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Abstract
In this paper, we investigate the locally strongly convex affine hypersurfaces with
semi-parallel cubic form relative to the Levi-Civita connection of affine metric. We
obtain two results on such hypersurfaces which admit at most one affine principal
curvature of multiplicity one: (1) classify these being not affine hyperspheres; (2)
classify these affine hyperspheres with constant scalar curvature. For the latter, by
proving the parallelism of their cubic forms we translate the classification into that of
affine hypersurfaces with parallel cubic form, which has been completed by Hu-Li-
Vrancken (J Differ Geom 87:239–307, 2011).
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1 Introduction

The classical equiaffine differential geometry is mainly concerned with geometric
properties of hypersurfaces in affine space, that are invariant under unimodular affine
transformations. Let Rn+1 be the (n + 1)-dimensional real unimodular affine space.
On a non-degenerate hypersurface immersion ofRn+1, it is well known how to induce
an affine connection ∇, an affine shape operator S whose eigenvalues are called affine
principal curvatures, and a symmetric bilinear form h, called the affine metric. From
a local point of view, there are two natural tensors, namely the difference tensor K
which is defined as the difference between ∇ and the Levi-Civita connection ∇̂ of h,
and the cubic formC := ∇h. The classical Pick-Berwald theorem states that the cubic
form or difference tensor vanishes, if and only if the hypersurface is a non-degenerate
hyperquadric. In that sense, the cubic form or difference tensor plays the role as the
second fundamental form for submanifolds of real space forms.

In the same style as the Pick-Berwald theorem, geometric conditions on the cubic
form and difference tensor have been used to classify natural classes of affine hypersur-
faces by many geometers in the past decades, see e.g. [5–7, 13, 17–20, 32, 35]. Among
them, one of the most interesting developments may be the classification of locally
strongly convex affine hypersurfaces with parallel cubic form relative to ∇̂. In this
subject, F. Dillen, L. Vrancken, et al. obtain the classifications for lower dimensions in
[11, 15, 21, 27], and finally Z. Hu, H. Li and L. Vrancken complete the classification
for all dimensions as follows:

Theorem 1.1 (cf. [23]) Let M be an n-dimensional (n ≥ 2) locally strongly convex
affine hypersurface in R

n+1 with ∇̂C = 0. Then, M is either a hyperquadric (i.e.,
C = 0) or a hyperbolic affine hypersphere with C �= 0; in the latter case either

(i) M is obtained as the Calabi product of a lower dimensional hyperbolic affine
hypersphere with parallel cubic form and a point, or

(ii) M is obtained as the Calabi product of two lower dimensional hyperbolic affine
hyperspheres with parallel cubic form, or

(iii) n = 1
2m(m + 1) − 1, m ≥ 3, (M, h) is isometric to SL(m,R)/SO(m), and M is

affinely equivalent to the standard embedding SL(m,R)/SO(m) ↪→ R
n+1, or

(iv) n = m2 − 1, m ≥ 3, (M, h) is isometric to SL(m,C)/SU(m), and M is affinely
equivalent to the standard embedding SL(m,C)/SU(m) ↪→ R

n+1, or
(v) n = 2m2 − m − 1, m ≥ 3, (M, h) is isometric to SU∗(2m

)
/Sp(m), and M is

affinely equivalent to the standard embedding SU∗(2m
)
/Sp(m) ↪→ R

n+1, or
(vi) n = 26, (M, h) is isometric to E6(−26)/F4, and M is affinely equivalent to the

standard embedding E6(−26)/F4 ↪→ R
27.

As that did in [23, 24], we say that an affine hypersurface is of semi-parallel (resp.
parallel) cubic form relative to the Levi-Civita connection of affine metric if R̂ ·C = 0
(resp. ∇̂C = 0), where R̂ is the curvature tensor of affine metric, and the tensor R̂ ·C
is defined by

R̂(X ,Y ) · C = ∇̂X ∇̂YC − ∇̂Y ∇̂XC − ∇̂[X ,Y ]C (1.1)
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for tangent vector fields X ,Y . Obviously, the parallelism of cubic form implies its
semi-parallelism, the converse is not true, we refer to Remark 3.1 for the counter-
examples.

In this paper, we investigate locally strongly convex affine hypersurfaces with semi-
parallel cubic form relative to the Levi-Civita connection of affine metric. First, we
prove that if all the affine principal curvatures of the hypersurface have multiplicity
more than one, then the hypersurface is an affine hypersphere. If further assume that
its affine metric is of constant scalar curvature, by proving the parallelism of the cubic
form we translate the classification into that of Theorem 1.1. More precisely, let H ,
� and ˆRic be the affine mean curvature, Laplacian operator and Ricci curvature of
affine metric h, respectively, we can state the first main result as follows.

Theorem 1.2 Let Mn be a locally strongly convex affine hypersurface in R
n+1 with

R̂ · C = 0 and n ≥ 2. Assume that Mn does not admit any affine principal curvature
of multiplicity one. Then Mn is either a hyperquadric (i.e., C = 0) or a hyperbolic
affine hypersphere with non-positive scalar curvature κ and C �= 0. Moreover, there
hold

2�κ = ‖∇̂C‖2h, (1.2)

(n + 1)κH = ‖R̂‖2h + ‖ ˆRic‖2h, (1.3)

where ‖ · ‖h denotes the tensorial norm with respect to h. If additionally assume that
κ is constant for n ≥ 3, then ∇̂C = 0, and Mn is affinely equivalent to one of the
examples in Theorem 1.1.

Remark 1.1 For a locally strongly convex affine hypersurface Mn , Theorems 1.1
and 1.2 imply that:

(1) If n ≥ 3, it is an affine hypersphere with R̂ · C = 0 and constant scalar curvature
if and only if ∇̂C = 0.

