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Abstract
Every Finsler metric naturally induces a spray but not so for the converse. The notion
for sprays of scalar (resp. isotropic) curvature has been known as a generalization for
Finsler metrics of scalar (resp. isotropic) flag curvature. In this paper, a new notion,
sprays of constant curvature, is introduced and especially it shows that a spray of
isotropic curvature is not necessarily of constant curvature even in dimension n ≥ 3.
Further, complete conditions are given for sprays of isotropic (resp. constant) curvature
to be Finsler metrizable. Based on this result, the local structure is determined for
locally projectively flat Berwald sprays of isotropic (resp. constant) curvature which
are Finsler metrizable, and some more sprays of isotropic curvature are discussed for
their metrizability. Besides, the metrizability problem is also investigated for sprays
of scalar curvature under certain curvature conditions.

Keywords Finsler metric · Spray · Berwald spray · Metrizability ·
Scalar/isotropic/constant curvature · Projective flatness

Mathematics Subject Classification 53C60 · 53B40

1 Introduction

Spray geometry studies the properties of sprays on a manifold, and it is more general
than Finsler geometry, because every Finsler metric induces a natural spray, but there
are a lot of sprays which cannot be induced by any Finsler metric [8, 13, 20]. A sprayG
on a manifold M is a family of compatible second-order ODEs which define a special
vector filed on a conical region C of T M \ {0} (an important case is C = T M \ {0}).
The integral curves of G projected onto M are called geodesics of G. Many basic
curvatures, such as Riemann curvature, Ricci curvature, Weyl curvature, Berwald
curvature and Douglas curvature, appearing in Finsler geometry, are actually defined
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in spray geometry via the spray coefficients. Geodesics and these basic curvatures play
an important role in the study of spray geometry.

The metrizability problem for a spray G seeks for a Finsler metric whose spray is
just G, or whose geodesics coincide with that of G. A weaker problem is to consider
the projective metrizability of a given sprayG, which aims to look for a Finsler metric
projectively related to G. So a natural question is to determine whether a given spray
is (projectively) Finsler metrizable or not under certain curvature conditions.

In [14], Matsumoto proves that any two-dimensional spray is locally projectively
Finsler metrizable.More generally, any spray of scalar curvature is locally projectively
Finsler metrizable [4, 7]. In [15], Muzsnay gives some sprays which are not Finsler
metrizable under some conditions satisfied by the holonomy distribution generated
from the horizontal vector fields of a spray. In [20], the present author constructs a class
of sprays whose metrizable and non-metrizable conditions are completely determined
respectively. Inspired by the sprays constructed in [20], Elgendi and Muzsnay discuss
a more general class of sprays and prove the non-metrizability of such sprays by
computing the dimension of the holonomy distribution under certain conditions [8].
In [5], Bucataru and Muzsnay characterize metrizable sprays with non-zero Ricci
constant in dimension greater than 2, and further they give necessary and sufficient
conditions for sprays of scalar curvature and non-zero Ricci curvature to be metrizable
in [6]. In [12], Li and Shen introduce the notion of sprays with isotropic curvature and
give some non-metrizability conditions for locally projectively flat sprays, and shows
that a locally projectively flat spray with vanishing Riemann curvature is metrizable
(cf. [17]). In [13], Li, Mo, and Yu give a class of locally projectively flat Berwald
sprays which are non-metrizable.

In this paper, we are going to study some special properties and the metrizability
problem of some special classes of sprays: locally projectively flat Berwald sprays,
sprays of scalar curvature (resp. isotropic curvature, constant curvature). A locally
projectively flat spray, which is always of scalar curvature, means that its geodesics are
locally straight lines. A Berwald spraymeans that its spray coefficientsGi = Gi (x, y)
are quadratic in y. A sprayG is said to be of scalar curvature if its Riemann curvature
Ri

k satisfies

Ri
k = Rδik − τk y

i , (1)

where R = R(x, y) and τk = τk(x, y) are some homogeneous functions [16]. In [5],
the condition R.i = 2τi is considered for a spray satisfying (1). If in (1) there holds
R.i = 2τi , then G is said to be of isotropic curvature [12]. A spray G is said to be of
constant curvature, a new notion we introduce in this paper, if G satisfies (1) with

τi;k = 0 ( ⇔ R = τk = 0, or R;i = 0).

In the above, we use Ti; j and Ti . j to denote respectively the horizontal and vertical
covariant derivatives of the tensor T with respect to Berwald connection of a given
spray. Some basic properties for a spray of constant curvature are given in Theorem
5.2 below, in which, it especially shows that an n(≥ 3)-dimensional spray of isotropic
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curvature is not necessarily of constant curvature,which is different from the Finslerian
case.

Theorem 1.1 Let G be an n-dimensional spray of isotropic curvature Ri
k = Rδik −

1
2 R.k .

(i) If the spray manifold (G, M) is analytical with R = 0, then G is locally Finsler
metrizable.

(ii) If R �= 0 and R is not a Finsler metric, then G is not Finsler metrizable.
(iii) If R is a Finsler metric, then G is (locally) Finsler metrizable if and only if R;i =

Rωi for some closed 1-form ω = ωi (x)dxi . In this case, we have

(iiia) if n ≥ 3, then R;i = 0 (or ω = 0).
(iiib) if ω = 0, then G is induced by the Finsler metric R with the flag curvature

K = 1.
(iiib) if ω �= 0, then G is induced by the Finsler metric R/λ with the flag curvature

K = λ, where λ �= 0 is given by ωi = (ln |λ|);i . This case happens only in
dimension n = 2.

Theorem 1.2 Let G be an n-dimensional spray of constant curvature and Ric be the
Ricci curvature of G. Then G is (locally) Finsler metrizable iff. Ric = 0 or Ric is
a Finsler metric. In this case, the Finsler metric L inducing G has vanishing flag
curvature or L is given by L = Ric/(n − 1) with the flag curvature 1.

Note that Theorem 1.1 for R �= 0 can be concluded from Theorem 3.1 in [6],
and Theorem 1.1 (iiia) has been proved in [5]. In Theorem 1.1, if G is metrizable, the
corresponding Finsler metric is easily obtained if Ric �= 0. The metric in Theorem 1.1
can be multiplied by a suitable non-zero constant if we need the metric to be positive.
Theorem 1.1(i) shows that a spray with vanishing Riemann curvature (not necessary
to be locally projectively flat) is locally metrizable (cf. [12, 17]). As applications
of Theorems 1.1 and 1.2, we generalize a result in [20] (Theorem 4.10 below), and
make a check on some spays whether they are Finsler metrizable or not (see Sect. 7
below). On the other hand, we can use Theorem 1.1 to obtain the local structure for
locally projectively flat Berwald sprays of isotropic curvature when they are Finsler
metrizable.

Theorem 1.3 Let G be a projectively flat Berwald spray of isotropic curvature on
an open set U ⊂ Rn with Ric �= 0 (on a conical region C(U )). Then G is Finsler
metrizable (on C(U )) if and only if G can be expressed as

Gi = Pyi , P := −1

2

[
ln |〈Ax, x〉 + 〈B, x〉 + C |

]
xk
yk, (2)

where A �= 0 is a constant symmetric matrix, B is a constant vector and C is a
constant number satisfying certain condition such that the following function L is a
metric (defined on C(U )),

L := 4(〈Ax, x〉 + 〈B, x〉 + C)〈Ay, y〉 − (2〈Ax, y〉 + 〈B, y〉)2
4(〈Ax, x〉 + 〈B, x〉 + C)2

. (3)
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In this case, G is induced by the metric L = Ric/(n − 1) of constant sectional
curvature 1.

