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Abstract
In this paper, we study existence of solutions to a conformally invariant integral equa-
tion involving Poisson-type kernels. Such integral equation has a stronger non-local
feature and is not the dual of any PDE. We obtain the existence of solutions in the
antipodal symmetry class.
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1 Introduction

In [9], Hang–Wang–Yan established the following sharp integral inequality:

‖v‖
L

2n
n−2 (B1)

≤ n− n−2
2(n−1) ω

− n−2
2n(n−1)

n ‖v‖
L

2(n−1)
n−2 (∂ B1)

(1.1)
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for every harmonic function v on the unit ball B1 ⊂ R
n (n ≥ 3), where ωn is the

Euclidean volume of B1. They also classified all the maximizers by showing that the
equality holds if and only if v = ±1 up to a conformal transform on the unit sphere
∂ B1. This is actually a higher dimensional generalization of Carleman’s inequality [2],
whichwas used by Carleman to prove the classical isoperimetric inequality. Let gRn be
the Euclidean metric on Rn . Then for a positive harmonic function v on B1, the scalar

curvature of g = v
4

n−2 gRn on B1 is identically zero. Moreover, under the metric g, the

volume of B1 and the area of ∂ B1 are equal to
∫

B1
v

2n
n−2 dξ and

∫
∂ B1

v
2(n−1)

n−2 ds, respec-
tively. Hence, the inequality (1.1) can be considered as an isoperimetric inequality
in the conformal class of gRn for which the scalar curvature vanishes. In [10], Hang-
Wang-Yan further obtained a generalization of (1.1) on a smooth compact Riemannian
manifold of dimension n ≥ 3 with non-empty boundary by introducing an isoperi-
metric ratio over the scalar-flat conformal class. It was conjectured there that unless
the manifold is conformally diffeomorphic to the Euclidean ball, the supremum of the
isoperimetric ratio over the scalar-flat conformal class is always strictly larger than
that in the Euclidean ball, so that the maximizers would exist. This conjecture was
confirmed in higher dimensions under certain geometric assumptions by Jin-Xiong
[13] and Chen-Jin-Ruan [4], and also was confirmed for balls with a small hole by
Gluck-Zhu [8].

Using the Möbius transformation in (1.5), the equivalent form of (1.1) in the upper
half-space is given by

‖Pu‖
L

2n
n−2 (Rn+)

≤ n− n−2
2(n−1) ω

− n−2
2n(n−1)

n ‖u‖
L

2(n−1)
n−2 (Rn−1)

, (1.2)

where Rn−1 is the boundary of Rn+ and Pu is the Poisson integral of u in the upper

half-space. The maximizers are u(y′) = c(λ2 + |y′ − y′
0|2)−

n−2
2 for some constant c,

positive constant λ, and y′
0 ∈ R

n−1. In [3], Chen proved an analogous inequality for a
one-parameter family {Pa}2−n<a<1 of Poisson-type kernels in Rn+. More specifically,
let the parameter a satisfy 2 − n < a < 1 with n ≥ 2, and define the Poisson-type
kernels

Pa(y′, x) = cn,a
x1−a

n

(|x ′ − y′|2 + x2n )
n−a
2

for y′ ∈ R
n−1, x ∈ R

n+,

where x = (x ′, xn) ∈ R
n+ = R

n−1 × (0,+∞) and cn,a is the positive normaliza-
tion constant such that

∫
Rn−1 Pa(y′, x)dy′ = 1. Consider the following Poisson-type

integral

(Pau)(x) =
∫

Rn−1
Pa(y′, x)u(y′)dy′ for x ∈ R

n+. (1.3)

It becomes the Poisson integral when a = 0 (i.e., P0 = P). Chen [3] proved the
following sharp integral inequality

‖Pau‖
L

2n
n+a−2 (Rn+)

≤ Sn,a‖u‖
L

2(n−1)
n+a−2 (Rn−1)

, (1.4)

123



Existence of Solutions to a Conformally Invariant Integral Equation Page 3 of 21 286

where the sharp constant Sn,a depends only on n and a. This Poisson-type integral
(1.3) was used earlier by Caffarelli-Silvestre [1] to localize the fractional Laplacian
operator. Indeed, when −1 < a < 1, then it was shown in [1] that

div[xa
n ∇(Pau)] = 0 in Rn+,

− lim
xn→0+ xa

n ∂xn (Pau) = Cn,a(−�)
1−a
2 u on Rn−1,

where Cn,a is a positive constant and (−�)
1−a
2 is the fractional Laplacian operator.

See also Yang [19] for higher order extensions for the fractional Laplacian. We refer
to Dou-Guo-Zhu [5], Gluck [7] and the references therein for other related integral
inequalities.

One can define the Poisson-type integral P̃av on B1 as the pull back operator of Pa

via the Möbius transformation:

F : R
n+ → B1, x �→ 2(x + en)

|x + en|2 − en, (1.5)

where en = (0, . . . , 0, 1) ∈ R
n . Then for y′ ∈ R

n−1,

F(y′, 0) =
(

2y′

1 + |y′|2 ,
1 − |y′|2
1 + |y′|2

)

∈ ∂ B1

is the inverse of the stereographic projection. For v ∈ L
2(n−1)
n+a−2 (∂ B1), let

u(y′) =
( √

2

|(y′, 0) + en|
)n+a−2

v(F(y′, 0)),

and define

(P̃av)(F(x)) =
( |x + en|√

2

)n+a−2

(Pau)(x).