(2) If n = 2, it is an affine sphere with R̂ · C = 0 if and only if ∇̂C = 0.

We conjecture that any locally strongly convex affine hypersphere with R̂ · C = 0
must satisfy ∇̂C = 0.

Second, if the hypersurface admits exactly one affine principal curvature of mul-
tiplicity one, then the number of its distinct affine principal curvatures is either three
or two (i.e., the hypersurface is quasi-umbilical), which are further classified, respec-
tively. These results are given precisely in the following theorems.

Theorem 1.3 Let Mn be a locally strongly convex affine hypersurface in R
n+1 with

R̂ ·C = 0 and n ≥ 3. If it admits exactly one affine principal curvature of multiplicity
one, then the number of its distinct affine principal curvatures is either two or three.

Theorem 1.4 Let Mn be a locally strongly convex affine hypersurface in R
n+1 with

R̂ · C = 0 and n ≥ 5. Assume that there are exactly three distinct affine principal
curvaturesμ1, μ2, μ3 of multiplicity (1, n2, n3)with n2 ≥ 2 and n3 ≥ 2, respectively.

123



81 Page 4 of 33 C. Li et al.

Then (Mn, h) is locally isometric to the warped product R+ × M2 ×t M3, and each
μi is a function which depends only on t such that μ2μ3 �= 0,

t2(μ1 − μ2)(μ2 − μ3)
2 = 2(μ1 − μ3)(μ2 + μ3).

Moreover, Mn is affinely equivalent to

F(t, p2, p3) = (γ2(t)φ2(p2), γ3(t)φ3(p3)),

where γ2, γ3 are nonzero functions satisfying

γ ′
2 = 1

2 (μ3 − μ2)tγ2, γ ′
3 = 2μ3

(μ3−μ2)t
γ3,

and φi : Mi → R
ni+1 is a locally strongly convex proper affine hypersphere with the

affine mean curvature Hi for i = 2, 3, which are nonzero constant defined by

H2 = μ2 − 1
4 (μ2 − μ3)

2t2, H3 = μ3t
2 + 2

μ2−μ3
,

φ2 is an ellipsoid if H2 > 0 and is of semi-parallel cubic form otherwise, whereas φ3
is an ellipsoid if H3 ≥ 1.

Theorem 1.5 Let Mn be a locally strongly convex quasi-umbilical affine hypersurface
in R

n+1 with R̂ · C = 0 and n ≥ 3. Then (Mn, h) is locally isometric to the warped
product R+ × f M2, and Mn is affinely equivalent to one of the immersions explicitly
described in Theorem 6.1, where the warped function f (t) = 1 or t.

Remark 1.2 The examples in Theorems 1.4 and 1.5 are the generalized Calabi com-
positions of affine hyperspheres in some special forms. The construction method of
such examples initially originates from E. Calabi [8], and now has been extended and
characterized by F. Dillen, L. Vrancken, Z. Hu, H. Li, et al. in [1, 2, 12, 22].

This paper is organized as follows. In Sect. 2, we briefly review the local theory of
equiaffine hypersurfaces, some results and concepts of warped product manifolds. In
Sect. 3, we begin with the Tsinghua principle to study the properties of the hypersur-
faces involving the affine principal curvatures, the difference tensor and the eigenvalue
distributions of affine shape operator, and present the proof of Theorem 1.2. Based on
these properties, in Sect. 4 we obtain Theorem 1.3 by showing the number of the affine
principal curvatures being three or two. In either case, we prove the warped product
structure, discuss all the possibilities of the immersion and complete the proofs of
Theorems 1.4 and 1.5 in last two sections, respectively.

2 Preliminaries

In this section, we briefly recall the local theory of equiaffine hypersurfaces. For more
details, we refer to the monographs [26, 29].

123



Affine Hypersurfaces with Semi-parallel Cubic Form Page 5 of 33 81

Let Rn+1 denote the standard (n + 1)-dimensional real unimodular affine space
that is endowed with its usual flat connection D and a parallel volume form ω, given
by the determinant. Let F : Mn → R

n+1 be an oriented non-degenerate hypersurface
immersion. On such a hypersurface, up to a sign there exists a unique transversal
vector field ξ , called the affine normal. A non-degenerate hypersurface equipped with
the affine normal is called an (equi)affine hypersurface, or a Blaschke hypersurface.
Denote by X ,Y , Z ,W the tangent vector fields on Mn from now on. By the affine
normal we have

DX F∗Y = F∗∇XY + h(X ,Y )ξ, (Gauss formula) (2.1)

DXξ = −F∗SX , (Weingarten formula) (2.2)

which induce on Mn the affine connection ∇, a symmetric bilinear form h, called
the affine metric, the affine shape operator S whose eigenvalues are called affine
principal curvatures, and the cubic form C := ∇h. An affine hypersurface is called
locally strongly convex if h is definite, we always choose ξ , up to a sign, such that h is
positive definite.We call a locally strongly convex affine hypersurface quasi-umbilical
if it admits exactly two distinct affine principal curvatures, one of which is simple.

Let ∇̂ be the Levi-Civita connection of the affine metric h. The difference tensor
K is defined by

K (X ,Y ) := ∇XY − ∇̂XY . (2.3)

We also write KXY and KX = ∇X − ∇̂X . Since both ∇ and ∇̂ have zero torsion, K
is symmetric in X and Y . It is related to the totally symmetric cubic form C by

C(X ,Y , Z) = −2h(K (X ,Y ), Z), (2.4)

which implies that the operator KX is symmetric relative to h. Moreover, K satisfies
the apolarity condition, namely, tr KX = 0 for all X .

