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Abstract

We introduce and study a conformal heat flow of harmonic maps defined by an evo-
lution equation for a pair consisting of a map and a conformal factor of metric on the
two-dimensional domain. This flow is designed to postpone finite time singularity but
does not get rid of possibility of bubble forming. We show that Struwe type global
weak solution exists, which is smooth except at most finitely many points.
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1 Introduction

Consider amap fy : ¥ x [0, T) — N from a compact Riemann surface (X, go) with
metric go to a Riemannian manifold (N, k). Under the usual harmonic map heat flow,
fo evolves to a map f(¢) according to the evolution equation f; = 74,(f), where
7o (f) = try(V8df) is the tension field with respect to the metric g. In this paper
we consider the generalization in which both the map and the metric evolve with
(f (@), g(t)) satisfying the equations

Jo =1e(f), (1a)
g = (2bldfI; —2a)g, (1b)

where a, b > 0 are constants and |d f |§ = gl hap 7 f f is the energy density. We
assume that the initial map f(0) = fo and metric g(0) = go are smooth.

The first of these equations is the harmonic map heat flow, with varying metric
g. The second equation is designed to attenuate energy concentration. If the energy
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density become large in some region §£2 C X, then under the flow (1b), the metric is
conformally enlarged; this increases the area of £2 and decreases the energy density.
This suggests that the system (1) may be better behaved than the harmonic map heat
flow, where energy concentration at points is an impediment to convergence.

Writing the metric g(1) = e24 g for a real-valued function u(t), equations (1) are
equivalent to the following equations for the pair (f(¢), u(?)):

{ fi =e (), (2a)
u; =be |df)? —a, (2b)

where 7 and |df|? are with respect to the fixed metric go, and where the initial
conditions are f(0) = fp, u(0) = 0. In this form, the flow is more easily analyzed.
The main Theorem of this paper is the following.

Theorem 1 (Existence of global weak solution) For any fo € W3L(X,N), a global
weak solution (f,u) of (2) exists on X x [0, 00) which is smooth on X x (0, 00)
except at most finitely many points.

There is a long history of harmonic maps and related fields. We could not list all
such literatures but only few, including [1-12] and therein. In terms of heat flow of
harmonic maps, see for example [13-25] and therein. Note that usual heat flow can
have finite time singularity, see Chang-Ding—Ye [26], Raphael-Schweyer [27], or
more recently Davila—Del Pino—Wei [28].

There are several directions to allow metric change along harmonic map heat flow.
The most well-known direction is Teichmiiller flow, where metric lies in Teichmiiller
space of constant curvature. Teichmiiller flow is the L? gradient flow of the energy
and hence reduce the energy in the fastest sense. A pioneering work in this direction
was the result of Ding—Li-Liu [29] in the torus case, and later in higher genus case
by Rupflin [30], Rupflin—Topping [31], and Rupflin—-Topping—Zhu [32]. For further
references, see for example Rupflin—Topping [33], Huxol-Rupflin—Topping [34] or
Rupflin—Topping [35] and therein. Another direction is Ricci-harmonic map flow. This
is a combination of harmonic map heat flow and Ricci flow of the metric. Surprisingly,
this flow is more regular than both harmonic map heat flow and Ricci flow. See for
example, Muller [36], Williams [37] or Buzano—Rupflin [38] among others. Recently
in Huang—Tam [39], harmonic map heat flow together with evolution equation of
metric is considered under time-dependent curvature restriction and smooth short
time existence is obtained. Because we do not assume a priori curvature bounds of the
domain, the result cannot be applied into our case.

The paper is organized as follows. In Sect. 2 we look at some preliminaries, includ-
ing volume formula and its asymptotic limit if the map f is steady solution, that is,
harmonic. Next, in Sect. 3 we define Hilbert spaces X, Y, Z and their closed subsets
B, B’. So, from Sect. 3 we consider f € B and u € B’. Then Sect. 4 defines the oper-
ator Sy, S» and shows their properties. Briefly, we can show that S} : B x B — B and
Sy : B x B’ — B’ and they satisfy twisted partial contraction properties, see Lemmas
6,7, 10, and 11. In Section 5 we define the operator S on B x B’ mapping into itself
defined by S = (81, $»). For T small enough, S is a contraction and hence we can
prove short time existence.
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Next we are working on types of singularity. Ultimately we will show that the
solution is singular only when energy concentrates, similar with Struwe’s solution for
harmonic map heat flow. In Sect. 6 we show local estimate and obtain bounds for
IS e”“| f;|*. This is used in Sect. 7 to show W22 and higher estimate, which implies
boundedness of |d f|. Finally in Sect. 8 we prove the main theorem 1 and in Sect. 9
some remarks about finite time singularity are provided.

1.1 Notation

Even though our equation is heat-type equation for varying metric, we use initial
metric go as default. So, all computations use the metric go unless we specify the
metric. For example, |d f |2 is calculated in terms of gy and |d f |§, is calculated in
terms of g. If the volume form is calculated in terms of metric g, we denote it as dvol,.
We also omit dvolg, and dz if there is no confusion. We also use the simplifications

- llwer =1l ||W1<,p(2x|o,T]), I-llco =1 ||c0(zx[o,r]) and || - llLr = |- lLr (= x[0,17)-
Also, the constant ¢ is universal and changed line by line.

2 Preliminaries

Before we show the main result, we record a few facts about solutions to the flow
equations (2).

2.1 Energy and Volume

First note that the 2-form |d f |? dvoly is conformally invariant, and that the energy

E(t) = %/ldﬂzdvolg 3)
satisfies
E'() = / @f.dfy = — / (Vdf.e 2 (f)) = — / (P < 0. (4

Thus E(t) < Eg for all .

Lemma 2 The volume satisfies V (t) < e 241V (0) + za—on, and hence is finite for all
t.

Proof The second Eq. (2b) can be explicitly solved, yielding

t
e = g7 (1 + Zb/ e2“s|df|2(s)ds> ) 5)
0
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Consequently, the volume

V() = f dvolg(y = / e?dvoly, (©6)
z z
can be written as
1
V() =e 2 (V(O) + 4b/ eza‘yE(s)ds) . @)
0
The lemma follows by noting that E(s) < E( and integrating. O

2.2 Asymptotic Behavior of Steady Solution

In this subsection we consider the steady solution.

Lemma3 Let (f, u) be a solution of (2) and f(0) a harmonic with energy E. Then
f(¢) is harmonic for all t and as t — o0,

e — 2ldfI°
and hence by (6) the volume V (t) converges to
V(oo) = 2E.

Proof If £(0) is harmonic, then f; = 0 and hence f and |d f|* are independent of 7.
Integrating (5) then shows that, as t — oo,

eZat -1
eZu — 672at <1 +2b|df|2 )
2a
=e 2 2UdfP(1 —e72) — ZldfP.

]

This means that, for solutions as in Lemma 3, the energy density |d f |§, = |df|?e 2"
converges as t — oo to the constant 7. Hence the conformal heat flow forces the
conformal factor and the energy density be distributed evenly. Remark that, because
the image f(X') does not change, this flow modifies the domain toward the space
which is similar to the image with the similarity ratio 7.