In [17], there is a general description of the construction for locally projectively
flat Finsler metrics with constant flag curvature 1. As a special case, putting 2A =
(δi j ), B = 0,C = 1/2 in Theorem 1.3, we obtain

L = (1 + |x |2)|y|2 − 〈x, y〉2
(1 + |x |2)2 . (4)

Theorem 1.3 also implies that if we take in (2), P = −[
ln

√| f (x)|]xk yk for an
arbitrary non-constant function f (x) which is not a polynomial of degree two, then
the spray G in (2) is not Finsler metrizable. If G in Theorem 1.3 has zero Riemann
curvature (Ric = 0), then G can be locally induced by a Minkowski metric (a trivial
case, Remark 6.7 below).

For a spray of scalar curvature Ri
k = Rδik−τk yi , the quantities R and τk are closely

related (Proposition 3.1 below). Now we consider the following condition for R and
τk ,

R.i − 2τi = ωi0, (ωi0 := ωir y
r ), (5)

where ω = ωi j (x)dxi ∧dx j is a 2-form. For a spray of scalar curvature, the condition
(5) is a special case ofχi = ωi0 (see [11]), whereχi is called theχ -curvature originally
defined in [18]. For a spray satisfying (5), we have the following theorem.

Theorem 1.4 LetG be an n-dimensional spray of scalar curvature Ri
k = Rδik − τk yi

satisfying (5). Suppose that G is induced by a Finsler metric L.

(i) For n ≥ 3, L is of constant flag curvature with ω = 0 [9].
(ii) For n = 2, the flag curvature λ of L satisfies λ′′(θ) + ε I (θ)λ′(θ) = 0 on each

tangent space, where ε = ±1 is the sign of L, and θ is the Landsberg angle.

(iia) If L is a Riemann metric, or regular Finsler metric, then L is of isotropic flag
curvature (λ = λ(x)) with ω = 0.

(iib) If L has constant main scalar, then (5) is satisfied with ω not necessarily zero.

Theorem 1.4(i) has essentially been proved in [9]. Starting from (5), we are also
going to give a little different version of proof from that in [9]. If a sprayG satisfies (5)
with ω �= 0 and n ≥ 3, then the spray G is not Finsler metrizable by Theorem 1.4(i).
If a two-dimensional sprayG satisfies (5) with ω �= 0, thenG cannot be induced by a
Riemann metric or a regular Finsler metric by Theorem 1.4(iia), but Theorem 1.4(iib)
shows that there are such sprays which can be induced by a singular Finsler metric.

2 Preliminaries

Let M be an n-dimensional manifold. A conical region C = C(M) of T M \ {0} means
Cx := C ∩ TxM \ {0} is conical region for x ∈ M (λy ∈ Cx if λ > 0, y ∈ Cx ). A spray
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on M is a smooth vector fieldG on a conical region C of T M \ {0} (an important case
is C = T M \ {0}) expressed in a local coordinate system (xi , yi ) in T M as follows:

G = yi
∂

∂xi
− 2Gi ∂

∂ yi
,

where Gi = Gi (x, y) are local functions satisfying Gi (x, λy) = λ2Gi (x, y) for any
constant λ > 0. The integral curves of G projected onto M are the geodesics of G.

The Riemann curvature tensor Ri
k of a given spray Gi is defined by

Ri
k := 2∂kG

i − y j (∂ j ∂̇kG
i ) + 2G j (∂̇ j ∂̇kG

i ) − (∂̇ j G
i )(∂̇kG

j ), (6)

where we define ∂k := ∂/∂xk, ∂̇k := ∂/∂ yk . The trace of Ri
k is called the Ricci

curvature, Ric := Ri
i . A spray G is said to be R-flat if Ri

k = 0. In [18], Shen defines
a non-Riemannian quantity called χ -curvature χ = χi dxi expressed as follows:

χi := 2Rm
i .m + Rm

m.i . (7)

Plugging (1) into (7) yields

χi = (n + 1)(R.i − 2τi ). (8)

So a spray of scalar curvature is of isotropic curvature iff. it has vanishing χ -curvature.
A spray G is called a Berwald spray if its Berwald curvature vanishes Gi

hjk :=
∂̇h ∂̇ j ∂̇kGi = 0. A spray G is said to be locally projectively flat if locally Gi can be
expressed asGi = Pyi , where P is a positively homogeneous local function of degree
one.

In the calculation of some geometric quantities of a spray, it is very convenient to
use Berwald connection as a tool. For a spray manifold (G, M), Berwald connection
is usually defined as a linear connection on the pull-back π∗T M (π : T M → M the
natural projection) over the base manifold M . The Berwald connection is defined by

D(∂i ) = (Gk
ir dx

r )∂k, (Gk
ir := ∂̇r ∂̇i G

k),

For a spray tensor T = Tidxi as an example, the horizontal and vertical derivatives
of T with respect to Berwald connection are given by

Ti; j = δ j Ti − TrG
r
i j , Ti . j = ∂̇ j Ti , (δi := ∂i − Gr

i ∂̇r ).

The hh-curvature tensor H i
j kl of Berwald connection is defined by

H i
j kl := 1

3

{
Ri

l. j .k − (k/l)
}
, Hi j := H m

i jm, Hi := 1

n − 1
(nH0i + Hi0),
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where Ti j − (i/ j) means Ti j − Tji , and T0 is defined by T0 := Tr yr , as an example.
For the Ricci identities and Bianchi identities of Berwald connection, readers can refer
to [1].

In this paper, we define a Finsler metric L( �= 0) on a manifold M as follows (cf.
[16]): (i) for any x ∈ M , Lx is defined on a conical region of TxM \ {0} and L is
C∞; (ii) L is positively homogeneous of degree two; (iii) the fundamental metric
tensor gi j := ( 12 L)yi y j is non-degenerate. A Finsler metric L is said to be regular
if additionally L is defined on the whole T M \ {0} and (gi j ) is positively definite.
Otherwise, L is called singular. In general case, we don’t require that L be regular. If
a Finsler metric L > 0, we put L = F2, and in this case, F is called a Finsler norm
function which is positively homogeneous of degree one.

Any Finsler metric L induces a natural spray whose coefficients Gi are given by

Gi := 1

4
gil

{
Lxk yl y

k − Lxl
}
,

where (gi j ) is the inverse of (gi j ). L is said to be of scalar flag curvature K = K (x, y)
if

Ri
k = K (Lδik − yi yk),

where yk := (L/2).k = gkm ym . If K.i = 0, then L is said to be of isotropic flag
curvature, and in this case, K is a constant if the dimension n ≥ 3.

A spray G is (globally) Finsler metrizable on M (or on C(M)) if there is a Finlser
metric L defined on a conical region C(M) and L induces G. A spray G is locally
Finsler metrizable on M if for each x ∈ M , there is a neighborhood U of x such that
G is Finsler metrizable on U .

Let (M, L) be a two-dimensional Finsler space with the Finsler metric L . We use
ε(= ±1) to denote the sign of the determinant of the metric matrix. We have

Lgi j = yi y j + εYiY j ,

(Y 1,Y 2) = (√
εg

)−1
(−y2, y1), (g := det(gi j )),

LYi . j = y jYi − yiY j + ε IYiY j , L2Ci jk = IYiY jYk, (9)

where (y,Y )with y = (y1, y2),Y = (Y 1,Y 2) is called the Berwald frame,Ci jk is the
Cartan tensor and I is the main scalar. The system L .i = 2yi , Lθ.i = Yi is integrable.
It defines the so-called Landsberg angle θ , which is the arc-length parameter of the
indicatrix SxM := {y ∈ TxM |F(x, y) = 1} with respect to the Riemann metric
ds2 = gi j dyi ⊗ dy j on the Minkowski plane (Mx , Fx ) if L is positively definite.
When L = F2, the Berwald frame is denoted by (�,m) with � := y/F,m := Y/F
(see [1]).

