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Abstract
In this paper, we consider a class of partial difference equations with sign-changing
mixed nonlinearities and unbounded potentials. Some sufficient conditions for the
existence and multiplicity of homoclinic solutions are obtained by using critical point
theory. Even for ordinary difference equations, our results significantly improve some
existing ones.
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1 Introduction

The discrete nonlinear Schrödinger (DNLS) equation is one of the most important
nonlinear lattice systems, appearing in many areas of biology and physics such as the
DNA double-strand [1], nonlinear optics [2], complex electronic materials [3], and
Bose–Einstein condensates [4]. Some reviews on DNLS equations can be found in [5,
6]. Among them, the two-dimensional (2D) DNLS equation has a place. For example,
the classic DNLS equation

iψ̇m,n + C�ψm,n + |ψm,n|2ψm,n = 0, (m, n) ∈ Z
2, (1)
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where � is the discrete Laplacian operator defined by �ψm,n = ψm,n+1 + ψm+1,n +
ψm,n−1 + ψm−1,n − 4ψm,n , C is the coupling constant; note that the corresponding
coupling length in the waveguide array, C−1, is usually on the order of a few millime-
ters, in physical units. It could be used for research into a semi-infinite 2D array of
optical waveguides with a horizontal edge, whose plane is parallel to the waveguides
(which is a physically relevant representation of 2D lattices bounded by a flat sur-
face). Indeed, the DNLS equation (1) describes, in the mean-field approximation, the
dynamics of a Bose–Einstein condensate (BEC) trapped in a strong 2D optical lattice
[7].

In 2006, Pankov [8, 9] studied periodic and decaying solutions by using the linking
theorem and Nehari manifold approach. Since then, the existence of standing waves
of DNLS equations has been studied extensively and deeply by many mathematicians
and physicists [10–13]. As follows from the general theory of MacKay and Aubry
[14], standing waves exist also in higher dimensions. Many fundamental features are
expected to occur in higher dimensions, such as vortex lattice solitons, bright lat-
tice solitons that carry angular momentum, and three-dimensional collisions between
lattice solitons. Fleischer and his co-workers reported the experimental observation
of 2D lattice solitons in [15]. Some theoretical and numerical simulation results are
described in [16, 17], and the nonuniform dichotomy spectrum is introduced in [18].

When we look for standing waves of the more general 2D DNLS equation

iψ̇m,n = −�ψm,n + εm,nψm,n − f (m, n, ψm,n), (m, n) ∈ Z
2, (2)

where f (m, n, ·) ∈ C(R,R) for each (m, n) ∈ Z
2, and the nonlinearity is gauge

invariant, i.e.,

f (m, n, eiθu) = eiθ f (m, n, u), θ ∈ R.

Since solitons are spatially localized time-periodic solutions and decay to zero at
infinity, we can make use of the standing wave ansata

ψm,n = um,ne
−iωt , lim|m|+|n|→∞ ψm,n = 0,

where {um,n} is a real number sequence and ω ∈ R is the temporal frequency. Then
we arrive at the partial difference equation

−�2
1u(m − 1, n) − �2

2u(m, n − 1) + ω(m, n)u(m, n) = f (m, n, u(m, n)),

(m, n) ∈ Z
2, (3)

and

lim|m|+|n|→∞ u(m, n) = 0, (4)

where ω(m, n) = εm,n −ω is real number for each (m, n) ∈ Z
2,�1u(m, n) = u(m+

1, n)−u(m, n),�2u(m, n) = u(m, n+1)−u(m, n), �2
1u(m, n) = �1(�1u(m, n)).
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We assume that f (m, n, 0) = 0 for each (m, n) ∈ Z
2, then {u(m, n)} = {0} is a

solution of (3), which is called the trivial solution. As usual, we say that a solution
u = {u(m, n)} of (3) is homoclinic (to 0) if (4) holds. In addition, if {u(m, n)} �= {0},
then u is called a nontrivial homoclinic solution. Therefore, the problem on standing
waves of the 2D DNLS equation (2) has been reduced to that on homoclinic solutions
of the partial difference equation (3).

