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Abstract

Every Finsler metric naturally induces a spray but not so for the converse. The notion
for sprays of scalar (resp. isotropic) curvature has been known as a generalization for
Finsler metrics of scalar (resp. isotropic) flag curvature. In this paper, a new notion,
sprays of constant curvature, is introduced and especially it shows that a spray of
isotropic curvature is not necessarily of constant curvature even in dimension n > 3.
Further, complete conditions are given for sprays of isotropic (resp. constant) curvature
to be Finsler metrizable. Based on this result, the local structure is determined for
locally projectively flat Berwald sprays of isotropic (resp. constant) curvature which
are Finsler metrizable, and some more sprays of isotropic curvature are discussed for
their metrizability. Besides, the metrizability problem is also investigated for sprays
of scalar curvature under certain curvature conditions.

Keywords Finsler metric - Spray - Berwald spray - Metrizability -
Scalar/isotropic/constant curvature - Projective flatness

Mathematics Subject Classification 53C60 - 53B40

1 Introduction

Spray geometry studies the properties of sprays on a manifold, and it is more general
than Finsler geometry, because every Finsler metric induces a natural spray, but there
are a lot of sprays which cannot be induced by any Finsler metric [8, 13, 20]. A spray G
on a manifold M is a family of compatible second-order ODEs which define a special
vector filed on a conical region C of TM \ {0} (an important case is C = TM \ {0}).
The integral curves of G projected onto M are called geodesics of G. Many basic
curvatures, such as Riemann curvature, Ricci curvature, Weyl curvature, Berwald
curvature and Douglas curvature, appearing in Finsler geometry, are actually defined
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in spray geometry via the spray coefficients. Geodesics and these basic curvatures play
an important role in the study of spray geometry.

The metrizability problem for a spray G seeks for a Finsler metric whose spray is
just G, or whose geodesics coincide with that of G. A weaker problem is to consider
the projective metrizability of a given spray G, which aims to look for a Finsler metric
projectively related to G. So a natural question is to determine whether a given spray
is (projectively) Finsler metrizable or not under certain curvature conditions.

In [14], Matsumoto proves that any two-dimensional spray is locally projectively
Finsler metrizable. More generally, any spray of scalar curvature is locally projectively
Finsler metrizable [4, 7]. In [15], Muzsnay gives some sprays which are not Finsler
metrizable under some conditions satisfied by the holonomy distribution generated
from the horizontal vector fields of a spray. In [20], the present author constructs a class
of sprays whose metrizable and non-metrizable conditions are completely determined
respectively. Inspired by the sprays constructed in [20], Elgendi and Muzsnay discuss
a more general class of sprays and prove the non-metrizability of such sprays by
computing the dimension of the holonomy distribution under certain conditions [8].
In [5], Bucataru and Muzsnay characterize metrizable sprays with non-zero Ricci
constant in dimension greater than 2, and further they give necessary and sufficient
conditions for sprays of scalar curvature and non-zero Ricci curvature to be metrizable
in [6]. In [12], Li and Shen introduce the notion of sprays with isotropic curvature and
give some non-metrizability conditions for locally projectively flat sprays, and shows
that a locally projectively flat spray with vanishing Riemann curvature is metrizable
(cf. [17]). In [13], Li, Mo, and Yu give a class of locally projectively flat Berwald
sprays which are non-metrizable.

In this paper, we are going to study some special properties and the metrizability
problem of some special classes of sprays: locally projectively flat Berwald sprays,
sprays of scalar curvature (resp. isotropic curvature, constant curvature). A locally
projectively flat spray, which is always of scalar curvature, means that its geodesics are
locally straight lines. A Berwald spray means that its spray coefficients G' = G'(x, y)
are quadratic in y. A spray G is said to be of scalar curvature if its Riemann curvature
Rik satisfies

R, = RS, — ', ey

where R = R(x, y) and tx = 7% (x, y) are some homogeneous functions [16]. In [5],
the condition R; = 27; is considered for a spray satisfying (1). If in (1) there holds
R; = 27;, then G is said to be of isotropic curvature [12]. A spray G is said to be of
constant curvature, a new notion we introduce in this paper, if G satisfies (1) with

‘L’,';k=0(<:> R=1=0, OI’R;,'ZO).

In the above, we use 7;;; and T; ; to denote respectively the horizontal and vertical
covariant derivatives of the tensor 7' with respect to Berwald connection of a given
spray. Some basic properties for a spray of constant curvature are given in Theorem
5.2 below, in which, it especially shows that an n(> 3)-dimensional spray of isotropic
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curvature is not necessarily of constant curvature, which is different from the Finslerian
case.

'Il'heorem 1.1 Let G be an n-dimensional spray of isotropic curvature R', = Ré; —
R .
2 .

(1) If the spray manifold (G, M) is analytical with R = 0, then G is locally Finsler
metrizable.
(i1) If R # 0 and R is not a Finsler metric, then G is not Finsler metrizable.
(iii) If R is a Finsler metric, then G is (locally) Finsler metrizable if and only if R.; =
Rw; for some closed 1-form w = w; (x)dx". In this case, we have

(iiia) ifn > 3, then R.; = 0 (or w = 0).

(iiib) if w = O, then G is induced by the Finsler metric R with the flag curvature
K=1

(iiib) if w # 0, then G is induced by the Finsler metric R /) with the flag curvature
K = A, where & # 0 is given by w; = (In|A|).;. This case happens only in
dimension n = 2.

Theorem 1.2 Let G be an n-dimensional spray of constant curvature and Ric be the
Ricci curvature of G. Then G is (locally) Finsler metrizable iff. Ric = 0 or Ric is
a Finsler metric. In this case, the Finsler metric L inducing G has vanishing flag
curvature or L is given by L = Ric/(n — 1) with the flag curvature 1.

Note that Theorem 1.1 for R # 0 can be concluded from Theorem 3.1 in [6],
and Theorem 1.1 (iiia) has been proved in [5]. In Theorem 1.1, if G is metrizable, the
corresponding Finsler metric is easily obtained if Ric # 0. The metric in Theorem 1.1
can be multiplied by a suitable non-zero constant if we need the metric to be positive.
Theorem 1.1(i) shows that a spray with vanishing Riemann curvature (not necessary
to be locally projectively flat) is locally metrizable (cf. [12, 17]). As applications
of Theorems 1.1 and 1.2, we generalize a result in [20] (Theorem 4.10 below), and
make a check on some spays whether they are Finsler metrizable or not (see Sect. 7
below). On the other hand, we can use Theorem 1.1 to obtain the local structure for
locally projectively flat Berwald sprays of isotropic curvature when they are Finsler
metrizable.

