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Abstract

In this paper we prove some Kollar—Enoki type injectivity theorems on compact Kihler
manifolds using the Hodge theory, the Bochner—Kodaira—Nakano identity and the
analytic method provided by Fujino (Osaka J Math 49(3):833-852, 2012), Fujino and
Matsumur (Trans Am Math Soc Ser B 8(27):849-884, 2021), Matsumura (J Algebraic
Geom 27(2):305-337, 2018), Matsumura (Complex analysis and geometry, Springer,
Tokyo, 2015). We have some straightforward corollaries. In particular, we will show
that our injectivity theorem implies several Nadel type vanishing theorems on smooth
projective manifolds.
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1 Introduction

The subject of cohomology vanishing theorems for holomorphic vector bundles on
complex manifolds occupies a role of central importance in several complex variables
and algebraic geometry (cf. [9, 10, 18, 20, 22, 27]). Among various vanishing the-
orems the Kodaira vanishing theorem [26] is one of the most celebrated results in
complex geometry and his original proof is based on his theory of harmonic integrals
on compact Kdhler manifolds. The injectivity theorem as one of the most important
generalizations of the Kodaira vanishing theorem plays an important role when we
study fundamental problems in higher dimensional algebraic geometry (cf. [11, 16, 19,
29, 30, 34]). Kollar obtained in [28] his famous injectivity theorem, which is one of the
most important generalizations of the Kodaira vanishing theorem for smooth complex
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projective varieties. After Kollar’s important work, Enoki recovered and generalized
Kollar’s injectivity theorem in [8] as an easy application of the theory of harmonic
integrals on compact Kihler manifolds.

Recently, Fujino and Matsumura in [13, 14, 23, 31-33, 35] have obtained a series of
important injectivity theorems on compact Kéhler manifolds formulated by singular
hermitian metrics and multiplier ideal sheaves by using the transcendental method
based on the theory of harmonic integrals on complete noncompact Kihler manifolds.
As is well known, the transcendental method often provides us some very powerful
tools not only in complex geometry but also in algebraic geometry (cf. [6, 24, 37-42]).
Thus it is natural and of interest to study various vanishing theorems, injectivity theo-
rems and other related topics by using the transcendental method. For a comprehensive
and further description about this method, we recommend the reader to see the papers
[4,5, 11,12, 15-17, 21] and also the references therein.

In this paper, we consider some Kolldr—Enoki type injectivity theorems on compact
Kéhler manifolds by using the Hodge theory, the Bochner—Kodaira—Nakano identity on
compact Kéhler manifolds and the analytic method provided by Fujino and Matsumura
in [13, 23, 32, 35]. Our first main result is the following Theorem 1.1 which contains
the famous Enoki injectivity theorem as a special case.

Theorem 1.1 Let L be a semi-positive holomorphic line bundle over a compact Kdiihler
manifold X with a smooth hermitian metric hy satisfying \/__1®hL (LY = 0. IfF
(resp. E) is a holomorphic line (resp. vector) bundle over X with a smooth hermitian
metric hp (resp. hg) such that

(1) V=103, (F) — ay/=103, (L) = 0
(2) V=10, (E)+ (a —b)ldg ® /=10y, (L) >nak O in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s € H*(X, L) the
multiplication map induced by Qs

xs: HIX,Kx®E®F) —> HI (X, Ky REQ F®L),

is injective for every g > 0, where Kx is the canonical line bundle of X.

Although the assumptions in Theorem 1.1 may look a little bit artificial it is very
useful and has some interesting applications. For instance, by applying Theorem 1.1
we obtain the following Corollaries 1.2 and 1.3. Corollary 1.2 is just the original Enoki
injectivity theorem. Corollary 1.3 generalizes the Enoki injectivity theorem to the case
twisted by Nakano semi-positive vector bundles.

Corollary 1.2 (Enoki injectivity theorem cf. [8, 19, 23, 32]) Let L be a semi-positive
line bundle over a compact Kdhler manifold X. Then for a nonzero section s €
HO(X, L") the multiplication map induced by ®s

xs: H1(X,Kx ® L") > HY(X, Kx ® L't),

is injective for any k,l > 1 and g > O.
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Corollary 1.3 Let L (resp. E) be a semi-positive line bundle (resp. a Nakano semi-
positive vector bundle) over a compact Kdhler manifold X. Then for a nonzero section
s € HY(X, L") the multiplication map induced by ®s

xs: HI(X,Kx ® EQ L¥) > HI(X,Kx ® E ® L'th),

is injective for any k,l > 1 and g > 0.

