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Abstract
This paper begins with solving the linear elastodynamic equation with forcing by
expanding it into Fourier series. We then proceed to prove the conservation laws
of momentum, angular momentum, and energy. We intend the paper to provide a
computational demonstration for modal analysis by showing that eigenmodes and
frequencies of vibration of a free-suspending horse match with the modal analysis
results of the horse after a short-impulse impact of the horse with a wall. The horse
CADmodel has to bemodified to contain a rigid body portion to prevent the rotational-
tumbling modes. A fast Fourier transform is applied to the sensorial time series data
in the calculation of the vibration frequencies. One can see that many low-frequency
modes and data match these modal analysis results.

Keywords Animal motions · Eigenfunction expansions · External forcing ·
Frequency matching · Sensors

Mathematics Subject Classification 92-08 · 92-10 · 92C10

1 Introduction

In Part I [1] of this series of papers, we have studiously computed and displayed the
modes of motion of a horse and a camel. As can be seen, there are many types of
movements by the various parts of those two animals. Some modes can be readily rec-
ognized to be natural and common and can be associated with the walking movements
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of horses and camels. But a few others appear to be less so. Therefore the question
arises as to whether such modes are just computational curiosities or, rather, they are
genuine fundamental modes of motion of the animals. The main purpose of this paper,
Part II, is to demonstrate to the reader that, indeed, (nearly) all of the low-frequency
modes of motion are naturally occurring, and can be observed in the real world of
the lives of us or that of the animals. In a large sense, this paper is intended as a
“validation” of sorts for its predecessor, Part I. Indeed, as far as theory is concerned,
the present paper should constitute a grounding of Part I [1].

Nevertheless, when we used the CAD models of either a horse or a camel from
Part I for our intended purpose, we have encountered unexpected technical diffi-
culties. Our way of thinking is to create a (timewise) short pulse on the horse and
then check the motion of the horse as a response. The corresponding motion of
the horse, after the pulse of external forcing has terminated, should be close to a
series expansion of eigenmodes of the horse. We will take sensorial recordings at
several key positions, such as legs, ears, head and tail as time series. These time
series are then subject to Fourier analysis by taking their fast Fourier transform. The
transformed function(s) should display prominent peaks associated with the natural
frequencies of vibration corresponding to the eigenmodes as displayed in Part I of our
papers.

The reason for the technical difficulties we just mentioned is that the horse’s body
is approximately modeled as an elastic body. The short pulse we have in mind is the
imparting of an impact force when that horse collides with a wall. The collision’s
impact force acts on the horse’s body only briefly, during the rather short period of the
horse’s contact with the wall. As our model of the horse does not contain any bones
and is purely elastic, after collision the horse would bounce off the wall just like a
ball, tumbling end over end a few times. Such tumbling, to a large extent, consists of
rotational and translational modes, plus vibrational modes. Such rotational and trans-
lational modes have been identified in Part I [1, Sect. 3, Theorem 3.1] as elements
in the 6-dimensional null space of the elastodynamic operator with the force-free
boundary condition. From the sensorial data, unfortunately for the time being, we
are not able to filter out the rotational modes therein. We believe this technical dif-
ficulty is not insurmountable, but it would require a considerable amount of time to
treat it. Not without some hesitation, eventually we have decided to take an “expedi-
ent” measure by inserting some solid rigid body inside the body of the horse, which
serves as something like a bone structure and, then, it can prevent the occurrences
of rotational tumbling of the horse body. This choice then makes the present study
feasible.

The organization of the paper is as follows:
In Sect. 2, we describe the mathematical rudiments and the technical difficul-

ties as mentioned in the above. In Sect. 3, we show the re-modeled horse and
the pertinent data on its vibrational modes. In Sect. 4, we carry out the fast
Fourier transform for the sensorial time series of a numerical experiment of a
horse impacting a wall, and demonstrate the Fourier frequency decomposition prop-
erty, all done through supercomputer simulations. A short summary is given in
Sect. 5.
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2 Solutions of a Distributed Parameter Systemwith Forcing: A
Preliminary Computer Simulation of a Horse Impacting on aWall

2.1 Dynamics: An Example of a Horse Colliding with aWall

The gist of this paper can be more easily understood through the viewing of a motion
sequence as shown in Fig. 1 and the corresponding dynamical motion video. For this
motion, an elastic model of the horse as in Part I [1] is used. There is no floor, but
a rigid wall is erected on the left side of the spatial domain. The horse is moving
leftward at speed 0.1 m/s and colliding with the wall. After a short duration of impact
δt , the horse bounces and moves to the right. This bouncing of the horse has triggered
a rotational mode and causes its body to tumble (approximately) one full cycle about
the x-axis. The tumbling motion also contains vibrations of the horse body, which are
especially noticeable in the legs, tail, ears and head. Visually, one can confirm that
the vibration of the horse body contains features of the various modal shapes. This is
the way it is supposed to be: the motion of vibration should be decomposable into a
combination of time-harmonic eigenmodes.