Partial difference equations predated partial differential equations, but unfortu-
nately, they were not as popular as the latter, and their development did not continue
until the 20th century [19]. At present, there are few kinds of research on the qualitative
theory of partial difference equations, mainly involving oscillation, stability, chaos,
and other problems [20–24], and even fewer discussions on its homoclinic solutions
[25, 26]. The main reason is that there is no effective tool for studying partial differ-
ence equations. Since critical point theory was introduced into difference equations
by Guo and Yu [27], it has been developed as a powerful tool for studying homoclinic
solutions of difference equations. In 2006, Ma and Guo [28] studied homoclinic solu-
tions of a class of second order self-adjoint difference equations by using critical point
theory. In recent years, more and more scholars have made use of the relevant tools
and methods of critical point theory to study some nonlinear discrete systems, and a
lot of meaningful research results have been obtained [29–33]. In particular, Lin and
Yu [31] studied homoclinic solutions of periodic discrete systems with sign-changing
mixed nonlinearities by new arguments including weak*-compactness.

We note that many practical partial difference equation models have a variational
structure in which the solutions of these equations can be transformed into the critical
points of corresponding variational functional in a suitable space, thismakes it possible
to study partial difference equations by means of the variational method. Motivated
by the interesting studies above and the references therein, we shall attempt to inves-
tigate the existence and multiplicity of homoclinic solutions for the partial difference
equation (3).

It is worth pointing out that in the search for infinitely many homoclinic solutions
of discrete nonlinear systems, most of the existing literature considers only the case
where the nonlinear terms are superlinear, whereas the mixed nonlinear condition we
adopt ismore applicable andweaker.Not only that, butwe can circumvent an important
global condition by some technical means, and the nonlinearities are allowed to be
sign-changing. Details can be found in the remarks.

Assume the following condition on {ω(m, n)} holds.
(�) ω(m, n) → +∞ as |m| + |n| → ∞, ω∗ = min{ω(m, n) : (m, n) ∈ Z

2} > 0.

Let S be the vector space of all real sequences of the form

u = {u(m, n)}(m,n)∈Z2

= (u(0, 0), u(1, 0), u(0, 1), u(−1, 0), u(0,−1), u(2, 0), u(1, 1),

u(0, 2), · · · , u(m, n), · · · ),
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namely

S =
{
u = {u(m, n)} ∣∣ u(m, n) ∈ R, (m, n) ∈ Z

2
}

.

Define the space

E =
⎧⎨
⎩ u ∈ S

∣∣∣∣
∑

(m,n)∈Z2

ω(m, n)|u(m, n)|2 < ∞
⎫⎬
⎭ ,

and the norm

‖u‖ =
⎛
⎝ ∑

(m,n)∈Z2

ω(m, n)|u(m, n)|2
⎞
⎠

1
2

for u ∈ E .

We assume that nonlinearities f (m, n, u) and F(m, n, u) = ∫ u
0 f (m, n, s)ds sat-

isfy the following conditions:

(F1) lim supu→0
f (m,n,u)

u = a(m, n) and lim infu→0
f (m,n,u)

u = b(m, n) uniformly
for (m, n) ∈ Z

2, where sup(m,n)∈Z2 a(m, n) < ω∗ and inf(m,n)∈Z2 b(m, n) >

−ω∗;
(F2) lim inf |u|→∞ F(m,n,u)

u2
= c(m, n) ≤ ∞ for (m, n) ∈ Z

2;
(F3) there exists constant θ > 0 such that θF(m, n, u) ≥ F(m, n, tu) for (m, n) ∈

Z
2, u ∈ R, and t ∈ [0, 1], where F(m, n, u) = f (m, n, u)u − 2F(m, n, u);

(F4) f (m, n, u)u − 2F(m, n, u) → +∞ as |u| → ∞ for (m, n) ∈ Z
2.

