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Abstract

We consider stability in an inverse problem of determining the material coefficient

matrix for a coupled system that describes acoustic interactions, by the Riemannian

geometrical approach. The stability is proved by the Carleman estimates and observ-

ability inequalities.
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1 Introduction andMain Results

Let Ω be a connected open bounded domain of IR3 with boundary Γ = Γ0 ∪ Γ1 and

Γ0 ∩ Γ1 = ∅, where Γ0 and Γ1 are open and nonempty. Moreover, Γ1 is assumed to

be convex and of class C2, and Γ0 ⊂ IR2 to be flat with smooth boundary ∂Γ0. For a

possible geometric graphics of the structural acoustic chamberΩ , we refer to [23, 25].
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We consider the following coupling system on the finite time interval (0, T ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt − Az = 0 in Ω × (0, T ),
∂z

∂νA = 0 on Γ1 × (0, T ),
∂z

∂νA = vt on Γ0 × (0, T ),

vt t + A2
0v = −zt on Γ0 × (0, T ),

v = ∂v
∂n0

= 0 on ∂Γ0 × (0, T ),

(z(x, 0), zt (x, 0)) = (z0, 0) in Ω,

(v(x, 0), vt (x, 0)) = (v0, 0) on Γ0,

(1.1)

where Az = divA(x)∇z and A0v = div0 A0(x)∇v. In (1.1), A(x) and A0(x) are

symmetric, positive matrices satisfying

A(x) = A0(x) for x ∈ Γ0.

Moreover, in (1.1), z denotes the acoustic velocity potential in Ω , which is a wave-

type equation with the Neumann boundary condition and v describes the vertical

displacement of the flat Γ0 . In addition, ν, n0, div, and∇ are the outward unit normal

vector ofΩ along Γ , the outward unit normal vector of Γ0 along ∂Γ0, the divergence,

and the gradient, respectively, in the Euclidean metric. Finally, ∂z
∂νA = 〈∇z, A(x)ν〉

and ∂v
∂n0

= 〈∇v, A0(x)n〉 .

We assume that the matrix A0(x) is given but the matrix A(x) is unknown which

needs to be determined. Note that the map A(x) → {z, v} is nonlinear. Thus the

inverse map {z, v} → A(x) is also nonlinear. We have taken the initial data zt (x, 0) =
vt (x, 0) = 0 in order to make the even extensions of the solutions z and v to Ω ×
[−T , T ].The extended solutions retain the same regularity in the domainΩ×[−T , T ].
The explicit regularity needed in our inverse problems will be specified in Sect. 2.

Therefore, here and after, we consider all the PDE systems in the domain Q = Ω ×
[−T , T ] with the lateral boundary Σ = Γ × [−T , T ].

As for the nonlinear inverse problem {z, v} → A(x) of system (1.1), we view z0 and

v0 as the input, and the acceleration of the elastic plate vt t |Σ0 , a physically measurable

quantity, as the output (observation).More precisely, we consider the following inverse

problem:

• Uniqueness of the inverse problem for system (1.1)

Can the principal coefficients matrix A(x) be uniquely determined by the acceler-

ation of the elastic plate vt t |Σ0 by finite many times changing initial values suitably?

In other words, do finitely many vt t |Σ0 = 0 imply A1(x) = A2(x), a.e. x ∈ Ω?
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• Stability of the inverse problem for system (1.1)

For a matrix A(x) = (ai j (x))1≤i, j≤3, we define the following norm:

||A||2H1(Ω)
=

3∑

i, j=1

||ai j (x)||2H1(Ω)
.

Is it possible to estimate ||A1 − A2||H1(Ω) by some suitable norms of the difference

of the corresponding plate accelerations (v2k − v1k)t t |Σ0?

For our purposes, we shall first consider the linearized inverse problems in the

following setting. Let

zik(x, t) = z(Ai (x), ak) and vik(x, t) = vik(Ai (x), ak),

respectively, solve (1.1) with respect to the coefficient matrices Ai (x) and the initial

values

[zik(x, 0), ∂t zik(x, 0); vik(x, 0), ∂tvik(x, 0)] = [ak, 0; v0, 0],

where v0 is a fixed function, for 1 ≤ i ≤ 2 and 1 ≤ k ≤ 9. Denote

B(x) = (bi j )3×3 = A2(x) − A1(x), wk(x, t) = z2k(x, t) − z1k(x, t),

Rk(x, t) = z2k(x, t) in Q, and uk(x, t) = v2k(x, t) − v1k(x, t) in Σ0.

For the sake of simplicity, for i = 1, 2, we denote

Zi (x, t) = (zi1, . . . , zi9)
T, Vi (x, t) = (vi1, . . . , vi9)

T,

Z0(x, t) = (a1, . . . , a9)
T, V0(x, t) = (v0, . . . , v0)

T,

W (x, t) = (w1, . . . , w9)
T, U (x, t) = (u1, . . . , u9)

T, and

R(x, t) = (z21, . . . , z29)
T,

where the superscript T denotes the transpose. Moreover, we letAi = divAi (x)∇ and
∂z

∂νAi
= 〈Ai (x)∇z, ν〉 for i = 1, 2. Clearly, the couple {W ,U } satisfies the following

system.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wtt − div A1(x)∇W = div B(x)∇R(x, t) in Ω × (−T , T ),
∂W

∂νA1
= 0 on Γ1 × (−T , T ),

∂W
∂νA1

= Ut on Γ0 × (−T , T ),

Utt + A2
0U = −Wt on Γ0 × (−T , T ),

U = ∂U
∂n0

= 0 on ∂Γ0 × (−T , T ),

W (x, 0) = Wt (x, 0) = 0 in Ω,

U (x, 0) = Ut (x, 0) = 0 on Γ0,

(1.2)

where div A1∇W = ( div A1∇w1, . . . , div A1∇w9)T.