Theorem 1.3 Let G be a projectively flat Berwald spray of isotropic curvature on
an open set U C R™ with Ric # 0 (on a conical region C(U)). Then G is Finsler
metrizable (on C(U)) if and only if G can be expressed as

. . 1
G' =Py, Pi=—3[Inl(Ax.x) + (B.x) +Cl| @)
2 xk

where A # 0 is a constant symmetric matrix, B is a constant vector and C is a
constant number satisfying certain condition such that the following function L is a
metric (defined on C(U)),

4((Ax, x) + (B, x) + C)(Ay, y) — (2(Ax, y) + (B, y))?

L :=
4((Ax, x) + (B, x) + C)?

3
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In this case, G is induced by the metric L = Ric/(n — 1) of constant sectional
curvature 1.

In [17], there is a general description of the construction for locally projectively
flat Finsler metrics with constant flag curvature 1. As a special case, putting 2A =
(6ij), B =0,C = 1/2 in Theorem 1.3, we obtain

_ A+ PP = ()
(I+1x[%)?

“)

Theorem 1.3 also implies that if we take in (2), P = —[In/[f(X)[] «y* for an
arbitrary non-constant function f(x) which is not a polynomial of degree two, then
the spray G in (2) is not Finsler metrizable. If G in Theorem 1.3 has zero Riemann
curvature (Ric = 0), then G can be locally induced by a Minkowski metric (a trivial
case, Remark 6.7 below).

For a spray of scalar curvature R’ ¢ = RO ,’c — 1y, the quantities R and 7, are closely
related (Proposition 3.1 below). Now we consider the following condition for R and

Tk
R; — 21 = wjo, (wio = wiry"), (5)

where w = w;; (x)dx! Adx7 is a 2-form. For a spray of scalar curvature, the condition
(5)isaspecial case of y; = wjo (see [11]), where ; is called the x -curvature originally
defined in [18]. For a spray satisfying (5), we have the following theorem.

Theorem 1.4 Let G be an n-dimensional spray of scalar curvature Rik = RS,"C .
satisfying (5). Suppose that G is induced by a Finsler metric L.

(1) Forn > 3, L is of constant flag curvature with v = 0 [9].
(ii) For n = 2, the flag curvature A of L satisfies )" (0) + eI (0)A'(0) = 0 on each
tangent space, where € = %1 is the sign of L, and 0 is the Landsberg angle.

(iia) If L is a Riemann metric, or regular Finsler metric, then L is of isotropic flag
curvature (. = A(x)) with w = 0.
(iib) If L has constant main scalar, then (5) is satisfied with w not necessarily zero.

Theorem 1.4(i) has essentially been proved in [9]. Starting from (5), we are also
going to give a little different version of proof from that in [9]. If a spray G satisfies (5)
with w # 0 and n > 3, then the spray G is not Finsler metrizable by Theorem 1.4(i).
If a two-dimensional spray G satisfies (5) with w # 0, then G cannot be induced by a
Riemann metric or a regular Finsler metric by Theorem 1.4(iia), but Theorem 1.4(iib)
shows that there are such sprays which can be induced by a singular Finsler metric.

2 Preliminaries

Let M be an n-dimensional manifold. A conical region C = C(M) of T M \ {0} means
Cy :=CNTyM\ {0} is conical region forx € M (Ay € C, if A > 0,y € Cy). A spray
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on M is a smooth vector field G on a conical region C of ™M\ {0} (an important case
is C = TM \ {0}) expressed in a local coordinate system (x’, y’) in T M as follows:

where G' = G (x, y) are local functions satisfying G'(x, ry) = AzGi(x, y) for any
constant A > 0. The integral curves of G projected onto M are the geodesics of G.
The Riemann curvature tensor R', of a given spray G' is defined by

R :=28:G' — y/(3;8kG") +2G’ (3;8 G") — (3G (8 G), (©6)

where we define 9 = 9/9x*, o = 8/9yk. The trace of Rik is called the Ricci
curvature, Ric := Rii. A spray G is said to be R-flat if Rik = 0. In [18], Shen defines
a non-Riemannian quantity called x-curvature x = y;dx’ expressed as follows:

xi =2R" +R" .. @)
Plugging (1) into (7) yields
= (n+ D(R; —21). ®)

So a spray of scalar curvature is of isotropic curvature iff. it has vanishing yx -curvature.

A spray G is called a Berwald spray if its Berwald curvature vanishes G;l ik =
and i G’ = 0. A spray G is said to be locally projectively flat if locally G can be
expressed as G' = Py', where P is a positively homogeneous local function of degree
one.

In the calculation of some geometric quantities of a spray, it is very convenient to
use Berwald connection as a tool. For a spray manifold (G, M), Berwald connection
is usually defined as a linear connection on the pull-back 7*TM (x : TM — M the
natural projection) over the base manifold M. The Berwald connection is defined by

D(%) = (Gj,dx")ok, (G}, := 8,0;G"),

For a spray tensor T = T;dx' as an example, the horizontal and vertical derivatives
of T with respect to Berwald connection are given by

Tij=8;Ti — T,G};, Tij=08;T;, (8 =0 —Gjd,).

The hh-curvature tensor H ji 1 Of Berwald connection is defined by

H! '—l{Ri — (k/D}, Hij:=H",. H = L (nHoi + Hio)
jkl - 3 l.j.k ’ l] - i jm> 1= n _1 0i i0)
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where T;; — (i/j) means T;; — Tj;, and Ty is defined by Tp := T, y", as an example.
For the Ricci identities and Bianchi identities of Berwald connection, readers can refer
to [1].

In this paper, we define a Finsler metric L (7 0) on a manifold M as follows (cf.
[16]): (i) for any x € M, L, is defined on a conical region of T, M \ {0} and L is
C®°; (ii) L is positively homogeneous of degree two; (iii) the fundamental metric
tensor g;; = (%L)yi yi 1s non-degenerate. A Finsler metric L is said to be regular
if additionally L is defined on the whole TM \ {0} and (g;;) is positively definite.
Otherwise, L is called singular. In general case, we don’t require that L be regular. If
a Finsler metric L > 0, we put L = F 2 and in this case, F is called a Finsler norm
function which is positively homogeneous of degree one.

Any Finsler metric L induces a natural spray whose coefficients G' are given by

G = j—‘gil{kaylyk - Lxl},

where (gij ) is the inverse of (g;;). L is said to be of scalar flag curvature K = K (x, y)
if

R, = K(L8L — y'yp),

where vy := (L/2);r = grmy™. If K; = 0, then L is said to be of isotropic flag
curvature, and in this case, K is a constant if the dimension n > 3.

A spray G is (globally) Finsler metrizable on M (or on C(M)) if there is a Finlser
metric L defined on a conical region C(M) and L induces G. A spray G is locally
Finsler metrizable on M if for each x € M, there is a neighborhood U of x such that
G is Finsler metrizable on U.