Lemma 2.1 For a positively homogeneous function λ = λ(x, y) of degree zero, it
satisfies on each tangent space,

Lλ.i = λ′(θ)Yi .
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3 Spays of Scalar Curvature

In this section, wewill introduce some basic properties of sprays with scalar curvature,
and the metrizability of such sprays under certain conditions.

3.1 Some Basic Formulas

For a spray of scalar curvature, R and τk in (1) are related in the following formula
(10).

Proposition 3.1 Let G be an n(≥ 3)-dimensional spray of scalar curvature Ri
k =

Rδik − τk yi . Then there holds

R.i;0 − 3R;i + τi;0 = 0. (10)

In particular, ifG is of isotropic curvature, then (10) becomes τi;0 = R;i , or τi;0 = τ0;i .

Proof By a Bianchy identity of Berwald connection

Ri
jk;l + Ri

kl; j + Ri
l j;k = 0,

we have

Rm
k;m + Rm

km;0 − Rm
m;k = 0. (11)

Since Ri
k = Rδik − τk yi , a direct computation gives

Rm
k;m = R;k − τk;0, Rm

km;0 = 1

3

[
(n − 1)(R.k;0 + τk;0) + τk;0 − τm.k;0ym

]
. (12)

By τ0 = R, we obtain

τm.k;0ym = R.k;0 − τk;0. (13)

Now plugging (12) and (13) into (11) we have

(n − 2)(R.i;0 − 3R;i + τi;0) = 0,

which gives the proof. ��
The isotropic case of Proposition 3.1 is given by Z. Shen in [19]. In Proposition

3.1, ifG is Finsler metrizable induced by a Finsler metric L with the flag curvature λ,
we have R = λL, τi = λyi and then putting them into (10) gives a known formula:

Lλ.i;0 + 3λ;0yi − 3Lλ;i = 0. (14)
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If L = F2 is of weakly isotropic flag curvature λ = 3θ/F + σ , then (14) becomes

θ;i − θ.i;0 + (Fσ;r + 2θ;r )hri = 0, (hij := δij − �i� j ).

For a two-dimensional spray G in Proposition 3.1, (10) generally does not hold. For
example, ifG is a two-dimensional spray induced by a Riemann metric L of isotropic
Gauss curvature λ = λ(x), then (14) reduces to λ;i L = λ;0yi , which is impossible if
λ is not constant.

In Proposition 3.1, if G is induced by a Finsler metric L of isotropic flag curvature
λ, then we have λ = constant by (14), which is just the Schur’s Theorem. But for
a general spray, we cannot conclude from Proposition 3.1 that a spray of isotropic
curvature in dimension n ≥ 3 must be of constant curvature (see Examples 7.3 and
7.4 below).

The following proposition gives a useful formula on a spray manifold of scalar
curvature.

Proposition 3.2 Let G be a spray of scalar curvature Ri
k = Rδik − τk yi , and T be a

homogeneous scalar function of degree p satisfying T;i = 0. Then we have

RT.k = pT τk . (15)

(i) If p = 0 and R �= 0, then T is a constant.
(ii) If G is of isotropic curvature with R �= 0, then there holds

T = c|R| 12 p, (c = c(x)). (16)

(iii) If G is induced by a Finsler metric L of non-zero flag curvature, then there holds

T = c|L| 12 p, (c = constant). (17)

Proof By a Ricci identity and Ri
k = Rδik − τk yi , we have

0 = y j (T;i; j − T; j;i ) = T.r R
r
i = RT.k − yr T.rτk .

Then we obtain (15) since T is a homogeneous scalar function of degree p.

(i) If p = 0 and R �= 0, then T.i = 0 by (15). So T is independent of y. Using T;i = 0
again, we obtain T = constant .

(ii) Since G is of isotropic curvature, we have τk = 1
2 R.i . Putting it into (15) gives

(16) since

T.i

T
= p

2

R.i

R

(
⇔

(
T

|R| 12 p
)

.i
= 0

)
.
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(iii) The original version is given in [1]. Let λ �= 0 be the flag curvature of L . Similarly
as the proof in (i), plugging R = λL and τi = 1

2 L .i into (15) gives

T = c|L| 12 p, c = c(x).

Then by T;i = 0 and L;i = 0 we obtain c;i = 0, which means c = constant .

��

3.2 Some Basic Properties

Let G be a spray of scalar curvature satisfying (1). Then we have

H i
h jk = 1

3

[
R. j .hδ

i
k − τk. j .h y

i − τk. jδ
i
h − τk.hδ

i
j − ( j/k)

]
. (18)

By (18) we obtain

Hi j − Hji = 1

3
(n + 1)(τ j .i − τi . j ), (19)

H0i = 1

3

[
(n − 2)R.i + (n + 1)τi

]
, H0i = 1

3

[
(2n − 1)R.i − (n + 1)τi

]
(20)

H0i − Hi0 = −1

3
(n + 1)(R.i − 2τi ), (21)

Hi = 1

3
(n + 1)(R.i + τi ). (22)

Proposition 3.3 Let G be a spray of scalar curvature satisfying (1).

(i) If G is of isotropic curvature, then Hi j = Hji , Hi0 = H0i and Hi is proportional
to τi .

(ii) If Hi j = Hji , or Ri0 = H0i , or Hi is proportional to τi with R �= 0, then G is of
isotropic curvature.

Proof Firstly, we prove R.i = 2τi is equivalent to Hi j = Hji . If R.i = 2τi , then it
is easy to see that τi . j = τ j .i and then by (19), we have Hi j = Hji . Conversely, if
Hi j = Hji , then by (19) we have τi . j = τ j .i . Differentiating R = τ0 by yi yields

R.i = τi + τm.i y
m = τi + τi .m y

m = 2τi .

Secondly, it is clear from (21) that R.i = 2τi is equivalent to Hi0 = H0i .
Finally, if R.i = 2τi , it is an obvious result that Hi is proportional to τi by (22).

Conversely, if Hi is proportional to τi and R �= 0, then by (22) we get R.i = λτi
for some scalar function λ = λ(x, y). Contracting this by yi gives 2R = λτ0 = λR.
Since R �= 0 by assumption, we have λ = 2, and thus, R.i = 2τi . ��
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Proposition 3.4 A spray G of scalar curvature is R-flat if and only if Hi j = 0, or
Hi0 = 0, or H0i = 0 or Hi = 0.

Proof The Riemann curvature tensor ofG satisfies (1). If Hi j = 0, then Hi = 0. So by
(22) we have R.i + τi = 0. Contracting this by yi gives 3R = 0 and so R = 0, τi = 0.
This shows thatG is R-flat. If H0i = 0 or Hi0 = 0, we have (n−2)R.i +(n+1)τi = 0
or (2n − 1)R.i − (n + 1)τi = 0 by (20). Contracting either one by yi gives R = 0.
Similarly we see that G is R-flat. ��

3.3 Metrizability

Let G be a spray of scalar curvature Ri
k = Rδik − τk yi . If G is induced by a Finsler

metric L , then L is of scalar flag curvature with R = λL, τk = λyk for some scalar
function λ = λ(x, y). Then if R = 0, then τk = 0; if R �= 0, then we can easily obtain

(
τi

R

)

; j
= 0,

(
τi

R

)

. j
=

(
τ j

R

)

.i
. (23)

In [16], there are some two-dimensional sprays (of scalar curvature) satisfying the
condition R = 0, τk �= 0 (also see Example 7.6 below). It is easy to check that a spray
of constant curvature (R �= 0) always satisfies (23). Example 7.4 below shows that the
condition (23) is not sufficient for a spray of scalar curvature to be Finsler metrizable.