We introduce

g = A−1(x) for x ∈ IR3,

as a Riemannian metric on IR3 and consider (IR3, g) as a Riemannian manifold. Let

g(X ,Y ) = 〈X ,Y 〉g =
〈
A−1(x)X , Y

〉
for X ,Y ∈ IR3

x , x ∈ IR3,

where 〈·, ·〉 denotes the Euclidean product of IR3. Let D be the Levi–Civita connection

in the metric g, and we have

DH(X ,Y ) = 〈DY H , X〉g for X , Y , H ∈ IR3
x , x ∈ Ω. (1.3)

We need the following main assumptions.

Assumption (A.1) on the metric g = A−1(x): Assume that there exists a strictly

convex function υ : Ω → (0,+∞) of class C3, such that the following three proper-

ties hold.

(i) ∂υ
∂νA

∣
∣
∣
Γ1

= 0;

(ii) There exists a positive constant α > 0, such that

D2υ(X , X) ≥ α|X |2g, ∀X ∈ IR3
x , ∀x ∈ Ω,

where D is the connection of the metric g = A−1(x);
(iii) υ(x) has no critical point on Ω , namely,

inf
x∈Ω

|∇gυ|g ≥ β > 0.

In the case of constant coefficients, conditions (i) and (ii) in (A.1) are due to the

Neumann boundary conditions which are the physically correct boundary conditions

of the hyperbolic problem and introduced in [27, Sect. 5]. We mention that in [28,
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Appendix B], the authors have given some constructions of functions satisfying con-

dition (i). Condition (iii) is needed for the validity of the pointwise Carleman estimate.

Condition (ii) means that v is an escape function which depends on the curvature of

the metric g = A−1(x). For the case of constant coefficients, υ(x) = |x − x0|2 is

one of the choices, where x0 is a fixed point outside Ω. For the general cases, there

are some examples in [34, Chap. 2] to show how to find an escape function. We here

given an example.

An example satisfying conditions (i) and (ii) in assumption (A.1). Similar to [25,

Example 2.1], for a given

A(x) =
⎛

⎜
⎝

1
4 (1 + |x |2)2 0 0

0 1
4 (1 + |x |2)2 0

0 0 1
4 (1 + |x |2)2

⎞

⎟
⎠ for x = (x1, x2, x3) ∈ IR3,

the metric g(x) is

g(x) = A−1(x) =

⎛

⎜
⎜
⎝

4
(1+|x |2)2 0 0

0 4
(1+|x |2)2 0

0 0 4
(1+|x |2)2

⎞

⎟
⎟
⎠ .

Let

M = {(x1, x2, x3, x4) ∈ IR4 : x21 + x22 + x23 + (x4 − 1)2 = 1},

a sphere of IR4 with radius 1. Let p = (0, 0, 0, 2). We define the stereographic

projection P as

P : M\p → (IR3, g), P(x) = 1

2 − x4
(x1, x2, x3) for x = (x1, x2, x3, x4) ∈ M\p.

Then P is an isometry, which implies that the curvature of (IR3, g) is 1.

Let p0 = (1, 0, 0, 1) ∈ M. Denote

C(r , θ1, θ2) = (cos r , sin r cos θ1, sin r sin θ1 cos θ2, 1 + sin r sin θ1 sin θ2) for

0 < r <
π

2
.

Then

BM(p0, r0) = {C(r , θ1, θ2) : 0 ≤ r ≤ r0, 0 ≤ θ1 ≤ π, 0 ≤ θ2 < 2π}
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is a geodesic ball of M centered at p0 with radius r0 ∈ (
0, π

2

)
. Let x0 = P(p0) =

(1, 0, 0) ∈ IR3. Then, the geodesic ball of (IR3, g) centered at x0 with radius 0 <

r0 < π
2 is given by

Bg(x0, r0) = P(BM(p0, r0))

=
{ 1

1 − sin r sin θ1 sin θ2
(cos r , sin r cos θ1, sin r sin θ1 cos θ2) :

0 ≤ r ≤ r0, 0 ≤ θ1 ≤ π, 0 ≤ θ2 < 2π
}
.

Let ρ(x) = dg(x, x0) be the distance function subject to metric g from x ∈ IR3 to

x0. Let H = 1
2Dρ2. Then by [34, Theorem 2.5], condition (i) holds for the escape

function υ(x) = ρ2(x), provided that Ω ⊂ Bg(x0, r0).

Based on the above discussions, we give the following example satisfying condition

(ii).

Example 1.1 Let 0 < r0 < π
2 . Set

Ω = (Bg(x0, r0) ∩ {(x1, 0, x3) ∈ IR3})\{x ∈ IR3 : |x | > 1},

Γ1 =
{ 1

1 − sin r sin θ2
(cos r , 0, sin r cos θ2) :

−r0 < r < r0, 0 ≤ θ2 < 2π} ∩ {x ∈ IR3 : |x | ≤ 1
}
, (1.4)

Γ0 =
{ 1

1 − sin r0 sin θ1 sin θ2
(cos r0, sin r0 cos θ1, sin r0 sin θ1 cos θ2) :

0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ π
}
. (1.5)

Then conditions (i) and (i i) hold for the triple {(Ω, g), Γ0, Γ1}.
It remains to show that the above example meets condition (i). Indeed, for a fixed θ2 ∈
[0, 2π), it is easy to see that γ (r) = (cos r , sin r cos θ1, sin r cos θ2, 1 + sin r sin θ2)

is a normal geodesic of M through γ (0) = p0 = (1, 0, 0, 1). Then

β(r) = P(γ (r)) = 1

1 − sin r sin θ2
(cos r , sin r cos θ1, sin r cos θ2)

is a normal geodesic of (IR3, g) through β(0) = x0 = (1, 0, 0).Notice that ρ(β(r)) =
r . Then

Dρ(β(r))

= 1

(1 − sin r sin θ2)2
(− sin r + sin θ1 sin θ2, cos r cos θ1, cos r sin θ1 cos θ2).
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Let

u1(r , θ2) = cos r

1 − sin r sin θ2
, u2(r , θ2) = 0, u3(r , θ2) = sin r cos θ2

1 − sin r sin θ2
.