That is,

(P̃av) ◦ F(x) = |x + en|n+a−2Pa

(
v ◦ F(y′, 0)

|(y′, 0) + en|n+a−2

)

for v ∈ L
2(n−1)
n−2+a (∂ B1).

By a direct calculation, for v ∈ L
2(n−1)
n+a−2 (∂ B1), the Poisson-type integral P̃av on the

unit ball has the following explicit form:

(P̃av)(ξ) =
∫

∂ B1

P̃a(η, ξ)v(η)dsη for ξ ∈ B1, (1.6)

123



286 Page 4 of 21 X. Du et al.

where

P̃a(η, ξ) = 2a−1cn,a
(1 − |ξ |2)1−a

|ξ − η|n−a
.

Then, it follows from (1.4) that we have the following sharp inequality

‖P̃av‖
L

2n
n+a−2 (B1)

≤ Sn,a‖v‖
L

2(n−1)
n+a−2 (∂ B1)

. (1.7)

From now on, for simplicity, we will use the unified notation Pav to denote either
the Poisson-type integral (1.3) of v on the upper half space or the Poisson-type integral
(1.6) of v on the unit ball, whenever there is no confusion. Inspired byHang-Wang-Yan
[10] on the proof of inequality (1.1), for a positive function K ∈ C1(∂ B1)we consider
the weighted isoperimetric ratio

I (v, K ) =
∫

B1
|Pav| 2n

n+a−2 dξ

( ∫
∂ B1

K |v| 2(n−1)
n+a−2 ds

) n
n−1

for v ∈ L
2(n−1)
n+a−2 (∂ B1).

In this paper, motivated by the classical Nirenberg problem we would like to study
existence of positive solutions to theEuler-Lagrange equation of the functional I (v, K )

for a given function K > 0. The Euler-Lagrange equation can be written as the
following integral equation

K (η)v(η)
n−a

n+a−2 =
∫

B1

Pa(η, ξ) [(Pav)(ξ)]
n−a+2
n+a−2 dξ, v > 0 on ∂ B1. (1.8)

This equation is critical and conformally invariant. Moreover, it is not always solvable
by a Kazdan-Warner type obstruction (see Lemma 3.1 of Hang-Wang-Yan [10] for
a = 0). In this paper, we show the following existence result.

Theorem 1.1 Suppose that n ≥ 2 and 2− n < a < 1. Let K ∈ C1(∂ B1) be a positive
function satisfying K (ξ) = K (−ξ) for every ξ ∈ ∂ B1. If

max∂ B1 K

min∂ B1 K
< 2

1
n , (1.9)

then equation (1.8) has at least one positive Hölder continuous solution.

The existence of solutions to the Nirenberg problem for prescribed antipodal
symmetric functionswas established byMoser [14] in dimension two, and by Escobar-
Schoen [6] in higher dimensions under a flatness assumption near the prescribed
function’s maximum point. For the generalized Nirenberg problem for Q-curvature
and fractional Q-curvatures, similar results have been obtained by Robert [15] and Jin-
Li-Xiong [11, 12], respectively. In the case a = 0, the existence of solutions to (1.8)
with antipodal symmetric functions K has been proved by Xiong [18] under a global
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flatness condition at K ’s minimum point. Our condition is slightly weaker, although
it is still a (not arbitrarily small, though) perturbation result. We do not know whether
a local flatness condition would be sufficient. The difficulty is that the antipodal sym-
metry does not provide a desirable positive mass in our setting, which is different from
the Nirenberg problem or the Yamabe problem. Note that equation (1.8) has a stronger
non-local feature and is not the dual of any PDE. This, as already shown in [18], will
lead to some differences from the classical Nirenberg problem [12].

This paper is organized as follows. In Sect. 2, we collect some elementary properties
of the Poisson extension as a preparation. In Sect. 3, we show the blow up procedure
for the non-linear integral equation (1.8). In Sect. 4, we use a variational method to
prove Theorem 1.1.

2 Preliminaries

From now on, we denote x = (x ′, xn) ∈ R
n−1 × R as the point in R

n , BR(x) as the
open ball of Rn with radius R and center x , B+

R (x) as BR(x) ∩R
n+, and B ′

R(x ′) as the
open ball in R

n−1 with radius R and center x ′. For simplicity, we also write BR(0),
B+

R (0) and B ′
R(0) as BR , B+

R and B ′
R , respectively.

Here we list several properties of the Poisson-type extension operator Pa .

Proposition 2.1 Suppose that n ≥ 2 and 2 − n < a < 1. If 1 ≤ p < ∞ and
1 ≤ q <

np
n−1 , then the operator

Pa : L p(Rn−1) → Lq
loc(R

n+)

is compact.

Proof The proof is the same as that of [9, Corollary 2.2]. ��
Corollary 2.2 Suppose that n ≥ 2 and2−n < a < 1. If 1 ≤ p < ∞ and1 ≤ q <

np
n−1 ,

then the operator

Pa : L p(∂ B1) → Lq(B1)

is compact.

Proof The proof is the same as that of [10, Corollary 2.1]. ��
In order to establish regularity, we need the following simple fact

|∇k
x ′ Pa(y′, x)| = |∇k

y′ Pa(y′, x)| ≤ C(n, a, k)x1−a
n (|x ′ − y′|2 + x2n )−

n−a+k
2 (2.1)

for x ′ �= y′ and k ≥ 1.
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Theorem 2.3 Suppose that n ≥ 2, 2 − n < a < 1 and 2(n−1)
n+a−2 ≤ p < ∞. Let K ∈

C1(Rn−1) be a positive function. If u ∈ L p
loc(R

n−1) is non-negative, not identically
zero and satisfies

K (y′)u(y′)p−1 =
∫

R
n+

Pa(y′, x) [(Pau)(x)]
n−a+2
n+a−2 dx, (2.2)

then u ∈ Cβ
loc(R

n−1) for any β ∈ (0, 1).