Let (M, L) be a two-dimensional Finsler space with the Finsler metric L. We use
€(= £1) to denote the sign of the determinant of the metric matrix. We have

Lgl] = ylyj +6Y[Y',
-1
(' v?) = (Veg) (=yay), (g:=det(gi))),
LYljzyjY,—leJ +€lY;Y;, L2Cijk=IYinYk’ ®

where (y, Y) withy = (y!, ¥2), ¥ = (Y1, Y?) is called the Berwald frame, C; jy is the
Cartan tensor and / is the main scalar. The system L ; = 2y;, L8; = Y; is integrable.
It defines the so-called Landsberg angle 6, which is the arc-length parameter of the
indicatrix SyM = {y € TyM|F(x,y) = 1} with respect to the Riemann metric
ds®> = g jdyi ® dy’/ on the Minkowski plane (M, F,) if L is positively definite.
When L = F?2, the Berwald frame is denoted by (¢, m) with £ := y/F,m := Y /F
(see [1]).

Lemma 2.1 For a positively homogeneous function A = A(x,y) of degree zero, it
satisfies on each tangent space,

Ly =2 (0)Y:.
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3 Spays of Scalar Curvature

In this section, we will introduce some basic properties of sprays with scalar curvature,
and the metrizability of such sprays under certain conditions.

3.1 Some Basic Formulas

For a spray of scalar curvature, R and ti in (1) are related in the following formula
(10).

Proposition 3.1 Let G be an n(> 3)-dimensional spray of scalar curvature Rik =
R(S,i — 1 y!. Then there holds

Rii;O — 3R;i + Ti.0 = 0. (10)
In particular, if G is of isotropic curvature, then (10) becomes t;.90 = R.;, or Tj.0 = T0;.
Proof By a Bianchy identity of Berwald connection
Rijj + Ry + Rlyj =0,
we have

er;m + Rnlzm;O - R’

m;

L =0. (11)

Since Rik = R(S,i — 1;y', a direct computation gives

1
Rm = R =0, R0 = 3000 = D(Rico + 70 + o = Tmis0y™ ] (12)

By 790 = R, we obtain
T k0" = R0 — Th:o- (13)
Now plugging (12) and (13) into (11) we have
(n —2)(Ri;0 —3R;i +1i;0) =0,
which gives the proof. O

The isotropic case of Proposition 3.1 is given by Z. Shen in [19]. In Proposition
3.1, if G is Finsler metrizable induced by a Finsler metric L with the flag curvature A,
we have R = AL, t; = Ly; and then putting them into (10) gives a known formula:

LAj.0+3X0yi —3LA,; =0. (14)
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If L = F? is of weakly isotropic flag curvature A = 30/F + o, then (14) becomes
0.; — 0.0 + (Fo,, +260.,)hl =0, (hj. = 5; —0e)).

For a two-dimensional spray G in Proposition 3.1, (10) generally does not hold. For
example, if G is a two-dimensional spray induced by a Riemann metric L of isotropic
Gauss curvature A = A(x), then (14) reduces to A.; L = A.oy;, which is impossible if
A is not constant.

In Proposition 3.1, if G is induced by a Finsler metric L of isotropic flag curvature
A, then we have A = constant by (14), which is just the Schur’s Theorem. But for
a general spray, we cannot conclude from Proposition 3.1 that a spray of isotropic
curvature in dimension n > 3 must be of constant curvature (see Examples 7.3 and
7.4 below).

The following proposition gives a useful formula on a spray manifold of scalar
curvature.

Proposition 3.2 Let G be a spray of scalar curvature Rik = R8,i — oy, and T be a
homogeneous scalar function of degree p satisfying T.; = 0. Then we have

RT = pT . (15)

(1) If p=0and R # 0, then T is a constant.
(i) If G is of isotropic curvature with R # 0, then there holds

T = ¢[R|?”, (¢ = c(x)). (16)
(iii) If G is induced by a Finsler metric L of non-zero flag curvature, then there holds
T = ¢|L|2P, (c = constant). (17)
Proof By a Ricci identity and Rik = RS,i — 7;y', we have
0=y/(Ti;j —T.j;) = T,R'; = RT — Y' T, .

Then we obtain (15) since T is a homogeneous scalar function of degree p.

(1) If p =0and R # 0,then T; = 0 by (15). So T is independent of y. Using T; = 0
again, we obtain T = constant.

(i) Since G is of isotropic curvature, we have 7z = iR;. Putting it into (15) gives
(16) since
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(iii) The original version is givenin [1]. Let & # O be the flag curvature of L. Similarly
as the proof in (i), plugging R = AL and 7; = %Li into (15) gives

T = c|L|%1’, c =c(x).

Then by T; = 0 and L.; = 0 we obtain c;; = 0, which means ¢ = constant.

3.2 Some Basic Properties

Let G be a spray of scalar curvature satisfying (1). Then we have

. 1 . . . _—
thjk = g[R.j‘h‘S/’( — 'L’k_jbhyl — ‘l:k,j(s;l — ‘L'k,hﬁ} — (J/k)] (18)

By (18) we obtain

1
Hij — Hji = 2+ D(wji — 7)), (19)
Hoi = %[(n —2R;+ (n+ D], Ho= %[(Zn —DR; — (n+ D] (20)
Ho; — Hio = —%(nJr D(R; —27), (21)

1
H; = 5('1 + DR + 7). (22)

Proposition 3.3 Letr G be a spray of scalar curvature satisfying (1).

(1) If G is of isotropic curvature, then H;; = H;, Hio = Ho; and H; is proportional
fo 1;.

(ii) If H;jj = Hj;, or Rjo = Hy;, or H; is proportional to t; with R # 0, then G is of
isotropic curvature.

Proof Firstly, we prove R; = 2t; is equivalent to H;; = Hj;. If R; = 27;, then it
is easy to see that 7; ; = t;; and then by (19), we have H;; = Hj;. anversely, if
H;j = Hj;, then by (19) we have 7; ; = 7; ;. Differentiating R = 7o by y' yields

Ri=1+ 0. Y" =1 + 1imy" =21.

Secondly, it is clear from (21) that R ; = 27; is equivalent to H;g = Hy;.

Finally, if R; = 21, it is an obvious result that H; is proportional to 7; by (22).
Conversely, if H; is proportional to 7; and R # 0, then by (22) we get R; = At;
for some scalar function A = A(x, y). Contracting this by y’ gives 2R = Atg = AR.
Since R # 0 by assumption, we have A = 2, and thus, R; = 21;. O
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Proposition 3.4 A spray G of scalar curvature is R-flat if and only if H;j = 0, or
H;o =0, 0or Hyj =00r H; =0.