3 Construction of Hilbert Spaces

In this section we build Hilbert spaces X7, Y7, Z7 and their closed subsets B, B’. For
parabolic theory used here, see Mantegazza—Martinazzi [40], Evans [41] or Lieberman
[42]. From now on, we consider the target manifold being isometrically embedded,
N — RE,

@ Springer



A New Conformal Heat Flow of Harmonic Maps Page50f36 376

3.1 Spaces X, Yand Z

The set

Yr = L0, T], W=, Ry nwh2qo, 71, w22z, RE) n w2([0, T], L* (2, RE))

is a Hilbert space with norm

T
112 =/0 / VPP 4 112 4 V2412 + LA + | ful? dvolg, dr.
)
As in Proposition 4.1 in [40],

Yr — C°(0, T1, ' (X, REY) N LA(0, T1, W34z, REY) n wh(o, T1, wh4(Z, RE))
and there is a constant ¢ such that

I fllco + UV Fllco + 192 Fllpa + IV fill s < cll flly- ®)

Also, by standard parabolic theory (see, for example, [41]), f € Yr implies f €
co(0, T1, W*2(Z,RY)), f; € CO([0, T], W' (2, R")) and

OléltaSXT If O llws2xy, OI;%XT It llwizsy <cll flly. 9
This also implies that
max || f O lwzscs) = el flly- (10)
Next, denote
Xr = L*([0, T], W>*(Z,R") nwh2([0, T], L*(Z, RY))

be another Hilbert space with norm

T
||f||%(=/O /2|f|2+|V2f|2+|f,|2dvolg0dt.

Note that in the notation of [40], ¥ = P% and X = P!l.
Now we define spaces for u. The set

Zr = L*([0, T], W>*(2) n wh2((0, 71, w3 ()

@ Springer



376 Page6of36 W. Park
is a Hilbert space with norm
2 ’ 3.2 2 2 2
lullz = / / IVZul” + ul” + |Vuy |~ + |u,|” dvolg, dz.
0 Jx
Similar to above, there is a constant ¢ such that
2
IVoullps + lluellps < cllullz (1)
and
max |lu(t 2.2 + max |[u;(t)|l;2 <c|u|lz. 12
a0 ly22cz) + max w0l 2z < ellulz (12)
Also, by Sobolev embedding, we have
max |u(t 1,8 <c|u|z. 13
OgsT” Ollwiszy < cllullz (13)
Moreover, u is continuous and there is a constant C; such that forall u € Zr,
lullco < Callullz. (14)

3.2 TheBall Band B

Now we fix fo € W32(X) throughout the section and thereafter. Consider the operator
8 —e A ||u [co < 1, this operator is uniformly elliptic. So, Proposition 2.3 of

[40] then says that the map f +— ( fo, (@ —e A f ) is a linear isomorphism

Yr — W3(X) x Xr.

Hence there is a constant Cy such that for each fj € W32(%) and g € Xr,thereis a

unique solution i (¢, x) € Y7 of the initial value problem
@ —e > Mh=g hO) = fo
with
1Ay < Ci(llfolls2 + llglx)-
Let ho(¢, x) be the unique solution of
(0 — A)h =0 h(0) = fo.
By (16) there is a constant Cy, depending on Cj and || fo[|3,2 such that

lholly < Co.
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Because of (8), { feyYr | fO) = fo} is a closed affine subspace of Y7. Hence the
ball

B=B; = {feYr|fO) = foand | f — holly <3} (19)

is a closed subset of Y. Note that each f € Bjs satisfies
I flly < If = holly + llholly < &+ Co. (20)
Also let the ball
B' =By ={ue Zr |u(0)=0and |ullz <&}
be a closed subset of Z7. Obviously kg € Bs and 0 € B;,. For simplicity, we denote
B = By and B’ = By,.
Now fix § > 0 and define

C3 := 1600CC; C». 1)

Choose 8" small enough so that C»8" < 1 which implies [Ju| ;o < 1. Also we assume

1 )
(SSC—3.

4 Construction of Operators

In this section we will construct operators Sy : Y7 X Zr — Yrand Sy : Yr X Z7 —
Zr.Firstfix f € Yr andu € Zr. f and u are considered to be fixed throughout this
section and after unless we mention any choice of them.

First we show a lemma that is needed in several places.

Lemma4 Fix fj € W32(X). Then there is an Ty = Ty(Co, 8, 8") > 0 such that for
allT < Ty, foreachh € B and uy,u; € B,

_ Cs3
(€272 — Dah|x < ——luy — uallz. (22)
2Cy

Proof Denote
g = (e®72 — 1)p,h.
Recall that

’62u1—2u2 _ 1‘ < eZ\ul—u2| 1— e—2\u1—u2| < 264|M1 _ I/l2|
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if [l — uzllco < 2, which comes from uy, up < B’. Using 2¢* <200 and by (9) and
(20),

2 2 2 2

<200%||uy —u max ||0;ho(t T
g1z = 2007t — wallge max k(012
2

C3
<
16C?

2
lur — uzllz

if we choose T small enough.
Next, consider ‘V2g|2.

‘VZg‘ — ‘Vz <(62u2—2ul _ l)3th2)’
< 800[us — un||V(u1 — u2)|*13:ha| + 400[us — uz||V2(uy — u2)||d:hal
+400|u; — ur||V(uy — u2)||Voshy| + 200|u; — u2||V28,h2|.

Hence, by integrating, we have

2 12 202 _ 4 2 1/2
1981172 = 16007 luy — ualga IV ur = un) [}y max 18Oz, T

202 o2 2 4 1/2
800t — w2 [E IV (1 — u2) I max 18,055, T

2 _ 2 _ 2 2 712
+ 8007 [lur — uzllo omax IV@1(®) = u2@O)pa 5 IVOh2ll7a T
+ 4002 [uy — ua 70l V20;h2 17
< 400%C3||luy — ua||32C3
a3 2
= 8—C12||M1 - M2||z

if we choose T small enough.
Finally, we will compute [|g; |3 .

lg:] < 400Juy — uzl|0,ha|l(u1 — uz);| + 200[uy — uz||9;h2|.

Hence,

2 202 _ 2 2 1/2
eI} < 264007y — waliEolur — w2 s max ooz, T

+2(200)% luy — w2 lZ b2 1%

< 2(20002C3 uy — u2|32C3
5 >
=——|lu;—u
T2 lur —uz2llz
if we choose 7' small enough.
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Combining all the estimates above, we get
C3
2u2—2u1 _ 1 8 h < 2 _
ll(e )O:hllx < 2C, llur —uzllz
which proves the lemma. O

4.1 The Construction S,
Define an operator
S1:YrxZr —> Yr
by S1(f, u) = h where h € Y7 is the unique solution of
@ —e " Mh=e"Ap(df,df) hO) = fo. (23)

Lemma5 Fix fy € W32(X). Then there is Ty = To(Co, 8, 8") > 0 such that for all
T < Ty, S| restricts to an operator S| : B x B’ — B.