The proof of this Hölder regularity is given in the appendix.
Finally, we also need the following Liouville theorem proved by Wang-Zhu [17].

Theorem 2.4 (Wang-Zhu [17]) Suppose that n ≥ 2 and a < 1. If 	 ∈ C2(Rn+) ∩
C0(Rn+) is a solution of

{− div(xa
n ∇	) = 0 in R

n+,

	 = 0 on R
n−1

and is bounded from below in R
n+. Then

	(x) = Cx1−a
n

for some constant C ≥ 0.

3 A Blow-Up Analysis

The local blow up analysis for the non-local integral equation (2.2) is as follows.

Theorem 3.1 Suppose that n ≥ 2 and 2− n < a < 1. Let 2(n−1)
n+a−2 ≤ pi < 2n

n+a−2 be a

sequence of numbers with limi→∞ pi = 2(n−1)
n+a−2 , and Ki ∈ C1(B ′

1) be a sequence of
positive functions satisfying

Ki ≥ 1

c0
, ‖Ki‖C1(B′

1)
≤ c0

for some constant c0 ≥ 1 independent of i . Suppose that ui ∈ C(Rn−1) is a sequence
of non-negative solutions of

Ki (y′)ui (y′)pi −1 =
∫

R
n+

Pa(y′, x) [(Paui )(x)]
n−a+2
n+a−2 dx for y′ ∈ B ′

1 (3.1)

and ui (0) → +∞ as i → ∞. Suppose that Ri ui (0)
pi − 2n

n+a−2 → 0 for some Ri →
+∞ and

ui (y′) ≤ bui (0) for |y′| < Ri ui (0)
pi − 2n

n+a−2 , (3.2)
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where b > 0 is independent of i . Then, after passing to a subsequence, we have

φi (y′) := 1

ui (0)
ui

(
ui (0)

pi − 2n
n+a−2 y′) → φ(y′) in C1/2

loc (Rn−1), (3.3)

where φ > 0 satisfies

Kφ(y′)
n−a

n+a−2 =
∫

R
n+

Pa(y′, x) [(Paφ)(x)]
n−a+2
n+a−2 dx for y′ ∈ R

n−1

and K := limi→∞ Ki (0) > 0 along the subsequence.

Proof It follows from (3.1) and (3.3) that φi satisfies the equation

Hi (y′)φi (y′)pi −1 =
∫

R
n+

Pa(y′, x) [(Paφi )(x)]
n−a+2
n+a−2 dx for |y′| < Ri , (3.4)

where Hi (y′) := Ki
(
ui (0)

pi − 2n
n+a−2 y′). Moreover, by (3.2), we have

0 ≤ φi (y′) ≤ b for |y′| < Ri . (3.5)

The proof consists of two steps.
Step 1. Estimate the locally uniform bound of {φi } in some Hölder spaces.
Fixing 100 < R < Ri/2 for large i , we can define

	′
i = Pa(χB′

R
φi ) and 	′′

i = Pa((1 − χB′
R
)φi ),

where χB′
R
is the characterization function of B ′

R . Then

Paφi = 	′
i + 	′′

i .

By (3.5) and the property of Pa we can get

0 ≤ 	′
i ≤ b. (3.6)

Since Ki ≤ c0 on B ′
1, by (3.4) and (3.5), for any |y′| < R − 2 we have,

c0bpi −1 ≥
∫

B1/2(y′,1)
Pa(y′, x) [(Paφi )(x)]

n−a+2
n+a−2 dx

≥ 1

C

∫

B1/2(y′,1)
[(Paφi )(x)]

n−a+2
n+a−2 dx

≥ 1

C
[(Paφi )(x̄)]

n−a+2
n+a−2

123
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for some x̄ ∈ B1/2(y′, 1), where we used the mean value theorem for integrals in the
last inequality and C > 0 depends only on n and a. It follows that

	′′
i (x̄) ≤ (Paφi )(x̄) ≤ Cb

(pi −1)(n+a−2)
n−a+2 .

Since |x̄ ′| ≤ R − 1 and 1
2 ≤ x̄n ≤ 3

2 ,

Cb
(pi −1)(n+a−2)

n−a+2 ≥ 	′′
i (x̄) = cn,a

∫

Rn−1\B′
R

x̄1−a
n

(|x̄ ′ − z′|2 + x̄2n )
n−a
2

φi (z
′)dz′

≥ 1

C

∫

Rn−1\B′
R

φi (z′)
|x̄ ′ − z′|n−a

dz′.

Therefore, for any |y′| < R − 2 and x ∈ B ′
1(y′) × (0, 1], we have

	′′
i (x)

x1−a
n

≤ C
∫

Rn−1\B′
R

φi (z′)
|x ′ − z′|n−a

dz′

≤ C
∫

Rn−1\B′
R

φi (z′)
|x̄ ′ − z′|n−a

dz′

≤ Cb
(pi −1)(n+a−2)

n−a+2 ,

(3.7)

where the second inequality holds since

|x̄ ′ − z′| ≤ |x̄ ′ − x ′| + |x ′ − z′| ≤ 2 + |x ′ − z′| ≤ 3|x ′ − z′|.

