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Abstract
Eigenfunctions and eigenvalues of physical systems and engineering structures can
reveal many of the system’s fundamental features and, therefore, become a basis for
the study of inverse problems. In this series of papers, we take a reverse, direct-
problem point of view; namely, given the shapes of animals, can we see the patterns
of their motions or behaviors through their eigenmode analysis? This modal analysis,
we believe, has never been done for living animals. Our modal analysis emphasizes
dynamics, which is achieved by visualization through video animation by incorpo-
rating the time-harmonic dependence of the eigenmodes. Furthermore, we intend our
modal analysis to be more realistic by encompassing the situation of the presence of
a floor. Certain physical interpretations of the motion patterns from modal analysis
are made. In addition, by visualization, one can see that symmetry plays an important
role in motion patterns. One of our main conclusions is that shapes alone can usefully
reflect or explain some animal’s behavior or motion patterns.
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1 Introduction

The main objective of this series of papers is to study the modal analysis of a few
selected animals by their shapes. We will use elastodynamics to model the bodies of
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several long-necked animals, compute their eigenmodes of motion, and try to under-
stand their motion patterns.

The study of shapes is one of the central themes in geometry, applied mathematics
and engineering design. A case in point is the determination of shape from acoustic
or electromagnetic scattering data. When a linear elastic body vibrates, the dynamic
change of shapes generates pressure difference of air around the solid, which then
propagates with the same frequencies as acoustic waves in the air. We may recall a
famous paper: “Can one hear the shape of a drum” by Kac [1]. For a drum modeled
as a thin membrane, it satisfies the 2D wave equation and, therefore, the vibrating
frequencies squared are proportional to the eigenvalues of the negative Laplacian for
the spatial domain, say with the homogeneous Dirichlet condition. For that domain
(and the higher dimensional analogues), Kac posed the question whether knowing all
of the eigenvalues of the Laplacian can uniquely determine the domain. The answer
has been confirmed to be negative [2]. However, for 2D planar convex domains, under
some additional conditions, the answer was found to be positive [3]. Such studies have
provided considerable stimuli and inspiration to themodern study of Inverse Problems,
where partial or full knowledge of the so-called spectral data of many oscillation,
scattering and heat-transfer problems are used as the basis for reconstructing the whole
physical or engineering problem under study.

From the viewpoint of inverse or reconstruction problems, the above underlines
the importance of eigenvalue/eigenfrequency spectral analysis of problems in applied
mathematics, sciences and engineering. Speaking overall, the spectral analysis of lin-
ear, and even certain nonlinear operators, is a major field of analysis in the study
of PDEs. Much of the existing mathematical literature in this connection deals with
PDE models governed by the wave, heat and electromagnetic equations and systems.
However, not much has been done if the system is biological involving various living
creatures, especially animals. An animal, quoting from Biology Online [4], pertains
to any of the eukaryotic multicellular organisms that comprise the biological kingdom
of Animalia. Animals possess several characteristics that distinguish them from other
living matter. Animals are generally motile, meaning that they are capable of moving
at will. According to various counts, there are about 5 to 10 millions of species of
extant animals in the world today. Among the large class of animals, homo sapiens
is obviously the most important species from our self-centered point of view. Besides
homo sapiens, the livestock animals of cows, horses, pigs, sheep, and poultry must
rank the next highest in their importance to the lives and civilization of human beings
in the sense that they supply meat to sustain our lives and their raising also forms
some of the core activities of the agricultural society. Not to be excluded is the class
of fish or shellfish from the freshwater or sea. These animals account for the bulk of
the non-vegetarian proteins of our food and grocery purchases in much of the world.

In the study of animals and the analysis of their motions and motion patterns, one
cannot help but refer to the work of the distinguished Scottish mathematical biologist
D’Arcy Wentworth Thompson. He published his pioneering work On Growth and
Form [5] in 1917. In this masterpiece, Thompson gave his theory of morphogenesis,
the process by which biological patterns and body structures are formed in animals
and plants. During Thompson’s era, most biologists were under the great influence of
Charles Darwin’s work of evolution and, therefore, tended to overemphasize natural
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selection and evolution as the fundamental driving forces of the form and structure
of living organisms. Consequently, the roles of physical laws and mechanics were
underemphasized. Thompson advocated allometry [6] and hinted at a scientific inter-
pretation of vitalism [7]. He has quoted a wealth of examples and finds correlations
between biological shapes and mechanical phenomena. For example, he pointed out
the similarities between the internal supporting structures in the hollow bones of birds
and well-known engineering truss structural designs. These issues: allometry, evo-
lution, morphogenesis, vitalism, are all directly or indirectly overlapping with the
interest of our work here on shapes, mathematical modeling and motion analysis.
D’Arcy Thompson’s work in [5], according to today’s standards, is mostly descriptive
or qualitative. But his theory has inspired a generation of young biologists and scien-
tists in advancingmorphogenesis to a rigorous quantitative level, for example the Alan
Turing’s famous work [8] on the formation of patterns, such as spots and stripes on
leopards and zebras, through nonlinear diffusion. Even so, during Thompson’s days,
the theories of partial differential equations and continuum mechanics were emerg-
ing, computationalmodeling of (engineering and biological) structureswas essentially
nonexistent. Hewas over one hundred years ahead of his time!But now, only during the
most recent decade, we have the maturing mathematical and computational modeling
software platforms and supercomputers to facilitates research in this direction.

The main methodology in our work is modal analysis. The term “modal analysis”
likely has originated from structural engineering. It aims at studying dynamic proper-
ties of mechanical systems in the frequency domain. A vibrating system has normal
modes of vibration, which are the simplest form of vibration with a single-frequency
in time. All the “free vibration” can be decomposed as a linear superposition of such
modes. Mathematically speaking, such so-called “modes” are essentially synonymous
to eigenvectors/eigenfunctions in functional analysis. In this sense, modal analysis can
be classified as a subfield of Fourier analysis. However, the meaning of modal analy-
sis can take on some more subtlety than this. When an engineer uses the term modal
analysis, he/she most likely is referring to some eigenolutions of a finite element
approximation of an engineering system. Furthermore, sometimes, for those systems,
the boundary conditions (or other constraint conditions), for example, may be rather
complex; these may not be described in terms of the “traditional” elegant Dirichlet,
Neumann, or Robin types that mathematicians have gotten quite used to. These three
types of boundary conditions also tend to have a variational origin. One such example
of a non-traditional complex boundary conditions is contact conditions. Contact con-
ditions usually are described in terms of local (finite element) node relations at places
of contact, where potential penetration of a slave mode through a master segment
is to be checked. In this paper, we will need to use contact conditions to model the
contacts between an animal with the ground, for example, when an animal is walking
or running on the ground. The modeling of contact with the environment is “tricky"
as the contact between the feet and the ground is on-and-off depending on the motion
of feet. Potentially, one of the animal’s feet can get stuck into the ground if the ground
support is not strong enough (even though we do not really consider such a situa-
tion, but the possibility must be incorporated into the model). Our modal analysis
is a dynamic harmonic motion, where the square of the frequency is the eigenvalue
of a certain elastic operator. Throughout our paper, we will use the the three terms:
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modes (of motion), normal modes and eigenmodes, in a cavalier way to mean the same
thing. There is still one more caveat: eigenmode shapes are highly model dependent.
As we will see shortly, our computational models are still crude. Necessarily, such
modeling errors will generate many “spurious modes” that do not rightfully belong to
the biomechanical system that we are trying to model. A “rule of thumb" in assessing
whether a computed mode is acceptable or reasonable is that the sequential order of
the mode cannot be too large. Usually engineers or modelers would discard computed
modes beyond a couple of hundred. Still, for even low-order modes, the modeler must
assess and determine their validity, correctness and reasonableness judiciously. As a
consequence, modal analysis has brought on a strong “empirical flavor” to this type
of methodology that is not mathematically rigorous. We readily concede that this is
true. However, modal analysis continues to be important because it is highly useful in
applications.

As we have noted above, there exist millions of species of animals on our planet. It
would be nice to be able to study them all at a single stretch in this paper, however, in
effect, the sheer volume of work would make it difficult if not impossible. One of the
main reasons is that many animals have different shapes, and even similar shapes can
have different types of modes of motions. In this series of papers, we are limiting our
objects for consideration to have a common trait of long necks, such as, in alphabetical
order, the camel, dinosaur, duck, giraffe, goose, and horse. In addition to the feature
of long necks, the following are reasons for the selection:

(i) A duck and a goose are selected because their body shapes are similar but other-
wise the latter has a longer neck so we may compare certain effects of the length
of necks;

(ii) A camel and a horse are selected as both are common beasts of burden, and their
walking and running gaits are somewhat better understood by the common folk;

(iii) A Tyrannosaurus (T-Rex) dinosaur is selected because dinosaurs’ ferocious look
attracts attention. It has been extinct for million years, but our study may poten-
tially recover some of their motion patterns and gaits.

(iv) Both T-Rex and giraffe have long necks, however, their body shapes are otherwise
rather different, as a T-Rex has a much longer and heavier tail, but shorter legs;

Our aim is to study their fundamental modes of motion in the hope of synthesizing
some similarities according to their common shape feature of long necks.Nevertheless,
as it turns out, this aim seems to be still quite lofty. Our major findings are limited.
What we have found can be summarized in general terms, as follows:

(1) Symmetry plays a highly important role in the shapes and order of occurrences
of eigenmodes;

(2) Many computed modes of motion manifest the observable motions of those ani-
mals. Therefore, animals’ shapes alone do reflect or even determine those animals
motion patterns.