Proof We also can assume ||A||, [ DA, [|D*A], | D3>A|l < ¢ where ¢ depends only
on the geometry of N. Then the vector-valued function Ay(df,df) satisfies the
pointwise bound |A s (df,d f)|> < c|df|*. Fix f € Bandu € B'.

Now we estimate X norm of

g=e MDA df,df).

First, |g|> < c|df]*, so ||g||i2 < c||f||‘§/|2|T. Hence if we choose 7' small enough,

2
we have | g||2, < 2

2 = e Next, compute |V2g|?.

IV2g| < cldf12V2ul + cld f12Vul* + cld £} Vu| + c| VA fIId £ ||Vl
+eldfI1* +cldfPIVA S|+ IV flIdf] + eI VA fI%.

So, using Young’s inequality
cldf12, f/|Vc1f|2|W|2 < clldfli% //|Vu|4+c/ vasl,
we get, by (8), (9). (10), (12) and (20),

IV2gll72 < clldfligo //(|V2u|2+|Vu|4)+c||df||2o/ |Vul*

+elldfl2, //|Vdf|2|w|2+c||df||2o|2|T+c||df||éof Va2
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+elldf12, /f|v3f|2+c//|wf|“

<clfly (OrgthT IV2u(®Ol25) + max. ||w(r>||i4(2)> T

6 2 8
JrC||f||yofélla§XT IVuOll72 50T + el flly1 21T
4 2 2 3 2

4
+ COI;IIaSXT ||Vdf||L4(2)T

if we choose T small enough. Finally,

g < cldfPluel + cld 1] fol + cld fl1d f]

and
g2 < clldfligo f/|ut|2+|f,|2+c||df||éo/ d fi|?
<cllfly ( max i (1)||72 5, + max ||f,<r>||i2(2)> T

0<t<T

2 2
el FI mas IV fillf2 5T

if we choose T small enough.
Therefore, if we choose T small enough, we have || g 1% < % Noting that S(f) —
1
ho = h — hg satisfies

(0 —e “A)y(h—ho) =g+ (e = 1)Aho (h — h)(0) = 0.

The bounds (16) give

A

15 = holl} = €} (llgl} + 1™ = DAkl )

c2 (Ngl + e = Darhol})

because hg satisfies (17).
Now by Lemma 4 with & = hg, u1 = u, up =0,

C3 1)
—2u R

— 1)osh < — < —.
(e )orthollx < 2 lullz < 3¢,
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This implies

82 82
S(f)—hol? < C¥| — + —5 | <42
I1SCf) — holly < 1<2C12 ac?) =

Therefore S(f) € B. O

Lemma6 Fix fo € W»2(X) and u € B'. Then there is an Ty = To(Co, 8,8") > 0
such that for all T < Ty and for each f1, f>» € B,

1
I1S1(f1,u) = Si(f2, wlly Sgllfl—lelr (24)

Proof Set h; = Si(fi,u) and g; = e_z"Afl.(dfi, df;) fori = 1,2 and subtracting,
the function h| — h satisfies

@ —e D) —h) =81 — g2 (h1 —h2)(0) =0.
Hence (15) gives a bound
A1 —h2lly < Cillgr — g2llx- (25)
Next, we have

g1—8 = e Ay —Ap)dfi,dfi) +e M Apdfi +dfo,dfi —df)
=1+1I.

So, there is a constant ¢ with

91— &P = clfi = LPIAAI +cldfi —d Ll (1AP +1dfP).

Integrating and applying Holder’s inequality, (8), and (20) gives

It =i < clfi = il [[ AR + clafi —aniZs (101, + 10212
<cllfi = LIFNAITIZIT + clfi = LIFAAIG + 11122712

1 2
27C12 Ifi— faly

=

if we choose T small enough.
For Vz(gl — g2), first note that

V(Af —Ap) =DApdft —DApdfs =(DAg — DAp)df1 + DAy, (df] —df2)
V(DAj, — DAy) = (D*Ay — D*Ap)df) + D*Ap, (df) —dfa).
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So, we get

IV2I| < el fi — RIdAPIVul +cl fi — RIAPIVUP + el fi — fldfi1PVul
+cldfi —dflld fil2Vul + cl fr = f2lIVAfildfi] |Vl
+clfi = LldAT + el fi = AIVAfdAT
+cldfi —dflld folld fi]* + | VA fi — Vd folld fi ]
+cldfi —dfl VA filld fil
+clfi = LUV ANdfT+clfi — LIV fil

Using (8), (9), (10), (12), (13), and using Young’s inequality, we can estimate it term
by term.

// 1AL = LPIAANYV U < LA = AIFIAIY Jmax IVu7a 5, T
/ i = LPAARVE® < DL = LITIANY max IVu@)zs )T
/ i = RPIAFIVUE < 1A = AIGIATY max Vel ) T

// i = RPIVAAPIASPIVU? < Ui = AIGIATY max (Ve s T

+ /1 = fally max. 1vds, Ol Fees) T
J[ 1= pPane <in - ARLAIIEIT
/ / i = RPIVAAPIAAT = 1A = LIE I ATy max 1V fi Oz T
/ dfi —dpPIdLPIdfAY < I = RIFIAIGIAIVIEIT
/ Vdfi = VALIPAAR < L filly max [IVAfi() = VA L0 5T
/ dfi —dAPIVAAPAAR < A = LIFIAT max IVaAOIL )T
ff 1A= LRIV APIAAR < 1A - fz||2Y||f1||2Y ma ||v3f1<r>||iz(2)T

//|f1 LIEVAAT <A - lely max IIVdf1(t)|IL4(Z)

Hence, using (20), if we choose 7" small enough, we get

1
V21117, < el fl3.
1
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We obtain similar result for /7 if we choose T small enough:

1
IV2I13, < vl Al
1

Hence, we obtain that [ V*(g1 — 82117, < 5 1/1 = f215-
1
Finally, compute 9;(g1 — g2). As above, note that
0(Afy —Ag) =DAxo f1 — DA fa =(DAg — DAE)O f1 + DAp (0 (f1 — f2)).

So,

19: (g1 — g2)| < clfi — LolldfilPluel + el fi — flla AlldfII +cld(fi — I fi1?
+clfi — flladfilldfi]
+cldfi +dfplldfi — dfallud + cld; folld fi + df2lldfi — dfal
+ld(dfi +dIldfi —dfol +cldfi +dfolld(dfi —dfo)l.