This together with (3.6) implies that

(Paφi )(x) ≤ C(n, a, c0, b) ∀ x ∈ B ′
R−2 × (0, 1].

Using the above estimate, we have by direct calculations that

∥
∥
∥
∥

∫

B′
R−2×(0,1]

Pa(y′, x) [(Paφi )(x)]
n−a+2
n+a−2 dx

∥
∥
∥
∥

Cβ (B′
R−3)

≤ C(n, a, b, c0, R, β)

for any β ∈ (0, 1). On the other hand, for |y′| < R − 3, by (2.1) we have

∣
∣
∣
∣∇y′

( ∫

R
n+\B′

R−2×(0,1]
Pa(y′, x) [(Paφi )(x)]

n−a+2
n+a−2 dx

)∣
∣
∣
∣

≤ C
∫

R
n+\B′

R−2×(0,1]
Pa(y′, x) [(Paφi )(x)]

n−a+2
n+a−2 dx

≤ C Hi (y′)φi (y′)pi −1

≤ Cbpi −1

≤ C(n, a, c0, b).
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Combing the above two estimates and using (3.4), we can obtain

‖φ pi −1
i ‖C3/4(B′

R−3)
≤ C(n, a, b, c0, R). (3.8)

Since φi (0)pi −1 = 1, by (3.8) there exists δ > 0 depending only on n, a, b and c0
such that φi (y′)pi −1 ≥ 1

2 for all |y′| < δ. Hence,

(Paφi )(x) ≥ 1

C

∫

B′
δ

x1−a
n

(|x ′ − y′|2 + x2n )
n−a
2

2
− 1

pi −1 dy′ ≥ 1

C

x1−a
n

(1 + |x |)n−a
.

Again, using (3.4) we can get for |y′| < R − 3,

φi (y′)pi −1 ≥ 1

C(n, a, c0, b, R)
> 0.

This together with (3.8) implies that

‖φi‖C3/4(B′
R−3)

≤ C(n, a, c0, b, R). (3.9)

Hence, (3.3) is proved.
Step 2. Show the convergence of Paφi and the equation of φi .
Fixing 100 < R < Ri/2 for large i , we write (3.4) as

Hi (y′)φi (y′)pi −1 =
∫

B+
R

Pa(y′, x) [(Paφi )(x)]
n−a+2
n+a−2 dx + hi (R, y′), (3.10)

where

hi (R, y′) =
∫

R
n+\B+

R

Pa(y′, x) [(Paφi )(x)]
n−a+2
n+a−2 dx ≥ 0.

By (2.1) and (3.4), for any |y′| < R − 1, we have

|∇hi (R, y′)| ≤ Chi (R, y′) ≤ C Hi (y′)φi (y′)pi −1 ≤ C(n, a, c0, b).

Therefore, after passing to a subsequence,

hi (R, y′) → h(R, y′)

for some non-negative function h ∈ C3/4(BR−1).
Similar as in Step 1, we write Paφi into following two parts 	′

i and 	′′
i :

	′
i = Pa(ηRφi ) and 	′′

i = Pa((1 − ηR)φi ),

123
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where ηR is a smooth cut-off function satisfying ηR ≡ 1 in B ′
R−4 and ηR ≡ 0 in

(B ′
R−3)

c. By using (3.9) and noticing that

	′
i (x) = cn,a

∫

Rn−1

1

(|z′|2 + 1)
n−a
2

(ηRφi )(x ′ − xnz′)dz′,

we can obtain ‖	′
i‖Cα(B+

R/2)
≤ C(n, a, c0, b, R) with α := min{3/4, 1 − a} > 0. On

the other hand, similar to (3.7) we have

∥
∥
∥
∥

	′′
i

x1−a
n

∥
∥
∥
∥

C1(B+
R/2)

≤ C(n, a, c0, b, R),

and hence ‖	′′
i ‖Cα(B+

R/2)
≤ C(n, a, c0, b, R). Therefore, after passing to a subse-

quence, we have

Paφi → 	̃ in Cα/2
loc (Rn+)

for some 	̃ ≥ 0 satisfying

{ − div(xa
n ∇	̃) = 0 in Rn+,

	̃ = φ on R
n−1.

From (3.5), we know that 0 ≤ φ ≤ b in the whole Rn−1, and thus Paφ is bounded in
R

n+. Hence, 	̃ − Paφ ∈ C2(Rn+) ∩ C0(Rn+) satisfies

{− div(xa
n ∇(	̃ − Paφ)) = 0 in Rn+,

	̃ − Paφ = 0 on Rn−1.

It follows from the Liouville-type result in Theorem 2.4 that

	̃ = Paφ + c1x1−a
n (3.11)

for some constant c1 ≥ 0. Sending i → ∞ in (3.10), we have

Kφ(y′)
n−a

n+a−2 =
∫

B+
R

Pa(y′, x)	̃(x)
n−a+2
n+a−2 dx + h(R, y′). (3.12)

If c1 > 0 in (3.11), taking y′ = 0 and sending R → ∞ we obtain that

Kφ(0)
n−a

n+a−2 ≥
∫

B+
R

Pa(0, x)	̃(x)
n−a+2
n+a−2 dx → ∞.

This is a contradiction. Hence, c1 = 0 and 	̃ = Paφ.

123
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Now we adapt some arguments in [12, Proposition 2.9]. By (3.12), h(R, y′) is
non-increasing with respect to R. Notice that for R � |y′|,

Rn−a

(R + |y′|)n−a hi (R, 0) ≤ hi (R, y′)

= cn,a

∫

R
n+\B+

R

|x |n−a

(|x ′ − y′|2 + x2n )
n−a
2

x1−a
n

|x |n−a

[
(Paφi )(x)

] n−a+2
n+a−2 dx

≤ Rn−a

(R − |y′|)n−a hi (R, 0).