The curvature tensor R̂ of affine metric h, S and K are related by the following
Gauss and Codazzi equations:

R̂(X ,Y )Z = 1
2 [h(Y , Z)SX − h(X , Z)SY + h(SY , Z)X − h(SX , Z)Y ]

−[KX , KY ]Z ,
(2.5)

(∇̂X K )(Y , Z) − (∇̂Y K )(X , Z)

= 1
2 [h(Y , Z)SX − h(X , Z)SY − h(SY , Z)X + h(SX , Z)Y ],

(2.6)

(∇̂X S)Y − (∇̂Y S)X = K (SX ,Y ) − K (SY , X), (2.7)

123



81 Page 6 of 33 C. Li et al.

where, by definitions, [KX , KY ]Z = KX KY Z − KY KX Z , and

R̂(X ,Y )Z = ∇̂X ∇̂Y Z − ∇̂Y ∇̂X Z − ∇̂[X ,Y ]Z ,

(∇̂X K )(Y , Z) = ∇̂X (K (Y , Z)) − K (∇̂XY , Z) − K (Y , ∇̂X Z),

(∇̂X S)Y = ∇̂X (SY ) − S∇̂XY .

Contracting Gauss equation (2.5) we obtain

χ = H + J , (2.8)

where J = 1
n(n−1)h(K , K ), H = 1

n tr S,χ = κ
n(n−1) and κ are thePick invariant, affine

mean curvature, normalized scalar curvature and scalar curvature of h, respectively.
Recall the second covariant differentiation of K , defined by

∇̂2
X ,Y K = ∇̂X ∇̂Y K − ∇̂∇̂XY

K ,

and the following Ricci identity:

(∇̂2
X ,Y K )(Z ,W ) − (∇̂2

Y ,X K )(Z ,W ) = (R̂(X ,Y ) · K )(Z ,W )

= R̂(X ,Y )K (Z ,W ) − K (R̂(X ,Y )Z ,W ) − K (Z , R̂(X ,Y )W ).

The affine hypersurface Mn is called an affine hypersphere if S = H id. Then it
follows from (2.7) that H is constant if n ≥ 2.Mn is said to be a proper (resp. improper)
affine hypersphere if H is nonzero (resp. zero). Moreover, a locally strongly convex
affine hypersphere is called parabolic, elliptic or hyperbolic according to H = 0,
H > 0 or H < 0, respectively. For affine hyperspheres, the Gauss and Codazzi
equations reduce to

R̂(X ,Y )Z = H [h(Y , Z)X − h(X , Z)Y ] − [KX , KY ]Z , (2.9)

(∇̂X K )(Y , Z) = (∇̂Y K )(X , Z). (2.10)

We collect the following two results for later use.

Theorem 2.1 (cf. Theorem 6.2 of [24]) A locally strongly convex affine surface M2 in
R
3 satisfies R̂ · C = 0 if and only if either M2 is locally a quadric or (M2, h) is flat.

Theorem 2.2 (cf. Theorem 1 of [1]) Let Mm+1, m ≥ 2, be a locally strongly convex
affine hypersurface of the affine spaceRm+2 such that its tangent bundle is an orthog-
onal sum, with respect to the affine metric h, of two distributions: a one-dimensional
distribution D1 spanned by a unit vector field T and an m-dimensional distribution
D2, such that

K (T , T ) = λ1T , K (T , X) = λ2X ,

ST = μ1T , SX = μ2X , ∀ X ∈ D2.
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Then either Mm+1 is an affine hypersphere such that KT = 0 or is affinely congruent
to one of the following immersions:

(1) f (t, x1, . . . , xm) = (γ1(t), γ2(t)g2(x1, . . . , xm)), for γ1, γ2 such that

εγ ′
1γ2(γ

′
1γ

′′
2 − γ ′′

1 γ ′
2) < 0;

(2) f (t, x1, . . . , xm) = γ1(t)C(x1, . . . , xm) + γ2(t)em+1, for γ1, γ2 such that

sgn
(
γ ′
1γ

′′
2 − γ ′′

1 γ ′
2

)
= sgn(γ ′

1γ1) �= 0;

(3) f (t, x1, . . . , xm) = C(x1, . . . , xm)+γ2(t)em+1+γ1(t)em+2, for γ1, γ2 such that

sgn(γ ′
1γ

′′
2 − γ ′′

1 γ ′
2) = sgn(γ ′

1) �= 0.

Here g2 : Rm → R
m+1 is a proper affine hypersphere centered at the origin with affine

mean curvature ε, and C : Rm → R
m+2 is an improper affine hypersphere, given by

C(x1, . . . , xm) = (x1, . . . , xm, p(x1, . . . , xm), 1), with the affine normal em+1.

Finally, we review some notions of warped product manifolds and subbundles.
For Riemannian manifolds (B, gB), (M1, g1), …, (Mk, gk) and positive functions
f1, . . . , fk : B → R, the manifold M := B × M1 × · · · × Mk equipped with the
metric h = gB ⊕ f 21 g1 ⊕ · · · ⊕ f 2k gk is a warped product manifold with warped
functions fi , denoted by B× f1 M1 ×· · ·× fk Mk . Let ∇̂ be the Levi-Civita connection
of a Riemannian manifold (M, h). A subbundle E ⊂ T M is called auto-parallel if
∇̂XY ∈ E holds for all X , Y ∈ E . Whereas a subbundle E is called totally umbilical
if there exists a vector field V ∈ E⊥ such that h(∇̂XY , Z) = h(X ,Y )h(V , Z) for all
X , Y ∈ E and Z ∈ E⊥, here we call V the mean curvature vector of E . If, moreover,
h(∇̂XV , Z) = 0 holds, we say that E is spherical. We conclude this section by the
decomposition theorem of Riemannian manifolds.