The condition (23) is almost sufficient for a spray of scalar curvature with R �= 0 to
be Finsler metrizable. In [6], Bucataru and Muzsnay show that (23) and the following
non-degenerate condition:

det
((τi

R

)
. j + 2τiτ j

R2

)
�= 0,

are necessary and sufficient for a spray of scalar curvature (R �= 0) to be Finsler
metrizable.

Proof of Theorem 1.4 Let G be induced by the Finsler metric L . Here we provide a
version of proof of Theorem 1.4(ia) for L = F2. Put R = λL, τi = λyi = λF�i ,
where λ is the flag curvature of F . By (5) we have (R.i − 2τi ).k + (i/k) = 0, which
just is

Fλ.i .k + λ.k�i + λ.i�k = 0, (or Lλ.i .k + λ.k yi + λ.i yk = 0). (24)

Differentiating (24) by y j gives

Fλ.i . j .k + λ.i .k� j + λ. j .k�i + F−1λ.khi j + λ.i . j�k + F−1λ.i h jk = 0, (25)

where hi j := gi j − �i� j . Interchanging i, j in (25) and making a subtraction, we
obtain h jkλ.i − hikλ. j = 0. Contracting this by g jk gives (n − 2)λ.i = 0.

(i) If n > 2, then we have λ.i = 0. So λ is constant by Schur’s Theorem.
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(ii) If n = 2, let (y,Y ) be the Berwald frame and θ be the Landsberg angle. By Lemma
2.1, we put

Lλ.i = ηYi , η(θ) = λ′(θ). (26)

Differentiating (26) by y j and using (9) we obtain

2y jλ.i + Lλ.i . j = η. j Yi − ηL−1(y jYi − yiY j + ε IYiY j ),

which, by (26) again, is reduced to

yiλ. j + y jλ.i + Lλ.i . j = η. j Yi + εηL−1 IYiY j . (27)

Then by (24) we have

Lη. j + εηIY j = 0, or η′ + εηI = 0, or λ′′ + ελ′ I = 0.

(iia) If L is regular, then ε = 1 and TxM is compact. There is a θ0 such that
λ′(θ0) = 0. So we get η(θ) = λ′(θ) ≡ 0. Thus, we have λ.i = 0 from (26).

(iib) It is known that all Finsler metrics with isotropic main scalar I = I (x) on a
two-dimensional manifold are divided into the following three classes ([1]):

L = cβ2sγ 2(1−s), (s = s(x) �= 0, s(x) �= 1), (28)

L = cβ2e
2γ
β , (29)

L = c(β2 + γ 2)e2r ·arctan(
β
γ

)
, r = r(x), (30)

where β = pi (x)yi and γ = qi (x)yi are two independent 1-forms, and c �= 0
is constant. The main scalar I = I (x) is given respectively by

ε I 2 = (2s − 1)2

s(s − 1)
, I 2 = 4, I 2 = 4r2

1 + r2
.

In the following, we assume that the Finsler metric L is of constant main scalar,
that is, s in (28) and r in (30) is constant. For the convenience of computation,
we may put β = py1 and γ = qy2 under certain local coordinate system,
where p = p(x1, x2) and q = q(x1, x2) are scalar functions. By a direct
computation, we can obtain the flag curvature λ of the Finsler metric given
by (28)–(30) respectively taking c = 1 there for convenience). Then we can
verify (5) from R = λL and τk = λyk . If L is given by (28), then (5) holds
with

ω12 = 1 − 2s

s(1 − s)

(p2qq12 − pq2 p12 + q2 p1 p2 − p2q1q2)s − p2qq12 + p2q1q2
p2q2

.
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If L is given by (29), then (5) holds with

ω12 = −2(p2qp22 + pq2 p12 − p2qq12 + p2q1q2 − q2 p1 p2 − p2 p2q2)

p2q2
.

If L is given by (30), then (5) holds with

ω12

= 2r

1 + r2
(p2qq12 − pq2 p12 − p2q1q2 + q2 p1 p2)r + p2qp22 + pq2q11 − q2 p1q1 − p2 p2q2

p2q2
.

So generally, ω12 in the above is not zero.

��

4 Sprays of Isotropic Curvature

In this section, we are going to prove Theorem 1.1 and give a metrizibility result as
an application of Theorem 1.1. For this, we first introduce a simple necessary and
sufficient condition for a general spray to be metrizable (see Lemma 4.3).

In the following lemmas, the horizontal and vertical covariant derivative is taken
with respect to the given spray G.

Lemma 4.1 Let G be a spray and L be a Finsler function. Then we have

L .i;0 − L;i = 0 ⇐⇒ Gi = 1

4
gil

{
Lxk yl y

k − Lxl
}
.

Proof It follows from L .i;0 − L;i = −2Gr L .r .i + Lxr yi y
r − Lxi . ��

Lemma 4.2 Let G be a spray and L be a Finsler function. Then we have

L .0 = 2L, L;i = 0 ⇐⇒ L .0 = 2L, L .i;0 − L;i = 0.

Proof We only need to prove "⇐�". By L .i;0 = L;i we have L;0.i − L;i = L;i , or
L;0.i = 2L;i . Further, L .i;0 = L;i implies L .0;0 = L;0. So by L .0 = 2L we obtain
L;0 = 0. Thus, it follows from L;0.i = 2L;i that L;i = 0. ��
Lemma 4.3 A spray G is Finsler metrizable if and only if there is a Finsler function
L satisfies L;i = 0. In this case, G is induced by L.

4.1 Formal Integrability

To prove Theorem 1.1(i), we need a theory on Spencer’s technique of formal integra-
bility for linear partial differential systems. Here we only give some basic notions for
this theory and more details are refereed to [3, 10].
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Let B be a vector bundle over an n-dimensional manifold M , and denote by Jk B
the bundles of kth-order jets of the sections of B. For two vector bundles B1, B2 over
M , consider P : Sec(B1) → Sec(B2), which is a linear partial differential operator
of order k. P can be identified with a map p0(P) : Jk B1 → B2, a morphism of
vector bundles over M . We also denote by pl(P) : Jk+l B1 → Jl B2 the morphisms
of vector bundles over M , which is called the lth-order jet prolongation of P . Let
Rk+l,x (P) := Kerpl(P)x be the space of (k + l)th-order formal solutions of P at a
point x ∈ M . The operator P is said to be formally integrable at x ∈ M , if Rk+l(P) is a
vector bundle for all l ≥ 0 and the projection πk+l,x (P) : Rk+l,x (P) → Rk+l−1,x (P)

is onto for all l ≥ 1.
Let σk(P) : Sk(T ∗M) ⊗ B1 → B2 be the symbol of P , which is defined by the

highest order term of P , and let σk+l(P) : Sk+l(T ∗M) ⊗ B1 → Sl(T ∗M) ⊗ B2 be
the symbol of the lth-order prolongation of P . Define

gk,x (P) : = Ker σk,x (P),

gk,x (P)e1...e j : = {A ∈ gk,x (P)|ie1 A = . . . = ie j A = 0}, 1 ≤ j ≤ n,

where {e1, . . . , en} is a basis of TxM . Such a basis is said to be quasi-regular if it
satisfies

dim gk+1,x (P) = dim gk,x (P) +
n∑
j=1

dim gk,x (P)e1···e j .