It follows that

lim
R→∞ h(R, y′) = lim

R→∞ h(R, 0) =: c2 ≥ 0.

Sending R to∞ in (3.12), by the Lebesgue’s monotone convergence theoremwe have

Kφ(y′)
n−a

n+a−2 =
∫

R
n+

Pa(y′, x) [(Paφ)(x)]
n−a+2
n+a−2 dx + c2.

If c2 > 0, then φ ≥ ( c2
c0

) n+a−2
n−a and thus Paφ ≥ ( c2

c0

) n+a−2
n−a . This is impossible, since

otherwise the integral in the right-hand side is infinity. Hence c2 = 0. The proof of
Theorem 3.1 is completed. ��

4 A Variational Problem

Let K ∈ C1(∂ B1) be a positive function satisfying K (ξ) = K (−ξ), and L p
as(∂ B1) ⊂

L p(∂ B1) (p ≥ 1) be the set of antipodally symmetric functions. For p ≥ 2(n−1)
n+a−2 ,

define

λas,p(K ) = sup

{ ∫

B1

|Pav| 2n
n+a−2 dξ : v ∈ L p

as(∂ B1) with
∫

∂ B1

K |v|pds = 1

}

.

Denote

λas, 2(n−1)
n+a−2

(K ) = λas(K ).

Proposition 4.1 If

λas(K ) >
S

2n
n+a−2

n,a

(min∂ B1 K )
n

n−1 2
1

n−1

, (4.1)

where Sn,a is the sharp constant in the inequality (1.4), then λas(K ) is achieved.
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Proof We claim that

lim inf
p↘ 2(n−1)

n+a−2

λas,p(K ) ≥ λas(K ).

For any ε > 0, by the definition of λas(K ), we can find a function v ∈ L∞
as (∂ B1) such

that

∫

B1

|Pav| 2n
n+a−2 dξ > λas(K ) − ε and

∫

∂ B1

K |v| 2(n−1)
n+a−2 ds = 1.

Let Vp := ∫
∂ B1

K |v|pds. Since

lim
p→ 2(n−1)

n+a−2

Vp =
∫

∂ B1

K |v| 2(n−1)
n+a−2 ds = 1,

we have, for p close to 2(n−1)
n+a−2 sufficiently, that

λas,p(K ) ≥
∫

B1

∣
∣
∣
∣Pa

(
v

V 1/p
p

)∣
∣
∣
∣

2n
n+a−2

dξ ≥ λas(K ) − 2ε.

Since ε is arbitrary, the claim is proved.
By the above claim, we can find pi ↘ 2(n−1)

n+a−2 as i → ∞ such that λas,pi (K ) →
λ ≥ λas(K ). Since K ∈ C1(∂ B1) is positive, if follows from Corollary 2.2 that for
pi >

2(n−1)
n+a−2 , λas,pi is achieved, say, by vi . Since |Pavi | ≤ Pa |vi |, we can assume that

vi is non-negative. Moreover,

‖vi‖pi
L pi (∂ B1)

≤ 1

min∂ B1 K
.

Then, by (1.7) we have ‖Pavi‖
L

2n
n+a−2 (B1)

≤ C for some C > 0 independent of i . It is

easy to see that vi satisfies the Euler-Lagrange equation

λas,pi (K )K (η)vi (η)pi −1 =
∫

B1

Pa(η, ξ) [(Pavi )(ξ)]
n−a+2
n+a−2 dξ ∀ η ∈ ∂ B1. (4.2)

By the regularity result in Theorem 2.3, vi ∈ Cβ(∂ B1) for any β ∈ (0, 1).
Next we will show that vi is uniformly bounded. Otherwise, we have

vi (ηi ) = max
∂ B1

vi → ∞ as i → ∞.
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Let ηi → η̄ as i → ∞. By the stereographic projection with ηi as the south pole,
equation (4.2) is transformed to

λas,pi (K )Ki (y′)ui (y′)pi −1 =
∫

R
n+

Pa(y′, x) [(Paui )(x)]
n−a+2
n+a−2 dx ∀ y′ ∈ R

n−1,

where

Ki (y′) =
( √

2

|y′ + en|
)(n+a−2)(pi −1)−n+a

K (F(y′))

and

ui (y′) =
( √

2

|y′ + en|
)n+a−2

vi (F(y′)).

Hence, ui (0) = maxRn−1 ui → ∞ as i → ∞. Taking Ri = ui (0)
− 1

2 (pi − 2n
n+a−2 ) →

+∞ and using Theorem 3.1, we obtain that after passing to a subsequence,

φi (y′) := 1

ui (0)
ui

(
ui (0)

pi − 2n
n+a−2 y′) → φ(y′) in C1/2

loc (Rn−1),

where φ > 0 satisfies

λK (η̄)φ(y′)
n−a

n+a−2 =
∫

R
n+

Pa(y′, x) [(Paφ)(x)]
n−a+2
n+a−2 dx for y′ ∈ R

n−1.