Motivated by the profound work obtained by Fujino and Matsumura in a series of
papers (cf. [13, 23, 32, 35]) we can generalize Theorem 1.1 to the case formulated by
singular hermitian metrics and multiplier ideal sheaves as follows.

Theorem 1.4 Let L be a semi-positive holomorphic line bundle over a compact Kdhler
manifold X with a smooth hermitian metric hy, satisfying /=10y, (L) > 0. If F
(resp. E) is a holomorphic line (resp. vector) bundle over X with a singular hermitian
metric h (resp. a smooth hermitian metric hg) such that

(1) V—=10,(F) —a~/—10y, (L) > 0 in the sense of currents
(2) V=10, (E)+ (a —b)ldg ® /=10, (L) >Nak O in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s € H 0(X , L) the
multiplication map induced by Qs

xs HIX,Kx ®REQF®I(h) - HI(X,Kx®E® F®I(h) ® L),

is injective for every g > 0, where Z(h) is the multiplier ideal sheaf of h.

Here we remark that Theorem 1.4 has many straightforward applications. For instance,
by applying Theorem 1.4 we have the following Corollaries 1.5 and 1.6. Corollary 1.5
is the main injectivity theorem in [23] and Corollary 1.6 is the Theorem 6.6 in [23].

Corollary 1.5 (Theorem A in [23]) Let L be a semi-positive holomorphic line bundle
over a compact Kdihler manifold X with a smooth hermitian metric hy, satisfying
\/__1®hL (L) = 0. If F is a holomorphic line bundle over X with a singular hermitian
metric h such that /—10, (F) — a\/—_lG)hL (L) > O in the sense of currents for some
positive constants a > 0, then for a nonzero section s € H*(X, L) the multiplication
map induced by Qs

xs:HI(X,Kx ® F®Z(h)) - HI(X,Kx ® F®RZ(h)® L),

is injective for every q > 0.

Corollary 1.6 (Theorem 6.6 in [23]) Let L be a semi-positive holomorphic line bundle
over a compact Kdhler manifold (X, w) equipped with a smooth hermitian metric hp,
satisfying =10, (L) = 0 and E a Nakano semi-positive vector bundle over X.
If F is a holomorphic line bundle over X with a singular hermitian metric h such
that /—10},(F) — a\/—_1®hL (L) = 0 for some positive constants a > 0, then for a
nonzero section s € H(X, L) the multiplication map induced by ®s

xs  HIX,Kx@EQFQ®Z(h) - HI(X,Kx EQ F®I(h)®L),
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is injective for every q > 0.

Moreover, by applying Theorem 1.4 we can also prove some vanishing theorems
of Nadel type on smooth projective manifolds.

Corollary 1.7 Let X be a smooth projective manifold with a Kdhler form w and E a
Nakano semi-positive vector bundle on X. Let F be a holomorphic line bundle on X
with a singular hermitian metric h such that =10, (F) > ew inthe sense of currents
for some ¢ > 0. Then for every g > 0 we have

HI(X,Kx ® E® F @ Z(h)) =0.

In particular we have

Corollary 1.8 (Nadel vanishing theorem due to Demailly: [3, Theorem 4.5]) Let X
be a smooth projective manifold with a Kdhler form w and F be a holomorphic line
bundle on X with a singular hermitian metric h such that V—=10,(F) > ew in the
sense of currents for some ¢ > 0. Then for every q > 0 we have

HY(X,Kx ® F®ZI(h)) =0.

This paper is organizied as follows. In Sect.2, we recall some basic definitions
and collect several preliminary lemmas. Section 3 is devoted to the proof of the main
Kollar-Enoki type injectivity theorems on compact Kihler manifolds. We will give
the proof of Theorem 1.1 at first and then generalize Theorems 1.1 to 1.4 by applying
the deep method provided by Fujino and Matsumura in [13, 23, 32, 35].

2 Preliminaries

In this section, we collect some basic definitions and results from complex analytic
and differential geometry. For details, see, for example, [4, 5].

2.1 Singular Hermitian Metrics and Multiplier Ideal Sheaves

Next let us recall the definition of singular hermitian metrics and its multiplier ideal
sheaves. For the details, we recommend the reader to see [4]. Let F' be a holomorphic
line bundle on a complex manifold X.