Now, we give the main results of this paper:

Theorem 1.1 Assume that (�) holds, and f (m, n, u) satisfies (F1) − (F4). If there
exists a constant c∗ such that c(m, n) ≥ c∗ > ω∗/2+ 2 for (m, n) ∈ Z

2, then (3) has
at least one nontrivial homoclinic solution in E.

Theorem 1.2 Assume that (�) holds, f (m, n, u) is odd in u for each (m, n) ∈ Z
2

and satisfies (F1) − (F4). If c(m, n) > ω(m, n)/2 + 4 for (m, n) ∈ Z
2, then (3) has

infinitely many high energy homoclinic solutions in E.

Remark 1.1 If c(m, n) ≡ ∞, then the condition (F4) in Theorems 1.1 and 1.2 can be
removed.

Remark 1.2 The conditions (F1) and (F2) allow for the non-existence of limits of
f (m, n, u)/u for all (m, n) ∈ Z

2 both at the origin and at infinity, which of course
means that our conditions encompass cases of superlinear, asymptotically linear and
a mixture of them. In contrast to existing results (see [8, 11, 12, 28]), we do not need
f to be only superlinear or asymptotically linear at the origin or at infinity.

Remark 1.3 In comparison with the conditions in [11], we remove the following con-
dition (F ′

1): there exist a > 0 and p > 2 such that | f (u)| ≤ a(1 + |u|p−1) for all
u ∈ R.
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Remark 1.4 Our nonlinearity can be sign-changing, which is more general than the
non-negativity case (F(u) ≥ 0 for all u ∈ R) in most related papers [10–12].

Next we give two typical examples to illuminate our results.

Example 1.1 Let

F(m, n, u) = α(m, n)(u4 − u2), (m, n, u) ∈ Z
2 × R,

where 0 < inf{α(m, n) : (m, n) ∈ Z
2} ≤ sup{α(m, n) : (m, n) ∈ Z

2} < +∞. Then
we know

F(m, n, u) = f (m, n, u)u − 2F(m, n, u) = α(m, n)2u4.

Let’s say α(m, n) ≡ 1. For the sake of visualization, we can draw them as follows
Clearly, F is sign-changing and satisfies our conditions (F1) − (F4) for ω∗ = 3

(Fig. 1).

Example 1.2 Let

f (m, n, u) = (ω(m, n) + 4)u3 − 0.2ω∗u
τ(m, n)u2 + 1

, (m, n, u) ∈ Z
2 × R,

where {τ(m, n)} is a sequence with

τ(m, n) =
{
0, (m, n) = (0, 0),
1, (m, n) �= (0, 0).

Obviously, f satisfies conditions (F1)−(F4) and is neither superlinear nor asymptoti-
cally linear at infinity, so our results extend and improve those in the existing literature
[11].

-1 -0.5 0.5 1

0.5

1

1.5

-1 -0.5 0.5 1

0.5

1

1.5

Fig. 1 The images of F(m, n, u) and F(m, n, u)
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Of course, we can also solve this problemwith the classic AR condition. It is easy to
see that the AR condition is a special case of our conditions, i.e., a(m, n) = b(m, n) =
0, c(m, n) = ∞ for all (m, n) ∈ Z

2. Here, we write them down as corollaries.
We assume that the nonlinearity f (m, n, u) satisfies the following conditions:

(G1) limu→0
f (m,n,u)

u = 0 uniformly for (m, n) ∈ Z
2;

(G2) there exists constant β > 2 such that f (m, n, u)u ≥ β
∫ u
0 f (m, n, s)ds > 0 for

all (m, n) ∈ Z
2, u ∈ R\{0}.

Corollary 1.1 Assume that (�) holds, and f (m, n, u) satisfies (G1), (G2). Then (3)
has at least one nontrivial homoclinic solution in E.

Corollary 1.2 Assume that (�) holds, f (m, n, u) is odd in u for (m, n) ∈ Z
2 and

satisfies (G1), (G2). Then there exists an unbounded sequence in E of homoclinic
solutions of (3).