In theory, it is possible to perform Fourier analysis on the motion as shown in Fig. 1.
However, after some effort, so farwe have not been able to produce effective algorithms
and computer codes that can analyze the tumbling motion (namely, the rotational part
of the) motion of the horse). The resolution of this difficulty will demand more time
resources.

By analyzing these situations, we believe that the elastic, tumbling motion could
very well be caused by the lack of any bone and skeletal structure in the horse. We
somehow need to steady the motion of the horse so that tumbling will not occur. We
tried, and found an expedient measure/design that can achieve this purpose by adding
a solid, rigid block of mass within the horse body, as displayed in Fig. 2.

With the new horse CAD model, we now repeat the computing experiments in
Fig. 1. What we have obtained is shown in Fig. 3.

Our main objective in this paper is to perform Fourier analysis on the motion in
Fig. 3.

Before wemove on to the next few sections, a fewwords are in order regarding sen-
sor measurements. It is known from mechanical engineering and physics that various
types of physical quantities can be measured by the designs of gauges and sensors, as
follows:

acceleration: accelerometers [2]
velocity: velocimeters/speedometers [3]
displacement: laser displacement sensors [4]
force and pressure: transducers, strain gauges, load cells,... [5]
These are just some examples. When we perform signal or Fourier analysis of

animal motion, in principle, we should be able to analyze any or all of the above
physical variables. Nevertheless, in practice, the story is different: certain variable(s)
will always be easier to measure or process than others. In our subsequent treatments,
wewill be choosing the velocity variable as the one for frequency and Fourier analysis.
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Fig. 1 A horse is moving with velocity 7cm/s leftward. It collides with a rigid wall and then tumbles. Its
body rotates 360 degrees around the x-axis. Here themotion sequence is represented by a series of snapshots.
Please see video https://drive.google.com/file/d/1AkMo0U5X3VbDzOCa6oCIgCGqTpNEbfuR/view for
the continuous dynamic motion

2.2 Solutions of the Elastodynamic Vibration Equation in Two Invariant Subspaces

We consider a vibration equation cast in the form of Eq. (4.1) in Part I [1]. First, we
treat an abstract linear differential equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt

[
u1(t)
αu2(t)

]

=
[
0 1/α
A 0

] [
u1(t)
αu2(t)

]

+
[

0
f (t)

]

, 0 < t < ∞, α > 0 is given,

[
u2(t)
αu2(t)

]

t=0
=

[
u1(0)
αu2(0)

]

is given,

(2.1)

Fig. 2 a A block of solid, rigid mass is imbedded within the torso of the horse. This is intended as an offset
mechanism for the lack of bone and skeletal structures in the horse (and, above all, it has the intended
effect). The density of the block of mass is identical to that of the surrounding material of the horse body.
b The exact description of the block is shown here. Coordinates of the origin are (−0.17, −0.56, 1.10) in
the unit of m (meter). The dimensions of the rectangular block and the coordinates of some vertices are
indicated. Every other system CAD parameter remains unchanged
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Fig. 3 This is a rerun of the simulation experiment similar to that of Fig. 1. A horse is moving with velocity
10cm/s leftward, colliding with a rigid wall, but there is no tumbling. Rather, the horse is bounced backward
to the right. The motion sequence is represented by a series of snapshots. Please see video https://drive.
google.com/file/d/1Rj5nYZSnjZmG22ao3ikb0cu9Ca4o_kzE/view for the continuous dynamic motion

in a Hilbert space H , where A is an unbounded, densely defined, linear self-adjoint
operator with domain D(A), satisfying the compact resolvent property:

There exists a λ0 ∈ R such that

R(ξ ; A)
def.= (ξ I − A)−1 : H → H is compact, (2.2)

for all ξ > λ0.
Without loss of generality, we assume that λ0 = 0. We further assume that −A is

a semi-positive operator:

〈(−A)u, u〉H ≥ 0, for all u ∈ D(A).