The symbol σk(P) is said to be involutive at x ∈ M if there exists a quasi-regular basis
of TxM . For the proof of Theorem 1.1(i), we need the following theorem and lemma
([10]).

Theorem 4.4 (Cartan–Kahler) Let P be a regular linear partial differential operator
of order k. If πk+1,x (P) : Rk+1,x (P) → Rk,x (P) is onto and the symbol σk(P) is
involutive, then P is formally integrable.

Lemma 4.5 For two vector bundles B1, B2 over M, let P : Sec(B1) → Sec(B2) be a
regular linear partial differential operator of order k. Thenπk+1,x (P) : Rk+1,x (P) →
Rk,x (P) is onto iff.

P(s)x = 0 �⇒ (DP(s))x = σk+1(P)(A) :

for some A ∈ Sk+1(T ∗
x M) ⊗ B1, where D is an arbitrary linear connection of the

bundle B2 over the base manifold M.

4.2 Proof of Theorem 1.1(i)

Let T ∗
v T M denote the subbundle of T ∗T M , in which, if ω ∈ T ∗

v T M , then ω can be
written locally as ω = ωi (x, y)dxi , and ∧2T ∗

v T M the subbundle of T ∗T M , every
element ω of which is locally in the form ω = ωi j (x, y)dxi ∧ dx j with ωi j = −ω j i .
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Besides, we designate Sk(T ∗T M) as the bundle of symmetric k-forms over T M . For
an n-dimensional manifold M , let B1, B2 be two vector bundles over T M with

B1 := T ∗
v T M, B2 := T ∗

v T M ⊕ ∧2T ∗
v T M ⊕ (T ∗

v T M ⊗ T ∗
v T M).

We define a linear partial differential operator P : Sec(B1) → Sec(B2) in component
form as follows

P(θi ) = (θi .0, θi . j − θ j .i , θi; j ). (31)

Lemma 4.6 For the operator P in (31), the symbol σ1(P) is involutive.

Proof We are going to prove that {∂̇1, . . . , ∂̇n, δ1, . . . , δn} is a quasi-regular basis of
P .

Bydefinition, for A = (A ji , A ji ) (= A ji dx j⊗dxi+A jiδy j⊗dxi ) ∈ T ∗T M⊗B1,
we have

σ1(P)A = (A0i , A ji − Ai j , A ji ) ∈ B2.

Assume σ1(P)(A) = 0. Then for the computation of dim(g1(P)), we see that A0i = 0
and Ai j = A ji together contribute the number (n − 1)n/2, and Ai j = 0 gives 0.
Therefore, we obtain

dim(g1(P)) = (n − 1)n

2
. (32)

Now with respect to the basis {dxi , δyi }, an element B ∈ S2(T ∗T M) ⊗ B1 can be
expressed as follows:

B = (Bi jk, Bi jk, Bi jk, Bi jk)(
Bi jk = Bjik, Bi jk = Bjik, Bi jk = Bjik

)
.

By definition, we have

σ2(P)B = (Bi0k, Bi0k; Bi jk − Bik j , Bi jk − Bik j ; Bi jk, Bi jk).

Assume σ2(P)(B) = 0. Then Bi jk , Bi jk and Bi jk gives 0 to dim(g2(P)). By the fact
that Bi jk is symmetric in i, j, k satisfying additional condition: Bi0k = 0, we obtain
the number

n−2∑
k=0

(n − k − 1)(n − k)

2
.
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to dim(g2(P)). So altogether, we have

dim(g2(P)) =
n−2∑
k=0

(n − k − 1)(n − k)

2
. (33)

Next we verify under the basis {∂̇1, . . . , ∂̇n, δ1, . . . , δn} at a point (x, y) ∈ T M ,

dim(g2(P)) = dim g1(P) +
n∑
j=1

dim g1(P)∂̇1···∂̇ j
+

n∑
j=1

dim g1(P)∂̇1···∂̇nδ1···δ j .

(34)

By a direct computation, we see

dim g1(P)∂̇1...∂̇ j
= (n − j − 1)(n − j)

2
, dim g1(P)∂̇1...∂̇nδ1...δ j = 0, (1 ≤ j ≤ n).

Plugging them into (34) and using (32), (33), we see that both sides of (34) are equal.
Therefore, σ1(P) is involutive. ��
Lemma 4.7 For the operator P in (31), a first-order solution of P(θ) = 0 can be lifted
into a second-order solution iff.

θr H
r
i jk + θi .r R

r
jk = (θr R

r
jk).i = 0. (35)

Proof If P(θ) = 0, then we have θi; j = θ j;i . Then by a Ricci identity and θi . j = θ j .i ,
it gives (35):

0 = θi; j;k − θi;k; j = −θr H
r
i jk − θi .r R

r
jk = −(θr R

r
jk).i .

Conversely, suppose that (35) holds for a θ satisfying P(θ) = 0 with θ0 �= 0. Let
D be the Berwald connection of the bundle π∗T M over the base manifold T T M .
Then D can be naturally extended to the bundle B2. We use Lemma 4.5. In component
form, we have

DP(θi ) = (θi .0; j , θi .0. j , θi . j;k − θ j .i;k, θi . j .k − θ j .i .k, θi; j;k, θi; j .k), (36)

where θ (θ0 �= 0) satisfies P(θ) = 0 at a point w = (x, y) ∈ T M , that is, at the point
w there holds

θi .0 = 0, θi . j = θ j .i , θi; j = 0. (37)

Next we are going to prove that there is an Aαβi ∈ S2(T ∗
wT M) ⊗ B1 satisfying

DP(θi ) = σ2(Aαβi ) = (Aαri y
r , Aα j i − Aαi j , Aα j i ). (38)
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By (36), we see that (38) is equivalent to

1© A jri y
r = θi .r; j yr , 2© A jri y

r = θi .0. j = θi .r . j y
r + θi . j ,

3© Ak ji − Aki j = θi . j;k − θ j .i;k, 4© Ak ji − Aki j = θi . j .k − θ j .i .k,

5© Akji = θi; j;k, 6© Ak ji = θi; j .k .

In the following, we will construct Aαβi which satisfies the above six relations. Put

A jki = θi .k. j + θ−1
0

[
θi . jθk + (i, j, k)

]
,

A jki = θi .k; j − θrG
r
i jk, Ak ji = θi; j .k,

Akji = θi; j;k .

Firstly, A jki is symmetric in j, k by θi . j = θ j .i in (37) and it also satisfies 2© 4© by
θi . j = θ j .i , θi .0 = 0 in (37). Next, by a Ricci identity of Berwald connection, we see
that

Ak ji − A jki = θi; j .k − θi .k; j + θrG
r
i jk = 0,

which gives Ak ji = A jki . It is also clear that Ak ji and A jki satisfy 1© 3© 6©. Finally,
Akji is symmetric in j, k, and satisfies 5© by a Ricci identity of Berwald connection
and (35). So (38) holds. This finishes the proof of the lemma. ��

Now in Theorem 1.1(i), we have R = 0. So (35) automatically holds. It follows
from Lemmas 4.6, 4.7 and then Theorem 4.4, the operator P is formally integrable,
that is, for each point u0 := (xi0, y

i
0), there exist a neighborhoodU of u0 and a analytic

θ defined on U such that P(θ) = 0.
Under the basis (δi , ∂̇i ), the local coordinate of J1B1 is expressed as

(xi , yi , θi , θi j , θi j ). An initial data (xi0, y
i
0, θ

0
i , θ0i j , θ

0
i j ) satisfied by the operator P

means θ0i0 = 0, θ0i j = θ0j i , θ
0
i j − θ0r G

r
i = 0. Further, we let the initial data satisfy

θ0i y
i
0 > 0 and Rank(θ0i j ) = n − 1.