The rest of this paper is organized as follows. In Sect. 2, we establish the variational
framework associated with (3) and cite the Mountain Pass Lemma and the Symmetric
Mountain Pass Lemma. Then we give some lemmas which will be of fundamental
importance in proving our main results in Sect. 3. Section 4 is devoted to the proofs
of Theorems 1.1 and 1.2.

2 The Variational Structure

In this section, we first establish the variational framework associated with (3) and
state some basic notations. We denote by l2 the set of all functions u : Z2 → R such
that

‖u‖2 =
⎛
⎝ ∑

(m,n)∈Z2

|u(m, n)|2
⎞
⎠

1
2

< ∞.

Moreover, we denote by l∞ the set of all functions u : Z2 → R such that

‖u‖∞ = sup
(m,n)∈Z2

|u(m, n)| < ∞.

On the Hilbert space E , we consider the functional

J (u) =
∑

(m,n)∈Z2

[
1

2
(�1u(m − 1, n))2

+1

2
(�2u(m, n − 1))2 + 1

2
ω(m, n)u2(m, n) − F(m, n, u(m, n))

]
.
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Standard arguments show that the functional J is well-definedC1 functional on E and
satisfies

〈J ′(u), v〉 =
∑

(m,n)∈Z2

[�1u(m − 1, n)�1v(m − 1, n) + �2u(m, n − 1)�2v(m, n − 1)

+ ω(m, n)u(m, n)v(m, n) − f (m, n, u(m, n))v(m, n)]

=
∑

(m,n)∈Z2

[�1u(m − 1, n)v(m, n) − �1u(m, n)v(m, n) + �2u(m, n − 1)v(m, n)

− �2u(m, n)v(m, n) +ω(m, n)u(m, n)v(m, n) − f (m, n, u(m, n))v(m, n)]

=
∑

(m,n)∈Z2

[−�2
1u(m − 1, n) − �2

2u(m, n − 1) + ω(m, n)u(m, n)

− f (m, n, u(m, n))] v(m, n), u, v ∈ E .

(5)

It follows from the above equation that 〈J ′(u), v〉 = 0 for all v ∈ E if and only if

−�2
1u(m − 1, n) − �2

2u(m, n − 1) + ω(m, n)u(m, n) − f (m, n, u(m, n)) = 0.

Therefore, we have reduced the problem of finding a nontrivial homoclinic solution
of (3) to that of seeking a nonzero critical point of the functional J .

Let Br denote the open ball of radius r about 0, and let ∂Br denote its boundary.

Definition 2.1 For J ∈ C1(E,R), we say J satisfies the Palais–Smale condition if
any sequence {x j } ⊂ E for which J (x j ) is bounded and J ′(x j ) → 0 as j → ∞
possesses a convergent subsequence.

Definition 2.2 Let J ∈ C1(E,R). A sequence {x j } ⊂ E is called a Cerami sequence
for J if J (x j ) → c for some c ∈ R and (1 + ‖x j‖)J ′(x j ) → 0 as j → ∞. We say
J satisfies the Cerami condition if any Cerami sequence for J possesses a convergent
subsequence.

Lemma 2.1 (Mountain PassLemma [34]) Suppose J ∈ C1(E,R), satisfies thePalais–
Smale condition, J (0) = 0,

(i) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and
(ii) there is an e ∈ E\B̄ρ such that J (e) ≤ 0.

Then J possesses a critical value c ≥ a which can be characterized as

c = inf
h∈�

max
s∈[0,1] J (h(s)),

where � = {h ∈ C([0, 1], E)
∣∣ h(0) = 0, h(1) = e}.

Lemma 2.2 (Symmetric Mountain Pass Lemma [35]) Let J ∈ C1(E,R) be even.
Suppose J satisfies the Palais–Smale condition, J (0) = 0,

(i) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and

(ii) for each finite-dimensional subspace Ẽ ⊂ E, there is γ = γ (Ẽ) such that J ≤
0 on Ẽ\Bγ .
Then J possesses an unbounded sequence of critical values.
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Remark 2.1 A deformation lemma can show that conclusion of the above lemmas
remains true if the Palais–Smale condition is replaced with the Cerami condition [36].

