,δ and ωε,δ is finite since the function � + δ�ε is bounded and
‖α‖ε,δ is finite. Therefore, from the standard L2-method for the ∂-equation (cf. [2,
4.1Théorème]), we obtain a solution β of the ∂-equation ∂β = α with

‖β‖2Hε,δ ,ωε,δ
≤ 2

q
‖α‖2Hε,δ,ωε,δ

.

It follows that

‖β‖2ε,δ ≤ Cε,δ‖α‖2ε,δ,

where Cε,δ = 2
q
supB e−(�+δ�ε)

infB e−(�+δ�ε) . It is easy to check Cε,δ satisfies the above properties. ��
By essentially using the property (C) and Lemma 3.5 we have the followingDeRham–
Weil isomorphism from the ∂-L2 cohomology on Yε to the LCech cohomology on X
(cf. [13, Claim 1] and [32, Proposition 5.5])

Hq(X , K X ⊗ E ⊗ F ⊗ I(hε)) ∼=
Ker ∂ : Ln,q

(2) (E ⊗ F)ε,δ → Ln,q+1
(2) (E ⊗ F)ε,δ

Im ∂ : Ln,q−1
(2) (E ⊗ F)ε,δ → Ln,q

(2) (E ⊗ F)ε,δ
.
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The following orthogonal decomposition then follows

Ln,q
(2) (E ⊗ F)ε,δ = Im ∂ ⊕ Hn,q

ε,δ (E ⊗ F) ⊕ Im ∂
∗
ε,δ.

Now that the E ⊗ F-valued (n, q)-form u belongs to Ln,q
(2) (E ⊗ F)ε,δ by (5), it can

be decomposed into u = ∂wε,δ + uε,δ for some wε,δ ∈ Dom ∂ ⊂ Ln,q−1
(2) (E ⊗

F)ε,δ and uε,δ ∈ Hn,q
ε,δ (E ⊗ F). The orthogonal projection of u to Im ∂

∗
ε,δ is zero since

u is ∂-closed. We need the following Lemma 3.6 which can be proved by the same
analytic method provided by Fujino and Matsumura in [23, 32]. Here we omit the
proof for simplicity. For the details, we refer the reader to the proof of Proposition
5.7 in [23] in which the inequality (5) plays an important role. By Lemma 3.6 it is
sufficient for the proof to study the asymptotic behavior of the norm of suε,δ .

Lemma 3.6 (cf. Proposition 5.7 in [23]) The cohomology class η is zero if

lim
ε→0

lim
δ→0

‖suε,δ‖ε,δ = 0

where ‖ • ‖ε,δ := ‖ • ‖hE hεhL ,ωε,δ for an E ⊗ F ⊗ L-valued form •.

Moreover, following the proof of Proposition 5.8 in [23] and Proposition 2.8 in [29]
we have

Lemma 3.7

lim
ε→0

lim
δ→0

‖∂∗
ε,δsuε,δ‖ε,δ = 0.

Proof of Lemma 3.7 By applying the Bochner–Kodaira–Nakano identity and the den-
sity lemma to uε,δ and suε,δ (see [23, Proposition 5.8] and [29, Proposition 2.8]), we
have

0 = 〈〈√−1�hE hε (E ⊗ F)
ωε,δ uε,δ, uε,δ〉〉ε,δ + ‖D′∗
ε,δuε,δ‖2ε,δ (6)

‖∂∗
ε,δsuε,δ‖2ε,δ = 〈〈√−1�hE hεhL (E ⊗ F ⊗ L)
ωε,δ suε,δ, suε,δ〉〉ε,δ + ‖D′∗

ε,δsuε,δ‖2ε,δ
(7)

where we used the fact that uε,δ is harmonic and ∂(suε,δ) = s∂uε,δ = 0. We have

√−1�hE hε (E ⊗ F) = √−1�hE (E) + I dE ⊗ √−1�hε (F)