(3) Many modes can be associated or interpreted with physiological or social signif-
icance.

(4) There also exist many “spurious” modes, due to modeling deficiencies, which are
unnatural and must be dismissed.

Our plan for the series of five papers (called Part I, Part II, · · · , Part V) is as follows:
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In Part I, we focus our attention on the modes of motion of a horse and a camel, and
discuss them in detail. One hundred modes for each animal will be displayed. In Part
II, we discuss the Fourier decomposition that provides a self-consistent verification
of the modal analysis methodology. In Part III, we study the dinosaur, duck, eagle,
giraffe and goose, and make some comparisons. For each animal, one hundred modes
will be displayed.. In Part IV, we provide the computational geometric construction
methodology, recipe and tutorials. In Part V, we study the animation of a T-Rexmotion,
by combining artistic rendering with scientific rendering with model refinement, and
the interaction of the T-Rex with some simple terrain.

We organize this paper, Part I, as follows: In Sect. 2, we discuss the motivation,
and review some past work of relevant interest. In Sect. 2, we compare the lumped
parameter approach with our distributed parameter modeling, and introduce modal
analysis. Section3 provides the abstract functional space setting with some basic prop-
erties about the rigid-body motion established. Sections6 and 7 contains the results
of modal analysis of a horse, respectively, with or without a floor, where 100 modes
are displayed for each case with discussions. Section7 contains the modal analysis
counterpart results for a camel. Section8 provides a summary of this paper.

2 A Lumped Parameter Model for a Horse, Versus a Distributed
Parameter Model

Lumped parameter models, which use ODEs to describe and represent systems under
study, have had a long history of development. For example, in the study of humanbody
movement and vibration (cf. [9, 10], for example), researchers have built mechanical
analogs for various parts of the human body such as the head, limbs, joints, torso,
internal organs, soft tissues, etc., as discrete masses, dampers and springs. A set of
coupling parameters are then determined empirically, and a system ofODEs is formed.
Such an ODE system can be as small as 3 × 3 or 4 × 4 for a human body, or as large
as several hundred millions by hundred millions based on atom-by-atom modeling in
molecular biology. This approach has been rather standard and, in some respects, can
even be useful.

As a main animal subject under study in this paper is the horse, here we mention a
nice prior work [11] by van der Weele and Banning. In [11], model of a horse is built
as a 4 × 4 coupled system of nonlinear ODEs as follows (Fig. 1).

The in-phase and out-of-phase motions of any four-legged animal, as depicted in
Fig. 2, can be interpreted as representing, respectively, the pronk, bound, pace and trot
motions of the animal. The use of a coupled pair of simple pendulum to model the
back and forth motion of legs is ingenious.

As nice results as the above lumped-parameter modeling may have offered, as with
any modeling it has drawbacks, deficiencies and difficulties: The most serious one
is the lack of fidelity. If we use a lumped mass to represent a horse leg hanging on
a pendulum, then even if we can capture certain back-and-forth swing motions of a
leg, we will miss out too much of other features of the motion such as knee bending,
leg torsion, and lateral side swing. These are true 3D motion features which can only
be captured by 3D continuum modeling. That is, we must respect the 3D nature and
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Fig. 1 A lumped parameter model according to van der Weele and Bannin [11] for a 4-legged animal. In
the figure, A is the left-right exchange, B is the front-hind exchange, R is the reflection of the pendulums,
and T is the time translation over one driving period. The head and tail are assumed to be massless. For the
choices of the coupling functions f A and fB , see [11]. (Adapted from [11, Fig. 14])

Fig. 2 a The four basic gaits of pronk, bound, pace and trot. b The in-phase and out-of-phase motions of
the four legs of a 4-legged animal as modeled in Fig. 1. (Graphics adapted from [11, Figs. 15 and 16])
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geometry of the object under investigation. There are also many associated problems
such as the process of identification of the various coupling parameters in an artificially
partitioned systemof head, limbs, torso and other parts of the body,which can be highly
ad hoc. Using such models to perform simulations, one can easily find that the results
are hard to interpret as they are not “the real thing". Elsewhere, in bacteriology and
virology, for a microbiological system where, as aforementioned, a model built on the
atom-by-atom interactions involving hundreds of millions of coupled mass-spring-
dashpot ODEs, it is costly and time-consuming to simulate on a supercomputer. This
constitutes another extreme class of lumped-parameter models with too many ODEs.

Banning, van Der Weele and their collaborators have published a series of interest-
ing papers advancing the theories of animal’s motion patterns, symmetries, nonlinear
couplings, mathematical/physical modeling and bifurcation; see [12–16]. Such work
is very much in consonance with D’Arcy Thompson’s thinking that physical laws and
mechanics should play an important role in the study of “growth and form”. Never-
theless, they did not seem to be aware of Thompson’s work as [5] was never cited in
[11–16].

A much more preferable, faithful way of modeling is a distributed parameter
approach by treating the animal bodies as a continuum, and employ continuum
mechanics. This will lead to a PDEmodel. This approach has already been introduced
in an earlier paper [17] where several coauthors there overlap also as the coauthors
here. To make this paper sufficiently self-contained, in what follows, we will give it a
succinct description.

In our modeling of the various kinds of animals in this series of papers, wemake the
simplifying assumption that these animals form a uniform, homogeneous solid mass.
They take the shapes and scales as closely as the “real animals per se” as possible. We
wish to perform modal analysis by computing their modes of vibration. The animals’
vertebrates, bones, joints, tendons, internal organs, body fluids, etc., are not modeled.
Therefore, the computed modes in our work are determined by shapes alone. The sim-
plifying assumptions have obviously constituted some over-simplification. However,
as our work will show, animals’ shapes alone can determine many of their motion
patterns.

Weare now in a position to describemodal analysis based on continuummechanics.
For a solid continuum occupying � in 3D, Newton’s law of motion dictates that

ρ
∂2u
∂t2

= ∇ · σ + f, at (x, y, z) ∈ �, at time t . (2.1)

Here, ρ is the density of mass, u = u(x, y, z, t) is the displacement vector, σ =
σ(x, y, z, t) is the stress tensor, and f = f(x, y, z, t) is the body force per unit volume.
The equation above says that, at point (x,y,z) at time t, on the LHS of (2.1), the inertial
force per unit volume is the sum, on the RHS, of the contact force plus body force, per
unit volume. The contact force is in effect only when particles get into contact with
each other, while the body force can act across distance (without getting into contact)
such as the gravitational and/or electromagnetic forces.
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The boundary conditions are

u = ũ on ∂� at time t, (Dirichlet boundary condition)

σ · n = c̃ on ∂� at time t, (Neumann boundary condition)

The usual linear strain tensor on �(t) is

ε = ε(u) = 1

2

[
∇u + (∇u)�

]
, ε = ε(x, y, z, t), (x, y, z) ∈ �. (2.2)

The above has a decomposition into an elastic part εe and a plastic part εp:

ε = εe + εp. (2.3)

Assume the constitutive relation

σ = Cεe. (2.4)

For an isotropic, homogeneous, elastic solid, we have εp ≡ 0, and the following
holds:

σi j = λ

(
3∑

k=1

∂uk
∂xk

)
δi j + 2μεi j , 1 ≥ i, j ≤ 3. (2.5)

One can derive from (2.1)–(2.5) the linear elastodynamic equations of motion

ρ
∂2u
∂t2

= (λ + μ)∇ (∇ · u) + μ∇2u + f on �(t). (2.6)

Here, the force f is gravity per unit volume. The coefficients λ and μ are the usual
Lamé constants for the material.

Finite element discretization

u ≈ u(h) =
nh∑
k=1

α
(h)
k (t)φ(h)

k (x, y, z) (2.7)

provides approximation to the displacement u with mesh size h, which, after a Ritz–
Galerkin procedure [18], yields a finite-dimensional ordinary differential equation in
the form

Mü(t) + Cu̇(t) + Ku(t) = P(t), (2.8)

where u(t) = (α
(h)
1 (t), α(h)

2 (t), . . . , α(h)
nh (t)), with initial conditions

u(0) = u0 ∈ R
nh , u̇(0) = u1 ∈ R

nh , (2.9)

where u0 and u1 are uniquely determined from the initial conditions

u(x, y, z, 0) = u0(x, y, z),
∂

∂t
u(x, y, z, 0) = u1(x, y, z) (2.10)
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In the linear case (ε p ≡ 0) the superposition principle gives

u(t) = up(t) +
nh∑
j=1

c jw j (t), c j ∈ C (field of complex numbers), (2.11)

where up(t) is a particular solution related to forced vibration, while w j (t) satisfies
the homogeneous equation system

Mẅ j (t) + Cẇ j (t) + Kw j (t) = 0, j = 1, 2, . . . , nh . (2.12)

Set w j (t) = eλ j tφ j ,

(λ2jM + λ jC + K)φ j = O ∈ R
nh . (2.13)

Note that λ j is a root to the algebraic equation

det
(
λ2M + λC + K

)
≡ p(λ) = 0. (2.14)

For the case of harmonic motions without damping, the term C is dropped to give

Mẅ j (t) + Kw j (t) = 0, j = 1, 2, . . . , nh . (2.15)

We obtain solutions w j (t),

w j (t) = eiω j tφ j , (vibrating mode) (2.16)

where ω j satisfies
(−ω2

jM + K)φ j = 0. (2.17)

At this point, we can solve the eigenvalue problem (2.17) with LS-DYNA for the
frequencies ω j , eigenvalues ω2

j , and the corresponding eigenvectors (mode shapes)
φ j . The Block Shift and Invert Lanczos eigensolver is used in LS-DYNA to compute
the normal modes and mode shapes for (2.17). For more details about the Lanczos
algorithm, refer to [19, pp. 799–800, Section 40]. In our calculations, we have also
used LS-DYNA software to check the stability and convergence properties of our
computational processes.