Proof The Riemann curvature tensor of G satisfies (1). If H;; = 0, then H; = 0. So by
(22) we have R ; + 7; = 0. Contracting this by y* gives3R =0andsoR =0, i; = 0.
This shows that G is R-flat. If Hy; = 0 or H;g = 0, wehave (n —2)R;+(n+1)t; =0
or 2n — 1)R; — (n + 1)t; = 0 by (20). Contracting either one by y' gives R = 0.
Similarly we see that G is R-flat. O

3.3 Metrizability

Let G be a spray of scalar curvature Rik = Rél’; — 1;y'. If G is induced by a Finsler
metric L, then L is of scalar flag curvature with R = AL, 7y = Ay for some scalar
function A = A(x, y). Thenif R = 0, then 7y = 0;if R # 0, then we can easily obtain

(), ()= (%) &
R/ ' R/ ; R/,

In [16], there are some two-dimensional sprays (of scalar curvature) satisfying the
condition R = 0, 7 # 0 (also see Example 7.6 below). It is easy to check that a spray
of constant curvature (R # 0) always satisfies (23). Example 7.4 below shows that the
condition (23) is not sufficient for a spray of scalar curvature to be Finsler metrizable.

The condition (23) is almost sufficient for a spray of scalar curvature with R # 0 to
be Finsler metrizable. In [6], Bucataru and Muzsnay show that (23) and the following
non-degenerate condition:

det (%) ; + —57) #0.

are necessary and sufficient for a spray of scalar curvature (R # 0) to be Finsler
metrizable.

Proof of Theorem 1.4 Let G be induced by the Finsler metric L. Here we provide a
version of proof of Theorem 1.4(ia) for L = FZ.PutR = AL, 7; = Ayi = AFU;,
where A is the flag curvature of F. By (5) we have (R; — 21;) x + (i/k) = 0, which
justis
Fhix+rili +xilk =0, (or LA+ Aryi +Aiye =0). (24)
Differentiating (24) by y/ gives
Fhijx+rikli+Ajili + F_l)\‘khij + A jli + F_l)»,ihjk =0, (25)

where hj; := gij — £;¢;. Interchanging 7, j in (25) and making a subtraction, we
obtain hjiA ; — i) j = 0. Contracting this by g~’k gives (n —2)1; = 0.

(i) If n > 2, then we have A ; = 0. So A is constant by Schur’s Theorem.
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(i) Ifn = 2,let (y, Y) be the Berwald frame and 6 be the Landsberg angle. By Lemma
2.1, we put

Lii=nY:, n@®)=21). (26)
Differentiating (26) by y/ and using (9) we obtain
2yjhi+Lhij=n;Yi — L~ ;Y — yiYj + elY;Y)),
which, by (26) again, is reduced to
Yidj+yjhi+ LA =77.jYi+€nL_11Yin- 27
Then by (24) we have
Lnj+enlY; =0, or ' +enl =0, or A" +eXI=0.
(iia) If L is regular, then € = 1 and T, M is compact. There is a 6y such that
A'(Bp) = 0. So we get n(0) = A'(9) = 0. Thus, we have A; = 0 from (26).

(iib) It is known that all Finsler metrics with isotropic main scalar / = I(x) on a
two-dimensional manifold are divided into the following three classes ([1]):

L=cp?y? 179 (s=5(x) #0, sx)#1), (28)
L=cpe¥, (29)
L = C(,Bz + y2)62r-arcmn(§)7 r = }"(X), (30)

where 8 = p;(x)y’ and y = ¢;(x)y’ are two independent 1-forms, and ¢ # 0
is constant. The main scalar I = I(x) is given respectively by

2 (2s—1)? 2o ) A
T osts=1" - T4

In the following, we assume that the Finsler metric L is of constant main scalar,
that is, s in (28) and r in (30) is constant. For the convenience of computation,
we may put 8 = py!' and y = ¢y? under certain local coordinate system,
where p = p(x',x?) and ¢ = g(x!, x?) are scalar functions. By a direct
computation, we can obtain the flag curvature A of the Finsler metric given
by (28)—(30) respectively taking ¢ = 1 there for convenience). Then we can
verify (5) from R = AL and tp = Ayg. If L is given by (28), then (5) holds
with

1—2s (p>qq12 — pg*p12 +4*p1p2 — P*q192)s — p*qqi2 + P*q1q2

YT S0 = P22
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If L is given by (29), then (5) holds with

_2(pap2 + pa*pi2 — PPaqi2 + pPq192 — q*pipa — p*paga)
2,2 :
Pq

w12 =

If L is given by (30), then (5) holds with

w12

_ 2 (PPqqi2 = papi = PPa192 + ¢ pipa)r + papn + paPan — ¢ piai — pPpag
1472 7242 :

So generally, w1, in the above is not zero.

4 Sprays of Isotropic Curvature

In this section, we are going to prove Theorem 1.1 and give a metrizibility result as
an application of Theorem 1.1. For this, we first introduce a simple necessary and
sufficient condition for a general spray to be metrizable (see Lemma 4.3).

In the following lemmas, the horizontal and vertical covariant derivative is taken
with respect to the given spray G.

Lemma 4.1 Let G be a spray and L be a Finsler function. Then we have
i 1 il k
Lin—Li=0¢=G =g {Layy® =L}
Proof 1t follows from L j;,0 — L;; = =2G"L ;; + Lyryiy" — L,i. O
Lemma4.2 Let G be a spray and L be a Finsler function. Then we have
Lo=2L, L;=0<¢= Lo=2L, L;0o—L.;=0.
Proof We only need to prove "<=".By L ;.0 = L.; we have L.o; — L.; = L.;, or
L.o; = 2L.;. Further, L ;.o = L.; implies L 9.0 = L.o. So by L o = 2L we obtain
L.o = 0. Thus, it follows from L.o; = 2L.; that L,; = 0. ]

Lemma 4.3 A spray G is Finsler metrizable if and only if there is a Finsler function
L satisfies L.; = Q. In this case, G is induced by L.

4.1 Formal Integrability
To prove Theorem 1.1(i), we need a theory on Spencer’s technique of formal integra-

bility for linear partial differential systems. Here we only give some basic notions for
this theory and more details are refereed to [3, 10].
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Let B be a vector bundle over an n-dimensional manifold M, and denote by J; B
the bundles of kth-order jets of the sections of B. For two vector bundles B;, B, over
M, consider P : Sec(B1) — Sec(B3), which is a linear partial differential operator
of order k. P can be identified with a map po(P) : JyxB1 — Bz, a morphism of
vector bundles over M. We also denote by p;(P) : Ji4+;B1 — J; By the morphisms
of vector bundles over M, which is called the /th-order jet prolongation of P. Let
Ri41,x(P) := Kerp;(P), be the space of (k + [)th-order formal solutions of P at a
point x € M. The operator P is said to be formally integrable at x € M, if Ri4;(P)isa
vector bundle for all / > 0 and the projection wg4,x (P) : Rx41,x(P) = Rp41-1,x(P)
is onto forall / > 1.