By Tang-Dou [16], φ is classified.
Since vi is non-negative and antipodally symmetric, for any small δ > 0 we have

1 =
∫

∂ B1

Kv
pi
i ds

≥ 2
∫

F(B′
δ)

Kv
pi
i ds

= 2
∫

B′
δ

Ki u
pi
i dz′

= 2ui (0)
n
(

pi − 2(n−1)
n+a−2

) ∫

B′
δui (0)

2n
n+a−2−pi

Ki
(
ui (0)

pi − 2n
n+a−2 y′)φi (y′)pi dy′

≥ 2
∫

B′
R

Ki
(
ui (0)

pi − 2n
n+a−2 y′)φi (y′)pi dy′

→ 2K (η̄)

∫

B′
R

φ(y′)
2(n−1)
n+a−2 dy′
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as i → ∞ for any fixed R > 0. It follows that

1 ≥ 2K (η̄)

∫

Rn−1
φ(y′)

2(n−1)
n+a−2 dy′.

Hence,

S
2n

n+a−2
n,a ≥

∫
R

n+ |Paφ| 2n
n+a−2

( ∫
Rn−1 |φ| 2(n−1)

n+a−2
) n

n−1

= λK (η̄)

( ∫

Rn−1
|φ| 2(n−1)

n+a−2

)− 1
n−1

≥ λK (η̄)
n

n−1 2
1

n−1 .

It implies that

λ ≤ S
2n

n+a−2
n,a

(min∂ B1 K )
n

n−1 2
1

n−1

,

which contradicts the assumption (4.1). Therefore, {vi } is uniformly bounded on ∂ B1.
ByTheorem2.3, {vi } is bounded inC1/2(∂ B1). Thus, after passing to a subsequence,

we have for some non-negative function v ∈ C(∂ B1),

vi → v in C(∂ B1),

and thus,

Pavi → Pav in C(B1).

Letting i → ∞ in (4.2), we obtain that v satisfies

λK (η)v(η)
n−a

n+a−2 =
∫

B1

Pa(η, ξ) [(Pav)(ξ)]
n−a+2
n+a−2 dξ.

Moreover, since

1 =
∫

∂ B1

K (η)vi (η)pi dη →
∫

∂ B1

K (η)v(η)
2(n−1)
n+a−2 dη,

we have v > 0 on ∂ B1. These also imply that λ = λas(K ) and λas(K ) is achieved.
The proof of Proposition 4.1 is completed. ��
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Proof Let v = 1, then

λas(K ) ≥
∫

B1
|Pa1| 2n

n+a−2 dξ
( ∫

∂ B1
K ds

) n
n−1

≥ S
2n

n+a−2
n,a

(max∂ B1 K )
n

n−1
>

S
2n

n+a−2
n,a

(min∂ B1 K )
n

n−1 2
1

n−1

,

where we use (1.9) in the last inequality. By Proposition 4.1, we obtain the desired
result. ��
Acknowledgements The authors would like to thank the anonymous referees very much for their careful
reading and valuable comments.

Appendix A Hölder Regularity

This appendix is devoted to the proof of Theorem 2.3. We start with the improvement
of integrability of the subsolutions to some nonlinear integral equations.

Proposition A.1 Suppose that n ≥ 2 and 2 − n < a < 1. Let 1 < r , s ≤ ∞,
1 ≤ t < ∞, n

n−1 < p < q < ∞ satisfy

1

n
<

t

q
+ 1

r
<

t

p
+ 1

r
≤ 1

and

n

tr
+ n − 1

s
= 1

t
.

Assume that U , V ∈ L p(B+
R ), W ∈ Lr (B+

R ), f ∈ Ls(B ′
R) are all non-negative

functions, V ∈ Lq(B+
R/2),

‖W‖1/t
Lr (B+

R )
‖ f ‖Ls (B′

R) ≤ ε(n, a, p, q, r , s, t) small

and

U (x) ≤
∫

B′
R

Pa(y′, x) f (y′)
(∫

B+
R

Pa(y′, z)W (z)U (z)t dz

)1/t

dy′ + V (x)

for x ∈ B+
R . Then U ∈ Lq(B+

R/4) and

‖U‖Lq (B+
R/4)

≤ c(n, a, p, q, r , s, t)
(

R
n
q − n

p ‖U‖L p(B+
R ) + ‖V ‖Lq (B+

R/2)

)
.

The proof of Proposition A.1 is the same as that of [9, Proposition 5.2]. We also
need the following two L p-boundedness for the operator Pa and its adjoint operator.
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Proposition A.2 (Chen [3]) Suppose that n ≥ 2 and 2 − n < a < 1. For 1 < p ≤ ∞
we have

‖Pa f ‖
L

np
n−1 (Rn+)

≤ c(n, a, p)‖ f ‖L p(Rn−1)

for any f ∈ L p(Rn−1).

For a function F on R
n+, define

(Ta F)(y′) =
∫

R
n+

Pa(y′, x)F(x)dx .

Then we have the following inequality by a duality argument. See also the similar
proof in [9, Proposition 2.3].

Proposition A.3 Suppose that n ≥ 2 and 2 − n < a < 1. For 1 ≤ p < n we have

‖Ta F‖
L

(n−1)p
n−p (Rn−1)

≤ C(n, a, p)‖F‖L p(Rn+)

for any F ∈ L p(Rn+).

Next we give the details of the proof of Theorem 2.3.

Proof of Theorem 2.3 Let ũ0(y′) = K (y′)u(y′)p−1 and U0(x) = (Pau)(x). Then

ũ0(y′) =
∫

R
n+

Pa(y′, x)U0(x)
n−a+2
n+a−2 dx .

Define

UR(x) =
∫

Rn−1\B′
R

Pa(y′, x)u(y′)dy′,

ũ R(y′) =
∫

R
n+\B+

R

Pa(y′, x)U0(x)
n−a+2
n+a−2 dx .