3 Some Lemmas

Similar to the proof of [28], we generalize and obtain the following lemma, which
gives a discrete version of compact embedding theorem and plays a crucial role in the
subsequent proof.

Lemma 3.1 Under the assumption (�), the embedding map from E into l2 is compact.

Proof Let {uk} ⊂ E be a bounded sequence, i.e., there exists M0 > 0 such that
‖uk‖2 < M0 for all k ∈ N. Up to a subsequence if necessary, we have

uk⇀u in E .

We may assume u = 0, in particular uk(m, n) → 0 as k → ∞ for all (m, n) ∈ Z
2.

For any ε0 > 0, there exists N0 ∈ N such that

ω(m, n) >
1 + M0

ε0
for all |m| + |n| > N0.

By continuity of the finite sum, there exists K0 ∈ N such that

∑
|m|+|n|≤N0

|uk(m, n)|2 <
ε0

1 + M0
for all k > K0.

So for k > K0, we have

∑

(m,n)∈Z2

|uk(m, n)|2 ≤ ε0

1 + M0
+ ε0

1 + M0

∑
|m|+|n|>N0

ω(m, n)|uk(m, n)|2

≤ ε0

1 + M0
(1 + ‖uk‖2)

< ε0.

Thus, uk → 0 in l2. ��

Lemma 3.2 Assume that the conditions of Theorem 1.1 hold. Then the functional J
satisfies the Cerami condition for any given c ∈ R.

Proof Let {uk} ⊂ E be a Cerami sequence of J , that is

J (uk) → c, (1 + ‖uk‖)‖J ′(uk)‖ → 0 as k → ∞. (6)
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First, we prove that {uk} is bounded in E . In fact, if not, we may assume that
‖uk‖ → ∞ as k → ∞. Set ξk = uk/‖uk‖. Up to a subsequence if necessary, we have

ξk⇀ξ in E,

ξk → ξ in l2. (7)

Case 1: ξ �= 0. Let � = {(m, n) ∈ Z
2 : ξ(m, n) �= 0}. Then it follows from (7)

that

uk(m0, n0) = ξk(m0, n0)‖uk‖ → ∞ as k → ∞, for (m0, n0) ∈ �,

and by (F4), we have

f (m0, n0, uk(m0, n0))uk(m0, n0) − 2F(m0, n0, uk(m0, n0)) → +∞ as k → ∞.(8)

By (6), there is a constant c0 > 0 such that |J (uk)| ≤ c0, then we have

∑

(m,n)∈Z2

( f (m, n, uk(m, n))uk(m, n) − 2F(m, n, uk(m, n)))

= 2J (uk) − 〈J ′(uk), uk〉
≤ 2|J (uk)| + ‖uk‖‖J ′(uk)‖
≤ 2c0 + (1 + ‖uk‖)‖J ′(uk)‖
< +∞.

This contradicts (8).
In particular, as noted in Remark 1.1, if c(m, n) ≡ ∞, the above proof can be

obtained without (F4). In fact, by (6), there exists a constant C such that J (uk) ≥ C .
Thus, we have

C ≤ J (uk) ≤ 4

ω∗
‖uk‖2 + 1

2
‖uk‖2 −

∑

(m,n)∈Z2

F(m, n, uk(m, n)). (9)

We divide both sides of (9) by ‖uk‖2 and get

∑

(m,n)∈Z2

F(m, n, uk(m, n))

‖uk‖2 ≤ 4

ω∗
+ 1

2
− C

‖uk‖2 < +∞. (10)

In view of (F2), we have

F(m0, n0, uk(m0, n0))

‖uk‖2 = F(m0, n0, uk(m0, n0))

u2k(m0, n0)
ξ2k (m0, n0) → +∞ as k → ∞.

This contradicts (10).
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Case 2: ξ = 0. Set

J (tkuk) = max
t∈[0,1] J (tuk).

For any given M > max{2θc, 1}, let k be large enough such that ‖uk‖ ≥ M and
ξ k = M1/2ξk . For any ε > 0, set

p(m, n) = max{|a(m, n) + ε|, |b(m, n) − ε|} for (m, n) ∈ Z
2,

and

p∗ = sup
(m,n)∈Z2

p(m, n).