Let ox(P) : SK(T*M) ® By — Bs be the symbol of P, which is defined by the
highest order term of P, and let o34;(P) : Sk“(T*M) ® B — S’(T*M) ® B> be
the symbol of the /th-order prolongation of P. Define

gkx(P): = Ker oy (P),
gk,x(P)e|...ej : = {A € gk,x(P)|ie1A =...= ie‘,‘A = 0}, 1 = ] =n,
where {eq, ..., ey} is a basis of Ty M. Such a basis is said to be quasi-regular if it

satisfies

n
dim gi1x(P) =dim g «(P)+ Y _dim g (P)ey..c;-
j=1

The symbol oy (P) is said to be involutive at x € M if there exists a quasi-regular basis
of T, M. For the proof of Theorem 1.1(i), we need the following theorem and lemma

(10D.

Theorem 4.4 (Cartan—Kahler) Let P be a regular linear partial differential operator
of order k. If wy4+1,x(P) : Ri+1.x(P) — Ry x(P) is onto and the symbol oy (P) is
involutive, then P is formally integrable.

Lemma 4.5 For two vector bundles By, By over M, let P : Sec(B1) — Sec(By) be a
regular linear partial differential operator of order k. Then wi 11 x (P) : Ry41.x(P) —
Ry < (P) is onto iff.

P(s)x =0 = (DP(5))x = ok+1(P)(A) :

for some A € Skt (TYM) ® By, where D is an arbitrary linear connection of the
bundle B, over the base manifold M.

4.2 Proof of Theorem 1.1(i)
Let T,)T M denote the subbundle of T*TM, in which, if w € T,T M, then » can be
written locally as w = w; (x, y)dx', and /\ZTU*TM the subbundle of T*T M, every

element w of which is locally in the form o = w;; (x, y)dxi A dx’/ with wij = —wj;.
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Besides, we designate S¥(7*T M) as the bundle of symmetric k-forms over T M. For
an n-dimensional manifold M, let By, B, be two vector bundles over T M with

Bl :=T'TM, By:=TTM &N TTM & (T'TM QT TM).

We define a linear partial differential operator P : Sec(B1) — Sec(B3) in component
form as follows

P6;) = (6i0,6ij —0j.i,6:.). 3D

Lemma 4.6 For the operator P in (31), the symbol o1 (P) is involutive.

Proof We are going to prove that {31, R 3,,, 81, ..., 0,} 1s a quasi-regular basis of
P.

By definition, for A = (Aj;, Aj;) (= Ajidx/ ®dx'+A;;8y/®dx') € T*"TM®By,
we have - B

o1(P)A = (Agi, Aji — Aij, Aji) € Ba.

Assume o1 (P)(A) = 0. Then for the computation of dim (g (P)), we see that Ag; = 0
and A;; = Aj; together contribute the number (n — 1)n/2, and A;; = 0 gives 0.
Therefore, we obtain

—1
dim(gi(P)) = Q (32)

Now with respect to the basis {dx’, §y'}, an element B € S>(T*T M) ® B can be
expressed as follows:

B = (Bijk, Bijk: Bijk. Bijk)
(Bijk = Bjik- Bijk = Bjix. Bijk = Bjix).
By definition, we have
02(P)B = (Biok, Biok; Bijk — Bikj, Bijk — Bikj; Bijk Bijk)-
Assume 03 (P)(B) = 0. Then B;ji, B; jx and B; j gives 0 to dim(g2(P)). By the fact

that B; jx is symmetric in i, j, k satisfying additional condition: Bior = 0, we obtain
the number

n—2

Z nm—k—1n—-k
k=0 2
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to dim(g2(P)). So altogether, we have

n—2
. m—k—1m—k)
d = .
im(g2(P)) E 5 (33)
k=0
Next we verify under the basis {31, R én, 81,...,0p}atapoint (x,y) € TM,

n n
dim(g2(P)) = dim g1(P) + ) _dim gi(P); s + D dim g(P)j 5.5,

j=1 j=1
(34)
By a direct computation, we see
. (n—j=—Dr—=j) . .
dim gl(P)él...éj = ) . dim gl(P)élu.énBl“.Sj =0, I=j=n).

Plugging them into (34) and using (32), (33), we see that both sides of (34) are equal.
Therefore, o1 (P) is involutive. ]

Lemma 4.7 For the operator P in (31), afirst-order solution of P(0) = 0 can be lifted
into a second-order solution iff.

6 H s + 6., R j = 0,R ;)i = 0. (35)

Proof If P(f) = 0, then we have 6;,; = 6;.;. Then by a Ricci identity and 6; ; = 6;;,
it gives (35):

0 =0k — Oik;j = —0- H o — 01y Ry = —(6,R"j) i
Conversely, suppose that (35) holds for a 6 satisfying P () = 0 with 6y # 0. Let
D be the Berwald connection of the bundle 7*T M over the base manifold 7T M.

Then D can be naturally extended to the bundle B,. We use Lemma 4.5. In component
form, we have

DP0;) = (0i.0:j, 0104, Oijik —Ojisks Gijke —Ojiks Oisjiks 0isjk),  (36)

where 0 (6y # 0) satisfies P(0) = 0 at a point w = (x, y) € T M, that is, at the point
w there holds

0i0o=0, 6;;=0ji 6;;=0. (37
Next we are going to prove that there is an Ayg; € S2(T}T M) ® B satisfying
DP(0;) = 02(Aapi) = (Aariy’, Aaji — Aaijs Aaji)- (38)
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By (36), we see that (38) is equivalent to

@ Ajriy" =0iry", @ Ajriy =00 ="0i,,;Y +06ij,
® Axji — Akij = 0i.jik — 0j.isks @ Agji — Akij = 0ijk — bjiks
® Agji =0k ©® Agji =0 jk-

In the following, we will construct Ayg; which satisfies the above six relations. Put

Ajki = Oik.j + 90_1[95.,/9k + (i, j. b))

Ajki = 0ik:j —0-Gijpe  Axji = 0isjks

Agji = 05, ik

Firstly, A ji; is symmetric in j, k by 6; ; = 6;; in (37) and it also satisfies @@ by
0;.j = 0j.i,6i.0 = 0in (37). Next, by a Ricci identity of Berwald connection, we see
that

Agji — Ajki = 0i;jk — bikj +0,Giy =0,

which gives Ayj; = Aj;. Itis also clear that Ay j; and A j; satisfy D@ (®. Finally,
Ayji is symmetric in j, k, and satisfies () by a Ricci identity of Berwald connection
and (35). So (38) holds. This finishes the proof of the lemma. O

Now in Theorem 1.1(i), we have R = 0. So (35) automatically holds. It follows
from Lemmas 4.6, 4.7 and then Theorem 4.4, the operator P is formally integrable,
that is, for each point ug := (xé, yé), there exist a neighborhood U of u( and a analytic
6 defined on U such that P(#) = 0.