Computationally, the above modal analysis can be performed by LS-DYNA Soft-
ware using the following keywords:

*CONTROL_MPLICIT_EIGENVALUE
*CONTROL_MPLICIT_GENERAL
*CONTROL_MPLICIT_SOLUTION

Here, we note some differences between eigenfunction analysis andmodal analysis:
(1) Usually, eigenfunctions refer to eigensolutions of a system of PDEs in the form

Aφ(x) = λφ(x), φ ∈ H , H : a Hilbert space,
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where boundary conditions have already been incorporated into the functional Hilbert
space H, while numerical eigenfunction analysis refers to a discretized form of above
in terms of matrices:

Ahφh = λhφh, φh ∈ Vh, Vh is an approximation finite element space,

h = size of the discretization parameter.

Such a discretization is usually obtained through some form of calculus of variations.
(2) However, modal analysis can accommodate more flexibility as it is expressed

in terms of matrices and nodes of finite elements, which can or may not be obtainable
through ordinary calculus of variations. A practical example is the inclusion of contact
boundary conditions.

Note that if the solid is nonlinear, then usually there will also be associated super-
and sub-harmonics accompanying the primary frequency of vibration. Thus, one may
very well need to solve a nonlinear eigenvalue problem instead.

Here are our remaining comments regarding challenges of modal analysis:

(1) Grid generation and discretization:
Multi-scales: feathers, tails, body-parts in contact
Multi-phases: body fluids
Internal organs, musculature, soft and connective tissues, fibers

(2) Skeletal structures and joints (so far lacking, as well as the items in (1) above).
(3) Lower dimensional structures: e.g., the webbed feet of ducks and geese.
(4) Interactions with the environment: contact with terrain and the presence of obsta-

cles.
(5) Large deformation: stretched-out wings and their flapping.
(6) Software and supercomputing cost.

3 The Functional Space Formulation on the Elastodynamic Equation
and Its Null Space

Return to the elastodynamic equation (2.6). We can write it in a first order form

∂

∂t

[
u

ρ ∂u
∂t

]
=
[

0 1
ρ

(λ + μ)∇ · (∇) + ∇2 0

] [
u

ρ ∂u
∂t

]
+
[
0
f

]
, (3.1)

with corresponding energy functional E(t) defined by

E(t) =
∫

�

⎡
⎣1

2
ρ

∣∣∣∣
∂u

∂t

∣∣∣∣
2

+ 1

2

n∑
i, j=1

σi j · εi j

⎤
⎦ dx (3.2)

= 1

2

∫

�

⎡
⎣ρ

∣∣∣∣
∂u

∂t

∣∣∣∣
2

+ λ|∇ · u|2 +
3∑

i, j=1

μ

(
∂ui
∂x j

+ ∂u j

∂xi

)2
⎤
⎦ dx . (3.3)
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Let Hk(�) denote the usual Sobolev space of order k. The underlying semi-normed
space for (3.3) is

[
u
v

]
∈
[
H1(�)

]3 ×
[
L2(�)

]2
,

with semipositive definite energy inner product defined by

〈[
u1
v1

]
,

[
u2
v2

]〉

E
=
∫

[ρv1v2 + λ (∇u1 · ∇u2)

+
3∑

i, j=1

μ

(
∂u1i
∂x j

+ ∂u2 j
∂xi

)(
∂u2i
∂x j

+ ∂u1 j
∂xi

)⎤
⎦ dx (3.4)

This pairing (3.4), in general, will only be semipositive definite. But if u in (2.5)
satisfies the fixed boundary condition u|∂� = 0 ∈ R

3, for all t ≥ 0, then 〈 , 〉E
becomes a positive definite inner product on

[
H1
0 (�)

]3 × [L2(�)
]3
, due to the first

Korn’s inequality [20],

3∑
i, j=1

∫

�

ε2i jdx = 1

4

3∑
i, j=1

∫

�

(
∂ui
∂x j

+ ∂ui
∂xi

)2

dx ≥ C‖u‖2
H1(�)]3

,

for some C > 0, for all u ∈ [H1
0 (�)

]3
.

For later use, here we also mention the second Korn’s inequality:
“There exists C > 0 such that

3∑
i, j=1

∫

�

ε2i jdx = 1

4

3∑
i, j=1

∫

�

(
∂ui
∂x j

+ ∂u j

∂xi

)2

dx ≥ C‖u‖2
[H1(�)]3

,

for all u ∈ H̃(�) ⊆ [H1(�)
]3
, where

H̃(�)
def.=
{
u ∈

[
H1(�)

]3 | u ⊥ (Bx + b),

for all skew-symmetric 3 × 3 matrix B and constant b ∈ R
3
}

.′′ (3.5)

In the above, u ⊥ (Bx + b), and the orthogonality “⊥” refers to the standard inner-
product of

[
L2(�)

]3
.

We may note that the subspace

{v ∈ [H1(�)]3|v = Bx + b,B is skew-symmetric,b ∈ R
3}

has 9 degrees of freedom. For an elastodynamic continuum subject to the force-free
boundary condition, there will be six modes corresponding to rigid body motions.
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These rigid body motions do not undergo any elastic deformation on the whole body
of the continuum and, therefore, the corresponding frequency is zero. These six modes
correspond to the six degrees of freedom of motion, namely, three are translations along
the three coordinate axes, while the other three correspond to the rotations of pitch,
roll and yaw. Here, we sometimes call them the trivial modes.

The above seems to be a known fact among the experts in the theory of elasticity,
but we have not yet seen any statements in the literature. We have discovered them
only after our work on modal computations. In the following, we state it as a theorem.

Theorem 3.1 Let � be a bound domain in R
3 with sufficiently smooth boundary ∂�.

Then, the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

(λ + μ)∇(∇ · u) + μ∇2u = 0 on �,

3∑
j=1

σi j n j = 0 on ∂�, for i = 1, 2, 3
(3.6)

has a six dimensional null space spanned by

⎧
⎨
⎩

⎡
⎣

0
−x3
x2

⎤
⎦ ,

⎡
⎣

x3
0

−x1

⎤
⎦ ,

⎡
⎣

−x2
x1
0

⎤
⎦
⎫
⎬
⎭ ∪

⎧
⎨
⎩
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⎦
⎫
⎬
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Proof From (3.6), using integration by parts, we have

0 =
∫

�

[
(λ + μ)∇

(
∇ · u + μ∇2u

)]
· udx

= −
∫

�

⎡
⎣(λ + μ)|∇ · u|2 +

3∑
i, j=1

2μ

(
∂ui
∂x j

+ ∂u j

∂xi

)2
⎤
⎦ dx +

3∑
i, j=1

∫

∂�

σi j n j uidσ

= −
∫

�

⎡
⎣(λ + μ)|∇ · u|2 +

3∑
i, j=1

2μ

(
∂ui
∂x j

+ ∂u j

∂xi

)2
⎤
⎦ dx

≤ − 1

C
‖u‖2

[H1(�)]3
(3.8)

according to Korn’s inequality, as stated in (3.5), if u ∈ H̃(�), for some C > 0
independent of u.

For (3.8) to hold, we must have

⎧⎨
⎩

either u ≡ 0 on ∂�, (3.9)

or u = Bx + b, for some skew-symmetric 3 × 3 matrix B and b ∈ R
3.

(3.10)
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If (3.9) holds, u satisfies both u|∂� = 0 and
∑3

j=1 σi j n j = 0 on ∂� = 0 for
i = 1, 2, 3. Thus u is overdetermined. A little more arguments similar to case (3.10)
shows that u is a trivial solution which is uninteresting. So we only need to consider
(3.10). The set

{
v : � → R

3 | v = Bx,B is an arbitrary 3 × 3 skew-symmetric matrix
}

is a 3-dimensional subspace of
[
H1(�)

]3
. If u = Bx for a skew-symmetric B and

3∑
i, j=1

σi j n j = 0, i = 1, 2, 3, on ∂�,

then because such (n1, n2, n3) spans R3 and
[
σi j
]
is a constant 3× 3 matrix, we must

have

σi j = λ

(
3∑

k=1

∂uk
∂xk

)
δi j + 2μ

(
∂ui
∂x j

+ ∂u j

∂xi

)
= 0, 1 ≤ i, j ≤ 3.

The above, together with u = Bx for a skew-symmetric B, after straightforward
calculations, gives us the 3-dimensional subspace spanned by the first three states as
listed in (3.7), plus the 3-dimensional space of constant vectors.

The rest of the proof is obvious. ��
Remark 1 Among the first three states as listed in (3.7),
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they represent rotations as they are, respectively, equal to
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⎤
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1
0
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⎤
⎦× x,

⎡
⎣
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⎦× x,

⎡
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−x2
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0

⎤
⎦ =
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⎣
0
0
1

⎤
⎦× x.

Their curls are pointing, respectively, to the directions of �i, �j and �k with magnitude 2.
These three states will manifest themselves in our later calculations as rotations,

while the last three constant states in (3.7) represent translations.