By (F1) and (7), it is easy to see that

∑

(m,n)∈Z2

F(m, n, ξ k(m, n)) ≤ p∗

2
‖ξ k‖22 → 0 as k → ∞.

Thus, for k large enough, we have

J (tkuk) ≥ J (ξ k)

≥ 1

2
‖ξ k‖2 −

∑

(m,n)∈Z2

F(m, n, ξ k(m, n))

≥ 1

2
M −

∑

(m,n)∈Z2

F(m, n, ξ k(m, n)).

This implies that

lim inf
k→∞ J (tkuk) ≥ 1

2
M > θc. (11)

Noting that J (0) = 0 and J (uk) → c, as k → ∞, J (tuk) attains its maximum at
tk ∈ (0, 1)when k is big enough. Thus, 〈J ′(tkuk), tkuk〉 = 0. It follows from (F3) that
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J (tkuk) = J (tkuk) − 1

2
〈J ′(tkuk), tkuk〉

=
∑

(m,n)∈Z2

(
1

2
f (m, n, tkuk(m, n))tkuk(m, n) − F(m, n, tkuk(m, n))

)

≤ θ
∑

(m,n)∈Z2

(
1

2
f (m, n, uk(m, n))uk(m, n) − F(m, n, uk(m, n))

)

≤ θ

(
J (uk) − 1

2
〈J ′(uk), uk〉

)
,

which implies that

lim sup
k→∞

J (tkuk) ≤ θc.

This contradicts (11). Hence, {uk} is bounded in E .
Second, we show that there exists a convergent subsequence of {uk}. Actually, there

is a subsequence, still denoted by the same notation, such that {uk} weakly converges
to some u ∈ E . By Lemma 3.1, we can see that

uk → u in l2. (12)

Then by (5), we have

∑

(m,n)∈Z2

ω(m, n)(uk(m, n) − u(m, n))2

≤ 〈
J ′(uk) − J ′(u), uk − u

〉

+
∑

(m,n)∈Z2

( f (m, n, uk(m, n)) − f (m, n, u(m, n)))(uk(m, n) − u(m, n)).

Due to the weak convergence and (6), we see that

〈
J ′(uk) − J ′(u), uk − u

〉 → 0 as k → ∞.

By (F1), there exists ζ ≤ ε such that

| f (m, n, u)| ≤ p(m, n)|u| for all (m, n) ∈ Z
2 and |u| ≤ ζ.

We know u(m, n) → 0 as |m| + |n| → ∞, then there exists N ∈ N such that

|u(m, n)| ≤ ζ

2
for all |m| + |n| > N .

123
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By (12), there exists K ∈ N such that

‖uk − u‖2 <
ζ

2
for all k > K .

Then for all k > K , |m| + |n| > N , we have

|uk(m, n) − u(m, n)| ≤ ζ

2
,

then

|uk(m, n)| ≤ |u(m, n)| + ζ

2
≤ ζ,

and

| f (m, n, uk(m, n))| ≤ p(m, n)|uk(m, n)|, | f (m, n, u(m, n))| ≤ p(m, n)|u(m, n)|.

We know that

∑

(m,n)∈Z2

( f (m, n, uk(m, n)) − f (m, n, u(m, n)))(uk(m, n) − u(m, n))

=
∑

|m|+|n|≤N

( f (m, n, uk(m, n)) − f (m, n, u(m, n)))(uk(m, n) − u(m, n))

+
∑

|m|+|n|>N

( f (m, n, uk(m, n)) − f (m, n, u(m, n)))(uk(m, n) − u(m, n)).