Similar with above, by (8), (9), (10), (12), (13) and (20),

2 4 2 2 2
9: (g1 — gll72 = cl fillyllfi — fally <Or§n[ag<T llr D117 2 5y + oAz, l19: f1 (f)||L2(2)> T
4 2
+ellfilly omax, 16: (f1(®) = L2 2 5T

2 2 2

el AlFIA = 205 max 1od /1O T

+ellfil3 +ULI0A = 13 [ max flu O, 5 + max 18 012, 5 | T
Y Y Y \o<i<T LX(2) T g<i<T LY(%)

2 2 2
+cllfi = flly <0I511[82<T 13:d f1 (DN 2 ) +OT_<HIE§T ||3tdf2(t)||L2(2)) T

(LAl + 17215) max 11810 = d )72 5, T

1 2
< —
< 27C12 If1— f2lly

if we choose 7' small enough.
Combine all of them,

1
hr — hally = Cilig1 — &20lx =< §||fl — fally

which proves the lemma. O
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Lemma7 Fix fo € W32(X) and f € B. Then there is an Ty = To(Co, 8,8') > 0
such that for all T < Ty and for each uy, u; € B,

C
1S1(f2ur) — Si(f un)lly < 73||u1 —uslz. (26)

Proof Set h; = Si(f,u;). Multiplying e** to the equation for ; respectively and
subtracting them gives

13, (hy — hp) — A(hy — ha) = —(e™1 — e*2)d;hy,
(3 — e 2T AY(hy — hy) = (€227 — 1)d;hy.

So, h1 — hy satisfies the estimate from (16), and by Lemma 4,
2ur—2u C3
lh1 — hally < Cill(e —Dorha|lx < Tllm —uzlz

if we choose T small enough.

O
4.2 The Construction S,
Define an operator
S Yr X Zr — Zt
by S2(f, u) = v where v € Zr is the unique solution of
dv=>bldf)Pe ™ —a v(0) =0. (27)
Lemma 8 In the above definition, v € Zr.
Proof From (27), we directly get
t
v(r) = fo (bldf>e™ — q). (28)

So, ||v||;2 and |Jv || ;2 is trivially bounded if f € Yr andu € Zr.(Becauseu € Zr,we
have e~2" is pointwise uniformly bounded by e€!“1z ) Applying Cauchy—Schwarz,
we obtain the pointwise bound

2

T
V302 = b/ v2 ((Vdf, dfye=2u — 2|df|26_2”Vu>
0

T
scT/O (194 21 f 2+ 193 FPIVAF 2 4+ 92 121 2IVal? + 92 £ 14 ul?
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+ 1921 PAVul® + 192u) + 1d 1Vl 4+ (V202 |Vul? + 9% ))

SO

IV20l17, < T2 df oIV £IIT2 + T2V £V £1I7
+ T2 dfIGlIV? £ Vulls s + T2V £1I7 sVl 4
+ T2 120192 f e (W9l + 192l

+ T2 f ko (1VullGs + IVl VulZ, + 197, )

which is bounded if f € Yr andu € Zr.
Finally, compute Vv, from (27).

IV [ < c|VAfIIdf] + [df P Vul,
IV l72 < clldfIgollVAfI7s + clldfligol Vull7

which is bounded if f € Yr andu € Z7. O

In fact, we can show further.

Lemma9 Fix fy € W32(X). Then there is Ty = To(Co, 8, 8") > 0 such that for all
T < Ty, Sy restricts to an operator S, : B x B — B’.

Proof From previous calculation, we have

IV30l72 < TN £IF A+ ulZ + luly + ).

. 72
So, if we choose T small enough, we get ||V3v||i2 < ‘ST. Also, because |v;| <

72
c(lldfllco + 1) and [o] < eT([dfllco + 1), we can make [lv;[2,, V]2, < 2 if we
choose T small. Finally,

2 2 2 4 2
Vvl < clldflico omax IVAf O}z 5y T + clldfll o (Tax IVuOlly2 5y T

2
so if we choose T small enough, we get || Vv, ||i2 < %. This proves the lemma. 0O

Lemma 10 Fix fo € W32(X) and u € B'. Then there is an Ty = Ty(Co, 8,8") > 0
such that for all T < Ty and for each f1, f, € B,

1S2(f1,u) — Sa(fo, wlliz < TV fiL = fally 29)

Proof Set v; = S>(fi, u). Then from (27), subtracting them gives
1 — ), =b(dfil* = [dfae " = be > (dfi +d fo, dfi — d fa),
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t
ol — vy = b /0 e dfi +d . dfi —df).

So, lor = v2l172 < eT2(ld fill%o + A2l g0 A fi — d fall7s
VT
< 1A= £ly

if we choose 7' small enough. Also,

2 2 2 2
(1 —v2)ell72 < el filly + ”szY)oI;agXT ldfi@®) —d 2O}z 5 T

T
< §||f1 — fl}

if we choose T small enough.
Next, compute V3 (v1 — ).

t
Vi —w)=b /0 e‘2”(<V(df1 +df2),dfi —dfa) +(dfi +dfo, VA fi — df)
—(dfi +dfr.dfi — df2>2w).

So,

T
Vi =)l <c /0 (V@ +dlIdfi = dfl + V@S +dMIVES - df)

+IVAfi +dIIVEAf —df)]+1dfi +dfIIVIAfS —df)l
+V2@dfi +dIldfi — dfaol|Vul + VA fi +d )V fi — df)]|Val
+ldfi +dflIVEAfi — dfo)] |Vl

+IV@Afi +df)lldfi —dfal(Vul? +V2ul)

+1dfi +dARIVAS —df2)I(Vul +V2ul)

+ldfi +dfalldfi — dfl(Vul + [ V2ul| V| + |v3u|>).

Integrating over X x [0, T'] gives

V31 — w12,

< cT?dfi = dfaligo IV + 72 + T2V + IV = )74
+eT2 V2 (f1 + IV = IRy + T2 dfi +d Rl 20 IV = )12,
+cT2df1 —dfllgo IV + )74l Vull?
+cTIVA(f1 = IZIVA + DI sIVul]s
+cT2dfi +dHlZ IV = f)I17 Va7,
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+cT2dfi = dAlligo VA + 74UVl T s + 1V2ul7,)

+cT2dfi +dHlg VA = PIT4UVul]s + 1V2ul70)

+cT2dfi = d fallgolldfi +dfalzo (IVul S + 1V2ulT 41 Vull 4 + 1V2ull7)

VT
4

=

Ifi = f2l3

if we choose T small enough.
Finally consider V(v; — v2);.

V(i =), =be " (VA fi +df2), dfi —dfo) + (dfi +dfo, VA fi —d o)
—(dfi +dfr,dfi —dfr)2Vu).

So,
IV @1 —v2)ll32 < clldfi —dfalZo Jmax IV2(fi(@0) + )75y T
2 2 2
+clldfi +dfallgo max VAW = 225 T

2 2 2
+elldfi+dflzldfi = dfalEe max Ve, T

< ?”fl — £l

if we choose 7' small enough.
In summary, we get

v — vall% < VTl fi = f213

which proves the lemma.
O

Lemma 11 Fix fo € W32(X) and f € B. Then there is an Ty = Tp(Co, 8,8") > 0
such that for all T < Ty and for each uy, u; € B,

1S2(f, u1) — S2(f, u2)llz < %”Ml —uzlz. (30)
Proof Set v; = S2(f, u;). Subtracting them gives
(v —v2)r = bldfP (72" —e7?2),
V) — vy = bfol [df>(e 2" — e212),

—2uy __ e—2M2| < clui — uy|, we have

Using |e
2 2 4 2
lvi —vallys < cT7Nd fllqollur — u2ll;2,
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2 4 2
(w1 —v2)ell72 < clldfllco omax lur (@) —u2Oll25) T,

so if we choose T small enough, we have that ||v; — v2||%2, [(vi —v2); ||i2 < % llug —

uz)|%.
Next, compute V3 (v = ).

t

V(v — ) = b/ (2(Vdf, dfye 2 —e 22y — |df|>(e 2 — e 22)2(Vuy — Vuz)),
0

So,

T
V31 =)l < c/o (19* 71 fllur =zl + 192 £1IV2 flluy = o)

FAV3FIAFI+ IV FP) g — ual |V (g — ua)|
+ V2 £l flug — ual(IV (g — u)? + [V (g — u)])
1Pl = w2l (V1 = )P+ [V2@r =)V = up)] + 931 = u))).