Theorem 2.3 (cf. Theorem 4 of [28]) Let M be a Riemannian manifold, and let T M =⊕k
i=0 Ei be an orthogonal decomposition into nontrivial vector subbundles such that

Ei is spherical and E⊥
i is autoparallel for i = 1, . . . , k. Then, for every point p ∈

M there is an isometry ψ of a warped product M0 × f1 M1 × · · · × fk Mk onto a
neighbourhood of p in M such thatψ({p0}×· · ·×{pi−1}×Mi ×{pi+1}×· · ·×{pk})
is an integral manifold of Ei for i = 0, . . . , k and all p0 ∈ M0, . . . , pk ∈ Mk.

3 Properties of Affine Hypersurfaces with R̂ · C = 0

From this section on, when we say that an affine hypersurface has semi-parallel cubic
form, it always means that R̂ · C = 0, equivalently R̂ · K = 0. Then, by the Ricci
identity of K we have

R̂(X ,Y )K (Z ,W ) = K (R̂(X ,Y )Z ,W ) + K (Z , R̂(X ,Y )W ). (3.1)
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In fact, by (2.4) and the Ricci identities of C and K , the equivalence above follows
from the following formula:

(R̂ · C)(U , V , X ,Y , Z) = (R̂(U , V ) · C)(X ,Y , Z)

= −C(X ,Y , R̂(U , V )Z) − C(X , R̂(U , V )Y , Z) − C(R̂(U , V )X ,Y , Z)

= 2[h(KXY , R̂(U , V )Z) + h(KX R̂(U , V )Y , Z) + h(KY R̂(U , V )X , Z)]
= −2h(R̂(U , V )KXY − KX R̂(U , V )Y − KY R̂(U , V )X , Z)

= −2h((R̂(U , V ) · K )(X ,Y ), Z).

(3.2)

Remark 3.1 Besides examples in Theorem 1.1, we see from (3.1) that all flat affine
hypersurfaces satisfy R̂ · C = 0. Therefore, to see the examples whose cubic forms
are semi-parallel but not parallel, we refer to Remark 6.2 in [24] for such flat surfaces,
and Theorem 4.1 in [3] for the flat and quasi-umbilical affine hypersurfaces.

In what follows, if no other stated, we always assume that Mn is a locally strongly
convex affine hypersurface with semi-parallel cubic form. First, by using the Codazzi
equations for both the shape operator and the difference tensor, we obtain some lin-
ear equations involving the components of the difference tensor and affine principal
curvatures as follows.

Lemma 3.1 Let Mn (n ≥ 2) be a locally strongly convex affine hypersurface in Rn+1

with R̂ · C = 0. Denote by {e1, . . . , en} the orthonormal frame of Mn, where ei are
the eigenvector fields of the shape operator S with corresponding eigenvalues μi ,
i = 1, . . . , n. Then, for any i, j, k, �, there holds

(μk − μi )[δ j�K (ek, ei ) + h(K (ek, ei ), e�)e j ]
+ (μi − μ j )[δk�K (ei , e j ) + h(K (ei , e j ), e�)ek]
+ (μ j − μk)[δi�K (e j , ek) + h(K (e j , ek), e�)ei ] = 0.

(3.3)

Proof By the second covariant differentiation of K and (3.2) it holds that

(∇̂2
W ,X K )(Y , Z) − (∇̂2

X ,W K )(Y , Z) = (R̂(W , X) · K )(Y , Z) = 0. (3.4)

On the other hand, direct calculations show that

σW ,X ,Y {(∇̂2
W ,X K )(Y , Z) − (∇̂2

X ,W K )(Y , Z)}
= σW ,X ,Y {(∇̂2

W ,X K )(Y , Z) − (∇̂2
W ,Y K )(X , Z)}, (3.5)

where σW ,X ,Y denotes the cyclic summation over W , X ,Y . Moreover, by the second
covariant differentiation of K we have (see also (3.3) in [3])

(∇̂2
W ,X K )(Y , Z) − (∇̂2

W ,Y K )(X , Z)

= (∇̂W ∇̂K )(X ,Y , Z) − (∇̂W ∇̂K )(Y , X , Z)

= 1
2 {h(Y , Z)(∇̂W S)X − h(X , Z)(∇̂W S)Y

− h((∇̂W S)Y , Z)X + h((∇̂W S)X , Z)Y },

(3.6)
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where the last equality follows from the covariant differentiation of (2.6) along W .
Together with (2.7), by (3.4) and (3.5) we see that

0 = 2σW ,X ,Y {(∇̂2
W ,X K )(Y , Z) − (∇̂2

W ,Y K )(X , Z)}
= h(Y , Z)(K (SW , X)−K (SX ,W ))+h(W , Z)(K (SX ,Y )−K (SY , X))

+ h(X , Z)(K (SY ,W )−K (SW ,Y ))+h(K (SY ,W )−K (SW ,Y ), Z)X

+ h(K (SW , X) − K (SX ,W ), Z)Y + h(K (SX ,Y ) − K (SY , X), Z)W .

(3.7)

Finally, by taking X = ei ,Y = e j , W = ek, Z = e� in (3.7) we have (3.3). ��
Remark 3.2 The technique used in Lemma 3.1, is based on the Tsinghua principle due
to H. Li, L. Vrancken and X. Wang [3]. For some tensor, it allows one to take the
cyclic permutation of the covariant derivative of its Codazzi equation, use the Ricci
identity in an indirect way and express the tensor in a conveniently chosen frame, see
[4, 9, 10, 14, 25] for its applications in various purposes.

By the notations of Lemma 3.1, we always denote byD(μi ) the eigenvalue distri-
bution of S corresponding to the eigenvalue μi and by ni its dimension. Note that the
conclusion of Lemma 3.1 is the same as Lemma 3.1 of [3], although the assumptions
are different. Therefore, following the proof of Lemma 3.2 in [3], by (3.3) we obtain
the same results as below.