Now for the above analytic solution θ of P which is defined on a neighborhood U
of u0 and satisfies the above initial data, we obtain a local metric F := θ0 defined on
U . To prove that F is a Finsler metric, we need the following lemma which can be
proved by an elementary discussion in linear algebra.

Lemma 4.8 Let F be positively homogeneous of degree one with F(y) �= 0 at a point
y. Then gi j := 1

2 (F
2).i . j is non-degenerate at y iff. Rank(F.i . j ) = n − 1 at y.

Now for F = θ0, we have F.i . j = θi . j . Then at u0, we have Rank(F.i . j ) =
Rank(θ0i j ) = n−1. So by the above lemma, gi j is non-degenerate at u0. By continuity,

gi j is non-degenerate inU (when it is small enough). Thus, we obtain a Finsler metric
F with each Fx defined on the conical region formed by y = 0 and {y|(x, y) ∈ U }.
Further, F satisfies F;i = 0, which means that the spray G in Theorem 1.1 is induced
by F by Lemma 4.3. This completes the proof of Theorem 1.1(i). ��
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Remark 4.9 The idea of the proof of Theorem 1.1(i) can be referred to that in [4] for
the formal integrability of the operator P1(θ) := (θi .0, θi . j − θ j .i , δiθ j − δ jθi ). On
the other hand, a suitable change of the proof of Theorem 1.1(i) can give the proof
for the formal integrability of the operator P1 in [4] (where actually we can redefine
P1 as P̄1 := (θi .0, θi . j − θ j .i , θ j;i − θi; j )). Besides, we may also consider the system
F.0 = F, F;i = 0 for a possible proof (cf. [15] for a more general discussion).

4.3 Proof of Theorem 1.1(ii) and (iii)

(ii) Assume that R �= 0 is not a Finsler metric. If G is Finsler metrizable induced by
a Finsler metric F , then F is of isotropic curvature λ �= 0. By R = λF2, we see that
R is a Finsler metric, which gives a contradiction.

(iii) Assume that R is a Finsler metric. If G is Finsler metrizable induced by a
Finsler metric L , then L is of isotropic curvature λ = λ(x) �= 0. By R = λL , we have
R;i = λ;i L . Thus, we obtain

R;i = λ;i
λ

R = R(ln |λ|);i .

Let ωi := (ln |λ|);i . Then ω is closed and R;i = Rωi . Conversely, if R;i = Rωi for
someclosed1-formω = ωi (x)dxi , then locally there is a scalar functionλ = λ(x) �= 0
such that ωi = (ln |λ|);i . It is easy to check that R;i = R(ln |λ|);i is equivalent
to (R/λ);i = 0. Therefore, G is Finsler metrizable induced by the Finsler metric
L := R/λ by Lemma 4.3. By R = λL , we see that L is of isotropic flag curvature λ.
If ω = 0, we may choose λ = 1, and then the Finsler metric L = R is of constant flag
curvature λ = 1. If n ≥ 3, then the Finsler metric L is of constant flag curvature λ by
Schur’s theorem, which gives R;i = 0. ��

4.4 AMetrizability Result

As an application of Theorem 1.1, we show the following theorem.

Theorem 4.10 Let Gi be the spray of a Finsler metric F of constant flag curvature λ

and Ḡi be a spray defined by Ḡi = Gi + cFyi for a constant c. Then Ḡ is (locally)
Finsler metrizable iff. λ = −c2 or c = 0. When λ = −c2, Ḡi is locally induced by a
Finsler metric of zero flag curvature.

Proof The Riemann curvature Ri
k of G is given by

Ri
k = λ(F2δik − FF.k y

i ).

Then by a direct computation, the Riemann curvature R̄i
k of Ḡ is given by

R̄i
k = R̄δik − τ̄k y

i ,
(
R̄ := (λ + c2)F2, τ̄k := (λ + c2)FF.k

)
.
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So Ḡ is of isotropic curvature since R̄.i = 2τ̄i . Further, we have

R̄;̄i = R̄;i + R̄.r (cF.i y
r + cFδri ) = 4c(λ + c2)F2F.i .

Assume that Ḡ is Finsler metrizable. If c(λ + c2) �= 0, then R̄ is a Finsler metric.
By Theorem 1.1(iii), we have R̄;̄i = R̄ωi for some closed 1-form ω = ωi (x)dxi . But
clearly this does not hold. Therefore, we have c = 0 or λ = −c2. Conversely, if c = 0,
then Ḡ is induced by F . If λ + c2 = 0, then Ḡ has zero Riemann curvature. So Ḡ is
(locally) Finsler metrizable by Theorem 1.1(i). ��

Theorem 4.10 is a generalization of a result in [20], where we have an additional
condition that F is projectively flat.

5 Sprays of Constant Curvature

In this part, we introduce a new notion: a spray of constant curvature, which is a
generalization of a Finsler metric of constant flag curvature. For this new notion, some
basic properties for Finsler metrics still remain unchanged for sprays (see Theorem
5.2 below).

Definition 5.1 A sprayG of scalar curvature Ri
k = Rδik−τk yi is said to be of constant

curvature if τi; j = 0.

The following theorem gives some basic properties for sprays of constant curvature.

Theorem 5.2 A spray has the following properties on constant curvature:

(i) A spray of scalar curvature is of constant curvature iff. its Riemann curvature is
zero or its Ricci curvature Ric satisfies Ric;i = 0(Ric �= 0).

(ii) A spray of constant curvature must be of isotropic curvature.
(iii) A Finsler metric is of constant flag curvature iff. its spray is of constant curvature.
(iv) An n-dimensional spray of isotropic curvature is not necessarily of constant

curvature even for n ≥ 3.

AFinslermetric has the same conclusions as shown for sprays in Theorem5.2(i)(ii).
Meanwhile, Theorem 5.2(iv) shows a different property of sprays from that of Finsler
metrics.

To prove Theorem 5.2, we first show the following lemma.

Lemma 5.3 Let G be a spray of scalar curvature Ri
k = Rδik − τk yi . Then we have

R;i = 0 (R �= 0) �⇒ R.i = 2τi , (39)

τi;k = 0 �⇒ R = τk = 0 or R;i = 0 (R �= 0), (40)

R;i = 0 (R �= 0) �⇒ τi;k = 0. (41)
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Proof Assume R;i = 0(R �= 0). We have RR.i = 2Rτi from (15), where we have put
T = R with p = 2 in (15). This gives R.i = 2τi since R �= 0, which gives the proof
of (39).