Then

ν|Γ1 = (u1r , 0, u3r ) × (u1θ2 , 0, u3θ2)

|(u1r , 0, u3r ) × (u1θ2 , 0, u3θ2)|
∼ (0,−1, 0),

which implies that 〈Dρ, ν〉|Γ1 = 〈Dρ, ν〉|θ1= π
2

= 0. Thus, condition (i) follows.

For given constants 0 < c < 1 and > 0 small, we fix T > 0 satisfying

[

max
x∈Ω

υ(x) − cT 2
]

< logmin
x∈Ω

e υ(x). (1.6)

Let a(x) = (a1(x), . . . , a9(x))T. We set

G(x) =
(
ax1x1(x), ax1x2(x), ax2x3(x), ax2x2(x), ax2x3(x), ax3x3(x),

×ax1(x), ax2(x), ax3(x)
)

for x ∈ Ω. Note that G(x) has 81 components, and is a 9 × 9 matrix of functions.

We further make the following assumption.

Assumption (A.2) Functions a1, . . . , a9 are given such that

detG(x) �= 0 for x ∈ Ω.

We mention that such an example has been given in [9].

Moreover, for a given positive constant C0, we denote an admissible set of A(x) as

U(C0) =
{
A ∈ C5(Ω, IR3×3) | A(x) = A0(x) x ∈ Γ0; ||A||C5(Ω) ≤ C0

}
.

(1.7)

Our main results are the following.

Theorem 1.1 (Uniqueness of the inverse problem) Let the assumption (A.1) of the

metric g = A−1
1 (x) and assumption (A.2) hold. Let T satisfy (1.6). Assume that

A1(x), A2(x) ∈ U(C0), v0 ∈ H2
0 (Γ0), and a(x) ∈ H4(Ω), such that
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||∂2t R||L∞(−T ,T ;W 2,∞(Ω)) + ||∂3t R||L∞(−T ,T ;W 2,∞(Ω)) ≤ M0 < +∞. (1.8)

Then ∂2t U |Σ0 = 0 implies that B(x) = 0 for x ∈ Ω.

Theorem 1.2 (Stability of the inverse problem) Let all the assumptions in Theorem 1.1

hold. Let A1(x), A2(x) ∈ U(C0). Let (a j , 0, v0, 0) ∈ F for 1 ≤ j ≤ 9, where F is

given by (2.11). Then there exists a positive constant C = C(T ,Ω, Γ0,C0, M0, a, v0)

such that

||B(x)||2H1(Ω)
≤ C

(
||∂2t Utt ||2L2(Σ0)

+ ||A2
0Utt ||2L2(Σ0)

)
. (1.9)

The PDE system (1.1) describing acoustic interactions has been known and studied

for some time (e.g., see [6, 7]). Physical motivation for studying this kind of problem

comes from a variety of engineering applications that arise, for example, in the context

of controlling the pressure in a helicopter’s cabin or reducing unwanted cabin noise

generated by some exterior field. In the case where A(x) = I3 the 3 × 3 identity

matrix, many papers contributed to various topics: stability, controllability, regularity,

and inverse problems [1–4, 23]. In [23], an inverse problem of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt − �z = qz in Ω × (0, T ),
∂z

∂νA = 0 on Γ1 × (0, T ),
∂z

∂νA = vt on Γ0 × (0, T ),

vt t + Δ2
Γ v + Δ2

Γ vt = −zt on Γ0 × (0, T ),

v = ∂v
∂n0

= 0 on ∂Γ0 × (0, T ),

(z(x, 0), zt (x, 0)) = (z0, z1) in Ω,

(v(x, 0), vt (x, 0)) = (v0, v1) on Γ0,

was studied, where only the stability about q was obtained.

In the case where A(x) is not a constant matrix, not much literature (e.g., [25, 33]) is

known for such a case. To the best knowledge of the authors, the present paper for the

first time establishes the uniqueness and the Lipschitz stability (Theorems 1.1 and 1.2)

in determining the important material coefficients matrix A(x) of system (1.1) with

the finitely many observation data vt t . Moreover, the assumption (A.1) of the metric

g = A−1(x) plays a key role to guarantee that the interior information of solutions to

the system arrives at boundary Γ0.

Inverse problems of PDEs have been the object of numerous studies not only at

the theoretical level but also the practical. It is known that the Carleman estimates

and microlocal analysis play an essential role in the inverse problems. We refer to [5,

8–17, 21, 26, 29–32, 35] and the references therein. Here, we shall adopt a differential

geometrical approach [34] to study the inverse problems of system (1.1).
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The rest of this paper is organized as follows: In Sect. 2, we give the Carleman

estimates and observability inequalities for problem (1.1). Section 3 focuses on the

proofs of Theorems 1.1 and 1.2. Some concluding remarks are given in the last Sect. 4.

2 Some Key Lemmas and Theorems

We introduce an abstract operator-theoretic formulation associated with (1.1) as in

[23]. To achieve this, we consider an operator on L2(Ω) as follows.

Au = div A(x)∇u with D(A) =
{

z ∈ H2(Ω) : ∂z

∂νA
|Γ = 0

}

. (2.1)

It is easy to check that −A is a nonnegative, self-adjoint operator. We define the

Neumann map z = Np : L2(Γ0) → L2(Ω) by:

⎧
⎪⎨

⎪⎩

div A(x)∇(Np) = 0 in Ω,
∂Np
∂νA = 0 on Γ1,
∂Np
∂νA = p on Γ0.