Lemma 3.2 The difference tensor K satisfies:

(i) If μi �= μ j and ni , n j ≥ 2, then K (ei , e j ) = 0.

(ii) If n j = 1 and ni ≥ 2, then there exist functions λ
j
i := h(Kei ei , e j ) depending on

the choice of μi , μ j such that K (e j , ei ) = λ
j
i ei .

(iii) If there are at least two different eigenvalues μi �= μk such that ni , nk ≥ 2
and n j = 1, then there exists a differentiable function λ̄ j such that it holds that

(μ j − μi )λ
j
i = (μ j − μk)λ

j
k = λ̄ j .

Furthermore, by Codazzi equation (2.7) we have

ei (μ j )e j − e j (μi )ei + μ j ∇̂ei e j − μi ∇̂e j ei

= S∇̂ei e j − S∇̂e j ei + (μi − μ j )K (ei , e j ).
(3.8)

By multiplying this with the eigenvector ek , we get the following lemma.

Lemma 3.3 It holds that

(i) ei (μ j ) = (μ j − μi )h(∇̂e j e j − Kej e j , ei ) for k = j �= i ;

(ii) ei (μ j )δ jk − e j (μi )δik + (μ j − μk)h(∇̂ei e j , ek)
= (μi − μk)h(∇̂e j ei , ek) + (μi − μ j )h(Kei e j , ek) for any i, j, k.

By taking ei , e j ∈ D(μi ) and ek ∈ D(μi )
⊥ in Lemma 3.3 (ii), we see that each

eigenvalue distributionD(μi ) forms an integrable subbundle. Similarly, taking ei , e j ∈
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D(μi ) in Lemma 3.3 (i) for i �= j , we get that each eigenvalue of multiplicities more
than one is constant on its integral submanifolds.

Next, for more information we also denote by μ̃1, . . . , μ̃r the eigenvalue func-
tions of affine shape operator S with the multiplicity one, and by u1, . . . , ur the
corresponding unit eigenvector fields. Let μ1, . . . , μs be the eigenvalues of higher
multiplicities, and vi1, . . . , v

i
ni be the orthonormal eigenvector fields ofμi , which span

the distribution D(μi ) for i = 1, . . . , s. Note from Lemma 3.2 that K (vij , v
i
k) ∈

⊕r
j=1 Span(u j )

⊕
D(μi ). Define tensors Li : D(μi ) × D(μi ) → D(μi ) given by

Li (X , X ′) = K (X , X ′) −
r∑

j=1

λ
j
i h(X , X ′)u j , i = 1, . . . , s, (3.9)

which are the projection of K onto the distributionD(μi ), then we are ready to prove
the next two results.

Lemma 3.4 Let Mn be a locally strongly convex affine hypersurface in R
n+1 with

R̂ · C = 0. If the multiplicity of affine principal curvature μi is more than one, then

(i) The eigenvalue distribution D(μi ) is integrable, on which μi is constant.
(ii) Li is totally symmetric and satisfies the apolarity condition.
(iii) For any X , X ′, X ′′ ∈ D(μi ),W ∈ D(μi )

⊥, there hold R̂(X , X ′) · Li = 0, and

R̂(X , X ′)X ′′ = (μi −
r∑

j=1

(λ
j
i )

2)[h(X ′, X ′′)X − h(X , X ′′)X ′]

− [Li
X , Li

X ′ ]X ′′,
R̂(X , X ′)W = 0.

(3.10)

(iv) Assume that D(μi ) is spherical. Denote by R̂⊥ the curvature tensor of the con-
nection ∇̂⊥ on the integral manifold ofD(μi ) induced from (Mn, h), and by ρi T
the mean curvature vector with the unit vector T ∈ D(μi )

⊥. Then

(R̂⊥(X , X ′) · Li )(X ′′, X̃)

= ρ2
i {h(X , X ′′)Li (X ′, X̃) − h(X ′, X ′′)Li (X , X̃)

+ h(X , X̃)Li (X ′, X ′′) − h(X ′, X̃)Li (X , X ′′)
+ h(X ′, Li (X ′′, X̃))X − h(X , Li (X ′′, X̃))X ′},

(3.11)

where R̂⊥(X , X ′)X ′′ = R̂(X , X ′)X ′′ + ρ2
i (h(X ′, X ′′)X − h(X , X ′′)X ′). In par-

ticular, if D(μi ) is auto-parallel, i.e., ρi = 0, then R̂⊥ · Li = 0.

Proof The previous analysis after Lemma 3.3 gives the proof of the part (i). Note that
h(Li (vij , v

i
k), v

i
�) = h(K (vij , v

i
k), v

i
�) is totally symmetric. The apolarity condition

yields
∑r

j=1 K (u j , u j ) + ∑s
�=1

∑n�

p=1 K (v�
p, v

�
p) = 0. Then, for arbitrary viq ∈
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D(μi ), by (3.9) and Lemma 3.2 there holds

ni∑

p=1

h(Li (vip, v
i
p), v

i
q) =

ni∑

p=1

h(K (vip, v
i
p), v

i
q)

= −
∑

� �=i

n�∑

p=1

h(K (v�
p, v

�
p), v

i
q) −

r∑

j=1

h(K (u j , u j ), v
i
q) = 0.

(3.12)

Therefore,
∑ni

p=1 L
i (vip, v

i
p) = 0, i.e., the tensor Li satisfies the apolarity condition.

We have proved part (ii).
Denote also by Li

X X
′ = Li (X , X ′). By the total symmetry of Li , Lemma 3.2 and

(3.9) we have

[Li
X , Li

X ′ ]X ′′ = Li (X , Li (X ′, X ′′)) − Li (X ′, Li (X , X ′′))
= K (X , Li (X ′, X ′′)) − K (X ′, Li (X , X ′′))
= K (X , K (X ′, X ′′)) − K (X ′, K (X , X ′′))

−
∑

j

λ
j
i [h(X ′, X ′′)K (u j , X) − h(X , X ′′)K (u j , X

′)]

= [KX , KX ′ ]X ′′ −
∑

j

(λ
j
i )

2[h(X ′, X ′′)X − h(X , X ′′)X ′].