Then A has a complete orthogonal basis

{
φ0, j | j = 1, 2, . . . , n0

} ∪ {φk | 1 ≤ k < ∞} ⊆ H , for some n0 ≥ 1, (2.3)

such that

Aφ0, j = 0, j = 1, 2, . . . , n0;
Aφk = −μ2

kφk , 1 ≤ k < ∞, 0 < μ1 ≤ μ2 ≤ · · · ≤ μn ≤ · · · → ∞;
〈
φ0, j0 , φ0,k0

〉

H = 〈
φ0, j0 , φ j

〉

H = 〈
φ j , φk

〉

H

= 0, for any j0, k0 : 1 ≤ j0, k0 ≤ n0; j, k : 1 ≤ j, k < ∞, j0 �= k0, j �= k.
(2.4)
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Corresponding to the partition (2.3), we have the orthogonal decomposition

H = H0 ⊕H1; H0 = span
{
φ0, j | j = 1, 2, . . . , n0

}
, H1 = span {φk | 1 ≤ k < ∞} .

(2.5)
The semi-positive operator−A defines a positive semi-definite inner product<,>H̃

and an inner product space H̃ by

〈u1, u2〉H̃ =
〈
(−A)1/2u1, (−A)1/2u2

〉

H
, (2.6)

for all u1, u2 ∈ D(A1/2), where A1/2 is the square root of the operator of A.
The orthogonal basis (2.3) induces an orthogonal decomposition

H̃ = H0 ⊕ H̃1, H̃1
de f .= H̃ ∩ H1.

Note that H̃1 is now itself a Hilbert space with inner product (2.6).
Also note that {φk |1 ≤ k < ∞} , after a simple normalization, becomes an orthonor-

mal basis for H̃1, i.e.,

〈
φ j , φk

〉

H1
= 0 if j �= k, ‖φi‖H1

= 1, for all 1 ≤ j, k < ∞.

We now consider the solution of (2.1). It is given in terms of two invariant subspaces
H0 × H0 and H̃1 × H1.

Theorem 1 (i) Let f (t) ≡ 0 in the differential equation (2.1). If the initial condition
satisfies [

u1(0)
αu2(0)

]

∈ H0 × H0, (2.7)

then the solution satisfies

[
u1(·)
αu2(·)

]

∈ C∞ ([0,∞), H0) × C∞ ([0,∞), H0) , (2.8)

with the explicit representation

[
u1(t)
αu2(t)

]

=
[
u1(0) + tu2(0)
αu2(0)

]

, t ≥ 0. (2.9)

(ii) If f (·) in (2.1) satisfies f ∈ L2 (0,∞; H0), then (2.1) has a mild solution
satisfying

[
u1(t)
αu2(t)

]

=
[
u1(0) + tu2(0) + 1

α

∫ t
0 (t − s) f (s)ds

αu(0) + ∫ t
0 f (s)ds

]

, t ≥ 0. (2.10)

Proof One can directly verify that (2.9) is the (unique) solution to the homogeneous
equation (2.1) when f (t) ≡ 0. The mild solution (2.10) follows from the variation of
parameters formula.
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Theorem 2 Consider Eq. (2.1) with given initial condition and forcing function satis-
fying, respectively,

[
u1(0)

αu2(0)

]
def.=

[
u01
αu02

]

∈ H̃1 × H1, f̄ (·) ∈ L2 (0,∞; H1) .

Then (2.1) has a unique solution represented in terms of eigenfunction expansions as

[
u1(t)
αu2(t)

]

=
∞∑

n=1

⎡

⎣
cosωnt

〈
u01, φn

〉

H̃ φn + α
ωn

sinωnt
〈
u2(0),

φn√
αωn

〉

H

ϕn√
α·ωn

−ωn sinωnt
〈
u01, φn

〉

H̃ φn + α cosωnt
〈
u2(0),

φn√
αωn

〉

H

φn√
αωn

⎤

⎦

+
∫ t

0

⎡

⎣
1
ωn

sinωn(t − τ)
〈
f (τ ),

φn√
αωn

〉

H

φn√
αωn

cosωn(t − τ)
〈
f

(
τ),

φn√
αωn

〉

H

φn√
αωn

⎤

⎦ dτ

Proof The calculations essentially follow from the exponential matrix formula

e

[
0 1/α
−μ2

n 0

]

t

=
[
cosωnt

1
ωn

sinωnt
−ωn sinωnt cosωnt

]

,

where −μ2
n are the eigenvalues of A in (2.4), and ωn = μn/

√
α. The rest can be

verified from straightforward calculations.