Now we integrate over X' x [0, T'].

IV (w1 — )13,
< T2 d fiZollur — uz 2oV FI2 5 + T2 luy — ual2o V3 FIZ4IV2 F1124
+ T2 (1A IG IV £II7a + IV £ ) ur — w2l 3oV (ur — u2) 1174
+ Tl df g0 llur — w2l IV £FI74 IV @y —u2) s + V21 — u2)l|74)
+ T2 df gollur — u2lZo IV (ur — u2) 116
2 4 2 2 2 2
+eT2ld f [ qollur — w2l Zoll V2 @y — u2) 741V ey — ua)ll3 4

+ cT2df [ follur — uzllFo V2 (w1 — w275

1 2
< %Ilul —uz2llz

if we choose 7' small enough.
Finally,

V(v — v2)s| < c|VAFIdfllur — uzl + dfPlur — uz]| V(g — u2)|
SO
2 2 2 2 2
_ < _
V(i —v2)ill72 < clldflicollur — uzllqo omax. IVF Ol sy T
4 2 2
+clldfllcollur — uzllco omax V@i (@) = w2725y T

u u
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if we choose T small enough.
In summary, we get

1
2 2
llor = vallz = Gllur —u2llz

which proves the lemma.

5 Existence of Fixed Point

Because Y7 and Z7 are Hilbert space, Y7 x Zr is also a Hilbert space and we can
equip the norm

ICfowllyxz = (€)7Hflly + llullz. (31
Define an operator S : Y7 X Z7 — Y7 X Z7 by
S(f,u) = (Si1(f,u), S20f, u)). (32)

Proposition 12 Fix fy € W3-2(X). Then there is an Ty = Ty(Co, 8, 8') > 0 such that
forall T < Ty,

(a) S restricts to an operator S : B x B' — B x B’.
(b) Foreach fi, f» € Bandui,ur € B’,

5
1SCAu) = S(f2. u)llyxz = (i) = (2 —udllyxz. (33)

Proof By Lemmas 5 and 9, (a) is proved. For (b), using Lemmas 6, 7, 10, 11, there is
To = Tp(8,8") > O such that forall T < Ty,

ISCfr,u1) —S(fa, u2)llyxz
= (C3) M IS1(f1. u1) = Si(fro ully + 1S2(f1, ur) — Sa(fo, u2)llz
< (€ 7ISIfi, un) = Si(fa, un)lly + (€)M 1S1(f2, ur) = Si(f2, ua)lly
+ 118201, u1) — S2(f2, u)llz + 182(f2, u1) — S2(f2, u2)llz

1 _ 1
5?@)Wﬁ—ﬁh+ﬂm—mh
1
+TWWﬁ—ﬁh+§wrmﬁz
S -1
= 2 (€71 = lly + lun — w2llz)

5
= 6||(f1, ur) — (f2, u2)llyxz
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if 714 < L(c3)~ L. O

Theorem 13 (Short time existence for strong solution) There is Ty > O such that there
exists a smooth solution (f,u) € B x B’ of (2) on X x [0, Ty].

Proof The existence of solution f,u comes from Proposition 12. The fact f(X x
[0, To]) C N can be easily shown using nearest point projection, see for example

[24]. Moreover, the operator 8; —e ™2 A is uniformly parabolic, so | (9, —e 2*A) f| €
LP(X x [0, Tp]) forany 1 < p < oo, by standard parabolic theory. This implies

V2f,8,f € LP(X x [0, Tp))

forany 1 < p < oo.
Next, by direct computation from (2b), we have

t
e2u — e—2al <1 +2b/ ezaS|df|2)
0

hence

t
Vu = e 22atpp / 2 (Vdf,df)
0

/|Vu|1’ < (4b>1’/ (/Othfndﬂ)p

t
< @by / /0 Vdf|Pdf|P

which implies Vu € LP (X x [0, Tp]) for any 1 < p < oco. Now taking V in the Eq.
(2a) to get

(@O = AV | = C(IVullAf]+ Vulld /1P + [Vdflldf|+ 1df )
€ LP(X x [0, To])

which implies
V3f,0,(Vf) € LP(Z x [0, To])

forany 1 < p < oco.

Finally, from Sobolev embedding, we have f,df € C%(X x [0, Tp]) for some
a > 0. This implies (3; — e 2A) f e C¥%2(X x [0, To]) where C*%/2 is parabolic
Holder space of exponent ov. Now by Schauder estimate and standard bootstrapping
argument, we conclude that f is smooth, so u is. O
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6 Local Estimate

To get global weak solution, we will follow Struwe’s idea: run the flow until singularity
occurs. Then take weak limit as new initial condition, run the flow again. Keep going
this process and we will have only finitely many singularities due to finiteness of
the energy. Because our flow is coupled, we need to re-establish the whole process
with f and u. And this requires some condition on b, which can be interpreted as
the sensitiveness of the conformal evolution of the metric with respect to high energy
density. Let Cy > 0 be a constant only depending on the embedding N < R’ such
that ||[RN |, ||A]l, | DA| < Cy where RY is the Riemannian curvature tensor of N.
And from now on, assume b > C,ZV.

6.1 Energy Estimate

Now we establish local energy estimate. Fix By, and let ¢ be a cut-off function sup-
ported on By, suchthatp = 1on B,,0 < ¢ < 1 and |Vg| < ‘;‘.

Proposition 14 For solutions (f, u) of (2), we have

%)
/ / | fi1°p* + / ldf 120 (1) — [ ldf1?%(11)
1 B, B, By

42

(34)
S _2(626{[2 _ eZatl)EO'
ar
Especially, we have
2
E(Br.1) = E(Byr.11) = o5 (€**? — ") Ey. (35)

Proof From the Eq. (2a), multiplying e f;¢? gives

/ &) £ 2% = / it ()
B, By

z_/ (dﬁ,df<p2>—2f (fr, fideVig
By

Boy

1d 1 _
<—-— Idf|2¢>2+—/ ez“lfr|2w2+2f e 2 |df X Vel
2 dr Ba, 2 B, B>,

So, we have

d
/ eI fi12p* + —
BZr !