(2.2)

It is well known that N ∈ L(L2(Γ0), H3/2(Ω)) by the elliptic theory (see [22]). Then,

by the Green’s formula and [18, 23], the operator −N∗A have the following property

− N∗Aζ =
{

ζ on Γ0

0 on Γ1
for ζ ∈ D(A). (2.3)

Extending ζ ∈ D(A) by continuity to ζ ∈ H1(Ω). We set

B = −AN : L2(Γ0) → [H1(Ω)]′, (2.4)

where [H1(Ω)]′ is the dual of H1(Ω) related to L2(Ω). Then B∗ = −N∗A. There-

fore, by (2.3), B∗ is the restriction of the trace map from H1(Ω) to H
1
2 (Γ0).

Let A0v = div Γ0 A0(x)∇v be given in (1.2). Define

C = A2
0 : D(C) → L2(Γ0), D(C) =

{
v ∈ H2

0 (Γ0) : A2
0v ∈ L2(Γ0)

}
, (2.5)

where

H2
0 (Γ0) =

{

v ∈ H2(Γ0) : v

∣
∣
∣
∣∂Γ0 = ∂v

∂n0

∣
∣
∣
∣
∂Γ0

= 0

}

.
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It is easy to check that C is self-adjoint, positive definite and

D
(
C 1

2

)
= H2

0 (Γ0).

Based on the original system and the above setting, we set

Λ =

⎛

⎜
⎜
⎜
⎝

0 I 0 0

A 0 0 B
0 0 0 I

0 −B∗ −C 0

⎞

⎟
⎟
⎟
⎠

: D(Λ) ⊂ Ξ → Ξ, (2.6)

where

Ξ = H1(Ω) × L2(Ω) × H2
0 (Γ0) × L2(Γ0). (2.7)

The domain of Λ is given by

D(Λ) =
{
(z0, z1, v0, v1)

T : z0 ∈ H2(Ω), z1 ∈ H1(Ω), v1 ∈ H2
0 (Γ0),

∂z0
∂νA

= v1 on Γ0, v0 ∈ D(C)

}

. (2.8)

Then the original system can be re-written as the following abstract evolution equation

dE
dt

= ΛE, E(x, 0) = E0, (2.9)

where E = (z, zt , v, vt )
T and E0 = (z0, z1, v0, v1)T. Therefore, the semigroup theory

(e.g., see [1, 2]) yields that Λ is the generator of a C0-semigroup on Ξ , and

E0 ∈ Ξ implies {z, zt , v, vt } ∈ C(0, T ;Ξ),

E0 ∈ D(Λ) implies {z, zt , v, vt } ∈ C(0, T ; D(Λ)).
(2.10)

Moreover, the time interval of (2.10) can be evenly extended to [−T , T ]. For our
inverse problem, we let

F = D(Λ6) ∩
{
[z0, z1, v0, v1]T : z0 ∈ H7(Ω), z1 ∈ H6(Ω),

v0 ∈ H2
0 (Γ0) ∩ H7(Γ0), v1 ∈ H2

0 (Γ0) ∩ H6(Γ0)}. (2.11)
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Similarly, we have the abstract equation for the linearized system (1.2):

d

dt

⎛

⎜
⎜
⎜
⎝

WT

WT
t

UT

UT
t

⎞

⎟
⎟
⎟
⎠

= Λ

⎛

⎜
⎜
⎜
⎝

WT

WT
t

UT

UT
t

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

O1×9

FT

O1×9

O1×9

⎞

⎟
⎟
⎟
⎠

, (2.12)

where F(x, t) = div B(x)∇R(x, t).

2.1 A Carleman Estimate

There are many papers on the Carleman estimates for the wave equation, for example,

[10, 28] and the references therein. Among them, there is a compact form of such

Carleman estimates from [10].

Suppose that υ : Ω → (0,+∞) is a strictly convex function that satisfies the

assumption (A.1) in the metric g = A−1(x). Let

ψ(x, t) = υ(x) − ct2 for x ∈ Ω, t ∈ [−T , T ], (2.13)

ϕ(x, t) = eγψ , (x, t) ∈ Q, (2.14)

where γ > 0 is a constant. Set

m = min
x∈Ω

υ(x), d = min
x∈Ω

ϕ(x, 0) ≥ eγm .

Suitably choose 0 < c < 1 and T > 0, such that

γ max
x∈Ω

υ(x) < log d + cγ T 2. (2.15)

Then ϕ satisfies

ϕ(x, 0) ≥ d, ϕ(x, T ) = ϕ(x,−T ) < d uniformly on Ω. (2.16)

Therefore, for given ε > 0 small, we choose δ > 0 such that

ϕ(x, t) ≥ d − ε for (x, t) ∈ Ω × [−δ, δ], (2.17)

ϕ(x, t) ≤ d − 2ε for (x, t) ∈ Ω × ([−T ,−T + 2δ] ∪ [T − 2δ, T ]).
(2.18)

Let Pv = ∂2t v − divA(x)∇v and
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H =
{

v ∈ H1(−T , T ; L2(Ω)) ∩ L2(−T , T ; H1(Ω)) :

∂
j
t v(x, l) = 0, l = ±T , j = 0, 1

}

.

Theorem 2.1 ([10]) Under assumption (A.1) of the metric g = A−1(x), there exist

constants C > 0 and γ∗ > 0 such that for any γ > γ∗, there exists s0 = s(γ ) such

that for all s > s0 > 1, the following Carleman estimate hold:

∫

Q

[
σ(|∇gv|2g + v2t ) + σ 3v2

]
e2sϕdxdt ≤ C

(∫

Q
|Pv|2e2sϕdxdt +

∫

Σ

BT|ΣdΣ

)

,

(2.19)

whenever v ∈ H and the right-hand side of (2.19) is finite, with σ = sγ ϕ. In addition,

the boundary terms in BT|Σ are given explicitly by

BT|Σ = σ z2t
∂ψ

∂νA
− 2σ

∂z

∂νA

(
ztψt − 〈∇gz,∇gψ

〉

g

)

−σ
∂ψ

∂νA
|∇gz|2g + γ 2

2
σ

∂ψ

∂νA
z2
(
ψ2
t − |∇gψ |2g

)

−γ σ
∂z

∂νA
z
(
ψ2
t − |∇gψ |2g

)
− σ 3 ∂ψ

∂νA

(
ψ2
t − |∇gψ |2g

)
z2

+σ
∂z

∂νA
z(ψt t − divA(x)∇ψ), (2.20)

where z = esϕv.