≥Nak
√−1�hE (E) + I dE ⊗ (a

√−1�hL (L) − εω)

= √−1�hE (E) + I dE ⊗ ((a − b)
√−1�hL (L) + b

√−1�hL (L) − εω)

≥Nak I dE ⊗ (b
√−1�hL (L) − εω),

(8)

by properties (d), (B) and the assumption (2) in Theorem 1.4. It follows that

√−1�hE hε (E ⊗ F) ≥Nak −ε I dE ⊗ ω ≥Nak −ε I dE ⊗ ωε,δ.
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So the integrand gε,δ of the first term of (6) satisfies

− εq|uε,δ|2ε,δ ≤ gε,δ := 〈√−1�hE hε (E ⊗ F)
ωε,δ uε,δ, uε,δ〉ε,δ. (9)

For the precise argument, see [32, Step 2 in the proof of Theorem 3.1]. By (6) we have

lim
ε→0

lim
δ→0

( ∫
{gε,δ≥0}

gε,δ dVωε,δ + ‖D′∗
ε,δuε,δ‖2ε,δ

)

= lim
ε→0

lim
δ→0

(
−

∫
{gε,δ≤0}

gε,δ dVωε,δ

)

≤ lim
ε→0

lim
δ→0

(
εq

∫
{gε,δ≤0}

|uε,δ|2ε,δ dVωε,δ

)

≤ lim
ε→0

lim
δ→0

(
εq‖uε,δ‖2ε,δ

)
= 0.

It follows that

lim
ε→0

lim
δ→0

∫
{gε,δ≥0}

gε,δ dVωε,δ = 0 and lim
ε→0

lim
δ→0

‖D′∗
ε,δuε,δ‖2ε,δ = 0. (10)

Therefore, by Eq. (6) we have

lim
ε→0

lim
δ→0

〈〈√−1�hE hε (E ⊗ F)
ωε,δ uε,δ, uε,δ〉〉ε,δ = 0. (11)

Thus, we obtain

0 ≤ lim
ε→0

lim
δ→0

〈〈√−1�hE hεhL (E ⊗ F ⊗ L)
ωε,δ suε,δ, suε,δ〉〉ε,δ, (12)

thanks to √−1�hE hε (E ⊗ F) ≤Nak
√−1�hE hεhL (E ⊗ F ⊗ L),

and

〈√−1�hE hε (E ⊗ F)
ωε,δ suε,δ, suε,δ〉ε,δ ≤ 〈√−1�hE hεhL (E ⊗ F ⊗ L)
ωε,δ suε,δ,

suε,δ〉ε,δ.

On the other hand, by formula (8) we have

√−1�hE hε (E ⊗ F) ≥Nak I dE ⊗ (b
√−1�hL (L) − εω) ≥Nak I dE⊗

(b
√−1�hL (L) − εωε,δ).

It follows that

〈〈√−1�hE hεhL (E ⊗ F ⊗ L)
ωε,δ suε,δ, suε,δ〉〉ε,δ
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≤(
1 + 1

b

) ∫
Yε

|s|2hL
gε,δ dVωε,δ + εq

b

∫
Yε

|s|2hL
|uε,δ|2ε,δ dVωε,δ

≤(
1 + 1

b

)
sup

X
|s|2hL

∫
{gε,δ≥0}

gε,δ dVωε,δ + εq

b
sup

X
|s|2hL

‖uε,δ‖2ε,δ

≤(
1 + 1

b

)
sup

X
|s|2hL

∫
{gε,δ≥0}

gε,δ dVωε,δ + εq

b
sup

X
|s|2hL

‖u‖2hE hε,ω

which leads to

lim
ε→0

lim
δ→0

〈〈√−1�hE hεhL (E ⊗ F ⊗ L)
ωε,δ suε,δ, suε,δ〉〉ε,δ = 0, (13)

by formulas (10) and (12). Moreover, we have

‖D′∗
ε,δsuε,δ‖2ε,δ = ‖s D′∗

ε,δuε,δ‖2ε,δ ≤ sup
X

|s|2hL
‖D′∗

ε,δuε,δ‖2ε,δ

thanks to D′∗
ε,δ = − ∗ ∂∗ where ∗ is the Hodge star operator with respect to ωε,δ . By

formula (10) it follows that

lim
ε→0

lim
δ→0

‖D′∗
ε,δsuε,δ‖2ε,δ = 0. (14)