: Idf|2<p2§4/ e 2d f2| Vg2
By

Boy

42
i [ ar?
r Boy
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42
< 4—2e2“f2E0.
r

Integrating from ¢ to #, gives the result. O

Lemma 15 Furthermore, assume

sup E(Byr,t) < €.

Hn=<t<n
Then we have
t ) 5 5 ) eZatz _ e2at1
/ / I filP0? < 4er (14— 5 — ). (36)
n I, 2ar
15 2at _ 2aty
/ f £ P67 < a2, <1+%>. (37)
n JBy 2ar

Proof The first equation directly comes from (34), by changing Eg to &1. Also, it is
easy to see that

15} 15} 5]
2.2 —2u 2, 2.2 2 2 2.2
/ / | fil*e =/ / e e fil%g Se‘m/ / e fil*p
t1 J By t1 J By 1 J By

eZutz _ eZal] >

< g2at242¢, (1 + 3o
ar

6.2 Estimate for [ |f;|2

The next step is to get estimate for derivative of || By, | f:12¢?, which will lead to the
control of itself. For the future purpose, here we introduce more general version of it.
For now, we need p = 0.

Proposition 16 Let (f, u) are solutions of (2). For p > 0, we have

d
L ez“mw“wzsza(ml)/ e2“|ﬁ|f’+2<p2+4<p+2>/ 172V
By, By

dr Jp,
p+2
R IV£121fi1P? (38)
2)C?
+ ((p sy + PN a4 1)) / (A fPLAIP 22,
By,
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Especially, we have

/ e24) £,1PH202 (1) < e24(+D(—10)
By

t
(/ e2”|ﬁ|1’+2<p2<to>+4(p+z>// |ﬁ|f’+2|w|2).
By to J By

Proof By taking time-derivative to (2a), we have

(39)

@ i) = Af, + AWf,df);.

Taking inner product with f;|f;|”¢? and integrating gives

i son ety = [1ai sisred + [a@r.an e
= —/|Vf,|2|fz|"<o2—/Wﬁ,fz>p|ft|P*2w2<sz,ft>
=2 [ h AP OT0+ [(DAGAD) i Fl i)
+ [adsan. e

:—/|Vf,|2|fz|"<p2—p/|<Vft,ft>|2|ft|P*2w2
+ I +1IV+ V.

Now we have
I < %/|sz|2so2|fz|”+4/|ft|"+2|w|2,
v < cNf df P17+ 2?,
V< CN/ IV A1 A7,
< %/|Vft|2<o2|ft|f'+%/|df|2|ft|f’”¢2.

On the other hand, LHS becomes

1 d p+1
/((ez“fz)z,lele”wz) - /e2“|ft|1’+2¢>2+2p—fe2“|ft|1’+2ut<o2

p+2dr +2
1 d p+1
- ma/e%ml’”wz+zbm/|df\2|ft|f’+2¢2
p+1
—2a—p+2fe2”|fr|”+2so2.
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All together, we have

2| f;P+2¢? <2a<p+1>/ 2| f1P 2 2+4(p+2)/|ft|f’+2|w|

dt
—T/wm | f1Pg?
2)C2
+ ((p +2)Cy + % —2b(p + 1)) / df 121 fi1P 22,

By the choice of b, the last term is negative for all p > 0. Hence,

d
dt/ 2| £ 1P 2<2a(p+1>/ | f 1P T2 2+4<p+2>/|ﬁ|"+2|w|2

/ e2u|f't|p+2 Z(t) < e2a(p+1)(t 10)
By,

t
(/ ezulfz|p+2902(lo)+4(1?+2)// |f,|”+2|w|2>
By, to J By

by Gronwall’s inequality. O

Lemma 17 Let (f, u) are solutions of (2). Assume that

sup E(By,t) < ¢.
T—-28r2<t<T

Then fort € [T — 8r2, T1, we have

/ | fi 1?0 (1) < C1(r, 8,)Ca(r, 8, 1)ey 40)
BZr
where
l_e—2a8r2
Cir 8,0 =4 (14— ) )
2ar
1 16(4)?
Co(r,é,1) :e6‘“sr2 — “ Q2ar ) 42)
5}"2 r2

Proof Suppose ¢ be a cut-off function supported on B3> and ¢ = 1 on B, and
[Vo| < ‘;‘. Also, let ¥ be a cut-off function supported on By, and ¥ = 1 on B3, /2 and
IVyr| < ;—1'. From (39) for p = 0 and using (37), we have

t
f ) £, P (1) < Pt / 21 £, PR () + 8 / f PVl
B, Bay to J B3
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a(i— " 8(4)? [
< 2 ></ €21 £, 20 (1) + ok f/ Py
Boy r 0] By

< 2at-10) / | £, 1262 (10)
BZr

2 2at 2aty
+62a(t—to) 8(42 e2at4281 (1 + e —e a()) .
r

2ar?

Now take 7y € [ — 8r2, ] such that
t—8r2<s<t

f e fi’¢*(1p) = min f | £ 1792 (s).
BZr B2r

Then by (36),

5 5y 5 1 t 5 - 1 5 e2at _ eZa(t—erz)
u f0) < — e < —4 (14 —0—|.
/B 1P 0) = 5 /75/3 P9 = 5o (14—

2r

Therefore,

2at 2at—2asr® 2

- 1 8(4

/ ezu|ft|2§02(t) < 4281 (1 =+ L) <_2 + (2) e2at> 62a6r2.
By

2ar? or r

This completes the proof. O

Corollary 18 Under the same assumption as above, we also have
t
/ f IV filPg? < CCi(r,8,)Ca(r, 8, e, (43)
t—8r2 J By,
t
/ / ldf 1 fil*0* < CCi(r, 8, 0)Ca(r, 8, ey (44)
t—8r2 J By,

Proof From (38) with p = 0, we can integrate from t — 872 to .

t t t
/ez“|f,|2go2 52a/ /e2“|f,|2<p2+8/ / PVl
Boy t—8r2 1=58r2 J By, 1—58r2 J By,

] t
-5 / / IV f: 1202
t—8r2 J By,

+ (ZCN +C2 —2b) [

f df 2L e
2 Boy

t—ér

Hence, we have
L[ 22
— IV fi|79” < 2C(r,8,1)Ca(r, 8, t)e; +2aCy(r, 8, t)ey
2 Ji—sr2 JBy,
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42
+8—e™Ci(r, 8, 1)e1 < CCi(r, 8,0)Ca(r, 8, e
r

The other inequality is similar. O

6.3 Higher Estimate for Time Derivatives

In this subsection we will get estimate for e2“| f;|*. We first build up a (p + 2)-version
of (34).

Proposition 19 For solutions (f, u) of (2) and for p > 1, we have

%) %) n
/fe2“|ﬁ|”+2¢25cf/ |ftf|2|ﬁ|"—1go2+0/f | Ai1P T Vel
1 By 131 By 1 By

tz (45)
+ C/ / ldf 21 f1PH %
1 J By

Proof First note that for any p > 1, V;| £;|1” = plfi|P~(f.i, fi). Also, for simplicity,
denote [ [ = fttlz /5, - Multiplying 7(f) to (2a) gives

26 £ = =2{fuis fi) + ViU fr, fi)).