Under the basis (§;, é,-), the local coordinate of JyB; is expressed as

(xi, yi, 0i,6;j,0;;). An initial data (xg), yé, 91.0, Ol.oj, 98.) satisfied by the operator P

means 91.09 =0, 0&. = 6’% , 98. — Gro G{ = 0. Further, we let the initial data satisfy

Gl.oy(i) > 0 and Rank(@?j) =n-—1.

Now for the above analytic solution 6 of P which is defined on a neighborhood U
of ug and satisfies the above initial data, we obtain a local metric F := 6y defined on
U. To prove that F is a Finsler metric, we need the following lemma which can be
proved by an elementary discussion in linear algebra.

Lemma 4.8 Let F be positively homogeneous of degree one with F(y) # 0 at a point
y. Then g;j := %(FZ)A,-_J» is non-degenerate at y iff. Rank(F; ;) =n —1laty.

Now for F' = 6y, we have F;; = 6; ;. Then at ug, we have Rank(F; ;) =
Rank(@l.oj) = n—1.So by the above lemma, g;; is non-degenerate at u¢. By continuity,
gij is non-degenerate in U (when it is small enough). Thus, we obtain a Finsler metric
F with each F, defined on the conical region formed by y = 0 and {y|(x, y) € U}.
Further, F satisfies F.; = 0, which means that the spray G in Theorem 1.1 is induced
by F by Lemma 4.3. This completes the proof of Theorem 1.1(). O
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Remark 4.9 The idea of the proof of Theorem 1.1(i) can be referred to that in [4] for
the formal integrability of the operator Pi(8) := (6;.0,6;.j — 0.i,6;0; — §;6;). On
the other hand, a suitable change of the proof of Theorem 1.1(i) can give the proof
for the formal integrability of the operator P; in [4] (where actually we can redefine
P as 131 = (6i.0,0;.j —0j.i,0j,; — 0;.;)). Besides, we may also consider the system
Fo = F, F.; =0 for a possible proof (cf. [15] for a more general discussion).

4.3 Proof of Theorem 1.1(ii) and (iii)

(ii) Assume that R # 0 is not a Finsler metric. If G is Finsler metrizable induced by
a Finsler metric F, then F is of isotropic curvature A # 0. By R = AF 2 we see that
R is a Finsler metric, which gives a contradiction.

(iii) Assume that R is a Finsler metric. If G is Finsler metrizable induced by a
Finsler metric L, then L is of isotropic curvature A = A(x) # 0. By R = AL, we have
R.; = X, L. Thus, we obtain

A
R;i = TR = R(1n|)\|);,’.

Let w; := (In|A[).;. Then w is closed and R.; = Rw;. Conversely, if R.; = Rw; for
some closed 1-form @ = w; (x)dx', then locally there is a scalar function A = A(x) # 0
such that w; = (In|A[);. It is easy to check that R.; = R(In|\|).; is equivalent
to (R/A).; = 0. Therefore, G is Finsler metrizable induced by the Finsler metric
L := R/A by Lemma 4.3. By R = AL, we see that L is of isotropic flag curvature A.
If w = 0, we may choose A = 1, and then the Finsler metric L = R is of constant flag
curvature A = 1. If n > 3, then the Finsler metric L is of constant flag curvature A by
Schur’s theorem, which gives R.; = 0. O

4.4 A Metrizability Result

As an application of Theorem 1.1, we show the following theorem.

Theo[em 4,10 Let G' be the spray of a Finsler metric F of constant flag curvature i
and G' be a spray defined by G' = G' + cFy" for a constant c. Then G is (locally)
Finsler metrizable iff. » = —c? or ¢ = 0. When » = —c?, G' is locally induced by a

Finsler metric of zero flag curvature.

Proof The Riemann curvature Rik of G is given by
R, = M(F28 — FFy").
Then by a direct computation, the Riemann curvature R’ i of G is given by
Ry =R, — %y, (Ri=0G+cHF% =0+ DFFy).
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So G is of isotropic curvature since R; = 27;. Further, we have

R = R+ R, (cF;y +cF8) =4c(.+ ") F*F,.

Assume that G is Finsler metrizable. If c(A 4+ ¢%) # 0, then R is a Finsler metrlc
By Theorem 1.1(iii), we have R- = Ruw; for some closed 1-form & = w; (x)dx". But

clearly this does not hold. Therefore we have ¢ = 0 or A = —c?. Conversely, if ¢ = 0,
then G is induced by F. If A + ¢2 = 0, then G has zero Riemann curvature. So G is
(locally) Finsler metrizable by Theorem 1.1(i). O

Theorem 4.10 is a generalization of a result in [20], where we have an additional
condition that F' is projectively flat.

5 Sprays of Constant Curvature

In this part, we introduce a new notion: a spray of constant curvature, which is a
generalization of a Finsler metric of constant flag curvature. For this new notion, some
basic properties for Finsler metrics still remain unchanged for sprays (see Theorem
5.2 below).

Definition 5.1 A spray G of scalar curvature Rik = RB,i —1iy' is said to be of constant
curvature if 7;;; = 0.

The following theorem gives some basic properties for sprays of constant curvature.

Theorem 5.2 A spray has the following properties on constant curvature:

(i) A spray of scalar curvature is of constant curvature iff. its Riemann curvature is
zero or its Ricci curvature Ric satisfies Ric.; = O(Ric # 0).
(ii) A spray of constant curvature must be of isotropic curvature.
(iii) A Finsler metric is of constant flag curvature iff. its spray is of constant curvature.
(iv) An n-dimensional spray of isotropic curvature is not necessarily of constant
curvature even for n > 3.

A Finsler metric has the same conclusions as shown for sprays in Theorem 5.2(i)(ii).
Meanwhile, Theorem 5.2(iv) shows a different property of sprays from that of Finsler
metrics.

To prove Theorem 5.2, we first show the following lemma.

Lemma 5.3 Let G be a spray of scalar curvature Rik = RB,i — wy'. Then we have

R;i =0(R #0) = R, =21, 39)
‘L’i;kz():}R:Tk:OOr R;,'=0(R750), (40)
R;,‘ =0(R 750) = Tk =0. 41

@ Springer



On Sprays of Scalar Curvature and Metrizability Page 190f25 120

Proof Assume R.; = O(R # 0). We have RR; = 2Rt; from (15), where we have put
T = R with p = 2 in (15). This gives R; = 21; since R # 0, which gives the proof
of (39).