Since u ∈ L p
loc(R

n−1), by Proposition A.2 we get
∫

B′
R

Pa(z′, ·)u(z′)dz′ ∈ L
np

n−1 (Rn+).
Notice that

np

n − 1
≥ 2n

n + a − 2
.

Step 1. We claim that U0 ∈ L
np

n−1
loc (Rn+) and UR ∈ L

np
n−1 (B+

R ) ∩ L∞
loc(B+

R ∪ B ′
R).

Since u ∈ L p
loc(R

n−1), we have u < ∞ a.e. on R
n−1. It implies that U0 < ∞ a.e.

on Rn+. Hence, there exists x0 ∈ B+
R such that U0(x0) < ∞. It follows that

∫

Rn−1\B′
R

u(z′)
(|x ′

0 − z′|2 + x20,n)
n−a
2

dz′ < ∞.
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Thus,

∫

Rn−1\B′
R

u(z′)
|z′|n−a

dz′ < ∞.

For 0 < θ < 1 and x ∈ B+
θ R , we have

UR(x) =
∫

Rn−1\B′
R

Pa(z′, x)u(z′)dz′ ≤ cn,a R1−a

(1 − θ)n−a

∫

Rn−1\B′
R

u(z′)
|z′|n−a

dz′.

It follows that UR ∈ L∞
loc(B+

R ∪ B ′
R). Since

∫
B′

R
Pa(z′, ·)u(z′)dz′ ∈ L

np
n−1 (Rn+), we

know that U0 ∈ L
np

n−1
loc (B+

R ∪ B ′
R). Since R > 0 is arbitrary, we deduce that U0 ∈

L
np

n−1
loc (Rn+) and hence UR ∈ L

np
n−1 (B+

R ).

Step 2. We show that ũ R ∈ L
p

p−1 (B ′
R) ∩ L∞

loc(B ′
R).

Since ũ0 ∈ L
p

p−1
loc (Rn−1), we obtain ũ0 ∈ L

p
p−1 (B ′

R) and thus ũ R ∈ L
p

p−1 (B ′
R).

Hence, we can find y′
0 ∈ B ′

R such that ũ R(y′
0) < ∞. That is,

∫

R
n+\B+

R

z1−a
n

(|z′ − y′
0|2 + z2n)

n−a
2

U0(z)
n−a+2
n+a−2 dz < ∞.

Therefore,

∫

R
n+\B+

R

z1−a
n

|z|n−a
U0(z)

n−a+2
n+a−2 dz < ∞.

For 0 < θ < 1 and y′ ∈ B ′
θ R , we have

ũ R(y′) =
∫

R
n+\B+

R

Pa(y′, z)U0(z)
n−a+2
n+a−2 dz ≤ cn,a

(1 − θ)n−a

∫

R
n+\B+

R

z1−a
n

|z|n−a
U0(z)

n−a+2
n+a−2 dz.

This implies that ũ R ∈ L∞
loc(B ′

R).
Step 3. We prove that ũ0 ∈ L∞

loc(R
n−1) and U0 ∈ L∞

loc(R
n+).

Case 1: 2(n−1)
n+a−2 < p < ∞. This is the subcritical case, and we directly use the

bootstrap method to prove the regularity.

From Proposition A.2 and Step 1, we know that U
n−a+2
n+a−2
0 ∈ Lq0

loc(R
n+) with

q0 := np

n − 1
· n + a − 2

n − a + 2
>

2n

n + a − 2
· n + a − 2

n − a + 2
= 2n

n − a + 2
> 1.

If q0 ≥ n, by Proposition A.3 we know that
∫

B+
R

Pa(·, z)U0(z)
n−a+2
n+a−2 dz ∈ Lr (Rn−1)

for any 1 ≤ r < ∞. This together with Step 2 implies that ũ0 ∈ Lr
loc(B ′

R) for any
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1 ≤ r < ∞. Since R is arbitrary, we obtain ũ0 ∈ Lr
loc(R

n−1) for any 1 ≤ r < ∞.
Moreover, by Proposition A.2 we have

∫
B′

R
Pa(z′, ·)u(z′)dz′ ∈ Ls(Rn+) for any n

n−1 <

s < ∞. Combined with Step 1, we also have U0 ∈ Ls
loc(R

n+) for any 1 ≤ s < ∞.

If q0 < n, then Proposition A.3 yields
∫

B+
R

Pa(·, z)U0(z)
n−a+2
n+a−2 dz ∈ L

(n−1)q0
n−q0 (Rn−1).

Combined with Step 2, we have ũ0 ∈ L
(n−1)q0

n−q0
loc (B ′

R) for any R > 0. Consequently, we
deduce that u ∈ L p1

loc(R
n−1) with

p1 := (p − 1) · (n − 1)q0
n − q0

= p · (p − 1) n+a−2
n−a+2

1 − p(n+a−2)
(n−1)(n−a+2)

> p,

where the last inequality holds since p >
2(n−1)
n+a−2 . Fromnowon,we denote the constant

γ := (p − 1) n+a−2
n−a+2

1 − p(n+a−2)
(n−1)(n−a+2)

> 1.

We can see that the regularity of u is boosted to L p1
loc(R

n−1) with p1 = p · γ .

Using Proposition A.2 and Step 1 again, we obtain U
n−a+2
n+a−2
0 ∈ Lq1

loc(R
n+) with

q1 := np1
n − 1

· n + a − 2

n − a + 2
= q0 · γ > q0.