Theorems 1 and 2 provide a concrete formula for the realization of the variation of
parameters formula of evolution semigroups as described in [6].

We can now return to the elasticity model, Eq. (3.1) in Part 1 [1]. By comparing [1,
(3.1)], we understand the correspondences:

α ←→ ρ,

A = (λ + μ)∇ · (∇) + ∇2, (2.11)

H =
[
L2(�)

]3
, (2.12)

H0 = span

⎧
⎨

⎩

⎡

⎣
0

−x3
x2

⎤

⎦ ,

⎡

⎣
x3
0

−x1

⎤

⎦ ,

⎡

⎣
−x2
x1
0

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭

= span
{
φ0, j | j = 1, 2, 3, 4, 5, 6

}
(i.e., n0 = 6 in (2.3), (2.13)

and the inner product in H1 is:

〈u, v〉H1 =
∫

�

⎡

⎣λ(∇ · u)(∇ · v) +
3∑

i, j=1

μ

(
∂ui
∂x j

+ ∂u j

∂xi

) (
∂vi

∂x j
+ ∂v j

∂x1

]

dx,

(2.14)
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2.3 Conservation of Energy, Momentum and Angular Momentum

Consider the homogeneous elastodynamic equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ
∂2u(·,t)

∂t2
= (λ + μ)∇(∇ · u(·, t)) + μ∇2u(·, t) on �, t > 0,

[
u(·, t)
ut (·, t)

∣
∣
∣
∣
t=0

=
[
u0
u1

]

∈ H̃ × D(A) (cf. (2.11) for A),

∑3
i=1 σ i j ni = 0 for j = 1, 2, 3, on ∂�,

(2.15)

where � is a bounded domain in R3,

σ i j = σ i j (u) = λ(∇ · u)δi j + 2μ

(
∂ui
∂x j

+ ∂u j

∂xi

)

, 1 ≤ i, j ≤ 3

)

(2.16)

is the usual stress tensor; and n = (n1, n2, n3) is the unit outward pointing nor-
mal vector on ∂�. It has the nice properties of conservation of momentum, angular
momentum, and energy, to be established in the following.

Lemma 1 (Adjointness transposition) Assume that u and v are sufficiently smooth
vector-valued functions on �. Let A, H and H1 be defined, respectively, as in (2.11),
(2.12) and (2.14). Then we have

〈Au, v〉H − 〈u, Av〉H =
3∑

i, j=1

∫

∂�

[
σ i j (u)niv j − σ i j (v)niu j

]
dσ.

Proof Using integration by parts twice, we can directly check that

〈Au, v〉H =
3∑

i, j=1

∫

∂�

σ i j (u)niv jdσ − 〈u, v〉H1

=
3∑

i, j=1

∫

∂�

[
σ i j (u)niv j − σ i j (v)niu j

]
dσ + 〈u, Av〉.

Theorem 3 (Conservation of energy) Assume that u satisfies the homogeneous elas-
todynamic system (2.15) with sufficiently smooth initial condition (u0, u1). Then for
the elastodynamic energy defined by

E(t) = 1

2

∫

�

⎡

⎣ρ

∣
∣
∣
∣
∂u
∂t

∣
∣
∣
∣

2

+ λ|∇ · u|2 +
3∑

i, j=1

(
∂ui
∂x j

+ ∂u j

∂xi

)2
⎤

⎦ dx, t ≥ 0,

we have

E(t) = E(0), for all t ≥ 0,
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Proof We have

d

dt
E(t) =

∫

�

[ρut t · ut + λ(∇ · u) (∇ · ut )

+
3∑

i, j=1

(
∂ui
∂x j

+ ∂u j

∂xi

) (
∂ui,t
∂x j

+ ∂u j,t

∂xi

)
⎤

⎦ dx

= · · · (by the proof of Lemma 2.3)

=
∫

�

(ρut t − Au) utdx +
3∑

i, j=1

∫

∂�

σi j (u)niu j,tdσ

= 0.

Theorem 4 (Conservation of momentum) Assume the same conditions as in Theorem
3. Then we have

d

dt

∫

�

ρutdx = 0.