We mention that in [10] the boundary terms are given by

∫

Σ

BT|ΣdΣ − γ

2

∫

Σ

σ z2
∂|∇gψ |2g

∂νA
dΣ :=

∫

Σ

BT|ΣdΣ − I1. (2.21)

Thanks to the inner estimate, the second term I1 on the right-hand side of (2.21) can

be absorbed. In fact, I1 arises from the following term (see [10, (40)])

γ

∫

Q
σ
〈
∇gz,∇g|∇gψ |2g

〉

g
zdxdt := I2. (2.22)

Since there exists a positive constant C = C(ψ), such that

I2 ≤ Cγ

∫

Q
|∇gz|2gdxdt + γ

∫

Q
σ 2z2dxdt, (2.23)

the term I1 is absorbed by the left-hand side of (2.19) when s > 0 is sufficiently large.
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2.2 Observability Inequalities

We consider the observability inequalities for the following system with a non-

homogeneous term:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt t − div A(x)∇v = h for (x, t) ∈ Q,
∂v

∂νA = 0 for (x, t) ∈ Σ1,
∂v

∂νA = f for (x, t) ∈ Σ0,

(v(x, 0), vt (x, 0)) = (v0, v1) for x ∈ Ω.

(2.24)

Let V = L2(Q) × L2(Σ0). We have the following.

Theorem 2.2 Assume that the assumption (A.1) holds. Let T satisfy (2.15). Let

(h, f ) ∈ V and (v0, v1) ∈ H1(Ω) × L2(Ω). Then there exists a constant C =
C(T ,C0) > 0 such that for all t ∈ (−T , T ),

∫

Ω

(
v2 + |∇gv|2g + v2t

)
dx ≤ Ce−2s(d−ε)

∫

Q
h2e2sϕdxdt + C

∫

Q
h2dxdt

+Ce2sM
∫

Σ0

[σ 3v2 + σ(v2t + |∇gv|2g)]dΣ
(2.25)

for s > 0 large, where M = sup(x,t)∈Q ϕ(x, t).

Proof Since (h, f ) ∈ V and (v0, v1) ∈ H1(Ω)× L2(Ω), the regularity of hyperbolic

problems implies that (2.24) admits a unique solution v such that

v ∈ H1(−T , T ; L2(Ω)) ∩ L2(−T , T ; H1(Ω)).

Let BT|Σ be given by (2.20) and let z = esϕv. By condition (i) in assumption (A.1)

and the boundary condition in (2.24), we have

∂ψ

∂νA
= 0,

∂z

∂νA
= σ z

∂ψ

∂νA
+ esϕ

∂v

∂νA
= 0 for (x, t) ∈ Σ1.

It then follows from (2.20) that

∫

Σ

BT|ΣdΣ ≤ Ce2sMΓ ([−T , T ], v), (2.26)

where

Γ ([−T , T ], v) =
∫ T

−T

∫

Γ0

[
σ 3v2 + σ

(
v2t + |∇gv|2g

)]
dΓ dt .
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Let

E(t) =
∫

Ω

(
v2t + |∇gv|2g

)
dx +

∫

Γ0

v2dΓ .

By Poincaré’s inequality, we have

∫

Ω

(
v2 + v2t + |∇gv|2g

)
dx ≤ CE(t). (2.27)

For given ε > 0 small, we fixed δ > 0 small such that (2.17) and (2.18) hold.

Taking a cut-off function χ(t) ∈ C2
0 ([−T , T ]) satisfying

χ(t) =
{
1, t ∈ [−T + 2δ, T − 2δ],
0, t ∈ [−T ,−T + δ] ∪ [T − δ, T ]. (2.28)

Then χv ∈ H and

P(χv) = χ P(v) + χ ′′v + 2χ ′vt = χh + χ ′′v + 2χ ′vt . (2.29)

Applying the Carleman estimate (2.19) to (2.29), for T ≥ 3δ, we obtain, by (2.26),

the following:

e2s(d−ε)

∫ δ

−δ

∫

Ω

(v2 + v2t + |∇gv|g)2dxdt

≤
∫

Q

(
|∇g(χv)|2g + |(χv)t |2 + |χv|2

)
e2sϕdxdt

≤ C
∫

Q
(|χh|2 + |χ ′′v|2 + |χ ′vt |2)e2sϕdxdt + Ce2sMΓ ([−T , T ], χv)

≤ C
∫

Q
|h|2e2sϕdxdt + C

(
||v||2L2(Q)

+ ||vt ||2L2(Q)

)
e2s(d−2ε)

+Ce2sMΓ ([−T + δ, T − δ], v), (2.30)

where we have used the inequality ϕ ≤ d − 2ε only in the case where χ ′ �= 0. By the

mean value theorem, there exists a t1 ∈ (−δ, δ) such that

∫

Ω

(
|∇gv|2g + v2t + v2

)
dx
∣
∣
∣
t=t1

≤ Ce−2s(d−ε)

∫

Q
|h|2e2sϕdxdt

+Ce2s(M−d+ε)Γ ([−T + δ, T − δ], f )

+Ce−2sε
(
||v||2L2(Q)

+ ||vt ||2L2(Q)

)
.

(2.31)
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It then follows from (2.27) and the standard energy integration that

∫

Ω

(
v2 + v2t + |∇gv|2g

)
dx ≤ C

∫

Ω

(
v2 + v2t + |∇gv|2g

)
dx
∣
∣
∣
t=t1

+C
∫

Σ0

(
v2t + f 2 + v2

)
dΣ + C

∫

Q
|h|2dxdt .