Definition 2.1 A singular hermitian metric on F is a metric 4y which is given in every
trivialization 6 : Flg ~ Q x C by [£],, = |0(§)]e”? on @, where £ is a section of
FonQandg € Llloc(Q) is an arbitrary function. Here LllOC (£2) is the space of locally
integrable functions on 2. We usually call ¢ the weight function of the metric with
respect to the trivialization 6. The curvature current of a singular hermitian metric 4 r
is defined by /=10y, (F) := 2/—133¢, where ¢ is a weight function and 39¢ is
taken in the sense of distributions. It is easy to see that the right hand side does not
depend on the choice of trivializations (cf. [4]).
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Definition 2.2 A holomorphic line bundle F is said to be pseudo-effective if F' admits
a singular hermitian metric s r with semi-positive curvature current.

The notion of multiplier ideal sheaves introduced by Nadel in [36] is very important
in the recent developments of complex geometry and algebraic geometry.

Definition 2.3 A quasi-plurisubharmonic function by definition is a function ¢ which
is locally equal to the sum of a plurisubharmonic function and of a smooth function. If
¢ is a quasi-plurisubharmonic function on a complex manifold X, then the multiplier
ideal sheaf 7 (¢) C Oy is defined by

WU, J @) = {f € Ox(U)|IfPe™% € Li . (U)},

for every open set U C X. Then it is known that 7 (¢) is a coherent ideal sheaf of Ox
(see [4, (5.7) Lemma] for example).

Definition 2.4 Let F be a holomorphic line bundle over a complex manifold X and
let hr be a singular hermitian metric on F. We assume =16, F(F) > vy for
some smooth (1, 1)-form y on X. We fix a smooth hermitian metric ho, on F.
Then we can write hr = hooe 2V for some ¥ € Llloc(X ) and v coincides with a
quasi-plurisubharmonic function ¢ on X almost everywhere. In this situation, we put

J(hF) := J(p). We note that 7 (h ) is independent of &, and is thus well-defined.

2.2 Equisingular Approximations

The following Lemma 2.5 is the well-known Demailly—Peternell-Schneider equisin-
gular approximation theorem, which is frequently used in this paper. For details, see
[7, Theorem 2.3] and [32, Theorem 2.3].

Lemma 2.5 Let F be a holomorphic line bundle on a compact Kdihler manifold (X, w)
with a singular hermitian metric h with semi-positive curvature current. Then there
exists a countable family {hy}1se>0 of singular hermitian metrics on F with the
following properties:

(a) hg is smoothon Y, :== X \ Zg, where Z is a proper closed subvariety on X.
(b) he < hgr < h holds on X when &' > ¢ > 0.

(c) Z(h) =Z(h)on X.

(d) \/—_1®hS(F) > a«/—_IGhF(F) —ewon X.

2.3 L2 Spaces and L? Estimates
Let X be a complex manifold with a positive (1, 1)-form w and E be a holomorphic
vector bundle over X with a smooth metric 4. For E-valued (p, g¢)-forms u and v,

the point-wise inner product (u, v) , can be defined, and the global inner product
{u, v}y, can also be defined by

(u, v))h,a) = / (u, v)h,w dV,,
X
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where dV,, := " /n! and n is the dimension of X. Recall that the Chern connection
Dy, on E determined by the holomorphic structure and the hermitian metric /4 can
be written as Dy, = D,’l + 9 with the (1, 0)-connection D;Z and the (0, 1)-connection
d (the d-operator). The connections D} and d can be regarded as a densely defined

closed operator on the L2-space sz’)q (X, E)n, o defined by

sz’)q(X, E)p.o :={u | uis an E-valued (p, g)-form such that ||u||; , < 00}.

The formal adjoints D;* and 5; agree with the Hilbert space adjoints in the sense of
Von Neumann if w is a complete metric on X. For the Lz-space sz’)q (X, E)p,o of
E-valued (p, g)-forms on X with respect to the inner product || e |5 ., we define the
L? cohomology H(’;’)q (X, E)n.w by

Kerd N LI (X, F),
s 2 k] N
HE! (X, E)pw = 2

ImadnN LIX, F)hw '

Finally, we require the following very famous Hormander L? estimates, which will
be used in the proof of our vanishing theorems.