Proof We have

d

dt

∫

�

ρutdx =
∫

�

ρut tdx

=
∫

�

Audx = i
∫

�

(Au) · idx + j
∫

�

(Au) · jdx

+ k
∫

�

(Au) · kdx

(2.17)

where i, j,k are the standard unit vectors along the directions of, respectively, the
x1, x2 and x3 axes. We have, by Lemma 1:

(continuing from (2.17) = {i〈u, A(i)〉H + j〈u, A(j)〉H + k〈u, A(k)〉} + boundary
integral terms.

However

A(i) = A(j) = A(k) = 0,

and all the boundary term are zero because

3∑

i=1

σi j (u)ni = 0, for j = 1, 2, 3,

and

σi j (i) = σi j (j) = σi j (k) = 0 for all 1 ≤ i, j ≤ 3.
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Theorem 5 (Conservation of angular momentum) Assume the same conditions as in
Theorem 3. Then we have

d

dt

∫

�

ρr × ut dx = 0, where r =
⎡

⎣
x1
x2
x3

⎤

⎦ . (2.18)

Proof We note that, for any 3-vector w = (w1, w2, w3), we have

r × w = i (−w2x3 + w3x2) + j (w1x3 − w3x1) + k (−w1x2 + w2x1) . (2.19)

Therefore
d

dt

∫

�

ρr × utdx =
∫

�

ρr × ut tdx

=
∫

�

r × (Au)dx

= i
∫

�

Au · v(1)dx + j
∫

�

Au · v(2)dx

+ k
∫

�

Au · v(3)dx, (2, 10J ),

(2.20)

where v(1), v(2) and v(3), according to (2.19), are defined by

v(1) =
⎡

⎣
0

−x3
x2

⎤

⎦ , v(2) =
⎡

⎣
x3
0

−x1

⎤

⎦ , and v(3) =
⎡

⎣
−x2
x1
0

⎤

⎦ .

(Continuing from (2.20), using similar arguments as in the proof of Theorem 4) · · · ⇒
d

dt

∫

�

ρr × ut = 0,

because

A
(
v(l)

)
= 0, σ i j

(
v(l)

)
= 0, for l = 1, 2, 3, 1 ≤ i, j ≤ 3.

In Figs. 4 and 5, we exhibit a numerical verification of Theorems 4 and 5, where the
reader can see that the velocity and angular velocity of the horse in Fig. 1 remain
constant.

Remark 1 The conservation of energy property as given in Theorem 3 is well under-
stood through the work of [7, 8], for example. However, the conservation laws of
momentum and angular momentum as given in Theorem 4 and 5 do not seem to have
been stated elsewhere, to the best of our knowledge. ��
Remark 2 The conservation law of momentum remains valid for the modified horse
model and motion as shown in Fig. 3 as well (just as it does for those in Fig. 1).
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Fig. 4 Conservation of linear momentum (after the collision effects have ended) as demonstrated by the
constant speed of the center of mass for the horse movement in Fig. 1

Fig. 5 Conservation of angular momentum (after the collision effects have ended) as demonstrated by the
constant angular velocity (speed) of the center of mass for the horse movement in Fig. 1
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Table 1 Choice of parameters
for the constraints of the rigid
material (inside the horse body
as shown in Fig. 2) for Card 2
([9, p. I-112])

Card 2 1 2 3 4–8

Variable CMO 5 7

Tyie F F F

Default 0 0 0

The letter “F” means “default”

However, the conservation of angular momentum is no longer valid for the modified
horse model in Fig. 3 because of restrictions imposed on rotation. ��

3 Modal Analysis of the Horse with ConstrainedMotion

In this design of the horse, we are restricting the excitation of the rotating/tumbling
motion and the z—(i.e., vertical) and y—(i.e., out of plane) axes motion of the horse
so that the only degree of freedom of motion is horizontal, namely, along the x-
axis. Implementation-wise, this is carried out using [9, I-112-114], where we use the
following card for the input specification by LS-DYNA software as shown in Table 1:

Note that in Table 1 the values 5 and 7 are chosen to represent:
5 �→ EQ.5: constrained y and z displacements (for CON1);
7 → EQ.7: constrained x, y and z rotations (for CON2).

Remark 3 LS-DYNA [10] is a commercial, non-open source software package. A user
cannot see its inner workings. Thus we are unable to explain the technical details of
the mathematics involved. This is a major disadvantage. However the most important
thing here is that it works and the software subroutine has saved time in a major way.