Together with Gauss equation (2.5), by Lemma 3.2 we further have (3.10). Combining
this with (3.1) we deduce that

R̂(X , X ′)Li (X ′′, X̃) = R̂(X , X ′)K (X ′′, X̃) −
∑

j

λ
j
i h(X ′′, X̃)R̂(X , X ′)u j

= K (R̂(X , X ′)X ′′, X̃) + K (X ′′, R̂(X , X ′)X̃)

= Li (R̂(X , X ′)X ′′, X̃) + Li (X ′′, R̂(X , X ′)X̃)

+
∑

j

λ
j
i [h(R̂(X , X ′)X ′′, X̃) + h(X ′′, R̂(X , X ′)X̃)]u j

= Li (R̂(X , X ′)X ′′, X̃) + Li (X ′′, R̂(X , X ′)X̃).

This shows the part (iii).
For part (iv), asD(μi ) is spherical, we have

∇̂X X
′ = ∇̂⊥

X X ′ + ρi h(X , X ′)T , ∇̂XT = −ρi X , X(ρi ) = 0.

It is well known that the projection ∇̂⊥
X ′ X of ∇̂X ′ X onD(μi ) defines a connection

that turns out to be the Levi-Civita connection of the induced metric on the integral
manifold of D(μi ) from (Mn, h). Then, by the definition of curvature tensor and
R̂(X , X ′) · Li = 0, direct computations give (3.11). ��
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Proposition 3.1 Let Mn be a locally strongly convex affine hypersurface inRn+1 with
R̂ · C = 0. If the multiplicity of affine principal curvature μi is more than one, then,
by the notations as above, it holds that either Li = 0, or Li �= 0 and

μi −
r∑

j=1

(λ
j
i )

2 < 0. (3.13)

In particular, if Mn is an affine hypersphere, then Mn is either a hyperquadric (i.e.,
C = 0), or a hyperbolic affine hypersphere with C �= 0.

Proof Setλ = μi−∑r
j=1(λ

j
i )

2. It follows fromLemma3.4 that Li is totally symmetric
and satisfies the apolarity condition. Moreover,

R̂(X , X ′)Li (X ′′, X̃) = Li (R̂(X , X ′)X ′′, X̃) + Li (X ′′, R̂(X , X ′)X̃),

R̂(X , X ′)X ′′ = λ[h(X ′, X ′′)X − h(X , X ′′)X ′] − [Li
X , Li

X ′ ]X ′′ (3.14)

for any vector fields X , X ′, X ′′ ∈ D(μi ).
Assume that Li �= 0. Fix a point p ∈ Mn , we now choose an orthonormal basis of

D(μi )(p) with respect to the affine metric h in the following way. Let UpD(μi ) :=
{u ∈ D(μi )(p)|h(u, u) = 1}. Since h is positive definite, UpD(μi ) is compact. We
define a function f (u) = h(Li

uu, u) on UpD(μi ). Let e1 be an element of UpD(μi )

at which f attains an absolute maximum. Since Li �= 0, we have f (e1) > 0.
Let u ∈ UpD(μi ) such that h(e1, u) = 0, and define another function g(t) =

f (e1 cos t + u sin t). Then we have g′(0) = 3h(Li
e1e1, u), g′′(0) = 6h(Li

e1u, u) −
3 f (e1). Since g attains an absolute maximum at t = 0, we have g′(0) = 0, thus
h(Li

e1e1, u) = 0. Then e1 is an eigenvector of Li
e1 with eigenvalue ν1 = f (e1) > 0.

Let e2, . . . , eni be orthonormal vectors of D(μi )(p), orthogonal to e1, which are the
remaining eigenvectors of Li

e1 corresponding to the eigenvalues ν2, . . . , νni , respec-
tively.

Since e1 is an absolute maximum point of f , we know that g′′(0) ≤ 0. This implies
that for every j ≥ 2, we have ν1 − 2ν j ≥ 0. From the apolarity condition of Li

e1 we
have

ν1 + ν2 + · · · + νni = 0. (3.15)

By applying (3.14) we have

ν1 R̂(e1, e j )e1 = R̂(e1, e j )L
i (e1, e1) = 2Li (R̂(e1, e j )e1, e1),

R̂(e1, e j )e1 = −λe j − [Li
e1, L

i
e j ]e1 = (−λ − ν2j + ν1ν j )e j ,

which imply that

(ν1 − 2ν j )(−λ − ν2j + ν1ν j ) = 0. (3.16)
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If ν1 = 2ν j for all j ≥ 2, then (3.15) implies that ν1 = 0, this is a contradiction to
ν1 = f (e1) > 0. Hence, there exists an integer k ∈ {1, . . . , ni − 1} such that, after
rearranging the ordering,

ν2 = · · · = νk = 1
2ν1, νk+1 < 1

2ν1, . . . , νni < 1
2ν1. (3.17)

Moreover, if j > k, we see from (3.16) that

− λ − ν2j + ν1ν j = 0. (3.18)

Subtracting this for j, � > k, we have

(ν j − ν�)(ν1 − ν j − ν�) = 0.

Note from (3.17) that ν1 − ν j − ν� > 0. Thus νk+1 = · · · = νni := ν0. Then, it
follows from (3.15) and (3.18) that

ν0 = − k+1
2(ni−k) ν1, −λ = (k+1)(2ni−k+1)

4(ni−k)2
ν21 > 0.