Assume 7.4 = 0. We have R.,; = O since 1o = R and then R.; = 19,;; = Tpp;; )™ =
0. Now we prove that if R = 0, then 7; = 0. By a Ricci identity we obtain

0=y (tijuk — Tiskej) = Y (—0 H, ;= tir R') = =1 Hy — 7, R (42)
Now by Rik = R(S,i — 7;y' we have

1 :
ik = g[R.j.i(S]C — iy — w8 — wid; — (/K] (43)

Plugging (43), R', = RS} — %", 7;;; = 0 and R = 0 into (42) we obtain 7;74 = 0,
which gives 7; = 0. This gives the proof of (40).

Assume R.; = O(R # 0). By (39) wehave R; = 27;. S0 7.4 = %R,i;k = %R;k.i =
0. This gives the proof of (41). O

Proof of Theorem 5.2 (i) Assume that G is of constant curvature. Then we have Rik =
RrS,’AC — 1.y with 7;., = 0 by definition. By (40) we immediately obtain the desired
conclusion since Ric = (n — 1) R. Conversely, let the Riemann curvature be zero
or the Ricci curvature Ric satisfy Ric,; = O(Ric # 0). If Rik =0,thent; =0
andso 7;;x = 0.If Ric,; = O(Ric # 0), then we have R.; = 0 (R # 0). So by (39)
we have R; = 27;. Thus, we obtain 7;;4 = %R,i;k = %R;k.i = 0. By definition, G
is of constant curvature.

(i1) It follows directly from (40) and (39), and the definitions for a spray of isotropic
curvature and constant curvature.

(iii) If a Finsler metric L is of constant flag curvature A, then its spray has the Riemann
curvature Rik = A(LB,’; —yiy'). Soits spray is of scalar curvature Rik = RBI’; —ey!
with R = AL and 7y = Ayi. Thus, we have 7;.; = 0, which implies that the spray is
of constant curvature. Conversely, if the spray G of a Finsler metric L is of constant
curvature, then the Riemann curvature of G has the form Rik = RS,i — Tk yi with
7;.x = 0. So L is of scalar flag curvature (put the flag curvature as A). We have
R = AL and 7, = Ay. Thus, we get Ay = Oby 7,4 = 0. If A = 0O, then L
has constant flag curvature 0. If 1 7 0, then since A is a homogeneous function
of degree O satisfying A.; = 0, we immediately obtain A = constant by putting
T =X, p =0in (17) of Proposition 3.2.

(iv) See Examples 7.3 and 7.4 below.

O

Proof of Theorem 1.2 The spray G has the Riemann curvature Rik = RB,i — y' with
7;.x = 0 (note that Ric = (n — 1)R). By Theorem 5.2(ii), the spray G is of isotropic
curvature since G is of constant curvature.

If G is (locally) Finsler metrizable, then by Theorem 1.1, it is clear that there has
Ric = 0 or Ric is a Finsler metric when Ric # 0.
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Conversely, if Ric = 0, then by Theorem 1.1(i), G is (locally) Finsler metrizable.
If Ric # 0, then by assumption Ric is a Finsler metric. It follows from Theorem 5.2(i)
that Ric.; = 0. By Theorem 1.1(iii), G is (locally) Finsler metrizable. O

6 Locally Projectively Flat Sprays

In this section, we consider the properties and metrizability of locally projectively flat
sprays on a manifold. A locally projectively flat spray is always of scalar curvature.
Locally, we let G be a projectively flat spray with G’ = Py’ defined on an open set of
R™. Then by (6), the Riemann curvature tensor R’k is in the form R’k = R(S’ — ey
with

R=P>— Puy, 7o=PPu+ P,y —2Pu. (44)

6.1 Some Basic Results

Lemma 6.1 Let G' = Py' be a spray defined on an open set of R". Then (44) becomes
R=—-P>—Py, tw=P.o—2Py— PP, (P :=Py). (45)

Lemma6.2 In (45), R =0and tp = 0 <= P.x + P Py = 0. So the spray G' =Py

has vanishing Riemann curvature iff. P.x + PPy = 0.

Proof If R = Oand 7 = 0, then Py = —p? implies P.; + Py.0 = —2 P Px. Further by
Py.0o = 2P.x + P P we obtain P.; + P P, = 0. Conversely, let P.; + P P, = 0. Then
we have P,y = —P? (R = 0). Now again P.g = — P? implies P,y + Py.o = —2P Py,
which implies 7p = 0by P.y + PPy = 0. O

By Theorem 1.1(i) and Lemma 6.2, a spray G' = Py’ satisfying P.x + PP, =0
is locally Finsler metrizable (also see [12, 17]). By (45) we can easily obtain the
following lemma.

Lemma 6.3 Let G' = Py be a spray with Rik = RB,i — 71y, Then we have
R; =27 =3(P; — Piy). (46)
So G is of isotropic curvature iff. P.; = P;.o.

By Lemma 6.3, we can easily obtain the following Proposition 6.4.

Proposition 6.4 Let G' = Py' be a Berwald spray. Then G is of isotropic curvature
iff. P is a (local) exact 1-form given by P = o, y" for a scalar function o = o (x).

The following Proposition 6.5 directly follows from Lemma 6.3 and Theorem 1.1.

Proposition 6.5 Let G' = Py’ (P # 0) be a spray defined on an open set of R" with
P.; = 0. Then G is of isotropic curvature. Further G is Finsler metrizable iff. P is a
Finsler metric, and in this case, P? is a Finsler metric of constant flag curvature —1.
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By Theorem 1.4(i) and (46) we have the following Proposition 6.6 (cf. [13]).

Proposition 6.6 For an n(> 3)-dimensional Berwald spray G with G' = Py', if G is
not of isotropic curvature (or equivalently, P is not a closed 1-form), then G is not
Finsler metrizable.

6.2 Proof of Theorem 1.3

Now we give the proof of Theorem 1.3 as follows.

If the spray G is given by (2) (defined on C(U)), then G is Finsler metrizable (on
C(U)) since it is easy to check that the metric L given by (3) induces the spray G.
Further, a direct computation shows that the Ricci curvature Ric of G is equal to
(n — 1)L* (on C(U)) since G is given by (2). So L := Ric/(n — 1) is a Riemann
metric and L induces G.

Conversely, suppose that the spray G is Finsler metrizable (on C(U)). Since G is
a projectively flat Berwald spray of isotropic curvature, it follows from Proposition
6.4 that G has the form G' = oyy’, where 0; = o, is the differential of some
scalar function 0 = o (x). Since Ric # 0 and G is Finsler metrizable, Ric is a
Finsler metric and Ric,; = 0 by theorem 1.1 and the fact that a locally projectively
flat Finsler metric of isotropic flag curvature is of constant flag curvature ([2]). Since
Ric = (n — 1)[—(00)2 — 00;0] (see (45)) and Ric,; = 0, we have

[(00) + o0.0].; =0. (47)

Now we only need to solve the scalar function o from (47). It is easy to see that (47)
is equivalent to

(ojox +0j.1);i =0. (48)
Now by G' = o¢y’ we have

G;- = oljy’- —1—0083., G;k = ojéli + oij-.