��
For the horse subjected to the given constraints, we again perform modal analysis.

The first 100 time-harmonic modes, plus 6 rigid-body modes, are assembled and can
be viewed in Fig. 6.

The first 100 eigenfrequencies are tabulated in Table 2.

4 Identification of Vibration Frequencies on Six Body Parts of the
Horse

To measure the motion of the horse, we install six velocimeters on six points of the
horse body: left foreleg, left hindleg, nose/head, left ear, tail, and belly. See Fig. 7.
Note that for the pointwise velocity sensorial data to be available at arbitrarily given
generally given points, an underlying assumption regarding the C2 smoothness of the
solution must be made. So let this be done. Thenceforth, each sensor can record the
continuous 3D velocity motion time series at the given point. The Fourier transform of
themotion datawill then be taken. From theFourier transformwehope to determine the
frequencies in the time series and then compare them against the values of frequencies
obtained and listed in Sect. 3.
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Fig. 6 (Viewable only online) Time-harmonic mode shapes of the first 100 modes of the horse
with constraints of no rotation and no vertical and out-of-plane translations. Please note that there
is now just one eigenvalue, namely, the horizontally translation, corresponding to the zero eigenfre-
quency, instead of the previous six degrees of freedom. Please click https://drive.google.com/file/d/
1GcyVsSi3W_GIFA2ymyQJJaoMvfDE_UjD/view

In what follows, we divide the discussion into six subsections according to the
respective body parts and sensor locations.

4.1 Frequency Analysis of Motion on the Left Foreleg

Themotion time series is given in Fig. 8. Please note that there are three colored curves
representing the data sets for each of the x , y and z components.

For each curve as given inFig. 8,we take its fast Fourier transformusing the software
in [9, p. I-312]. The transformed curves are displayed in Fig. 9.

4.2 Frequency Analysis of Motion on the Left Fore leg

The motion time series is given in Fig. 11. As in the preceding section, there are three
colored curves representing the data sets for each of the x , y and z directions.
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Fig. 7 Depiction of the six sensor locations on the horse body at left foreleg, left hindleg, nose/head, left
ear, tail, and belly. The sensors’ coordinates are also specified

Fig. 8 There are three curves represented by three different colors for the three velocity components recorded
on the left foreleg of the horse. In terms of magnitude, the green curve is the most prominent, representing
the forward (and backward) horizontal velocity of the left foreleg (Color figure online)
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Fig. 9 The Fourier transforms of, respectively, the green, red and blue curves as displayed in Fig. 8. Please
note that each peak is supposed to represent a frequency of vibration, especially the prominent ones (Color
figure online)

Fig. 10 Four different frequencies of vibration are marked, corresponding to Modes 4, 5, 6, and 7 of the
eigen-modes concentrated on the left foreleg

4.3 Frequency Analysis of Motion on the Left Ear

The motion time series is given in Fig. 14. Please note that there are three colored
curves representing the data sets for each of the x , y and z directions.
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Fig. 11 There are three curves represented by three different colors for the three velocity components
recorded on the left hindleg of the horse. In terms of magnitude, the green curve is the most prominent,
representing the forward (and backward) horizontal velocity of the left hindleg (Color figure online)

Fig. 12 The Fourier transforms of, respectively, the green, red and blue curves as displayed in Fig. 8. Please
note that each peak is supposed to represent a frequency of vibration, especially the prominent ones (Color
figure online)

4.4 Frequency Analysis of Motion on the Horse Nose

The motion time series is given in Fig. 17. As before, there are three colored curves
representing the data sets for each of the x , y and z directions.
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Fig. 13 Six different frequencies of vibration are marked, corresponding to Modes 2, 3, 9, 10, 14 and 15 of
the eigenmodes concentrated on the left hindleg. Please note that the frequency plot is a zoomed-in view
of the low-frequency portion of Fig. 12

Fig. 14 There are three curves represented by three different colors for the three velocity components
recorded on the left ear of the horse. In terms of magnitudes, the green and the red curves are the most
prominent, representing, respectively, the lateral and vertical velocities of the left ear (Color figure online)

4.5 Frequency Analysis of Motion on the Horse Tail

The motion time series is given in Fig. 20. As before, there are three colored curves
representing the data sets for each of the x , y and z directions.