4 The CAD HorseModel

The horse is intended to be a thoroughbred [21]. Thoroughbreds have a lean body and
long legs, which have become exemplar of a racehorse and stud horse in America; see
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Fig. 3 Photo of a thoroughbred, selected from [21]

Fig. 3. In our work to ensue, we have gone through several rounds of design iterations
to try to capture these important features.

The CAD horse model in our modal analysis was initially based on the designs
from Blender [22]. It is a low-polygon count STL (an acronym that stands for
stereolithography,—a popular 3D printing technology) filemeant mainly for 3D print-
ing anddoes not have easily adjustable appendages. SeeFig. 3.Here, by “lowpolygonal
count” we mean that the number of vertices, edges and faces in the polygonal mesh
counts in the order of 10,000. The horse from Blender has a short and pointed tail
which does not accurately reflect the tail of a horse. By extending the length of the
tail and also adding in some minor details such as a small upward curving from the
base of the tail, we feel that the visual effects of our simulation has been somehow
enhanced. A CAD model is yielded as in Fig. 4.

To performmodal analysis, finite element meshes need to be generated from certain
transformation of the STL file. Depending on the geometry of themodel, the generated
meshmay have holes or gaps or may not even be successfully generated. To avoid such
pitfalls, we have used two different CAD packages for testing: SolidWorks [23] and
ANSYS Geometry [24] to check the mesh for any failure points such as disconnected
or open elements that may occur during our simulation and fix any holes within the
geometry to ensure proper mesh generation. More on such geometrical and mesh
construction can be found in Part IV of this series of papers (Fig. 5).

In our subsequent finite element calculations, we have used the following parame-
ters and data:

Solid Element Properties Element formulation option: S/R quadratic tetrahedron
element with nodal rotations
LS-DYNA revision R12.1-190-gadfcdf9018
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Fig. 4 A CAD model of horse from Blender [25]. A shortcoming here is that the tail is too short

Fig. 5 A refined CAD model obtained by us for the subsequent modal analysis

Number of solid elements 729,102
Number of nodes 129,537
Volume 0.444819 m3

Area 5.34923 m2

Height 2.09533 m
Length 2.50984 m
Width 0.600 m
Mass 444.82002 kg

5 Modes of Motion of a Horse

We can now proceed to examine the mode shapes of a thoroughbred horse. As a
continuum, there is an infinite number of modes an elastodynamic body can have. If
desired, the supercomputer can spew out as many modes of motion as we desire by
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Precision Double
Initial time step for implicit solution 1.0 ms
Material properties
Density 1000 kg/m3

Young’s modulus 7 GPa
Poission ratio 0.35
Yield stress 0.47 GPa
Tangent modulus 0.7
Hardening parameter 0.11

refining the mesh of continuum indefinitely. But this would be a futile undertaking
as we have pointed out earlier that in the computation process, modeling deficiencies
soon creep in and render the computedmode shapes unphysical andmeaningless. Only
the first few lower order modes will be significant. Partly to demonstrate this point,
here we choose the first 30 modes of the horse, and attempt to assign, and attempt to
assign relevant physical or biological interpretations. As can be seen from the video
collection in (5.1), when the mode number gets higher, many modes can be assessed
to be unphysical. See, for example, those shown in Figs. 36, 37 and 38.

Consider the horse with free (Neumann type) boundary condition all over. This
means that the horse is suspending in air. We first display the lowest order 100 modes
in sequential order in the following video:

https://drive.google.com/file/d/1OowZcapc8d0pJ3f9jCYJ7v-YJrX704C3/view?usp
=share_link (5.1)

In the collective video above, the video of each mode contains the legend of
scale/magnitude on the right side of the panel, with theMode # and frequency given on
the upper left corner of that panel. Nevertheless, for the rest of the graphics and videos
(other than the collective videos), no scale/magnitude legends are given in order to
simplify the graphics.

For each mode, one can read from the upper left corner of the video about the
frequency of periodic motion, this is ω j in (2.16) in the unit of kilo-Hertz (kHz).
Therein, the magnitude of the motion is also indicated in the color legend on the
right of each mode. An assembled table of the frequencies is available in Table 2 in
the Appendix.
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Fig. 6 This is Mode 1 in (5.1) showing a planar translational displacement type rigid body motion. For
video animation, please click https://drive.google.com/file/d/1wkwCLf44p7rrZrxhzJ3rdx2RvXN4SCKH/
view?usp=sharing

Fig. 7 This isMode 2 in (5.1) showing a planar translational displacement type rigid bodymotion. (However,
the direction of translation is different from that in Fig. 7). For video animation, please click https://drive.
google.com/file/d/1LCOKwJmO9ml4GN6hLs1WdKFXpOgvcs9T/view?usp=sharing

5.1 Six Rigid-BodyMotions in the Null Space

We have already noted in Section 4 that there are six (trivial) rigid body modes. They
correspond to eigenvalue zero (and zero frequency). We first show these six in Figs. 6,
7, 8, 9, 10, and 11.
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Fig. 8 This isMode3 in (5.1) showing a vertical translational displacement type rigid bodymotion. For video
animation, please click https://drive.google.com/file/d/1t1S8Kq1DKpo3z5WIQhiRnRYSCyor3mZ9/
view?usp=sharing

Fig. 9 This is Mode 4 in (5.1) showing a yaw rotational rigid body motion. For video animation, please see
https://drive.google.com/file/d/1AbjigtzwFUhsGNsslDslpBpG9wDjEnXL/view?usp=sharing

5.2 Prominent Low-Frequency Modes and Their Interpretations

Here, we display mode numbers between 7 and 30 in (5.1). They are mostly of a
“local nature” and represent some prominent motions of a horse related to gaits and
communications. In each graphics, we also give our interpretations to such a motion
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Fig. 10 This is Mode 5 in (5.1) showing a pitch rotational rigid body motion. For video animation, please
see https://drive.google.com/file/d/1siy5GzXLfUC1mCpyVIzLr-c01jYlCivs/view?usp=sharing

Fig. 11 This is Mode 6 in (5.1) showing a roll rotational rigid body motion. For video animation, please
see https://drive.google.com/file/d/1hQ2XH-426HYKtBDRnB6Jfu0U5sF9nMD_/view?usp=share_link

(Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35).

Based on the above graphics and videos, one can continue to peruse the other modes
and theirmotion shapes and find the probable associated biomechanical interpretations
(Figs. 36, 37 and 38).
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Fig. 12 This is Mode 7, the first non-rigid-body-motion of horse, showing the horse’s hind
legs lateral motion in-and-out. For video animation, please click https://drive.google.com/file/d/
1_EO3_yJUAtHjs2TLe6tu7COrVMJM23dX/view?usp=share_link

Fig. 13 This is Mode 8, showing the pairwise lateral motion of the fore legs and the hind legs in an out-
of-phase way but coordinated rhythm. For video animation, please click https://drive.google.com/file/d/
1G6wLEtq_2zq2z4hUpFjDgVlmqWSax2iR/view?usp=sharing

Remark 2 Weprovide a brief summary of the significance of theModes 7–30 presented
above:

(1) The tail wagging modes are related to horse communications among horses or
between a horse and its master.

(2) Modes 13 and 15 are related to the walking or pacing modes of a horse.
(3) Modes 14 and 16 are related to the cantering or galloping motions of a horse;
(4) The sideway motion modes 3, 4, 7, 8, 9, 10, 12, 17, 19, 20, 21, 22, 23, 24, 25, 26,

30 are related to the turning (i.e., changing the directions of movements) motion
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Fig. 14 This is Mode 9, similar to Mode 7 showing a lateral in-and-out motion of the fore legs in con-
trast to that of the hind legs of Mode 7. For video animation, please click https://drive.google.com/file/d/
1lY8fn8ihWTNITV1Ypc5zs9BSYpxR84a2/view?usp=sharing

Fig. 15 This is Mode 10, showing an out-of-phase fore legs walking/pacing motion, back-and-forth (or
forward-and-backward). There is also some minor motion of the hind legs. For video animation, please
click https://drive.google.com/file/d/1l9YKY6tmMcijvZGP3OOBJS2yzGJAGoVG/view?usp=sharing

of a horse. They could also be related to the “injury modes” if the horse cannot
withstand the forces or momenta in these motions.

5.3 Some High Frequency Spurious Modes

When themodenumber gets high,we can begin to see elastic deformations that are odd,
strange, unrealistic or grotesque.More andmore sowhen themode number gets higher.
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Fig. 16 This is Mode 11, showing an in-phase synchronous fore legs running motion. There is also
some minor motion of the hind legs. For video animation, please click https://drive.google.com/file/d/
1e-6Z6S3l8pyjoYSjDfErQuowow7Mb4ZJ/view?usp=share_link

Fig. 17 This is Mode 12, showing an out-of-phase walking/pacing motion of the fore legs. There is also
some minor motion of the hind legs. For video animation, please click https://drive.google.com/file/d/
1fZ2KJPbKZeN4KpkTHc8Hg1xQ4AR5Tcdg/view?usp=sharing

Here are a few examples. These modes have unnatural, exaggerated appearances and
could be related to “injury modes”.