(2.32)

Then
∫

Q

(
v2 + v2t + |∇gv|2g

)
dxdt ≤ CT

∫

Ω

(
v2 + v2t + |∇gv|2g

)
dx
∣
∣
∣
t=t1

+CT
∫

Σ0

(
v2t + f 2 + v2

)
dΣ

+CT
∫

Q
|h|2dxdt . (2.33)

Taking s large enough.By (2.31) and (2.33), the termCe−2sε
(
||v||2

L2(Q)
+ ||vt ||2L2(Q)

)

on the right-hand side of (2.31) is absorbed. Thus, it follows (2.32) that

∫

Ω

(|∇gv|2g + v2t + v2)dx

≤ Ce−2s(d−ε)

∫

Q
|h|2e2sϕdxdt

+C
∫

Q
h2dxdt + Ce2s(M−d+ε)Γ ([−T + δ, T − δ], v), (2.34)

and hence (2.25) follows. ��
The following lemma is quoted from [19], from which the tangential derivative

∇Γgv on Σ0 can be removed from the right-hand side of (2.25) in the case where

h = 0.

Lemma 2.1 ([19]) Let v solve problem (2.24) with h = 0. Then, for given small δ :
0 < δ < T , there exists a positive constant C = C(T , δ) such that

∫ T−δ

−T+δ

∫

Γ0

∣
∣∇Γgv

∣
∣2 dΓ dt ≤ C

∫

Σ0

(

v2t +
∣
∣
∣
∣

∂v

∂νA

∣
∣
∣
∣

2
)

dΣ + L(v), (2.35)

where L(v) denotes the lower-order terms of v with respect to the norm of

C(−T , T ; H1(Ω)).

Using (2.35) in (2.34) and by a compactness–uniqueness argument, we have the fol-

lowing.
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Corollary 2.1 Let v solve problem (2.24) with h = 0. Then for s > 0 large,

∫

Ω

(
v2 + |∇gv|2g + v2t

)
dx ≤ Ce2sM

∫

Σ0

(
v2 + v2t + f 2

)
dΣ. (2.36)

3 Proofs of theMain Theorems

A similar argument as in the proof of [9, Lemma 3.1] yields the following lemma.

Lemma 3.1 Let assumption (A.2) hold. Then there is a C > 0 such that

∫

Ω

(|B(x)|2 + |∇B(x)|2)e2sϕ(x,0)dx ≤ C
∫

Ω

(|J |2 + |∇ J |2)e2sϕ(x,0)dx (3.1)

for s > 0 large, where B(x) = (bi j (x))1≤i, j≤3 and

J (x) = (divB(x)∇a1(x), . . . , divB(x)∇a9(x))
T.

Let (W ,U ) solve problem (1.2). Set

W = Wt .

By (1.2), (W ,U ) satisfies problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wtt − div A1(x)∇W = divB∇Rt in Ω × (0, T ),
∂W

∂νA1
= 0 on Γ1 × (0, T ),

∂W
∂νA1

= Utt on Γ0 × (0, T ),

Utt + A2
0U = −W on Γ0 × (0, T ),

U = ∂U
∂n0

= 0 on ∂Γ0 × (0, T ),

W (x, 0) = 0, Wt (x, 0) = J (x) in Ω,

U (x, 0) = Ut (x, 0) = 0 on Γ0.

(3.2)

Proof of Theorem 1.1 Let (W ,U ) solve problem (3.2). Let Utt (x, t) = 0 on Σ0. We

proceed to prove that

B(x) = 0 for x ∈ Ω

holds as follows.

The assumptions Utt (t, x) = 0 for (t, x) ∈ Σ0 and U (x, 0) = Ut (x, 0) = 0 for

x ∈ Γ0 imply that

U (t, x) = 0 for (t, x) ∈ Σ0.
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Let

W̃ = Wt ,
˜̃W = Wtt for (t, x) ∈ Q.

It is easy to check from (3.2) that W̃ satisfies the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W̃tt − div A1(x)∇W̃ = div B∇Rtt in Ω × (0, T ),
∂W̃

∂νA1
= 0 on Γ1 × (0, T ),

∂W̃
∂νA1

= W̃ = 0 on Γ0 × (0, T ),

W̃ (x, 0) = J (x), W̃t (x, 0) = 0 in Ω,

(3.3)

and ˜̃W solves the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˜̃Wtt − div A1(x)∇ ˜̃W = div B∇Rttt in Ω × (0, T ),

∂ ˜̃W
∂νA1

= 0 on Γ1 × (0, T ),

∂ ˜̃W
∂νA1

= ˜̃W = 0 on Γ0 × (0, T ),

˜̃W (x, 0) = 0, ˜̃Wt (x, 0) = F̂(x) in Ω,

(3.4)

where

F̂(x) = div A1(x)∇ J (x) + divB(x)∇Rtt (x, 0) ∈ L2(Ω),

since A1(x) and A2(x) are in U(C0).

Let the cut-off function χ(t) given by (2.28). We apply the Carleman estimate in

Theorem 2.1 with

P(χ W̃ ) = ∂2t (χ W̃ ) − div A1(x)∇(χ W̃ ) = χ ′′W̃ + 2χ ′W̃t + χ div B∇Rtt

to (3.3), to obtain

∫

Q

[
σ
(
|(χ W̃ )t |2 + |χ∇gW̃ |2g

)
+ σ 3|χ W̃ |2

]
e2sϕdxdt

≤ C
∫

Q
| div B∇Rtt |2e2sϕdxdt + Ce2s(d−2ε)

∫

Q

(
|W̃t |2 + |W̃ |2

)
dxdt,

(3.5)

where σ = s ϕ. Similarly, applying Theorem 2.1 to (3.3) yields
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∫

Q

[
σ
(
|(χ ˜̃W )t |2 + |χ∇g

˜̃W |2g
)

+ σ 3|χ ˜̃W |2
]
e2sϕdxdt

≤ C
∫

Q
| div B∇Rttt |2e2sϕdxdt + Ce2s(d−2ε)

∫

Q
(| ˜̃Wt |2 + | ˜̃W |2)dxdt .