(13)

By the uniformly continuity of f (m, n, u) in u and uk → u in l2, the first term on the
righthand side of (13) approaches 0 as k → ∞. It remains to show the second term
also tends to 0 as k → ∞. From Hölder’s inequality, there exists a constant σ > 0,
such that

∑
|m|+|n|>N

( f (m, n, uk(m, n)) − f (m, n, u(m, n)))(uk(m, n) − u(m, n))

≤
⎛
⎝ ∑

|m|+|n|>N

| f (m, n, uk(m, n)) − f (m, n, u(m, n))|2
⎞
⎠

1
2

⎛
⎝ ∑

|m|+|n|>N

|uk(m, n) − u(m, n)|2
⎞
⎠

1
2

≤ p∗
⎛
⎝ ∑

|m|+|n|>N

(|uk(m, n)| + |u(m, n)|)2
⎞
⎠

1
2

‖uk − u‖2

≤ p∗

⎡
⎢⎣

⎛
⎝ ∑

|m|+|n|>N

|uk(m, n)|2
⎞
⎠

1
2

+
⎛
⎝ ∑

|m|+|n|>N

|u(m, n)|2
⎞
⎠

1
2
⎤
⎥⎦ ε

≤ p∗σε.
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So we have

∑

(m,n)∈Z2

( f (m, n, uk(m, n)) − f (m, n, u(m, n)))(uk(m, n) − u(m, n)) → 0

as k → ∞. (14)

Therefore, combining (12) and the boundedness of {uk}, it follows that

lim
k→∞ ‖uk − u‖ = 0.

The proof is completed. ��

4 Proofs of Main Results

Proof of Theorem 1.1. Let ε = min
{
ω∗ − sup(m,n)∈Z2 a(m, n), ω∗ + inf(m,n)∈Z2

b(m, n)
}
/2, we have ω∗ = p∗ + ε, then by (F1), there is δ > 0 such that

|F(m, n, u)| ≤ p∗

2
u2 for all (m, n) ∈ Z

2 and |u| ≤ δ.

Let ‖u‖ = ρ = √
ω∗δ. We have ‖u‖∞ ≤ (

√
ω∗)−1‖u‖ = δ, then

J (u) ≥ 1

2

∑

(m,n)∈Z2

ω(m, n)u(m, n)2 −
∑

(m,n)∈Z2

F(m, n, u(m, n))

≥ 1

2
‖u‖2 − p∗

2

∑

(m,n)∈Z2

u2(m, n)

≥ 1

2

(
1 − p∗

ω∗

)
‖u‖2

= ε

2ω∗
δ2 = a > 0.

��
Since ω∗ = min{ω(m, n) : (m, n) ∈ Z

2}, there is (m∗, n∗) ∈ Z
2 such that

ω(m∗, n∗) = ω∗. Define e = {e(m, n)} by

e(m, n) =
{
1, (m, n) = (m∗, n∗),
0, (m, n) �= (m∗, n∗).

As c∗ > ω∗/2 + 2, then there exists ε0 > 0, such that

c∗ >
ω∗
2

+ 2 + ε0.
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By (F2), there exists η > 0 such that

F(m∗, n∗, u) ≥ (c∗ − ε0)u
2 for |u| ≥ η. (15)

Taking |t | large enough, such that |t | > η. Then combining (15), we have

J (te) =
∑

(m,n)∈Z2

[
1

2
t2 (�1e(m − 1, n))2

+1

2
t2(�2e(m, n − 1))2 + 1

2
t2ω(m, n)e2(m, n) − F(m, n, te(m, n))

]

≤ 2t2 + 1

2
ω∗t2 − (c∗ − ε0)t

2

≤ (2 + ω∗
2

+ ε0 − c∗)t2.

Letting |t | → ∞ gives us J (te) → −∞. Then there exists a real number t0 such that

‖t0e‖ > ρ and J (t0e) < 0.

Since we have verified all assumptions of Lemma 2.1, it follows that J possesses a
Cerami sequence {u j } ⊂ E for the mountain pass level c ≥ a with

c = inf
h∈�

max
s∈[0,1] J (h(s)),

where

� = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = t0e} .

A nontrivial critical point u of J as the corresponding critical value c ≥ a > 0. Hence,
(3) has at least one nontrivial solution in E .