Multiplying | f;|?¢> for p > 1 and integrating gives

2 [ [eunre =2 [ [tusfire =4 [ [ lsirevie

—2p/f<ft,ﬁ>¢2|ff|”—2<fn-,ﬁ>
I+ 11 4+ II1.

Now
Isc//|ﬁ,-|2|f,|f’”<o2+c//|df|2|f,|f’+‘<p2,
< c//|ﬁ|f’+‘|w|2+c//|df|2|ﬁ|f’+‘<p2,
HlsCf/Iftilzlfxl”‘lwerC//Idf|2lfz|”“<ﬂ2.
This completes the proof. O

Now we will show the desired estimate.

Proposition 20 Let (f, u) are solutions of (2). Assume that

sup E(By,t) < ¢;.
T—=28r2<t<T
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Then fort € [T — 8r2, T1, we have
| st = e (46)
BZr

where
C3 = CCy(r,8,1)Ca(r, 8, 1) . (47)

Note that C3 depends on r, ¢, §.

Proof For simplicity, denote C; = C;(r, 8, t), Co = Ca(r, 8, t). Also, denote C for
any number appeared in computations. Suppose ¢ be a cut-off function supported on
B3;pand ¢ = 1on B, and |Vg| < ‘r—‘. Also, let ¢ be a cut-off function supported on
By, and ¢ = 1on B3, and VY| < 4 Lettj =1 —6r2andt = 1.

-
The proof consists of several steps, increasing power of | f;|.
Step 1. Estimate for [ [ e?*|f,|*¢>.

From (45) with p = 1 and using (37), (43) and (44), we have

t
/ / 2| £, < CC1Cae1 48)
t—8r2 J By,

and

1
/ y / P < 2 CC Crer. 49)
t—8r= J By,

Step 2. Estimate for 2[ | f; 129>,
Now let 1y € [t — ér~, t] be such that

/ e fiPp* (1) = min / e fiPp?(s).
Bor By,

t—8r2<s<t

From (39) with p = 1 and using (48) and (49), we have

> t
f &) £, PP (1) < 4 (/ 2| £, PP (1) + 12 f / |ff|3|w|2)
B, By, to J B3

) 1 t 42 t
S e4a5r (_2/ / e2u|ft|3‘,02 + 12_2/ / |ft|3¢2>
or= Ji—sr2 JB,, r= Ji—sr2 JB,,

1 42
< e4a(3r2 CCCael + 12—e2‘”CC1C281
8r2 r?

1 12(4)?
= CC1Cre (— + 5 eZat) e4u8r2'

5r2 r2
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So, simply,
/ e f;Pp*(1) < CC1C3ey. (50)
By,

Step 3. Estimate for [ [ |V ;%] fil¢? and [ [ |df?| f[>@?.
From (38) with p = 1, we can integrate from ¢ — sritot.

t t t
/32u|fz|3<ﬂ2 s4a/ fe2u|fz|3<ﬂ2+12/ / | i 1Vel?
By t—8r2 1=5r2 J By, 1=58r2 J By,
3 ! 2 2
-5 IV 121 filg
t—8r2 J By,

3C% !
+(30n + 358 _up / / AP PP,
2 1—8r2 J By,

2
Note that 3Cy + 5% — 4b < 0. Now, from (48), (49), and (50), we have

3 ! ) 2 2 42 2at
2 IV £ 21 fi 9% < 2CC1CRe1 + 4aCCiCaey + 12— CC1 Caey
4 Ji—sr2 JB,, r?

< CCCjey.
So, we have
! 2 2 2
/ / VP f1e? < CC1C2e1. 51)
t—8r2 J By,
Similarly,
! 2 2 2
f / PRI PR < CCiC2e. (52)
t—8r2 J By,

Step 4. Estimate for [ [ e?*|f,|*¢?.
From (45) with p = 2 and using (49), (51) and (52), we have

t
/ / ™| fil*p? < CC1C3e (53)
t—8r2 J By,
and
t
/ / |filte? < 2UCCiCer. (54)
t—8r2 J By,

Step 5. Estimate for [ e?“| f;|*¢?.
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Now let 79 € [t — 872, t] be such that

f e?| fil*e* (1) = min f | fiI*9%(5).
BZr B2r

t—8r2<s<t

From (39) with p = 2 and using (53) and (54), we have

2
/ | fl*e? (1) < 8% (f 2"|ft|4¢2(t0)+16/ / | fi] |w|2)
By, B3y )2
6a8r 2u 3,2
il 16—/ / |f|w)
<6r2»/t 8r2 /I;zr I"Z t—8r2 J By, '

6adr? 2 2 2
< e’4or (mCCHCzS] + 16}’_26 ‘”CC1C251)

1 16(4)ze2at> e6a8r2.

=CCiCie (W +—3

So, simply,

/ e?| f:[*¢* (1) < CC1C3ey.
By

O

Remark 1 We can keep going on to get bounds for || By, e?| f;"*(t) < C3(n) for any
n. However, these bounds blow up to infinity as n — oo.

7 W22 and Gradient Estimate

In this section we will get W22 estimate and gradient estimate for the solution f of
(2a). For simplicity, denote || - lk.p = || - lwk.r(p,,) and || - |, = II - llo, p- First observe
the following.

Lemma 21 Let u be a solution of (2b). For p > 2 and for any r > 0,

20%(p —2) [!
/ ey’ (1) </ CP”¢r(to)+L/ f dflPe’.  (55)
Bo, By, pa 1o J By

Proof Note that
3 (e”) = pelu; = pbe?"P"|df|* — pae’".

So, multiplying ¢" and integrating over By, gives

d

— | &My = pb/ eP=PMd 17" —pa/ ey’
dt BZr BZr

Boy
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<bi(p—2) | Py + 260" /
B, By

_ 20%(p —2)

pa B,

ldf1Pe" —pa/ e’ o"

Boy

ldfIPe"

by Young’s inequality with weight A = %. Hence, by integrating, we obtain the
result. o

Lemma22 Let f be any smooth function and let ¢ € C3°(Ba,) be a cut-off function.
Then for anyr > 1 and p > 2, we have

Hdf Vel < CIIdfI N fll2z. (56)

Proof Let 1 <s < 2 be such that p = 25(2 — 5). By Sobolev embedding,

Hdf1" el < CUVAdFI" @) s
< CINAfI'VAd flg)ls
< CldfI M pll follaa

Next, we will show W22 estimate.