If q1 ≥ n, then we easily obtain U0 ∈ Ls
loc(R

n+) for any 1 ≤ s < ∞. If q1 < n, by a
similar argument as above we can obtain that u ∈ L p2

loc(R
n−1) with

p2 := (p − 1) · (n − 1)q1
n − q1

= p1 · (p − 1) n+a−2
n−a+2

1 − p1(n+a−2)
(n−1)(n−a+2)

> p1 · γ

due to p1 > p. Hence, the regularity of u is boosted to L p2
loc(R

n−1) with p2 > p1 · γ .
By Proposition A.2 and Step 1 again, we obtain U

n−a+2
n+a−2
0 ∈ Lq2

loc(R
n+) with

q2 := np2
n − 1

· n + a − 2

n − a + 2
> q1 · γ.

Repeating this process with finite many steps, we can boostU0 to Lq
loc(R

n+) for any
1 ≤ q < ∞. By Hölder inequality we get

ũ0(y′) =
∫

B+
R

Pa(y′, z)U0(z)
n−a+2
n+a−2 dz + ũ R(y′) ≤ c(n, a, q)‖U0‖

n−a+2
n+a−2

Lq (B+
R )

+ ũ R(y′)
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for some q >
n(n−a+2)

n+a−2 . This together with Step 2 implies that ũ0 ∈ L∞
loc(B ′

R). Since
R is arbitrary, we have ũ0 ∈ L∞

loc(R
n−1) and hence u ∈ L∞

loc(R
n−1). Combined with

Step 1, we see U0 ∈ L∞
loc(R

n+).

Case 2: p = 2(n−1)
n+a−2 . For this critical case, the bootstrap method above does not

work. We will use Proposition A.1 to establish the regularity.

In this case, we have U0 ∈ L
2n

n+a−2
loc (Rn+) and UR ∈ L

2n
n+a−2 (B+

R ) ∩ L∞
loc(B+

R ∪ B ′
R).

Since a < 1, we get 0 < n+a−2
n−a < 1. Then,

ũ0(y′)
n+a−2

n−a ≤
(∫

B+
R

Pa(y′, z)U0(z)
n−a+2
n+a−2 dz

) n+a−2
n−a + ũ R(y′)

n+a−2
n−a .

Hence,

U0(x) =
∫

B′
R

Pa(y′, x)u(y′)dy′ + UR(x)

=
∫

B′
R

Pa(y′, x)K (y′)−
n+a−2

n−a ũ0(y′)
n+a−2

n−a dy′ + UR(x)

≤
∫

B′
R

Pa(y′, x)K (y′)−
n+a−2

n−a

( ∫

B+
R

Pa(y′, z)U0(z)
2

n+a−2 U0(z)
n−a

n+a−2 dz

) n+a−2
n−a

dy′

+ VR(x),

where

VR(x) =
∫

B′
R

Pa(y′, x)K (y′)−
n+a−2

n−a ũ R(y′)
n+a−2

n−a dy′ + UR(x).

Since ũ R ∈ L
2(n−1)

n−a (B ′
R), we have VR ∈ L

2n
n+a−2 (B+

R ). On the other hand, for 0 < θ <

1, x ∈ B+
θ R , we have

∫

B′
R

Pa(y′, x)K (y′)−
n+a−2

n−a ũ R(y′)
n+a−2

n−a dy′

≤ (minB′
R

K )−
n+a−2

n−a

[

‖ũ R‖
n+a−2

n−a
L∞(B 1+θ

2 R
) + c(n, a)

(1 − θ)n−a Rn−1

∫

B′
R\B 1+θ

2 R

ũ R(y′)
n+a−2

n−a dy′
]

≤ (minB′
R

K )−
n+a−2

n−a

[

‖ũ R‖
n+a−2

n−a
L∞(B 1+θ

2 R
) + c(n, a)

(1 − θ)n−a R
n+a−2

2

‖ũ R‖
n+a−2

n−a

L
2(n−1)

n−a (B′
R )

]

.

Hence, VR ∈ L∞
loc(B+

R ∪ B ′
R). It follows from Proposition A.1 that U0 ∈ Lq(B+

R/4)

for any 2n
n+a−2 < q < ∞ when R is sufficiently small. Therefore,

ũ0(y′) =
∫

B+
R/4

Pa(y′, z)U0(z)
n−a+2
n+a−2 dz + ũ R/4(y′) ≤ c(n, a, q)‖U0‖

n−a+2
n+a−2

Lq (B+
R/4)

+ ũ R/4(y′)
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for some q >
n(n−a+2)

n+a−2 . In particular, we see ũ0 ∈ L∞(B ′
R/8). Since every point can

be viewed as a center, we get ũ0 ∈ L∞
loc(R

n−1) and hence U0 ∈ L∞
loc(R

n+).

Step 4. We prove that u ∈ Cβ
loc(R

n−1) for any β ∈ (0, 1).
From Step 1 and 2, we know that for any R > 0,

∫

Rn−1\B′
R

u(y′)
|y′|n−a

dy′ < ∞ and
∫

R
n+\B+

R

x1−a
n

|x |n−a
U0(x)

n−a+2
n+a−2 dx < ∞.

Therefore, ũ R ∈ C∞(B ′
R) and UR ∈ C1−a(B+

R ∪ B ′
R). It follows from Step 3 that

ũ0 ∈ Cβ
loc(R

n−1) for any 0 < β < 1. By the continuity, ũ0 > 0 inRn−1. Consequently,

u ∈ Cβ
loc(R

n−1) for any 0 < β < 1 since K is a positive C1 function in Rn . ��
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