For convenience, we put 0;; = 0yi,j, Oijk := 0,i,j. By a direct computation we
obtain
Oi;j =O','j—20’,'0'j, 0i0j + 0j;j = 0jj — 0;0},
(ojox +0jk):i = 0ijk — 2(0i0jk + 0joik + 0k0ij) +40icjor.  (49)

Putting u = 6_2(_’, it follows from (49) that (48) is equivalent to u;jx = 0. So u is a
polynomial in (x") of degree two. Thus, the scalar function o satisfying (48) is given
by

1
a(x)=—§ln|(Ax,x)+(B,x)+C|, (50)
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where A is a qonstant_symmetric matrix, B is a constant vector and C is a constant
number. By G' = og¢y* and (50), we see that G is locally given by (2). Meanwhile, by
(50), we have

4((Ax, x) + (B, x) + C){Ay, y) — (2(Ax, y) + (B, y))?
4({Ax, x) + (B, x) + C)?

— (00)* — 00,0 = .(51)

Since R(= —(09)% — 00:0) 7 0 by assumption, by Theorem 1.1, R is a metric, which
means that A, B, C should satisfy certain condition such that L given by (3) is a metric.

A simple computation shows that if det(A) # 0, then L given by (3) is a metric
iff. the constant quantities A, B, C satisfy 4C # B’A™!B. O

Remark 6.7 If —(0p)? — 00.0 = 0, we can obtain 0 = —1In|(B, x) 4+ C|. In this case,
G has vanishing Riemann curvature, and it can be locally induced by a Finsler metric
L. It is clear that L is a Minkowskin metric.

The above proof and Remark 6.7 have actually given the proof of the following
theorem for the local structure of alocally projectively flat Berwald spray with constant
curvature.

Theorem 6.8 Let G be a locally projectively flat Berwald spray on a manifold M.
Then G is of constant curvature if and only if G can be locally expressed as (2).

7 Examples

As an application of Theorem 1.1, Theorem 1.3 gives the necessary and sufficient
condition for the Berwald spray G' = (oyxry")y' to be Finsler metrizable. In this
section, we are going to give more examples to support some of the basic theories we
introduce in the above sections.

Example 7.1 Let G be a two-dimensional Berwald spray given by

G'= feHIGH? =M, GE=2fENyhy

where f(x!) is a non-constant function. It can be directly verified that G is of isotropic
curvature R', = RS — %R,kyl satisfying

R==2fCHION + 0. Ri=Raw
b

w] = W - 4f(xl) = [ln If/(xl)e—4ff(xl)dx1|]x] = [In|A|],1, wy = 0.

Then by Theorem 1.1, G is Finsler metrizable induced by the Riemann metric
L= R/n = =264 TGDdxl (12 4 2y
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of isotropic sectional curvature
3= f/(xl)e—4ff(x1)dx'.

Example 7.2 Let G be a two-dimensional spray given by

1 1
G'= —y4/ON2+ (2 G =——y\JOH2+ (22,
2r 2r

where 7 is a constant. This spray appears in Example 4.1.3 of [16]. From the complete-
ness of geodesics of G and Hopf-Rinow theorem, it is concluded that G is not globally
Finsler metrizable. But actually, it is even not locally Finsler metrizable by Theorem
1.1 (Example 12.4.1 in [16] shows it is locally projectively Finsler metrizable).

By a direct computation, G is of isotropic curvature R’ 0= R6,’; - %R.k y! satisfying

R=r2[0)7+ 0], Ri=r73 /(D2 + 072,
Ra=—r7y /12 + (D)2

Therefore, by Theorem 1.1, G is not locally Finsler metrizable anywhere since there
exists no closed 1-form w = w; (x)dx" such that R.; = Rw;.

Example 7.3 Let G, be a Berwald spray given by

Gi = TP +elx y)y
c 2 )
I — x|

where c is a constant. The spray G is induced by the Riemann metric L = 4|y|?/(1 —
|x|%)% of constant sectional curvature —1, and by computation, we can see that G is
just the spray given by Example 4.1.4 in [16]. G, actually is projectively flat although
at present coordinate it is not in the form Py'.

By a direct computation, G, is of isotropic curvature Rik = R(S,i - %R,k y! with

po LD+ e+ 2]y —clc —2)(x, y)?

(1= x[)?
Further, we have
2(c—2 ; : .
Ri = ﬁ{[w = DIt 4+ 1]y P +20x, 3)y) = 2e(c = Dix w2 .

(i) By Theorem 1.1, it is easy to see that G, is Finsler metrizable iff. ¢ = 2. When
¢ = 2, we obtain the Riemann metric L := R = —4|y|>/(1 — |x|*)? of constant
curvature 1.

(ii) G is of constant curvature iff. ¢ = 2.
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(iii) When ¢ # 2, G, is of isotropic curvature but not of constant curvature in any
dimension. This fact is different from the Finslerian case.

Example 7.4 Let G be a spray given by G = ogy' with 0; := 0,1, 0 = o (x).

(i) G is of isotropic curvature for any o but not of constant curvature by Theorem 6.8
if

1
o(x) # _Eln [{Ax,x) + (B, x) + C|.
(ii) Taking A = (§;;), B =0, C = 01in (2) and (3), we have

2 2 2
G — (x,y) I = [x|“|y|* — (x, y)

a ’ |x|4

P 2

In (52), L is not a metric since (L ; ;) is degenerate. By Theorem 1.3, or Theorem
1.1(i1)) (R = L is not a Finsler metric), the spray G given by (52) is not Finsler
metrizable, although this spray G satisfies (23).

Example 7.5 Let G be a spray on R> given by ([16], Example 4.1.2)
Gl=0, G2=x'(y)2 423072 G =o.

G has zero Riemann curvature. Then by Theorem 1.1(i), G is locally Finsler metrizable.
Actually, if the following function is a Finsler metric

P e AN
L(x’y)=|:f(_17(x)+—1+()C)—l)yi|,
y y y

then L induces G on some open set of R>, and F should be a locally Minkowski metric
since G is a Berwald spray (with zero Riemann curvature). Consider a special case
with f(r,s) = +~/r? + s and we obtain

Lx,y) = )2+ &H2oH? + vy + o321y,

which is a singular Riemann metric globally defined on R*. So the spray G is globally
Finsler metrizable.

Example 7.6 Let G be a two-dimensional spray given by
G'=—faHd G G = feh[s0y =g @y, @ =y h.

where f, g are two smooth functions. A direct computation gives Rik = R8,i — iy
with

R=0, 1=4A", n=-4", A:=2f2"g0g"®) - f'xHg"@).
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We can choose the two functions f, g satisfying A # 0. So in this case, G is not
Finsler metrizable.
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