Therefore, we obtain the conclusion by the Eqs. (7), (13) and (14). ��
Lemma 3.8 There exist E ⊗ F ⊗ L-valued (n, q − 1)-forms vε,δ on Yε such that
∂vε,δ = suε,δ and limδ→0 ‖vε,δ‖ε,δ can be bounded by a constant independent of ε.

The proof of Lemma 3.8 is completely the same as that in Proposition 5.10 in [23]
in which Lemma 3.5 is used to establish the De Rham–Weil isomorphism from the
∂-L2 cohomology on Yε to the Čech cohomology on X (cf. [13, Claim 1] and [32,
Proposition 5.5]) and the inequality (5) is essentially used to control the bound. For
the details, we refer the reader to the proof of Proposition 5.10 in [23] and here we
omit it for simplicity.

Lemma 3.9

lim
ε→0

lim
δ→0

‖suε,δ‖ε,δ = 0.

Proof of Lemma 3.9 For the solution vε,δ in Lemma 3.8, it is easy to check that

lim
ε→0

lim
δ→0

‖suε,δ‖2ε,δ = lim
ε→0

lim
δ→0

〈〈∂∗
ε,δsuε,δ, vε,δ〉〉ε,δ ≤ lim

ε→0
lim
δ→0

‖∂∗
ε,δsuε,δ‖ε,δ‖vε,δ‖ε,δ.

By Lemma 3.7 and Lemma 3.8 we conclude that the right hand side is zero.
Now we finish the proof of Theorem 3.4 by Lemma 3.6. ��
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Corollary 3.10 (=Corollary 1.5) Let L be a semi-positive holomorphic line bundle
over a compact Kähler manifold X with a smooth hermitian metric hL satisfying√−1�hL (L) ≥ 0. If F is a holomorphic line bundle over X with a singular hermitian
metric h such that

√−1�h(F)−a
√−1�hL (L) ≥ 0 in the sense of currents for some

positive constants a > 0, then for a nonzero section s ∈ H0(X , L) the multiplication
map induced by ⊗s

×s : Hq(X , K X ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0.

Proof We let E be the trivial line bundle on X . Then the conditions (1) and (2) in
Theorem 3.4 are easy to check if we take b = a. By Theorem 3.4 we know that for a
nonzero section s ∈ H0(X , L) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L),

that is,

×s : Hq(X , K X ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0, where I(h) is the multiplier ideal sheaf of h. ��

Corollary 3.11 (=Corollary 1.6) Let L be a semi-positive holomorphic line bundle
over a compact Kähler manifold (X , ω) equipped with a smooth hermitian metric hL

satisfying
√−1�hL (L) ≥ 0 and E a Nakano semi-positive vector bundle over X.

If F is a holomorphic line bundle over X with a singular hermitian metric h such
that

√−1�h(F) − a
√−1�hL (L) ≥ 0 for some positive constants a > 0, then for a

nonzero section s ∈ H0(X , L) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0.

Proof For a Nakano semi-positive vector bundle E on X the conditions (1) and (2) in
Theorem 3.4 are easy to check if we take b = a. By Theorem 3.4 we know that for a
nonzero section s ∈ H0(X , L) the multiplication map induced by ⊗s

×s : Hq(X , K X ⊗ E ⊗ F ⊗ I(h)) −→ Hq(X , K X ⊗ E ⊗ F ⊗ I(h) ⊗ L),

is injective for every q ≥ 0, where I(h) is the multiplier ideal sheaf of h. ��
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