5.4 Local Motions of Special Parts of the Horse

In browsing over the set of the 100 modes of the horse, we notice that a majority
of the modes involve only local motions, for example, those of the feet and legs. In
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Fig. 18 This is Mode 13, showing up-and-down wagging of the horse’s tail. We interpret it as an economic
way for a horse to communicate its mood to the master or to other horses. For video animation, please click
https://drive.google.com/file/d/1cVWRXIX5VN3Uu98wr4SNg_mmT9H-qNGI/view?usp=sharing

Fig. 19 This is Mode 14, showing an out-of-phase forward-and-backward walking/pacing motion of the
hind legs. (There is no motion of the fore legs.) For video animation, please click https://drive.google.com/
file/d/1ry6bT30e4YeIc6PCUGvmPpkCeGPUPRdF/view?usp=sharing

addition to the local motions of the feet and legs, there are also many local motions
of, respectively, the ears, head, and tail, which have little relation to the motion of the
torso or other parts of the horse. Here, we display some of such motions for ears, head
and tail, in the following three panels. One can actually see some symmetry at work.

5.4.1 Local Motions of the Horse Ears

We select the local motions of the ears alone and show them in Fig. 39.
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Fig. 20 This is Mode 15, showing an in-phase synchronous walking motion of the hind legs. There is
also minor motion of the fore legs. For video animation, please click http://people.tamu.edu/~asergeev/
presentations/pres-2022-09-02/horsem1-15/movie_015.mp4

Fig. 21 This is Mode 16, showing side-to-side (left-and-right) wagging of the horse’s tail. Note that the
direction of wagging is perpendicular to that in Figure 15. Again, we interpret it as an economic way for a
horse to communicate its mood to the master or to other horses. For video animation, please click https://
drive.google.com/file/d/1fgXJ8DuKvyOIEplK5PKlYpyj9FAABEGj/view?usp=sharing

5.4.2 Local Motions of the Horse Head

The local motions of the head are collected and shown in Fig. 40. Please note that there
are always accompanying motions on other parts of the horse.

5.4.3 Local Motions of the Horse Tail

The local motions of the head are collected and shown in the panels of Fig. 40.
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Fig. 22 This isMode 17. It is the firstmode showing three different rotations of the horse parts: the head, hind
legs and tail. The hind legs show side-to-side bending motion, and this side-to-side motion is in phase with
that of the head, while the tail’s side-to-side wagging motion is out-of-phase with those of the hind legs and
head. For video animation, please click https://drive.google.com/file/d/1x8QWpr3Wg3nswh8Bly_gzJdF-
GfOlws1/view?usp=share_link

Fig. 23 This is Mode 18. It is showing the motion of two different parts of the horse: the head and hind
legs. The hind legs are moving in phase up and down, and the head’s up-and-down motion is in phase with
the nodding of the head. For video animation, please click https://drive.google.com/file/d/1eFTBPHg-
NoxKtz5pIcDvOy5BvgUPny_z/view?usp=sharing

6 Modal Analysis of Horse on a Floor

A horse may be carrying a rider or pulling a carriage. But its most important, and
perhaps the only natural interaction with the environment, is the ground or floor that
the horse is on. Therefore, in this section, we consider the modal analysis of a horse
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Fig. 24 This is Mode 19. It is showing the motion of symmetric rotating of the two hind
legs opposite to each other. For video animation, please click https://drive.google.com/file/d/
1fgJS0vmHaIEQy2fB8RgjZXQiDm58zRFE/view?usp=share_link

Fig. 25 This is Mode 20. The prominent motion is showing a rotating motion in the same orientation
of the hind legs. There is also a side-to-side rotation of the head. The side-to-side motions of the leg
rotation is in phase with that of the head. For video animation, please click https://drive.google.com/file/d/
1WuGSdosLu89_kidE6Kb6CN7zP16C_zWF/view?usp=share_link

on floor. This is done by adding a contact condition on the hoofs/feet of the horse: the
LS-DYNA keywords are (Figs. 41, 42, 43):

*CONTACT_ERODING_SINGLE_SURFACE
and
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE [19, pp. 11–51].
We have compiled the first 100 modes of a horse on a floor in the following:
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Fig. 26 This is Mode 21. The motion is showing a symmetric rotation of the fore legs in opposite ori-
entations. For video animation, please click https://drive.google.com/file/d/11C7pps34_4_dEVLU4ajuI-
rkZYTkIcDj/view?usp=sharing

Fig. 27 This is Mode 22. The motion is similar to that of Mode 21, except that the fore legs
are rotating in the same orientation. For video animation, please click https://drive.google.com/file/d/
1wEqqR8QsT1twQRmd5jrv8OvyKYNTxR_o/view?usp=sharing

https://drive.google.com/file/d/1QlaLalBuKa-5jzSxa8NBOd9z5wHrdO3u/view?usp
=share_link (6.1)

Unsurprisingly, many of the mode shapes are quite similar to those of a horse
without floor as shown in (5.1). Except that the sequential order of occurrences of
such similar, look-alike modes may change. The major novelty here, however, is the
effect of the floor as a constraint. In our opinion, such a constraint makes the motions
more “sure-footed” and natural. Here, we are displaying some of such more natural-
looking modes.
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Fig. 28 This is Mode 23. The motion is showing an walk in alternating high-step
motion of the hind feet. For video animation, please click https://drive.google.com/file/d/
1SEn6mHxAAjF4AxVODnHyaEO6dyXUmPeB/view?usp=share_link

Fig. 29 This is Mode 24. The motion is showing a synchronous high-step motion of the two hind legs.
There are also minor motion of the fore legs and the head, and the nodding motion of the head. For video
animation, please click https://drive.google.com/file/d/1-HgJTrV0DtNQK3NWzgLhwsmVsUBlAJdW/
view?usp=share_link

From Figs. 45 and 47, we see that a horse can perform pronk and bound motions. It
can also perform pacing and trotting motions as such motions can be formed by linear
combinations of Modes 13 (Fig. 44) and Mode 15 (Fig. 46). Despite this achievement,
we must note that a horse can have many different gaits, which have not been captured
by us. Only more study can enable us to make more findings about general horse gaits.

A tabulated interpretation of modes (up to mode #30) is given in Table 1.
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Fig. 30 This is Mode 25. The motion is showing a synchronous rotating motion of the two hind legs. There
is also a minor out-of-phase side-to-side yawing motion of the head. For video animation, please click
https://drive.google.com/file/d/1DfNOb_xRZ1E9a0l9BRkxHgsjOtNqNEKL/view?usp=share_link

Fig. 31 This is Mode 26. The motion is showing two fore legs performing a synchronous high-step motion,
and some minor motion of the two hind legs. For video animation, please click https://drive.google.com/
file/d/1YZMh1-pya2p-XGb8zHRxqe_D5bAvPAkM/view?usp=share_link

7 Modal Analysis of a Camel

We now discuss the modal analysis of a camel, along similar parallel lines as we did
for the horse in the preceding sections. As a result, we will be more concise.
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Fig. 32 This is Mode 27. It is showing an alternating high-step fore two legs motion. For video
animation, please click https://drive.google.com/file/d/1yPixaNUvRxBifD-jXugaZtYHZLAWbn0-/view?
usp=share_link

Fig. 33 This is Mode 28. The motion is showing a rotating and twisting, pairwise synchronous
motion of the two hind legs. There is also a minor twisting and rotating motion of the fore legs
out-of-phase with the hind legs. The head is also yawing in-phase with the hind legs. Note that the
hind feet are “popping” or swollen. For video animation, please click https://drive.google.com/file/d/
1WHinL5XZQaD8NOfhwVHyPqjQ2HBmEhiF/view?usp=sharing

7.1 The CAD Camel Model

Our 3D camel CAD model is taken from an online open-source resource Creazilla
[26]. The mesh generation process is similar to that of the horse. Thus, we will not
need to repeat the technical details.

The material and computational parameters are:
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Number of finite elements 367,558
Number of nodes 72,364
Area 1.45028e+07 mm2

Volume 1.98963e+09 mm3

Mass kg
Corrected material
Density 1.15e−6 kg/mm3

Young’s modulus 3.5e−6 GPa
Poission’s ratio 0.45
Yield stress 0.47 GPa
Tangent modulus 0.0
Hardening parameter 0.11

Fig. 34 This is Mode 29. The motion is showing a rotating and twisting, motion in opposite orientation
of the two hind legs. The two hind feet are also swollen. For video animation, please click https://drive.
google.com/file/d/1Td-HG9zdtIsFCQ-v-0tRQ-Ci6MdLOIpQ/view?usp=sharing
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Fig. 35 This isMode30.Themotion is showing a pairwise out-of-phase high-stepmotion of the two fore legs
and the hind legs. The head is also pitching up-and-down out-of-phase with the fore legs. For video ani-
mation, please click https://drive.google.com/file/d/1Qm8ufSZF9nAHGm3gDYr4SC_r7byUk7na/view?
usp=sharing

Fig. 36 This is Mode 49 in (5.1), where we see excessive bending, twisting and rotating of the
lower portion of the hind legs. For video animation, please click https://drive.google.com/file/d/
14o73sYsA8lkw_u_lFFIa9yBQdaBGVwGT/view?usp=sharing
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Fig. 37 This is Mode 81, where we see excessive popping and rotation of the joints of the fore
legs. This could be an injuring mode. For video animation, please click https://drive.google.com/file/d/
1O6XGDe1zzTDmGmQMq9VR_7WfRFOdTgjV/view?usp=sharing

Fig. 38 This is Mode 93, where we see grossly oscillatory motion on the bent fore legs
and joints. For video animation, please click https://drive.google.com/file/d/1QLZs0V0NvLcnKc74-
U2r7kHDryV_P4RQ/view?usp=share_link
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Fig. 39 This panel shows the motion patterns of the horse ears. These motions are local, i.e., there are no
motions on other parts of the horse body. We believe they are related to the communications between horses
or between a horse and its master