Lemma 2.6 ([, 4, 25]) Let (X, w) be a complete Kihler manifold. Let (E, h) be an
hermitian vector bundle over X. Assume that A = [i®y(E), Ay] is positive definite
everywhereon AP1T*XQE, g > 1. Thenforanyformg € L>(X, AP4T*XQ®E) sat-
isfying g = 0 and fX(A’lg, g)dV,, < +oo, there exists f € L>(X, AP971T*X ®
E) such thatd f = g and

f 1 PdVe, sf(A—lg,gmvw.
X X

3 Proof of Injectivity Theorems

Theorem 3.1 (=Theorem 1.1) Let L be a semi-positive holomorphic line bundle
over a compact Kdihler manifold X with a smooth hermitian metric hy, satisfying
\/__1®hL (L) = 0. If F (resp. E) is a holomorphic line (resp. vector) bundle over X
with a smooth hermitian metric hp (resp. hg) such that

(1) V=10, (F)—av—10,(L) >0
(2) V=10, (E)+ (a —b)Idg ® /=10y, (L) >nNak O in the sense of Nakano

for some positive constants a,b > 0, then for a nonzero section s € H*(X, L) the
multiplication map induced by Qs

xs:HIX,Kx®EQ®F) - HI(X, Ky REQ F® L),

is injective for every g > 0, where Kx is the canonical line bundle of X.
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Proof Let w be a fixed Kihler metric on X and n = dim X. For simplicity, we denote
hegr =hg @ hr and hggrer = he @ hr ® hr. By the Hodge theory it is enough
to show the map

xs H"Y(X,EQF)—> H"{(X,EQFQ®L), (D

is injective for every ¢ > 0, where H"9 (X, E ® F) is space of E ® F-valued forms
u such that u# is harmonic with respect to the metrics w and hggr, and the same for
HY"(X,EQ®F ® G).

We will show below the map (1) is well-defined, from which the injectivity is

ot;lvious to see. In fact, for any u € H"49(X, E ® F) we have A%®F’hE®Fu =0,
where

1 _ 1 1% 1% 1
AkgFhpor = VEQF VE®F hpgr T YEQF hpor Y EQF

is the complex Laplace—Beltrami operator of Vg® - By the Nakano identity

2 ” 2
||V%®F””w,h[5®p + ”VE%F,hE@pu”w‘hE@F
= |Vigrul? + (V=18 (E @ F)Ait, ))io hpor-

o,hEgF

We note that A%@F,hg@pu =0 & Vigpu = ng@F’hau = 0. Thus for any
ue H"1(X, EQ® F) we have

0= [Vigrul? ppor + UV 1Ohr (E @ F)Autt, ) ggr-  (2)
But
N =100 (EQ F)

= V=10, (E) + Idg ® V=10, (F)

>Nak V=10, (E) + Idp ® av/—10y, (L)

= V=10, (E) + 1dg ® ((a — b)v/—10y, (L) + bv/—10y, (L))

= V=104, (E) + (a — b)Idg @ V=104, (L) + bldg ® V=10, (L)
>Nak 0

which means that £ ® F is Nakano semi-positive. It follows that the curvature operator
(V=10pper (E® F), Aplu = V=10, . (E ® F)Apu
is semi-positive for any (n, g)-forms u on X. Thus we obtain

Vi rtls hper = ((V=1Ohpg, (E ® F)Agit, ) hyep =0
by equation (2). It follows that
Vigrt = (V=10 (E ® F)Auit, W) o hper =0, (3)
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where (®) 4 1, means the pointwise inner product on X with respect to w and hggF.
Therefore
V¥ EoreL(su) = —* Vigrer * (su) = sVigpu =0, )

since s is a holomorphic L-valued (0,0)-form, where = is the Hodge star operator with
respect to the metric w. By the Nakano identity again

1 2 % 2
”VE@F@LSMH(thE@F@L + ”VE®F®Lth®F®Lsu||wshE®F®L
2 /
= ||VE®F®Lsullw,hE®p®L + ((V=1Onpgpe (E® F @ LYAwSt, SU))w hpgrer -

Vg® rers4 = 0 by the Leibnitz rule, since s is holomorphic and u is harmonic. It
follows that

||vE%F®L,hE®F®LS”||2 = ((V=1Op,4,0. (E® F ® L)AuSut, SU)) o hporer -

w,hEQFRL
On the other hand, we compute

V=180, (E® F)

= V=10, (E) + 1dg @ V=10, (F)

>Nak N =10, (E) + Idg ® av/—10y, (L)

= V=103, (E) + Idg ® ((a — b)v/=10y, (L) + b/—16,, (L))

= N—10,,(E) + (a — b)Idg ® V=10, (L) + bldg ® V—10y, (L)
>Nak bldg @ /=10y, (L)

that is,
1
ldg @ V=10, (L) <nak Ev_l(")hE@p(E ® F).