(3.6)

Next, since W̃ (x, 0) = J (x), by (3.5) we have

∫

Ω

|J (x)|2e2sϕ(x,0)dx =
∫ 0

−T

∂

∂t

∫

Ω

|χ(t)W̃ (x, t)|2e2sϕ(x,t)dxdt

≤ C
∫

Q
(|χ ′||W̃ |2 + σ |χ W̃ |2 + |(χ W̃ )t |2)e2sϕdxdt

≤ C
∫

Q
| div B∇Rtt |2e2sϕdxdt

+Ce2s(d−2ε)
∫

Q
(|W̃t |2 + |W̃ |2)dxdt . (3.7)

Moreover, since

ς |∇ J (x)| ≤ |∇g J (x)| ≤ C |∇ J (x)| for x ∈ Ω

for some ς > 0 small, it follows from (3.5) and (3.6) that

∫

Ω

|∇ J (x)|2e2sϕ(x,0)dx

≤ C
∫

Ω

|∇g J (x)|2ge2sϕ(x,0)dx

= C
∫ 0

−T

∂

∂t

∫

Ω

|χ∇gW̃ |2ge2sϕ(x,t)dxdt

≤ C
∫

Q

(
|χ ′||∇gW̃ |2g + σ |χ∇gW̃ |2g + |χ∇g

˜̃W |2g
)
e2sϕ(x,t)dxdt

≤ C
∫

Q
(| div B∇Rtt |2 + | div B∇Rttt |2)e2sϕdxdt

+Ce2s(d−2ε)
∫

Q
(|∇gW̃ |2g + |W̃t |2 + |W̃ |2 + | ˜̃Wt |2 + | ˜̃W |2)dxdt .

(3.8)

On the other hand, assumption (1.8) implies

| div B∇Rtt |2 + | div B∇Rttt |2 ≤ C(|J (x)|2 + |∇ J (x)|2) for (t, x) ∈ Q.
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From (3.7) and (3.8), we obtain

∫

Ω

(|J (x)|2 + |∇ J (x)|2)e2sϕ(x,0)dx

≤ C
∫

Ω

(|J (x)|2 + |∇ J (x)|2)e2sϕ(x,0)|
∫ T

−T
e2s[ϕ(x,t)−ϕ(x,0)]dt |dx

+Ce2s(d−2ε)
∫

Q
(|∇gW̃ |2g + |W̃t |2 + |W̃ |2 + | ˜̃Wt |2 + | ˜̃W |2)dxdt .

(3.9)

We assume that there is a small number c > 0 such that

e−c t2 − 1 ≤ −cς t2 for t ∈ (−T , T )

for some ς > 0 small. It is easy to check that

sup
x∈Ω

∣
∣
∣
∣

∫ T

−T
e2s[ϕ(x,t)−ϕ(x,0)]dt

∣
∣
∣
∣ → 0 at s → ∞.

Thus, the first term on the right-hand side of (3.9) can be absorbed by the left-hand

side of (3.9). By (3.1) and (3.9), we obtain

∫

Ω

(|B(x)|2 + |∇B(x)|2)e2sddx ≤
∫

Ω

(|B(x)|2 + |∇B(x)|2)e2sϕ(x,0)dx

≤ Ce2s(d−2ε)
∫

Q
(|∇gW̃ |2g + |W̃t |2 + |W̃ |2

+| ˜̃Wt |2 + | ˜̃W |2)dxdt (3.10)

for s > 0 large. From (3.10), the proof of Theorem 1.1 is complete by taking s → ∞.

��

Proof of Theorem 1.2 Let (W ,U ) solve problem (3.2). Set W̃ = Wt . By (3.2) (W̃ ,U )

solves problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̃tt − div A1∇W̃ = divB∇Rtt in Ω × (0, T ),
∂W̃

∂νA1
= 0 on Γ1 × (0, T ),

∂W̃
∂νA1

= ∂3t U on Γ0 × (0, T ),

∂3t U + A2
0Ut = −W̃ on Γ0 × (0, T ),

U = ∂U
∂n0

= 0 on ∂Γ0 × (0, T ),

W̃ (x, 0) = J , W̃t (x, 0) = 0 in Ω,

U (x, 0) = Ut (x, 0) = Utt (x, 0) = 0 on Γ0.

(3.11)
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Noting that the assumption

A1(x) = A2(x) = A0(x) for x ∈ Γ0,

we have

J (x) = 0 for x ∈ Γ0.

Then

∂3t U (x, 0) = −J (x) − A2
0Ut (x, 0) = 0 for x ∈ Γ0.

Thus

‖∂3t U‖L2(Σ0)
≤ C‖∂4t U‖L2(Σ0)

, ‖A2
0Ut‖L2(Σ0)

≤ C‖A2
0Utt‖L2(Σ0)

.

For givenU by (3.11), we defineΦ as the unique solution to the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φt t − div A1∇Φ = 0 in Ω × (0, T ),
∂Φ

∂νA1
= 0 in Γ1 × (0, T ),

∂Φ
∂νA1

= ∂3t U on Γ0 × (0, T ),

Φ(x, 0) = J (x), Φt (x, 0) = 0 in Ω.