Assume τi;k = 0. We have R;i = 0 since τ0 = R and then R;i = τ0;i = τm;i ym =
0. Now we prove that if R = 0, then τi = 0. By a Ricci identity we obtain

0 = y j (τi; j;k − τi;k; j ) = y j (−τr H
r
i jk − τi .r R

r
jk) = −τr H

r
i 0k − τi .r R

r
k . (42)

Now by Ri
k = Rδik − τk yi we have

H r
i jk = 1

3

[
R. j .iδ

r
k − τk. j .i y

r − τk. jδ
r
i − τk.iδ

r
j − ( j/k)

]
. (43)

Plugging (43), Ri
k = Rδik − τk yi , τi; j = 0 and R = 0 into (42) we obtain τiτk = 0,

which gives τi = 0. This gives the proof of (40).
Assume R;i = 0(R �= 0). By (39) we have R.i = 2τi . So τi;k = 1

2 R.i;k = 1
2 R;k.i =

0. This gives the proof of (41). ��

Proof of Theorem 5.2 (i) Assume thatG is of constant curvature. Then we have Ri
k =

Rδik −τk yi with τi;k = 0 by definition. By (40) we immediately obtain the desired
conclusion since Ric = (n − 1)R. Conversely, let the Riemann curvature be zero
or the Ricci curvature Ric satisfy Ric;i = 0(Ric �= 0). If Ri

k = 0, then τi = 0
and so τi;k = 0. If Ric;i = 0(Ric �= 0), then we have R;i = 0 (R �= 0). So by (39)
we have R.i = 2τi . Thus, we obtain τi;k = 1

2 R.i;k = 1
2 R;k.i = 0. By definition, G

is of constant curvature.
(ii) It follows directly from (40) and (39), and the definitions for a spray of isotropic

curvature and constant curvature.
(iii) If a Finsler metric L is of constant flag curvature λ, then its spray has the Riemann

curvature Ri
k = λ(Lδik−yk yi ). So its spray is of scalar curvature Ri

k = Rδik−τk yi

with R = λL and τk = λyk . Thus, we have τi;k = 0, which implies that the spray is
of constant curvature. Conversely, if the sprayG of a Finsler metric L is of constant
curvature, then the Riemann curvature of G has the form Ri

k = Rδik − τk yi with
τi;k = 0. So L is of scalar flag curvature (put the flag curvature as λ). We have
R = λL and τk = λyk . Thus, we get λ;k = 0 by τi;k = 0. If λ = 0, then L
has constant flag curvature 0. If λ �= 0, then since λ is a homogeneous function
of degree 0 satisfying λ;k = 0, we immediately obtain λ = constant by putting
T = λ, p = 0 in (17) of Proposition 3.2.

(iv) See Examples 7.3 and 7.4 below.
��

Proof of Theorem 1.2 The spray G has the Riemann curvature Ri
k = Rδik − τk yi with

τi;k = 0 (note that Ric = (n − 1)R). By Theorem 5.2(ii), the spray G is of isotropic
curvature since G is of constant curvature.

If G is (locally) Finsler metrizable, then by Theorem 1.1, it is clear that there has
Ric = 0 or Ric is a Finsler metric when Ric �= 0.
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Conversely, if Ric = 0, then by Theorem 1.1(i), G is (locally) Finsler metrizable.
If Ric �= 0, then by assumption Ric is a Finsler metric. It follows from Theorem 5.2(i)
that Ric;i = 0. By Theorem 1.1(iii), G is (locally) Finsler metrizable. ��

6 Locally Projectively Flat Sprays

In this section, we consider the properties and metrizability of locally projectively flat
sprays on a manifold. A locally projectively flat spray is always of scalar curvature.
Locally, we letG be a projectively flat spray with Gi = Pyi defined on an open set of
Rn . Then by (6), the Riemann curvature tensor Ri

k is in the form Ri
k = Rδik − τk yi

with

R = P2 − Pxr y
r , τk = PPyk + Pxr yk y

r − 2Pxk . (44)

6.1 Some Basic Results

Lemma 6.1 Let Gi = Pyi be a spray defined on an open set of Rn. Then (44) becomes

R = −P2 − P;0, τk = Pk;0 − 2P;k − PPk, (Pk := P.k). (45)

Lemma 6.2 In (45), R = 0 and τk = 0 ⇐⇒ P;k + PPk = 0. So the spray Gi = Pyi

has vanishing Riemann curvature iff. P;k + PPk = 0.

Proof If R = 0 and τk = 0, then P;0 = −P2 implies P;k+Pk;0 = −2PPk . Further by
Pk;0 = 2P;k + PPk we obtain P;k + PPk = 0. Conversely, let P;k + PPk = 0. Then
we have P;0 = −P2 (R = 0). Now again P;0 = −P2 implies P;k + Pk;0 = −2PPk ,
which implies τk = 0 by P;k + PPk = 0. ��

By Theorem 1.1(i) and Lemma 6.2, a spray Gi = Pyi satisfying P;k + PPk = 0
is locally Finsler metrizable (also see [12, 17]). By (45) we can easily obtain the
following lemma.

Lemma 6.3 Let Gi = Pyi be a spray with Ri
k = Rδik − τk yi . Then we have

R.i − 2τi = 3(P;i − Pi;0). (46)

So G is of isotropic curvature iff. P;i = Pi;0.
By Lemma 6.3, we can easily obtain the following Proposition 6.4.

Proposition 6.4 Let Gi = Pyi be a Berwald spray. Then G is of isotropic curvature
iff. P is a (local) exact 1-form given by P = σxi y

i for a scalar function σ = σ(x).

The following Proposition 6.5 directly follows from Lemma 6.3 and Theorem 1.1.

Proposition 6.5 Let Gi = Pyi (P �= 0) be a spray defined on an open set of Rn with
P;i = 0. Then G is of isotropic curvature. Further G is Finsler metrizable iff. P is a
Finsler metric, and in this case, P2 is a Finsler metric of constant flag curvature −1.
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By Theorem 1.4(i) and (46) we have the following Proposition 6.6 (cf. [13]).

Proposition 6.6 For an n(≥ 3)-dimensional Berwald spray G with Gi = Pyi , if G is
not of isotropic curvature (or equivalently, P is not a closed 1-form), then G is not
Finsler metrizable.

6.2 Proof of Theorem 1.3

Now we give the proof of Theorem 1.3 as follows.
If the spray G is given by (2) (defined on C(U )), then G is Finsler metrizable (on

C(U )) since it is easy to check that the metric L given by (3) induces the spray G.
Further, a direct computation shows that the Ricci curvature Ric of G is equal to
(n − 1)L∗ (on C(U )) since G is given by (2). So L := Ric/(n − 1) is a Riemann
metric and L induces G.

Conversely, suppose that the spray G is Finsler metrizable (on C(U )). Since G is
a projectively flat Berwald spray of isotropic curvature, it follows from Proposition
6.4 that G has the form Gi = σ0yi , where σi = σxi is the differential of some
scalar function σ = σ(x). Since Ric �= 0 and G is Finsler metrizable, Ric is a
Finsler metric and Ric;i = 0 by theorem 1.1 and the fact that a locally projectively
flat Finsler metric of isotropic flag curvature is of constant flag curvature ([2]). Since
Ric = (n − 1)[−(σ0)

2 − σ0;0] (see (45)) and Ric;i = 0, we have

[
(σ0)

2 + σ0;0
]
;i = 0. (47)

Now we only need to solve the scalar function σ from (47). It is easy to see that (47)
is equivalent to

(σ jσk + σ j;k);i = 0. (48)

Now by Gi = σ0yi we have

Gi
j = σ j y

i + σ0δ
i
j , Gi

jk = σ jδ
i
k + σkδ

i
j .