It follows that

V=1Ohpgpe (E® F®L)
= V=10, (E® F) + 1dp ® V=104, (L)

1
=Nak (1 + E) \ _1®hE®F(E ® F)
Therefore, by equation (3) we have

(V=1Oh,0p01 (E®F @ LYAwsut, SU) o hporer

| Gp—
= (1 + E)( _1®/’LE®F(E ® F)Aa)suv su)w,h;;@p@L

1
= (Lt Il (V=100 (E ® F) Aot U oy
=0
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and
"y 2 —
”VE®F®L,/’IE®F®LSM”w,hE®F®L = <( _1®hE®F®L (E ® F ® L)Awsu’ Su>>wth®F®L = 0.

This means that

//* 2 _ //* _
”vE®F®L,hE®F®LSM”w,hE@)F@L =0 and VE®F®LJIE®F®LSM =0.

Recall that Vg® FeoGSU = 0. Thus we conclude that the E ® F ® L-valued form su is
harmonic with respect to the metrics w and h g Feo L, thatis, su € H"9(X, EQ FQL).
This means that the map (1) is well-defined. The proof is finished. O

Corollary 3.2 (=Corollary 1.2) Let L be a semi-positive line bundle over a compact
Kéihler manifold X. Then for a nonzero sections € H(X, L") the multiplication map
induced by ®s

xs: HI(X,Kx ® L") - HI(X, Kx ® L',

is injective for any k,1 > 1 and g > 0.

Proof Let E be the trivial line bundle on X. For the semi-positive line bundle L we
set F = L¥ and L’ = L'. Then the conditions (1) and (2) in Theorem 3.1 are easy
to check for small positive constants a > 0,5 > 0 with a = b. By Theorem 3.1 we
know that for a nonzero section s € H%(X, L’) the multiplication map induced by ®s

xs : HI(X,KxQEQ®F) - HI(X,KxQEQFQ®L),
that is,
xs: H1(X,Kx ® L*) > HY(X, Kx ® L'*t%),
is injective for every g > 0. O

Corollary 3.3 (=Corollary 1.3) Let L (resp. E) be a semi-positive line bundle (resp. a
Nakano semi-positive vector bundle) over a compact Kdhler manifold X. Then for a
nonzero section s € HO(X, L) the multiplication map induced by ®s

xs: HI(X,Kx ® EQ L¥) > HI(X,Kx ® E ® L'th),

is injective for any k,1 > 1 and g > 0.

Proof For a semi-positive line bundle L and a Nakano semi-positive vector bundle E
on X welet F = LFand L’ = L!. Then the conditions (1) and (2) in Theorem 3.1 are
easy to check for small positive constants a > 0, b > 0 with a = b. By Theorem 3.1
we know that for a nonzero section s € H°(X, L) the multiplication map induced by
Qs

xs : HIX,Kx@EQ®F) > HI(X,KxEQ F®L),

that is,
xs HIX,Kx @ E® LY) > HY1(X,Kx ® E® Lt%),

is injective for any k,/ > 1 and ¢ > 0. O
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Theorem 3.4 (=Theorem 1.4) Let L be a semi-positive holomorphic line bundle
over a compact Kdihler manifold X with a smooth hermitian metric hy, satisfying
\/__1®hL (L) = 0. If F (resp. E) is a holomorphic line (resp. vector) bundle over X
with a singular hermitian metric h (resp. a smooth hermitian metric hg) such that

(1) v/=10,(F) —a~/—10y, (L) > 0 in the sense of currents
(2) V=10, (E)+ (a —b)Idg @ /=10, (L) =nNak O in the sense of Nakano

for some positive constants a, b > 0, then for a nonzero section s € H*(X, L) the
multiplication map induced by Qs

xs : HI(X,Kx Q@ EQF®ZI(h) > HI(X,KxQREQFQRZ(h)®L),

is injective for every g > 0, where L (h) is the multiplier ideal sheaf of h.