(3.12)

We apply Theorem 2.2 to problem (3.12) with v = Φ, and recall B in (3.1), to have

‖B‖2H1(Ω)

≤ C
(
||∂3t U ||2L2(Σ0)

+ ||Φ||2L2(Σ0)
+ ||Φt ||2L2(Σ0)

)

≤ C
(
||∂3t U ||2L2(Σ0)

+ ||Y ||2L2(Σ0)
+ ||Yt ||2L2(Σ0)

+ ‖W̃‖2L2(Σ0)
+ ‖W̃t‖2L2(Σ0)

)

≤ C
(
||∂4t U ||2L2(Σ0)

+ ‖A2
0Utt‖2L2(Σ0)

+ ||Y ||2L2(Σ0)
+ ||Yt ||2L2(Σ0)

)
,

(3.13)

where

Y = W̃ − Φ for (t, x) ∈ Q,

that solves problem

⎧
⎪⎨

⎪⎩

Ytt − div A1∇Y = divB∇Rtt in Ω × (0, T ),
∂Y

∂νA1
= 0 on Γ × (0, T ),

Y (x, 0) = 0, Yt (x, 0) = 0 in Ω,

(3.14)
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by (3.11) and (3.12).

Next, we remove the term ||Y ||2
L2(Σ0)

+ ||Yt ||2L2(Σ0)
from the right-hand side of

(3.13) by a compactness–uniqueness argument below as in [23] (see also [24]).

For simplicity, denote

||U ||2S = ||∂4t U ||2L2(Σ0)
+ ||A2

0Utt ||2L2(Σ0)
.

We define a map K : H1(Ω) → L2(Σ0) × L2(Σ0) by

KB = (Y ,Yt ),

where Y solves problem (3.14) for given B(x).

Since the initial data (ak, 0, v0, 0) ∈ F , where F is given by (2.11), the semigroup

theory gives that

(R, Rt , V2, V2t ) ∈ C((−T , T ); D(Λ6)).

Therefore, we deduce that

∂6t R ∈ C((−T , T ); H1(Ω)), ∂7t R ∈ C((−T , T ); L2(Ω)).

Since A(∂5t R) = (∂5t R)t t ∈ C((−T , T ); L2(Ω)), elliptic theory yields

∂5t R ∈ C((−T , T ); H2(Ω)).

By the Sobolev embedding theorems for dimension n = 3, we obtain

∂2t R ∈ C((−T , T ); H5(Ω)) → L∞((−T , T );W 2,∞(Ω)), continuously;
∂3t R ∈ C((−T , T ); H4(Ω)) → L∞((−T , T );W 2,∞(Ω)), continuously.

It is easy to check from (3.14) that

||Rtt ||L∞(−T ,T ;W 2,∞(Ω)) + ||Rttt ||L∞(−T ,T ;W 2,∞(Ω)) < +∞,

which implies that

div B(x)∇Rtt ∈ L2(Q), ∂t div B(x)∇Rtt ∈ L2(Q).

As a consequence, operator K : H1(Ω) → L2(Σ0) × L2(Σ0) is compact.
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We proceed to complete the proof by contradiction. By assumption (1.7), suppose

that there exists a sequence {Bn}n≥1 ∈ H1(Ω) such that

||Bn||H1(Ω) = 1, n ≥ 1, (3.15)

and

||Yn||2L2(Σ0)
+ ||Ynt ||2L2(Σ0)

≥ n||Un||2S, (3.16)

where Yn and Un are given by (3.14) and (3.11), respectively, with B = Bn . Then we

have

lim
n→+∞ ||Un||S = 0. (3.17)

By (3.15), there exists a subsequence, still denoted by {Bn}n≥1, such that

Bn⇀B0 ∈ H1(Ω)weakly in, H1(Ω), (3.18)

for some B0 ∈ H1(Ω). Let (W̃n,Un) and (W̃0,U0) be given by (3.11) with B = Bn

and B = B0, respectively. It follows from (3.13) that

Bn → B0 ∈ H1(Ω) strongly in H1(Ω),

and ‖B0‖H1(Ω) = 1.

By the trace theorem and an a priori estimate of (3.11), we obtain

‖W̃n‖L2(Σ0)
≤ C‖W̃n‖H1/2(Q) ≤ C‖W̃n‖H1(Q) ≤ C

(||Un||S + ||Bn||H1(Ω)

)
,

yielding

W̃n → W̃0 strongly in L
2(Σ0). (3.19)

Thus

‖W̃0‖L2(Σ0)
= lim

n→∞ ||W̃n||L2(Σ0)
≤ C lim

n→∞ ||Un||S = 0,

that is,

∂3t U0 + A2
0U0 = 0.
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By (3.11), U0 = Ψt solves the following:

⎧
⎪⎨

⎪⎩

Ψt t + A2
0Ψ = 0 in Σ0,

Ψ = ∂Ψ
∂n0

= 0 on ∂Γ0,

Ψ (x, 0) = Ψt (x, 0) = 0 in Γ0.

(3.20)

The uniqueness of problem (3.20) implies

U0 = 0 on Σ0.

By Theorem 1.1, B0 = 0, which contradicts with the fact that ||B0||H1(Ω) = 1. ��

4 Concluding Remarks

The main prominent feature of the structural acoustic system (1.1) lies in the

presence of a variable coefficient matrix A(x), which arises naturally from the non-

homogeneous material properties. We may further study the inverse problems for the

structural model with a curved wall whose middle surface is a part of a surface in

IR3. For the modeling of the structural acoustic systems with variable coefficients and

curvedwalls, we refer toAppendix in [33]. The above two characters not onlymake the

structural acoustic system much more realistic, but also gain additional complexities

to the mathematical analysis.

We mention that all the results obtained in this paper are also valid for the case

where the dimension n = 2. That is, the plate Γ0 reduces to the beam. It is also

pointed out that the observability inequality (2.36) obtained by the Carleman estimate

can also be proved by the well-known multiplier technique only. See for example [34,

Chap. 2].

Assumption (A.2) means that we need to repeat observations 9 times for the

determination of 6 unknown coefficients (ai j (x))1≤i, j≤3. An interesting question is:

Can we suitably choose 6 or less groups of inputs (observations) for determining

(ai j (x))1≤i, j≤3? However, we do not know how to achieve this. Anyways, this needs

further considerations, and some estimates (e.g., Lemma 3.1) should be refined.
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