Fig. 40 This panel shows the motion patterns of the horse head. These motions are not local, i.e., there
are certain motions on other parts of the horse body. We believe the motions of the head are related to the
communications between horses or between a horse and its master, or, sometimes, between the balancing
of the body in motion as the motions are not local
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Fig. 41 This panel shows the motion patterns of the horse tail. These motions are local, i.e., there are no
motions on other parts of the horse body.We believe themotions of the tail are related to the communications
between horses or between a horse and its master

Fig. 42 This is Mode 7 in (6.1), where we see the lateral in-and-out motion of the hind legs. For video
animation, please click https://drive.google.com/file/d/19EClGdhnQjYlBOx6E-1nNF3_-ZwVbCuz/view?
usp=sharing
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Fig. 43 This is Mode 10 in (6.1), where we see the in-and-out lateral motion of the fore legs.
For video animation, please click https://drive.google.com/file/d/1e8fii1fM-6x-msteP78isJd6MbkiOmBf/
view?usp=sharing

Fig. 44 This is Mode 13 in (6.1), where we see the walking/pacing motion of the fore legs. For video ani-
mation, please click https://drive.google.com/file/d/1MT-S0OPtFY7A0ambkHL1gvPe5ZWq2kls/view?
usp=sharing

123

https://drive.google.com/file/d/1e8fii1fM-6x-msteP78isJd6MbkiOmBf/view?usp=sharing
https://drive.google.com/file/d/1e8fii1fM-6x-msteP78isJd6MbkiOmBf/view?usp=sharing
https://drive.google.com/file/d/1MT-S0OPtFY7A0ambkHL1gvPe5ZWq2kls/view?usp=sharing
https://drive.google.com/file/d/1MT-S0OPtFY7A0ambkHL1gvPe5ZWq2kls/view?usp=sharing


Animal Shapes, Modal Analysis, and Visualization of Motion Page 37 of 60 328

Fig. 45 This is Mode 14 in (6.1), where we see the bounding type cantering/galloping
motion of the horse. For video animation, please click https://drive.google.com/file/d/
1ukKrmZO0G3fMURFcFEc0WJIgKA3rtMP0/view?usp=sharing

Fig. 46 This is Mode 15 in (6.1), where we see the walking/pacing motion of the hind legs. For video
animation, please click https://drive.google.com/file/d/1OHwZ-DETZiisoYr5hxEQhUq2kynzWt34/view?
usp=sharing

123

https://drive.google.com/file/d/1ukKrmZO0G3fMURFcFEc0WJIgKA3rtMP0/view?usp=sharing
https://drive.google.com/file/d/1ukKrmZO0G3fMURFcFEc0WJIgKA3rtMP0/view?usp=sharing
https://drive.google.com/file/d/1OHwZ-DETZiisoYr5hxEQhUq2kynzWt34/view?usp=sharing
https://drive.google.com/file/d/1OHwZ-DETZiisoYr5hxEQhUq2kynzWt34/view?usp=sharing


328 Page 38 of 60 G. Chen et al.

Table 1 Interpretation of the first 30 modes of a horse on floor

Mode# Mode name Interpretation

1, 2, 3 Rigid body motion Rotate and forward motions of the
horse

4 Rocking motion of the horse Rock motion

5 Lifting of the fore legs and (up-down)
tail wagging

Communication

6 (up-down) Tail wagging Communication

7 Side-to-center hind leg movement Unclear (unspecific leg movement)

8 Out-of-phase rocking of the fore legs
and hind legs

Unclear (unspecific leg movement)

9 Side-to-center motion of fore legs Unclear (unspecific leg movement)

10 Left-right tail wagging Communication

11 Left-right movement of the fore legs Making turns

12 Out-of-phase two fore legs motion Walking/pacing

13 Out-of-phase movement of the pairs
of fore and hind legs

Bounding

14 Out-of-phase motions of the hind legs Walking/pacing (together with Mode
13)

15 Out-of-phase movement of the pairs
of fore and hind legs

Pronking

16 Left-right head motion, whole body
motion

Communication, shaking of body

17 Up-down body motion Communication

18 Hind lower-leg twisting (symmetric) Unspecified leg motion

19 Hind lower-leg twisting (antisymmet-
ric)

Unspecified leg motion

20 Fore lower-leg twisting (symmetric) Unspecified leg motion

21 Fore lower-leg twisting (antisymmet-
ric)

Unspecified leg motion

22 Yawing of head and hind legs rotating Communication (while leg motion is
unspecific)

23 Head yawing and leg twisting Communication (while leg motion is
unspecific)

24 Head nodding and leg twisting Communication (while leg motion is
unspecific)

25 Hind legs twisting Unspecified leg motion

26 Tail wagging Communication

27 Tail wagging Communication

28 Tail twirling Communication

29 Tail twirling Communication

30 Tail twirling and legs movement Communication; unspecified body
movement
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Fig. 47 This isMode16 in (6.1),wherewe see the pronking type cantering/gallopingmotion of the horse. For
video animation, please click https://drive.google.com/file/d/1hybAP5dcWwayDqJsD1ZhTAiZa9Zcl9z2/
view?usp=sharing

Fig. 48 This is Mode 7 in (7.1), the first non-rigid bodymotion of camel, showing a synchronous in-and-out
lateral motion of the two fore legs. There is also some minor motion of the hind legs, For video ani-
mation, please click https://drive.google.com/file/d/1mPAzajBlrGXsGcrHB6TOx4MpzQzQP1tL/view?
usp=sharing

In https://drive.google.com/file/d/1RiFR05DQWvSdjGok3GGOe6ORjk7xsiFB/view?usp
=share_link, (7.1)

we display the first 100 modes. Their frequencies are tabulated in the Appendix.
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Fig. 49 This is Mode 8, which is the same motion as in Mode 7, except that here the lateral motion happens
on, respectively, both the fore and hind legs, out-of-phase. For video animation, please click https://drive.
google.com/file/d/1zY1cQWFv9I2hNmy6Ged_GMbaAOPalWWf/view?usp=sharing

Fig. 50 This is Mode 9. Here the prominent is the back-and-forth (i.e., forward-and-backward) walking
motion of the fore legs. There is also minor motion on hind legs of the camel. For video animation, please
see https://drive.google.com/file/d/11VpFVsRzW9P-CtXtVF8xu_WTaVJyUh0n/view?usp=sharing

7.2 Discussion of the First 100Modes of a Camel (1):Without Floor

We first note that the first six modes are linear combinations of the six rigid-body
motions as given in Sect. 3. So we begin from the seventh mode in (7.1) (Figs. 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71).
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Fig. 51 This is Mode 10. This shows a 4-legged motion, where the two fore legs are moving back-and-
forth, while the two hind legs are moving side-to-center. These directions of the two types of motion
seem to be “orthogonal” to each other. For video animation, please click https://drive.google.com/file/d/
1UwxKQ_Pxj4sP62hdiiwPZI_FzztcMB7D/view?usp=sharing

Fig. 52 This is Mode 11. This shows again a 4-legged motion, where the two fore legs are moving back-
and-forth, while the two hind legs are moving laterally side-to-center. But the relative motion between the
fore and hind legs are out-of-phase in comparison with that of Fig. 51. Once again, these directions of the
two types of motion seem to be “orthogonal” to each other. For video animation, please click https://drive.
google.com/file/d/1LpaYxuSA46AnyLGU8D4X6jgoaeChD58c/view?usp=sharing

7.3 The First 100Modes of a Camel (2):With Floor

We compile and connect the first 100 modes in a video as follows:
https://drive.google.com/file/d/1HwetaCx1nHLyx6BnK1WF1luntc5AGO_q/view?
usp=share_link (7.2)
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Fig. 53 This is Mode 12. It shows the walking, back-and-forth, motion of the hind legs. For video
animation, please see https://drive.google.com/file/d/1zugX1JPIx7PXvX9AcFYYJyXWiyRQFkR3/view?
usp=sharing

Fig. 54 This is Mode 13. Here the camel is in a “rocking” motion. The more prominent motion occurs on
the hind legs. There is also minor in-phase motion on fore legs. For video animation, please see https://
drive.google.com/file/d/1zJQQwDlWOhy2WSnBnbXKRGLWJiOtsF-o/view?usp=sharing

We noted earlier in Sect. 6 that the presence of floor makes the motion look more
“sure footed”. Here, like in Sect. 6, we mainly emphasize the modes related to camel’s
gaits.
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Fig. 55 This is Mode 14. Here the camel’s fore pair and hind pair legs are rotating left-to-right in
synchrony. For video animation, please see https://drive.google.com/file/d/1CP0NLnUhRkHboRGyn-
NoQvzP-kxPtNBn/view?usp=sharing

Fig. 56 This is Mode 15. Here the major motion is the synchronous left-to-right yawing of the head and
tail. There is also some minor motion of the legs. For video animation, please see https://drive.google.com/
file/d/1d9_eulsHXXgO5IsSFU2SVjQCm4UKo_Pp/view?usp=sharing

7.4 Comments on Some Higher Frequency Modes of a Camel

In Sect. 5.3, for the horse we have noted the fact that, as the mode number gets higher,
the likelihood that themode becomes spurious and unrealistic increases. For the camel,
the situation is similar. The reader can see the video in (7.1) to verify for him- or herself.
Thus, there is no need to add graphics or videos similar to those as shown in Figs. 36,
37 and 38 so as to avoid repetition.
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Fig. 57 This is Mode 16. Here the major motion is the up-and-down pitch of the head. There is also some
minor up-and-down motion of the fore and hind legs, and that of the tail. For video animation, please see
https://drive.google.com/file/d/1KX096q_A43kTUsN_-ccuAHo0OxylhKOT/view?usp=sharing

Fig. 58 This is Mode 17. Here, the major (and only) motion is the up-and-down pitch of the tail.
For video animation, please see https://drive.google.com/file/d/1aWTpcVi5kP36oGTF4NgLmnqUU8Zcu-
Mg/view?usp=sharing

Nevertheless, here, we add one higher order mode related to the camel’s hump,
which is unique to the camel, as an example of a characteristic of the camel in Fig. 72.