Hence, (3.13) follows. The first part has been proved.
IfMn is an affine hypersphere, fromLemma 3.4we see thatD(μi )(p) is the tangent

space TpMn with ni = n, the projection tensor Li is nothing but K , μi = H , and

r = 0 (i.e.,
∑r

j=1(λ
j
i )

2 = 0). Following the same process as above, we see that either
K = 0 or K �= 0 and H < 0. The conclusion follows. ��

Remark 3.3 For the affine hypersphere, Proposition 3.1 extends the result of Proposi-
tion 2.1 in [15] from ∇̂C to R̂ ·C = 0. The technique, which is employed to construct
a typical orthonormal basis on D(μi )(p), was introduced by Ejiri [16] and has been
extended and widely applied for various purposes, see e.g. [5, 7, 9–11, 15, 21, 23, 30,
31, 33, 34].

Finally, we conclude this section by proving Theorem 1.2.

Completion of Theorem 1.2’s Proof Let Mn be a locally strongly convex affine hyper-
surface in R

n+1 with R̂ · C = 0 and n ≥ 2, whose affine principal curvatures are all
of the multiplicity at least two. Then, for n = 2, 3, Mn is an affine hypersphere.

For n ≥ 4, we assume that there exist at least two different affine principal cur-
vatures, namely μi and μ j . Then, Mn is not an affine hypersphere, and thus K �= 0.
By Gauss equation (2.5) and Lemma 3.2 (i) we see that, for any unit vector fields
X , X ′ ∈ D(μi ), Y ∈ D(μ j ),

K (X ,Y ) = 0, K (X , X ′) ∈ D(μi ),

R̂(X ,Y )Y = 1
2 (μi + μ j )X , R̂(X ,Y )X = − 1

2 (μi + μ j )Y .
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By (3.1) we further obtain that

0 = R̂(X ,Y )K (Y , X) = K (R̂(X ,Y )Y , X) + K (Y , R̂(X ,Y )X)

= 1
2 (μi + μ j )(KX X − KYY ).

(3.19)

As K �= 0, there must exist a unit vector X0 ∈ D(μi0) for some μi0 such that
h(KX0X0, X0) �= 0. Let X = X0 in (3.19), by multiplying this with X0, we have

μi0 + μ j = 0 (3.20)

for any μ j �= μi0 . This means that there are exactly two different affine principal
curvatures, namely μ1 and μ2, and μ1 = −μ2.

For any unit vector fields X , X ′ ∈ D(μ1) and Y ,Y ′ ∈ D(μ2), by Lemma 3.3 (i)
we have X(μ1) = −X(μ2) = 0. Similarly, Y (μ2) = −Y (μ1) = 0. Hence, μ1 and
μ2 are constant. Then, taking ei = X , e j = Y , ek = X ′ and ei = Y , e j = X , ek = Y ′
respectively in Lemma 3.3 (ii), by Lemma 3.2 (i) we have

h(∇̂XY , X ′) = 0, h(∇̂Y X ,Y ′) = 0, (3.21)

which imply that ∇̂Y X , ∇̂X X ′ ∈ D(μ1) and ∇̂XY , ∇̂Y Y ′ ∈ D(μ2). Together with the
Codazzi equation (2.6) we see that

0 = h((∇̂X K )(Y , X) − (∇̂Y K )(X , X),Y ) = 1
2 (μ1 − μ2) = μ1, (3.22)

which implies that μ2 = −μ1 = 0. This is a contradiction to μ1 �= μ2. Therefore,
Mn has a single affine principal curvature, i.e., it is an affine hypersphere.

In summary, Mn is an affine hypersphere for n ≥ 2. Then, Proposition 3.1 implies
that Mn is either a hyperquadric or a hyperbolic affine hypersphere with C �= 0.

For such affine hyperspheres, denote by {e1, . . . , en} an orthonormal frame relative
to h, set Ai jk = h(Kei e j , ek), we see from (2.10) that the components of first covariant
differentiation Ai jk,� are totally symmetric. It follows from R̂ ·K = 0 and the apolarity
condition that the components of second covariant differentiation Ai jk,�s are symmet-
ric and trace-free in any two indices. Then, by n(n − 1)J = h(K , K ) = ∑

(Ai jk)
2

we have

1
2n(n − 1)�J =

∑
(Ai jk,�)

2 +
∑

Ai jk Ai jk,�� =
∑

(Ai jk,�)
2, (3.23)

where, by (2.4) there holds (cf. (7) of [6])

Ai jk,� = h((∇̂e�K )(ei , e j ), ek) = − 1
2 (∇̂e�C)(ei , e j , ek).

Together with n(n − 1)J = κ − n(n − 1)H , we have (1.2). Recall the formula (3.32)
in [26] for the Laplacian of J on affine hyperspheres:

1
2n(n − 1)�J =

∑
(Ai jk,�)

2 +
∑

(R̂i j )
2 +

∑
(R̂i jk�)

2 − (n + 1)κH . (3.24)
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Combining with (3.23) we obtain (1.3), which implies that κH ≥ 0, and thus κ ≤ 0
on the hyperbolic affine hypersphere.

Furthermore, for n = 2, it follows from Theorem 2.1 that M2 is affinely equivalent
to either a quadric or a flat affine sphere, and thus κ is constant. Together with the
assumption that κ is constant for n ≥ 3, we see from (1.2) that ∇̂C = 0 for n ≥ 2.
Then, Mn is affinely equivalent to one of the examples in Theorem 1.1. ��

4 Proof of Theorem 1.3

Let Mn be a locally strongly convex affine hypersurface in R
n+1 with R̂ · C = 0

and n ≥ 3. Assume that μ1, . . . , μm are the m distinct affine principal curvatures of
multiplicity (1, n2, . . . , nm) with m ≥ 2 and ni ≥ 2, respectively. Then, Mn is not an
affine hypersphere, and thus K �= 0.