For convenience, we put σi j := σxi x j , σi jk := σxi x j xk . By a direct computation we
obtain

σi; j = σi j − 2σiσ j , σiσ j + σi; j = σi j − σiσ j ,

(σ jσk + σ j;k);i = σi jk − 2(σiσ jk + σ jσik + σkσi j ) + 4σiσ jσk . (49)

Putting u = e−2σ , it follows from (49) that (48) is equivalent to ui jk = 0. So u is a
polynomial in (xi ) of degree two. Thus, the scalar function σ satisfying (48) is given
by

σ(x) = −1

2
ln |〈Ax, x〉 + 〈B, x〉 + C |, (50)
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where A is a constant symmetric matrix, B is a constant vector and C is a constant
number. By Gi = σ0yi and (50), we see thatG is locally given by (2). Meanwhile, by
(50), we have

− (σ0)
2 − σ0;0 = 4(〈Ax, x〉 + 〈B, x〉 + C)〈Ay, y〉 − (2〈Ax, y〉 + 〈B, y〉)2

4(〈Ax, x〉 + 〈B, x〉 + C)2
. (51)

Since R(= −(σ0)
2 − σ0;0) �= 0 by assumption, by Theorem 1.1, R is a metric, which

means that A, B,C should satisfy certain condition such that L given by (3) is ametric.
A simple computation shows that if det(A) �= 0, then L given by (3) is a metric

iff. the constant quantities A, B,C satisfy 4C �= B ′A−1B. ��
Remark 6.7 If −(σ0)

2 − σ0;0 = 0, we can obtain σ = − ln |〈B, x〉 + C |. In this case,
G has vanishing Riemann curvature, and it can be locally induced by a Finsler metric
L . It is clear that L is a Minkowskin metric.

The above proof and Remark 6.7 have actually given the proof of the following
theorem for the local structure of a locally projectively flat Berwald spraywith constant
curvature.

Theorem 6.8 Let G be a locally projectively flat Berwald spray on a manifold M.
Then G is of constant curvature if and only if G can be locally expressed as (2).

7 Examples

As an application of Theorem 1.1, Theorem 1.3 gives the necessary and sufficient
condition for the Berwald spray Gi = (σxr yr )yi to be Finsler metrizable. In this
section, we are going to give more examples to support some of the basic theories we
introduce in the above sections.

Example 7.1 Let G be a two-dimensional Berwald spray given by

G1 = f (x1)[(y1)2 − (y2)2], G2 = 2 f (x1)y1y2,

where f (x1) is a non-constant function. It can be directly verified thatG is of isotropic
curvature Ri

k = Rδik − 1
2 R.k yi satisfying

R = −2 f ′(x1)[(y1)2 + (y2)2], R;i = Rωi

ω1 := f ′′(x1)
f ′(x1)

− 4 f (x1) = [
ln | f ′(x1)e−4

∫
f (x1)dx1 |]x1 = [ln |λ|]x1, ω2 := 0.

Then by Theorem 1.1, G is Finsler metrizable induced by the Riemann metric

L := R/λ = −2e4
∫

f (x1)dx1 [(y1)2 + (y2)2]
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of isotropic sectional curvature

λ = f ′(x1)e−4
∫

f (x1)dx1 .

Example 7.2 Let G be a two-dimensional spray given by

G1 = 1

2r
y2

√
(y1)2 + (y2)2, G2 = − 1

2r
y1

√
(y1)2 + (y2)2,

where r is a constant. This spray appears in Example 4.1.3 of [16]. From the complete-
ness of geodesics ofG and Hopf-Rinow theorem, it is concluded thatG is not globally
Finsler metrizable. But actually, it is even not locally Finsler metrizable by Theorem
1.1 (Example 12.4.1 in [16] shows it is locally projectively Finsler metrizable).

By a direct computation,G is of isotropic curvature Ri
k = Rδik − 1

2 R.k yi satisfying

R = r−2[(y1)2 + (y2)2
]
, R;1 = r−3y2

√
(y1)2 + (y2)2,

R;2 = −r−3y1
√

(y1)2 + (y2)2.

Therefore, by Theorem 1.1, G is not locally Finsler metrizable anywhere since there
exists no closed 1-form ω = ωi (x)dxi such that R;i = Rωi .

Example 7.3 Let Gc be a Berwald spray given by

Gi
c = −|y|2xi + c〈x, y〉yi

1 − |x |2 ,

where c is a constant. The sprayG2 is induced by the Riemann metric L = 4|y|2/(1−
|x |2)2 of constant sectional curvature −1, and by computation, we can see that G1 is
just the spray given by Example 4.1.4 in [16].Gc actually is projectively flat although
at present coordinate it is not in the form Pyi .

By a direct computation, Gc is of isotropic curvature Ri
k = Rδik − 1

2 R.k yi with

R = −
[
(c − 2)|x |2 + c + 2

]|y|2 − c(c − 2)〈x, y〉2
(1 − |x |2)2 .

Further, we have

R;i = 2(c − 2)

(1 − |x |2)3
{[

(c − 1)|x |2 + c + 1
]
(|y|2xi + 2〈x, y〉yi ) − 2c(c − 1)〈x, y〉2xi

}
.

(i) By Theorem 1.1, it is easy to see that Gc is Finsler metrizable iff. c = 2. When
c = 2, we obtain the Riemann metric L := R = −4|y|2/(1 − |x |2)2 of constant
curvature 1.

(ii) Gc is of constant curvature iff. c = 2.
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(iii) When c �= 2, Gc is of isotropic curvature but not of constant curvature in any
dimension. This fact is different from the Finslerian case.

Example 7.4 Let G be a spray given by Gi = σ0yi with σi := σxi , σ = σ(x).

(i) G is of isotropic curvature for any σ but not of constant curvature by Theorem 6.8
if

σ(x) �= −1

2
ln |〈Ax, x〉 + 〈B, x〉 + C |.

(ii) Taking A = (δi j ), B = 0,C = 0 in (2) and (3), we have

Gi = −〈x, y〉
|x |2 yi , L = |x |2|y|2 − 〈x, y〉2

|x |4 . (52)

In (52), L is not a metric since (L .i . j ) is degenerate. By Theorem 1.3, or Theorem
1.1(ii) (R = L is not a Finsler metric), the spray G given by (52) is not Finsler
metrizable, although this spray G satisfies (23).

Example 7.5 Let G be a spray on R3 given by ([16], Example 4.1.2)

G1 = 0, G2 = x1(y1)2 + x3(y3)2, G3 = 0.

Ghas zeroRiemann curvature. ThenbyTheorem1.1(i),G is locally Finslermetrizable.
Actually, if the following function is a Finsler metric

L(x, y) =
[
f

(
y3

y1
, (x1)2 + y2

y1
+ (x3)2

y3

y1

)
y1

]2
,

then L inducesG on some open set of R3, and F should be a locallyMinkowski metric
since G is a Berwald spray (with zero Riemann curvature). Consider a special case
with f (r , s) = √

r2 + s and we obtain

L(x, y) = (y3)2 + (x1)2(y1)2 + y1y2 + (x3)2y1y3,

which is a singular Riemann metric globally defined on R3. So the sprayG is globally
Finsler metrizable.

Example 7.6 Let G be a two-dimensional spray given by

G1 = − f (x1)g′(t)(y1)2, G2 = f (x1)
[
g(t)y1 − g′(t)y2

]
y1, (t := y2/y1).

where f , g are two smooth functions. A direct computation gives Ri
k = Rδik − τk yi

with

R = 0, τ1 = Ay2, τ2 = −Ay1, A := 2 f 2(x1)g(t)g′′′(t) − f ′(x1)g′′(t).
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We can choose the two functions f , g satisfying A �= 0. So in this case, G is not
Finsler metrizable.
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