Proof We may assume g > 0 since the case ¢ = 0 is obvious. For the proof, it is
sufficient to show that an arbitrary cohomology class n € HY(X, Kx Q EQ F @ Z(h))
satisfying sn = 0 € HI(X,Kx ® E® F ® Z(h) ® L) is actually zero. We fix
a Kihler form w on X throughout the proof and represent the cohomology class
ne HI(X,Kx  EQ F ®Z(h))bya d-closed E ® F-valued (n, ¢)-form u with
leellhgh,0 < 00 by using the standard De Rham—Weil isomorphism

5 , ,q+1
Kerd : LY (E ® F)pho = Lzl (E® Fligho

— s _1 N .
Imd: LG (E® Fliphw = L3 (E® Figho

HY(X,KxQEQFQI(h)) =

For the given singular hermitian metric 4 on F, by the Demailly-Peternell-Schneider
equisingular approximation theorem (Lemma 2.5), there is a countable family
{hs}1>6>0 of singular hermitian metrics on F' with the following properties:

(a) heis smooth on Y, := X \ Z,, where Z, is a proper closed subvariety on X.

(b) hyy < her < hholds on X when ¢’ > &” > 0.

(¢) Z(h) =Z(he)on X.

(d) V=10, (F) > a/—10,,,(F) —ewon X.

By [13, Section 3] we can take a complete Kéhler form w; on Y, such that: w; is a
complete Kihler form on Y, w; > w on Y, and w, = ~/—139W, for some bounded

function W, on a neighborhood of every p € X. We define a Kihler form w, s on Y,
by

We 5 =+ dwg

for ¢ and § with 0 < § < ¢. The following properties are easy to check

(A) wg, s is a complete Kéhler form on Y, = X \ Z, for every § > 0.

(B) wes > wonY, forevery 6 > 0.

(C) W46V, is abounded local potential function of w, 5 and convergesto W asé — 0
where W is a local potential function of w.
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In the proof of Theorem 1.4, we actually consider only a countable sequence {& }2 ;
(resp. {8¢}72 ;) converging to zero since we need to apply Cantor’s diagonal argument,
but we often use the notation ¢ (resp. §) for simplicity. In the following, we mainly
consider the L2-space L?z’;l(Ys, EQ® Fngh,w.s of E® F-valued (n, g)-forms on Y,.

We denote L5 (E ® Fes i= L3) (Ye, E® F)ighep and || @ lle5 := | ® lhghe 005

for simplicity. The following inequality is easy to check
lulle,s < llullngh,oes < Nullngh,ew < 00 &)

In particular, the norm [|u||¢ s is uniformly bounded with respect to ¢, §. ]

There are various formulations for L?-estimates for 3-equations, which originated
from Hormander’s paper [25]. The following one is suitable for our purpose.

Lemma 3.5 (cf. [2, 4.1 Théoreme]) Assume that B is a Stein open set in X such that
a)g s = /—133(Y+8W,) on aneighborhood of B. Then, for an arbitrary o € Kerd C

(2) (B\Zs, E ® F). s, there exist B € L’ZZ;FI(B\ZS, E ® F).s5 and a positive
constant Cy 5 (independent of ) such that: (1) 3B = o and ||,8||5 s <Ces ||a||8 5 (2)

lims_.¢o C¢ s is finite and is independent of ¢.

Proof of Lemma 3.5 We may assume ¢ < 1/2. For the smooth hermitian metric H, s
on E® F over B\ Z; defined by H, 5 := hphee~Y18%) the curvature satisfies

N=10h, (EQ®F) >nak 1/2- 1dg ® we,s

by property (B) and /=10, (E ® F) > —eldg ® w. The L*>-norm ||| 7, 5, 5
with respect to H, 5 and w, ;s is finite since the function W 4 §W, is bounded and
l|le.s is finite. Therefore, from the standard L2-method for the d-equation (cf. [2,
4.1 Théoreme]), we obtain a solution f of the d-equation 3 = « with

||,3||H“; wes = q ”a”H PO
It follows that

2 2
1BIZs < Ceslllly s

2 supy e~ (VHOVe)

7 nfp o THT - It is easy to check C; s satisfies the above properties. O

where C; 5 =
By essentially using the property (C) and Lemma 3.5 we have the following De Rham—
Weil isomorphism from the 3-L? cohomology on Y to the Eech cohomology on X
(cf. [13, Claim 1] and [32, Proposition 5.5])

Kerd: L/ (E® F)es — LT (E® F)es

- .
Ima : LE’Z? (E® F)es — L(z) (E® F)e.s

HYX,Kx @ E® F @ I(he)) =
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The following orthogonal decomposition then follows
LENE® F)es =Imd @ H,{(E® F) ©Imd, ;.