4.6 Frequency Analysis of Motion on the Horse Belly

The motion time series is given in Fig. 23. As before, there are three colored curves
representing the data sets for each of the x , y and z directions.
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Fig. 15 The Fourier transforms of, respectively, the green, red and blue curves as displayed in Fig. 14.
Please note that each peak is supposed to represent a frequency of vibration, especially the prominent ones
(Color figure online)

Fig. 16 Three different frequencies of vibration are marked, corresponding to Modes 12, 13 and 20 of the
eigenmodes concentrated on the left ear. Please note that the frequency plot is a zoomed-in view of the
low-frequency portion of Fig. 15

5 Concluding Remarks

The collection of our sensorial data (for a naturally occurring motion of a horse was
executed through an elastic collision of the horse with awall. Such a collisionalmotion
was implemented via the LS-DYNA software but otherwise was not sufficiently well
explained by us. Obviously, more mathematical understanding on this will be helpful.
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Fig. 17 There are three curves represented by three different colors for the three velocity components
recorded on the left ear of the horse. In terms of magnitudes, the green and the red curves are the most
prominent, representing, respectively, the lateral and vertical velocities of the left ear (Color figure online)

Fig. 18 The Fourier transforms of, respectively, the green, red and blue curves as displayed in Fig. 18. Each
peak is supposed to represent a frequency of vibration, especially the prominent ones (Color figure online)

Here we wish to suggest a few references [11–13] for some further interest on this
topic.

In this Part II, we believe we have significantly achieved the Fourier frequency
decomposition of the fundamental modes of dynamicmotion of a horse. The dynamics
does not rely on specially selected initial conditions as that could well cause unspon-
taneous or manipulated dynamic motion of the horse. Rather, we let the horse collide
with a wall, causing a short-duration impulse. Once the impulse ends, then there is no
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Fig. 19 Three different frequencies of vibration are marked, corresponding to Modes 12, 13 and 20 of
the eigenmodes concentrated on the nose. Please note that the frequency plot is a zoomed-in view of the
low-frequency portion of Fig. 18

Fig. 20 There are three curves represented by three different colors for the three velocity components
recorded on the left foreleg of the horse. In terms of magnitude, the red curve is the most prominent, which
represents the up and down vertical velocity of the nose and head (Color figure online)

external forcing and the motion of the horse must be decomposable, through taking
its fast Fourier transform, into a linear combinations of time-harmonic motion of the
basic modes of vibration of the horse.

Nevertheless, our success with the Fourier decomposition is a qualified success as
follows:
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Fig. 21 The Fourier transforms of, respectively, the green, red and blue curves as displayed in Fig. 20. Each
peak is supposed ta represent a frequency of vibration, especially the prominent ones (Color figure online)

Fig. 22 Twodifferent frequencies of vibration aremarked, corresponding toModes 8 and11. the eigenmodes
concentrated on the tail. Please note that the frequency plot is a zoomed-in view of the low-frequency portion
of Fig. 21. Furthermore, we are able to identify a second harmonic generation, whose frequency is twice
that of Mode 8

(i) We are, so far, unable to process the Fourier analysis of the tumbling/rotating
effects of the horse body.

(ii) As a consequence of (i), we had to insert a rigid body inside the horse to have a
desirable motion-constraint effect that eliminates the tumbling. This is, at least,
somewhat unnatural.
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Fig. 23 Four different frequencies of vibration are marked, corresponding to Modes 4, 5, 6, and 7 of the
eigen-modes concentrated on the left foreleg

Fig. 24 The Fourier transforms of, respectively, the green, red and blue curves as displayed in Fig. 20.
Each peak is supposed to represent a frequency of vibration, especially the prominent ones. An apparent
inflection point here also appears to represent a frequency of vibration (Color figure online)

(iii) Some peaks on the Fourier-transformed spectrum cannot yet be identified with
any eigenmodes. Some of those unidentified frequencies, we suspect, could be
somehow related to the “aliasing” effect in digital signal processing.

(iv) More work needs to be done for some higher frequency modes.

Naturally, these are shortcomings that can be interesting topics for future research.
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Fig. 25 Seven different frequencies of vibration are marked, corresponding to Modes 6. 7, 8, 9, 10, 12 and
13. These frequencies belong to eigenmodes concentrated on the left fore- and hind-legs, tail, and nose.
Please note that the frequency plot is a zoomed-in view of the low-frequency portion of Fig. 24. Therefore
this mixture of modes all bears some influence on the motion of the belly, as recorded at the belly sensor
point
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