Remark 3 Modes 10 and 11 as shown, respectively, in Figs. 73 and 74 seem to indicate
that their linear combinations can form the trot gait. But the trot gait for a camel has
never been observed. The only walking gait for a camel is the pacing (syncopated
walk) motion. This is a puzzle we still have not been able to answer (Figs. 75, 76, 77).
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Fig. 59 This is Mode 18. Here, the major (and only) motion is the left-to-right wagging of the tail. For video
animation, please see https://drive.google.com/file/d/1ffs9mzMyX4F2_8GlBKwDlNXPFfj_MUdQ/view?
usp=sharing

Fig. 60 This is Mode 19. Here the motion is the rotation, in opposite orientation, of the lower hind legs. For
video animation, please see https://drive.google.com/file/d/1V0f_FUFLZwFfJuDr3lHnRXZGLKvg216w/
view?usp=sharing
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Fig. 61 This is Mode 20. Here, the hind legs is tramping with rotation of the hind feet in opposite ori-
entation. There is also some minor rotational motion of the fore legs, but with the same orientation.
For video animation, please see https://drive.google.com/file/d/15UB8Dexz-QONlCPKTepfXgqIjEyyo-
8R/view?usp=sharing

Fig. 62 This is Mode 21. It shows the rotation of the lower-half fore legs in opposite orientation For
video animation, please see https://drive.google.com/file/d/1GsI--EzC53tbg0N4NdqQiY0Eqxxv7VcW/
view?usp=sharing
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Fig. 63 This is Mode 22. The major motion is the rotation of the lower-half fore legs in the same orientation
There is also a minor motion of tramping of the hind legs. For video animation, please see https://drive.
google.com/file/d/1VjWQc2eGZomIZo7jMbAXSsCvIc5sxso5/view?usp=sharing

Fig. 64 This is Mode 23. The major motion is the step-up motion of the hind legs. There is also a
minor bending motion of the fore legs. For video animation, please see https://drive.google.com/file/d/
109fSzEuJs2_FBsz3fgSD1M-Zq5HO7qfY/view?usp=sharing
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Fig. 65 This is Mode 24. The major motion is the tramping of the hind legs. There is also a minor rotation
of the fore feet in the same orientation. For video animation, please see https://drive.google.com/file/d/
1QO3Qcv3rkEvTc8M-9RdEiJ7Cf7TWvSw9/view?usp=sharing

Fig. 66 This is Mode 25. It shows the tramping of the fore legs. For video animation, please see https://
drive.google.com/file/d/1t767dZMRUKFA_PxVFjs_K5AEv1dRzBoG/view?usp=sharing
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Fig. 67 This is Mode 26. It shows the step-up motion of the fore legs. For video animation, please see
https://drive.google.com/file/d/1yyEE7OTJ1bu6YYKpoXLN6wZ4fJ6CJIVx/view?usp=sharing

Fig. 68 This is Mode 27. It shows the neck-twisting motion of the head. For video animation, please see
https://drive.google.com/file/d/1qEzo-srYFl2Cwv8KN05OFqpExqVzywu1/view?usp=share_link
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Fig. 69 This is Mode 28. It shows the twisting motion of the lower fore legs in opposite orientation. For
video animation, please see https://drive.google.com/file/d/1SdlmRjvmOUf08xGAYQbFzln7ptQV3aG9/
view?usp=share_link

Fig. 70 This is Mode 29. It shows the twisting motion of the lower fore legs, but in the same orienta-
tion. For video animation, please see https://drive.google.com/file/d/1Wa26B9TeocTtvcFYsmlqnXp6gJNl-
KlW/view?usp=sharing
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Fig. 71 This is Mode 30. It shows the twisting motion of the hind feet in the opposite orientation. For video
animation, please see https://drive.google.com/file/d/1r8saIYOtDOdZOn8IMQWJscaSCWha2W2D/
view?usp=sharing

Fig. 72 This is Mode 74. This is a full-body motion of a camel, where the movement of the
camel’s hump is quite noticeable. For video animation, please see https://drive.google.com/file/d/
1MhrqVgWaxlUG6__vtMUMCsgV5RO0lFcf/view?usp=sharing
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Fig. 73 This is Mode 10 in (7.2). It shows the walking/pacing, out-of-phase motion of the two fore legs.
For video animation, please see https://drive.google.com/file/d/1-Myzgrdt4qiuEFYa6xZytfsLz3WB-5AW/
view?usp=sharing

Fig. 74 This is Mode 11 in (7.2). It shows the walking/pacing, out-of-phase motion of the two hind legs. For
video animation, please see https://drive.google.com/file/d/1O4IkkZnTEk9ZLe9rDF21NJhse2CmuPDs/
view?usp=sharing
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Fig. 75 This is Mode 12 in (7.2). It shows the pronk motion of the camel. For video animation, please see
https://drive.google.com/file/d/1nnnKzlbXYzpKzuLkboWtFeZN3t9rx1VY/view?usp=sharing

Fig. 76 This is Mode 13 in (7.2). It shows the pacing motion of the camel. This walk is often referred to as
a syncopated walk, or a camel walk, due to a camel’s usual walk gait where two legs move almost exactly
at the same time, followed by the other two legs. For video animation, please see https://drive.google.com/
file/d/12iBLzKBpvYiH8HN_zKlPuRFaffAB7ahd/view?usp=sharing

Thebreathingmode is quite commonamong animals.Herewe include the following
as an example in Fig. 78.
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Fig. 77 Here we include both Modes 24 (left panel) and 28 (right panel) together. The former and lat-
ter can form linear combinations that become either pace or trot gaits. This again becomes puzzling as
noted in Remark 3. For video animations, please click (for Mode 24) https://drive.google.com/file/d/1o-
2AmOHjFJwpw-aULgLR-y5ifxjhYHdX/view?usp=sharing (for Mode 28) https://drive.google.com/file/
d/1P5A8HZ9n0hqk6Ss1GI72F13oAa19bZAx/view?usp=sharing

Fig. 78 This is Mode 84 in (7.2). It shows a breathing mode of the camel. For video animation, please see
https://drive.google.com/file/d/18GcKCuSta6_j4s6ZszhyeDDnEkoyhDaD/view?usp=sharing

8 Concluding Remarks

We start this series of papers by using linear elasticity as the first step of computer
modeling for animals. For the modeling to be as faithful and realistic as possible, there
are numerous issues involved. Such issues are either currently beyond our capabilities
and knowledge, or somewhat out of the scope of the main lines of interest. But they
need to be further addressed. Here, we briefly describe some of them:

(i) For the contact condition between two geometrical objects, LS-DYNA offers
some ten types of different possibilities of treatments. Our choice is
*CONTACT_SURFACE_TO_SURFACE
for the contact between the animals with the floor [27]. Due to the lack of further
technical descriptions of this subroutine, we have essentially treated this contact as a
“black box”.
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The simplest possible type of contacts is a quadratic programming problem with
a linear constraint in a Hilbert space which, after discretization, becomes again a
quadratic programming problem with a linear constraint in terms of nodal values. LS-
DYNA’s handling of such a nonlinear programming problem with constraints is by a
penalty approach. However, it is unclear to us in the computation of modal analysis
with contact constraints whether such a penalty algorithm is just linearized to yield
the modal solutions.

(ii) We have quoted the famous book “On Growth and Forms” [28] by D’Arcy
Wentworth Thompson. Regarding biological growth (and beyond), a set of notable
mathematical papers have already been published in the contexts of finite elasticity
and nonlinear PDEs. We refer the reader to [29–31] and the references therein.

(iii) Even though in (2.4), we have used the notation �(t), our theory in this article
is actually “infinitesimal" and the domain should be just �. The software platform
LS-DYNA is capable of treating finite elasticity and, thus, the case of non-cylindrical
or tubular domains �(t) (see, e.g., [28, 32]) by the use of moving grids.

In this paper, we see that the elastodynamic motion modes, based on the shapes of
a horse and a camel can be related to the gaits of these two animals. We have tried to
use modal analysis to determine the mode shapes, and then incorporate harmonic time
dependence with these modes in order to understand their dynamic patterns and also
possible biophysical interpretations. We have noticed that some computed modes are
unrealistic and should be deemed spurious. There are also puzzling facts that, so far
appear paradoxical such as Remark 3 has pointed out.