Now that the E ® F-valued (n, ¢)-form u belongs to L?z’;’(E ® F)e.s by (5), it can
be decomposed into u = dw, s + u s for some wys € Domd C LE’z’i’_l(E ®
F)esandug s € HZ? (E ® F). The orthogonal projection of u to Im 5: 5 18 zero since

u is d-closed. We need the following Lemma 3.6 which can be proved by the same
analytic method provided by Fujino and Matsumura in [23, 32]. Here we omit the
proof for simplicity. For the details, we refer the reader to the proof of Proposition
5.7 in [23] in which the inequality (5) plays an important role. By Lemma 3.6 it is
sufficient for the proof to study the asymptotic behavior of the norm of su, s.

Lemma 3.6 (cf. Proposition 5.7 in [23]) The cohomology class n is zero if

lim lim ||sue slles =0
e—>0686—>0

where || ® |lg.5 :== || ® lhphohy, w5 fOr an E ® F ® L-valued form e.

Moreover, following the proof of Proposition 5.8 in [23] and Proposition 2.8 in [29]
we have

Lemma 3.7

lim Iim |3, ssue slle.s = O.
£—>06—0 ’

Proof of Lemma 3.7 By applying the Bochner—Kodaira—Nakano identity and the den-
sity lemma to u, s and su, s (see [23, Proposition 5.8] and [29, Proposition 2.8]), we
have

0= (v—=1Opn, (E ® F)Aw, sttc5, Ues)es + 1D suesl? s (©6)
13, sstte.slI2 5 = (V' =1Onpnn, (E @ F @ LY Ay, 55Us.s, Stte s)e 5 + I Dssuue s g
)

where we used the fact that u, s is harmonic and 5(su5,5) = sgug,,; = 0. We have

V=184 (E ® F) = V=104, (E) + Idg ® v/—160,, (F)

>Nak V=10, (E) + 1dg ® (av/—10y, (L) — ew)

=/—10y,(E) + Idg ® ((a — b)v/—10y, (L) + bv/—10}, (L) — ew)
>Nak [dg ® (bV/—10y, (L) — ew),

by properties (d), (B) and the assumption (2) in Theorem 1.4. It follows that

V=1Opp (E®F) >Nak —eldg @ @ >Nak —€ldE @ wg 5.
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So the integrand g, 5 of the first term of (6) satisfies
—eqlueslis < ges = (V—10pn, (E ® F)Aw, sUe.s, s.s)e.s- ©)

For the precise argument, see [32, Step 2 in the proof of Theorem 3.1]. By (6) we have

e—>08—0

= lim Tm ( _ av, )
£—08—0 /{gg.aEO} 82,8 Croes

<timTm (g [ sl ydvi,)
{ge.6<0

e—~>06—0

tim i ([ gesdVin, +1005ue012,)
{ge.6>0}

< lim lim <5q u 2 ) =0.
= 0550 “ £,8 ”5,8
It follows that

lim Tim gesdV,, , =0 and lim lim |Dsuc 525 =0.  (10)
e—>056—0 {86.6>0} ” e—>086—0 ’ ’

Therefore, by Eq. (6) we have

lim 1im (V=10 5, (E @ F)Aa, sUte.s, Ues)e5 = 0. (11)

e—>06—0

Thus, we obtain

0 < lim gi_n% (V=104 h1, (E® F ® L)A, ;SUls s, SUe )s.5, (12)
e—>006—
thanks to
N=1Opp (E®F) <Nak ¥V—=1Oppn, (EQ F ® L),
and

(V=10ppn, (E ® F)Aw, s5ue s, Stes)es < ANV —=10nppn (EQ®F @ L)Ay, ;Sues,

Sus,é)s,é-

On the other hand, by formula (8) we have

V=10 p (EQ® F) >Nak 1dg @ (bvV =10y, (L) — ew) >Nak 1dE®
(bv—10p, (L) — ewg,5).