Proposition 23 Let (f, u) are solutions of (2). Then there exists €1 > O such that the
following holds:
Assume that

sup  E(By. 1) < e, f e < ey
T—28r2<t<T Bar x{T —28r2}

Then fort € [T — 8r2, T1, we have
| fello < Cs=Ca(r,8,T,e1,Cy), (57)

where

2\ 174 s S\ 174
Cs= (CC381 n Cel) (1 4 C3615r% exp(Cs157 ))

Proof Suppose ¢ be a cut-off function supported on B3,/; and ¢ = 1 on B, and

V| < ‘;‘. Also, let ¥ be a cut-off function supported on By, and ¥ = 1 on B3,/ and

VY| < % Letty =T —26r.
Without loss of generality, assume f o f = 0. Then we have, by Poincare,

1fllp = Cplldfllp-
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From the equation Af + A(df,df) = e f,, multiplying ¢ and arranging terms
gives

IACf@)| < |A@S, df)ol + [ fipl + k(@) (| f] + 1df])
< Cylldf 1ol + €2 fipl + k(@) (1 f1 + 1df]).

By the L? estimate, we have
17912 = € (CullldsPell, + 1] filol, + 1411,) (58)

where the constant C only depends on p and r.
Now let p = 2. Note that, by (46) and (55),

2
le®| filgll3 = ( 4”|f,|2¢2>
2u 4 6u 4
S (/33,/2 lft' ) <v/32r (p )
2u 4,2 6u 4
<(J, #1u) (f, )
< Cj

(/ §0(t0)+—// 1df 15 )
By,

t
< Cyer + C3 / f df[5*

0] BZr

Now applying Lemma 22 with r = 3/2,q = 4 gives

1/4
< /B Idf|6<04) = I1df 1 %ella < CIHIAF 1Y Iall Folln
2r

1/4
< e\ f ol

On the other hand, applying Lemma 22 with r = 2, g = 2 gives

1/2
IHdfPel2 < Cldflall fellaz < Cey?ll follaa.

All together, we have

t
Ifell3, < CCretllfoll3, + CCser + CCse / I follaz+ Cef.
fo
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Let X = | fo ||‘2L’2. Then the above equation becomes

t
(1 = CCYeHX < CCzep + Cef + Cae / X.

fo

So, if 1 is small enough so that 1 — C C;‘\,zsl2 > 1/2, then by Gronwall’s inequality,
we have

1£¢l32 = (CCaer + Cel) (1 + Cer(t = 1) exp(Caen (¢t = 10)))
< (CC381 + Ce‘l‘) (1 + Cie18r° exp(C3318r2)) .
This completes the proof. O

From Sobolev embedding, we now have, for ¢t € [T — 8r2, T1,

I fellip = C4 (59)
forany p > 1.

Now we will show gradient estimate. This can be achieved by obtaining better
estimate than W2’2, say w23,

Proposition 24 Assume the same as in Proposition 23. In addition, we assume that

/ elSu < e
By x{T—26r2)

Then fort € [T — 8r2, T1, we have
I fell23 < Cs=Cs(r,8,T,e1,Cy) (60)
where
Cs=C (CNQ% +cy/ e/ e/ P21 e ) 4 04) :
In particular,

sup|df] < Cs. 1)
B,

Proof By (59), we have uniform bound for |d f|? for any p. Now from Eq. (58), we
have

1£¢l2,p = C (CNIASI3, + 1™ filellp + 14£1,) -
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Now let p = 3 and 19 = T — 28r2. Then we have, using (55) and (59),

2 12 2 12 .3u/2,12
e | fil@l? < lle“’?| flgll 32 1e® 21113

B2r
t
<G (/ 618”(IO)+C/ / Idfllg)
By, to J By

< Cse1 + CC38r7C 8.

Applying (59) completes the proof. O

8 Global Weak Solution

In this section, we will prove the main Theorem 1.

Lemma 25 There exists €1 > 0 such that if (f,u) be a smooth solution of (2) on
By, x [T —26r, T] and

sup  E(By, 1) <¢ and / el < g, (62)
T—28r2<t<T By, x{T—25r2)}

then Holder norms of f,u and their derivatives are all bounded by constants only
depending on T, r, 6, 1, Cy.

Proof By the sup bound of |d f|, we have e “2*(/) < ¢?¢T and

2at 2at
21 = e e

>
1426 f3 e25|df2(x, s)ds 1+ 2bM2 =1
1
1+ 2m2

v

Hence the operator 9; — e 2UA is uniformly parabolic on [0, Tp).
Similar in proof of Theorem 13, we conclude the desired estimate. O

Proof (Proof of Theorem 1) First consider fy is smooth. By Theorem 13, there exists
a smooth solution in (X x [0, T')) for some T > 0. Let 77 be the maximal existence
time. If 71 = oo then we obtain global solution which is smooth everywhere. So
suppose 71 < oo.

If we have lim sup; 7, E(Byr(x),t) < g forany x € ¥ andr > 0, then by above
lemma Holder norms of f, u and their derivatives are all bounded, hence f, u can be
extended beyond the time 77. This contradicts with maximality of 7. So there should
be a point x € X such that

limsup E(By-(x),t) > €.
t /Ty
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Since the total energy is finite, there are at most finitely many such points
{x1,..., % }. Then by above lemma, we get smooth solution (fi,u1) on X x
[0,T]\ {(xil, T1)}i=1,... k- If we denote f(x, T7) and u(x, T7) as the weak limit of
f(x,t)and u(x,t)ast / Ti,then f(¢), u(t) converges to f(77), u(T1) strongly in

1,2 1
Wiee (X \ {x; 1.

Next, denote g; = e?1®-T1) g and consider the flow (2) with initial map f; and
initial metric g1. As above, there is a smooth solution (f,u#2) on X x [0, T»] \
{(xiz, 12)}i=1,... k,. From these we can set up a smooth solution ( f, ) on X' x [0, T1 +
T>] which is smooth except {()cl.1 ,T)HU {(xl.z, T,)}. Iterate this process to obtain global
solution with exception points, which are at most finitely many because the total energy
is finite.

O

9 Finite Time Singularity

As the conformal heat flow is developed to postpone the finite time singularity, it is
expected to have no finite time singularity. In this section we will discuss few remarks
about finite time singularity.

Recall the following

Lemma 26 ([23]) There exist a compact target manifold N, a smooth map fo: D —
N and ¢ > 0 such that every smooth map f : D — N homotopic to vy fails to be
harmonic. If furthermore E(f) < E(fp), then

/ lt(f)I? > e.
D

Together with energy decreasing property of harmonic map heat flow f(¢), the above
lemma implies that no heat flow starting with initial map f; homotopic to fy above
can be smooth after the time t = %f‘)

This argument can be avoided in conformal heat flow. From (4), we have

t
E<0)—E(t)=/ /e‘z”lr(f(t))lz.
0 D

So, if u is large, [, e™2“|z(f(#))|* can be smaller than & even if [}, [T(f(1))|* > e.

The proof of the above lemma relies on no-neck property of approximate harmonic
map with [|t];2 — 0. And the assumption ||t|;2 — O is essential in the no-neck
property as there is a counter example of Parker [7] where ||t (f;)| ;1 is uniformly
bounded. In fact, the energy identity and no-neck property of approximate harmonic
map with ||7(f;)||L» for some p > 1 uniformly bounded was proved in Wang—Wei—
Zhang [43]. The conformal heat flow makes the tension field converge to zero with
different scale. Hence the information about the converging scale of the tension field
will play an important role in the property of the flow.
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