Proof of Theorem 1.2 Using an argument similar to the one given in the proof of Theo-
rem 1.1, one can prove that J satisfies the Cerami condition as well as establishes part
(i) of Lemma 2.2. Let us establish part (ii) of the Symmetric Mountain Pass Lemma.

Let Ẽ ⊂ E be a finite-dimensional subspace. To prove our conclusion, we only
need to prove

J (u) → −∞ when ‖u‖ → ∞.

Assume, by contradiction, that there exist a sequence {uk} ⊂ Ẽ with ‖uk‖ → ∞ as
k → ∞ and a constant C0 such that J (uk) ≥ C0 for all k ∈ N. Set vk = uk/‖uk‖,
then ‖vk‖ = 1. Since Ẽ is finite dimensional, up to a subsequence if necessary, we can
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assume that vk → v in Ẽ , and vk(m, n) → v(m, n) for all (m, n) ∈ Z
2, thus ‖v‖ = 1.

Then, we have

C0 ≤ J (uk) ≤ 4‖uk‖22 + 1

2
‖uk‖2 −

∑

(m,n)∈Z2

F(m, n, uk(m, n)). (16)

We divide both sides of (16) by ‖uk‖2 and get

∑

(m,n)∈Z2

F(m, n, uk(m, n))

‖uk‖2 ≤ 4‖vk‖22 + 1

2
− C0

‖uk‖2 ,

which implies that

lim sup
k→∞

∑

(m,n)∈Z2

F(m, n, uk(m, n))

‖uk‖2 ≤ 4‖v‖22 + 1

2
. (17)

On the other hand, let � = {(m, n) ∈ Z
2 : v(m, n) �= 0}. We know that, for all

(m, n) ∈ �,

uk(m, n) = vk(m, n)‖uk‖ → ∞ as k → ∞.

By (F2) and Fatou’s Lemma, we have

lim inf
k→∞

∑

(m,n)∈Z2

F(m, n, uk(m, n))

‖uk‖2

≥
∑

(m,n)∈Z2

lim inf
k→∞

F(m, n, uk(m, n))

‖uk‖2

≥
∑

(m,n)∈�

lim inf
k→∞

F(m, n, uk(m, n))

u2k(m, n)
v2k (m, n)

>
∑

(m,n)∈�

(
ω(m, n)

2
+ 4

)
v2(m, n)

=
∑

(m,n)∈Z2

(
ω(m, n)

2
+ 4

)
v2(m, n)

= 4‖v‖22 + 1

2
.

This contradicts (17), and part (ii) of the Symmetric Mountain Pass Lemma follows.
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It follows from Lemma 2.2 that J has a sequence of critical points {uk} ⊂ E , such
that J (uk) → ∞. Therefore, (3) has infinitely many solutions {uk} in E satisfying

∑

(m,n)∈Z2

[
1

2
(�1uk(m − 1, n))2 + 1

2
(�2uk(m, n − 1))2

+1

2
ω(m, n)u2k(m, n) − F(m, n, uk(m, n))

]
→ ∞ as k → ∞.

The proof of Theorem 1.2 is finished. ��

5 Conclusions

In this work, by using critical point theory, we obtain sufficient conditions for the exis-
tence andmultiplicity of homoclinic solutions for a class of partial difference equations
with unbounded potentials. Specifically, under weak conditions, the existence of non-
trivial homoclinic solutions for the partial difference equation (3) is obtained by using
the Mountain Pass Lemma. Moreover, when the nonlinear term is odd, the existence
of infinitely many nontrivial homoclinic solutions for the partial difference equation
(3) is obtained by the Symmetric Mountain Pass Lemma.

Here, our conditions allow for nonlinear term to be superlinear, asymptotically
linear and a mixture of them at the origin and at infinity, and even allow the limit of
f /u to be non-existent. In many similar results for ordinary difference equations, f is
required to be either superlinear or asymptotically linear at the origin or at infinity. We
also allow the nonlinear term to change sign,which is required to satisfy non-negativity
in most of the known results. In summary, even for ordinary difference equations, our
results significantly improve the existing ones. We conclude by giving two examples
to verify our conclusions.
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