It follows that

(V=1Onghn (EQF & L)Ay, ;S 5, She 5) e 5
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1 eq
<(1+ 5)/Y |17, 8.5 Voo, 5 + 7/Y 1513, el 5 AV,

1
<1+ Y sup|s|%,L/ g QVor + S sup el
b’ x {86,520} b

1 eq
<(1+ -)su 2 dv, — su 2 2
<( +b) Xp|S|hL /{gaazo}gsﬁ wes t up I 1oy el 1 o

which leads to

lim lim (v— 1Onhn (E Q@ F Q@ L)Aw, 4SUte,s, Sttes)es =0, (13)

e—>06—0

by formulas (10) and (12). Moreover, we have

/ 2 /
||D;55u5,6||g,5 = |lsD, *aus 8 ”g 5§ = SUP |S|hL ”Dg sUe, 5”5 s

thanks to D;*a = — % 0 where * is the Hodge star operator with respect to w; 5. By
formula (10) it follows that

11116 hm | D (SsuggH s=0. (14)
E—>
Therefore, we obtain the conclusion by the Egs. (7), (13) and (14). m]

Eemma 3.8 Thereﬁist E ® F ® L-valued (n,q — 1)-forms ve s on Y. such that
Vg5 = Sug,s and lims_,q ||ve slle.s can be bounded by a constant independent of ¢.

The proof of Lemma 3.8 is completely the same as that in Proposition 5.10 in [23]
in which Lemma 3.5 is used to establish the De Rham—Weil isomorphism from the
9-L? cohomology on Y, to the Cech cohomology on X (cf. [13, Claim 1] and [32,
Proposition 5.5]) and the inequality (5) is essentially used to control the bound. For
the details, we refer the reader to the proof of Proposition 5.10 in [23] and here we
omit it for simplicity.

Lemma 3.9
lim m SUg s s = 0.
£—05-0 lsuzslle
Proof of Lemma 3.9 For the solution v, 5 in Lemma 3.8, it is easy to check that
[ —_ —x - =%
lim Tim ||suegl|? s = lim lim (9. ssu ) < lim lim ||0, ssu v .
e0 50 || 8,8”5,5 5—)06—>O<< e,8%Ue,8 8,8»5,5 = 0550 || e,8 5,8”5,8” 8,8”5,8

By Lemma 3.7 and Lemma 3.8 we conclude that the right hand side is zero.
Now we finish the proof of Theorem 3.4 by Lemma 3.6. O
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Corollary 3.10 (=Corollary 1.5) Let L be a semi-positive holomorphic line bundle
over a compact Kdihler manifold X with a smooth hermitian metric hy, satisfying
\/__1®hL (L) = 0. If F is a holomorphic line bundle over X with a singular hermitian
metric h such that /—10},(F) — a\/—_1®hL (L) = 0 in the sense of currents for some
positive constants a > 0, then for a nonzero section s € H*(X, L) the multiplication
map induced by Qs

xs: HI(X,Kx ® FRI(h) — HI(X,Kx @ FRI(h) ® L),

is injective for every g > O.
Proof We let E be the trivial line bundle on X. Then the conditions (1) and (2) in

Theorem 3.4 are easy to check if we take b = a. By Theorem 3.4 we know that for a
nonzero section s € H%(X, L) the multiplication map induced by ®s

xs : HI(X,Kx @ E®Q FRZI(h)) > HI(X,Kx ® EQ F®ZI(h)® L),
that is,
xs:HI(X,Kx ® F®Z(h)) - HI(X,Kx ® F®RZ(h)® L),

is injective for every g > 0, where Z(h) is the multiplier ideal sheaf of 4. O

Corollary 3.11 (=Corollary 1.6) Let L be a semi-positive holomorphic line bundle
over a compact Kdhler manifold (X, w) equipped with a smooth hermitian metric hp,
satisfying V=10, (L) = 0 and E a Nakano semi-positive vector bundle over X.
If F is a holomorphic line bundle over X with a singular hermitian metric h such
that /—10y,(F) — a\/—_lG)hL (L) = 0 for some positive constants a > 0, then for a
nonzero section s € H(X, L) the multiplication map induced by ®s

xs HI(X,Kx R E®@ FRTI(h) — HI(X,Kx @ E® F®I(h) ® L),

is injective for every g > Q.
Proof For a Nakano semi-positive vector bundle £ on X the conditions (1) and (2) in

Theorem 3.4 are easy to check if we take b = a. By Theorem 3.4 we know that for a
nonzero section s € H%(X, L) the multiplication map induced by ®s

xs : HI(X,Kx @ E®Q FRI(h)) > HI(X,Kx ® EQ F®ZI(h)® L),

is injective for every g > 0, where Z(h) is the multiplier ideal sheaf of &. O
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