In the sequels, Parts II and III, we will continue the investigation along the same
lines, for different animals. We hope we can broaden our understanding and obtain
some answers.
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Appendix: Frequencies of vibrations of the horse and camel
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Table 2 The frequencies of modal analysis of, respectively, the horse and camel without floor or with
floor. Note that the first 6 frequencies are actually zero (i.e., trivial). The rest 100 frequencies are nonzero.
Therefore, we have included a total of 106 frequencies in the table

Freauencies(kHz) Cases

Without floor With floor

Horse Camel Horse Camel

1 2.682837E−07 7.782041 E−08 5.960018E−07 8.870288E−08

2 2.698932E−07 8.501547E−08 6.376279E−07 9.029571 E−08

3 2.715966E−07 8.984321 E−08 7.967601 E−07 1.250446E−07

4 2.942210E−07 1.236262E−07 2.824282E−05 2.508591 E−05

5 3.048397E−07 1.385396E−07 4.985253E−05 2.591457E−05

6 3.262213 E−07 1.481239E−07 5.148981 E−05 3.027630E−05

7 3.612236E−05 1.988243E−05 5.958097E−05 3.043914E−05

8 3.746421E−05 2.116354E−05 6.165072E−05 3.050887E−05

9 3.981709E−05 2.197625E−05 6.609092E−05 3.468566E−05

10 4.470078E−05 2.238936E−05 7.337863E−05 3.471596E−05

11 4.716380E−05 2.296072E−05 7.544233 E−05 3.535281 E−05

12 4.728704E−05 2.531786E−05 8.186453 E−05 3.556314E−05

13 5.113975E−05 2.724082E−05 9.042398E−05 4.110963 E−05

14 5.411122E−05 2.846865E−05 9.247168E−05 4.778758E−05

15 5.533975E−05 4.168540E−05 9.346338E−05 5.328695E−05

16 7.541136E−05 4.514064E−05 9.593075E−05 5.354626E−05

17 1.074904E−04 5.369640E−05 1.166028E−04 5.660732E−05

18 1.292400E−04 5.404641 E−05 1.489392E−04 6.016764E−05

19 1.430821 E−04 7.404020E−05 1.632743 E−04 8.945863E−05

20 1.507188E−04 7.6043 70E−05 1.655328E−04 9.028651 E−05

21 1.806348E−04 8.083555E−05 1.846387E−04 9.573340E−05

22 1.824431 E−04 8.423719E−05 1.857892E−04 9.981593E−05

23 1.934547E−04 8.607738E−05 2.098809E−04 1.137995E−04

24 1.966530E−04 8.819308E−05 2.640247E−04 1.382627E−04

25 2.090820E−04 9.325324E−05 2.718732E−04 1.397781 E−04

26 2.308291 E−04 9.485306E−05 2.780743 E−04 1.539564E−04

27 2.322199E−04 1.136339E−04 3.018996E−04 1.550329E−04

28 2.523299E−04 1.192159E−04 3.205913E−04 1.636019E−04

29 2.548750E−04 1.204490E−04 3.312417E−04 1.646155E−04

30 2.826606E−04 1.441831 E−04 3.396648E−04 1.658929E−04

31 2.849240E−04 1.449194E−04 3.426114E−04 1.721582E−04

32 2.940045E−04 1.633624E−04 3.930962E−04 1.746178E−04

33 2.968315 E−04 1.653891 E−04 4.064068E−04 1.777859E−04

34 3.202934E−04 1.806363E−04 4.073509E−04 2.311469E−04
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Table 2 continued

Freauencies(kHz) Cases

Without floor With floor

Horse Camel Horse Camel

35 3.326874E−04 1.811422E−04 4.134993 E−04 2.315879E−04

36 3.411629E−04 1.921651 E−04 4.322402E−04 2.460855E−04

37 3.642983E−04 1.954439E−04 4.829740E−04 2.591770E−04

38 3.807682E−04 2.324036E−04 4.849586E−04 2.684810E−04

39 4.187322E−04 2.330256E−04 4.904498E−04 2.884414E−04

40 4.494040E−04 2.398744E−04 5.000302E−04 2.891487E−04

41 4.668644E−04 2.411085E−04 5.734961 E−04 2.972601 E−04

42 4.693801 E−04 2.499352E−04 5.790548E−04 2.993720E−04

43 4.848566E−04 2.578354E−04 6.073742E−04 3.106098E−04

44 5.071372E−04 2.645231 E−04 6.354170E−04 3.116237E−04

45 5.197877E−04 2.805333E−04 6.458671 E−04 3.145439E−04

46 5.430603 E−04 2.838393E−04 6.550777E−04 3.244489E−04

47 5.613462E−04 2.933349E−04 6.601517E−04 3.431158E−04

48 5.654203 E−04 2.965207E−04 6.623351 E−04 3.454160E−04

49 5.682905E−04 2.981204E−04 6.932298E−04 3.486606E−04

50 5.839933E−04 3.0323 86E−04 7.220901 E−04 3.521011 E−04

51 6.174993 E−04 3.133389E−04 7.371502E−04 3.617396E−04

52 6.242691 E−04 3.139433E−04 7.536744E−04 3.819765E−04

53 6.546504E−04 3.320978E−04 7.673282E−04 4.047487E−04

54 6.613228E−04 3.414492E−04 7.907323E−04 4.069110E−04

55 6.877004E−04 3.457531 E−04 7.936365E−04 4.154980E−04

56 6.982786E−04 3.499769E−04 7.964884E−04 4.184556E−04

57 7.085598E−04 3.694328E−04 8.163194E−04 4.431713E−04

58 7.318584E−04 3.744884E−04 8.298294E−04 4.573863E−04

59 7.498630E−04 3.853117E−04 8.321392E−04 4.749502E−04

60 7.604048E−04 3.958726E−04 8.594311 E−04 4.825672E−04

61 7.743684E−04 4.073767E−04 8.920627E−04 5.028085E−04

62 7.854610E−04 4.151684E−04 9.027903E−04 5.091474E−04

63 7.942847E−04 4.213582E−04 9.240817E−04 5.116811E−04

64 8.071499E−04 4.322042E−04 9.351098E−04 5.255655E−04

65 8.093569E−04 4.431469E−04 9.582129E−04 5.292059E−04

66 8.510681E−04 4.466911 E−04 9.659081 E−04 5.346558E−04

67 8.618525E−04 4.739915E−04 9.965970E−04 5.503691 E−04

68 8.794260E−04 4.844556E−04 1.016364E−03 5.514565E−04

69 8.905136E−04 4.943253E−04 1.034318E−03 5.605775E−04

70 9.194891E−04 5.042767E−04 1.058526E−03 5.699902E−04

71 9.485025E−04 5.109038E−04 1.059480E−03 5.752574E−04
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Table 2 continued

Freauencies(kHz) Cases

Without floor With floor

Horse Camel Horse Camel

72 9.565653E−04 5.267613E−04 1.098479E−03 5.764628E−04

73 9.622925E−04 5.316049E−04 1.104805E−03 6.062658E−04

74 9.856625E−04 5.343943E−04 1.108293E−03 6.104055E−04

75 1.005030E−03 5.357071 E−04 1.118400E−03 6.117267E−04

76 1.011987E−03 5.588741 E−04 1.128361E−03 6.206276E−04

77 1.042086E−03 5.698325E−04 1.138594E−03 6.363081E−04

78 1.054168E−03 5.719594E−04 1.144335E−03 6.463295E−04

79 1.071218E−03 5.863935E−04 1.162788E−03 6.576478E−04

80 1.077019E−03 5.885098E−04 1.174661 E−03 6.579826E−04

81 1.110326E−03 6.059693E−04 1.182269E−03 6.668907E−04

82 1.117007E−03 6.1 1 1335E−04 1.189629E−03 6.719039E−04

83 1.120396E−03 6.254476E−04 1.221887E−03 6.886119E−04

84 1.123463E−03 6.392601 E−04 1.223834E−03 6.899093E−04

85 1.142500E−03 6.420590E−04 1.243257E−03 6.996813E−04

86 1.159416E−03 6.558190E−04 1.257744E−03 7.080962E−04

87 1.169230E−03 6.579580E−04 1.262451 E−03 7.157959E−04

88 1.183948E−03 6.755023E−04 1.290535E−03 7.251416E−04

89 1.192569E−03 6.769977E−04 1.297631 E−03 7.281561 E−04

90 1.224578E−03 6.870269E−04 1.300296E−03 7.485772E−04

91 1.247830E−03 6.895986E−04 1.328999E−03 7.499079E−04

92 1.248904E−03 6.899891 E−04 1.335338E−03 7.599794E−04

93 1.250932E−03 7.003730E−04 1.382327E−03 7.753743E−04

94 1.267440E−03 7.085183E−04 1.388511 E−03 7.823558E−04

95 1.268714E−03 7.126016E−04 1.416430E−03 7.951849E−04

96 1.277472E−03 7.139017E−04 1.428450E−03 8.084280E−04

97 1.295707E−03 7.271943E−04 1.434049E−03 8.137768E−04

98 1.315622E−03 7.357517E−04 1.451152E−03 8.212269E−04

99 1.332583E−03 7.447619E−04 1.451495E−03 8.258597E−04

100 1.339631E−03 7.488833E−04 1.468415E−03 8.312575E−04

101 1.351359E−03 7.705463E−04 1.469908E−03 8.488085E−04

102 1.380976E−03 7.822690E−04 1.474464E−03 8.599536E−04

103 1.395750E−03 7.926702E−04 1.493255E−03 8.606417E−04

104 1.403064E−03 8.045750E−04 1.520884E−03 8.671795E−04

105 1.420528E−03 8.251889E−04 1.524736E−03 8.893111 E−04

106 1.421298E−03 8.270509E−04 1.530157E−03 8.945109E−04
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