Assume that m ≥ 3, and thus n ≥ 5. For our purpose, it is sufficient to prove
m = 3. In Lemmas 3.2-3.4, as r = 1 we always omit the upper index j = 1 of λ

j
i for

simplicity. Denote by T the unit eigenvector field of the affine principal curvature μ1,
by Lemma 3.2 we have

ST = μ1T , SX = μi X , SY = μ j Y ,

KT T = λ1T , KT X = λi X , KT Y = λ j Y ,

K (X ,Y ) = 0, ∀ X ∈ D(μi ), ∀ Y ∈ D(μ j ),

(4.1)

where

(μ1 − μi )λi = (μ1 − μ j )λ j = λ̄1, i �= j ≥ 2. (4.2)

In the following, if no other stated, we always assume the unit vector fields

X , X ′ ∈ D(μi ), Y ,Y ′ ∈ D(μ j ), i �= j ≥ 2.

From the Gauss equation (2.5), by (4.1) we have

R̂(T , X)X = (λ2i − λ1λi + 1
2 (μ1 + μi ))T ,

R̂(T , X)T = −(λ2i − λ1λi + 1
2 (μ1 + μi ))X ,

R̂(Y , X)Y = (λiλ j − 1
2 (μi + μ j ))X ,

R̂(Y , X)X = ( 12 (μi + μ j ) − λiλ j )Y ,

R̂(T , X)Y = 0.

(4.3)
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Notice that KYY − λ j T ∈ D(μ j ), by (3.1) and (4.3) we can compute

R̂(T , X)K (X , T ) = K (R̂(T , X)X , T ) + K (X , R̂(T , X)T ),

R̂(Y , X)K (X ,Y ) = K (R̂(Y , X)X ,Y ) + K (X , R̂(Y , X)Y ),

R̂(T , X)K (Y ,Y ) = 2K (R̂(T , X)Y ,Y )

(4.4)

to obtain respectively that

(λ2i − λ1λi + 1
2 (μ1 + μi ))(KX X + (λi − λ1)T ) = 0,

(λiλ j − 1
2 (μi + μ j ))(KX X − KYY ) = 0,

(λ2i − λ1λi + 1
2 (μ1 + μi ))λ j X = 0.

(4.5)

Remark 4.1 λ̄1 �= 0, and it follows from (4.2) that λ2, . . . , λm are all nonzero and
distinct. Otherwise, if λ̄1 = 0, by (4.2) and the apolarity condition we see that λi = 0
for all i ≥ 1, thus KT = 0. As K �= 0, there must exist a unit vector X0 ∈ D(μi0) for
some eigenvalue μi0 �= μ1 such that h(KX0X0, X0) �= 0. Taking the inner product
with X0 of the first two equations in (4.5) for X = X0, we have

μ1 + μi0 = μ j + μi0 = 0,

thus μ j = μ1 = −μi0 , i.e., m = 2. This is a contradiction to m ≥ 3.

By multiplying the last two equations in (4.5) respectively with T and X , by
Remark 4.1 we have

μi + μ j = 2λiλ j �= 0, i �= j > 1,

μ1 + μi = 2λi (λ1 − λi ), i > 1.
(4.6)

By subtracting these equations, we further obtain that

μ1 − μ j = 2λi (λ1 − λi − λ j ) �= 0,

μi − μ j = 2(λi − λ j )(λ1 − λi − λ j ) �= 0.
(4.7)

Remark 4.2 m ≤ 4. If there exist three different affine principal curvatures μi , μ j , μk

of multiplicity more than one, then from (4.2) and (4.6) we have

λ j

λk
= μ1 − μk

μ1 − μ j
= μi + μ j

μi + μk
, (4.8)

which further implies that

μ1 = μi + μ j + μk . (4.9)

Then μk is uniquely determined by (4.9) for fixed μi and μ j . Therefore, m ≤ 4.
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By taking special vector fields in Lemma 3.3, we can obtain that

X(μ1) = (μ1 − μi )h(∇̂T T , X), X(μi ) = 0,

Y (μi )h(X , X ′) = (μ j − μi )h(∇̂XY , X ′),
(μi − μ j )h(∇̂T X ,Y ) = (μ1 − μ j )h(∇̂XT ,Y ),

(μ j − μi )h(∇̂T Y , X) = (μ1 − μi )h(∇̂Y T , X),

T (μi )h(X , X ′) = (μ1 − μi )h(∇̂XT + λi X , X ′).

(4.10)

By the Codazzi equation (2.6) and (4.1), taking the inner product of

(∇̂X K )(T , T ) = (∇̂T K )(X , T ) + 1
2 (μi − μ1)X (4.11)

with T , X ′ and Y , respectively, we see that

X(λ1) = (λ1 − 2λi )h(∇̂T T , X),

(λ1 − 2λi )h(∇̂XT , X ′) = h((T (λi ) + 1
2 (μi − μ1))X − KX ∇̂T T , X ′),

(λi − λ j )h(∇̂T X ,Y ) = (λ1 − 2λ j )h(∇̂XT ,Y ).

(4.12)

By changing the role of X ,Y in the last equation of (4.12), we also get

(λ j − λi )h(∇̂T Y , X) = (λ1 − 2λi )h(∇̂Y T , X). (4.13)

Then we are ready to prove the following results.

Lemma 4.1 It holds that

h(∇̂T X ,Y ) = h(∇̂XT ,Y ) = h(∇̂Y T , X) = 0,

∇̂XT = −ρi X , ρi := T (μi )
μi−μ1

+ λi ,
(4.14)

where X ∈ D(μi ), Y ∈ D(μ j ), i �= j > 1.

Proof From (4.10), (4.12) and (4.13) we have

(μi − μ j )h(∇̂T X ,Y ) = (μ1 − μ j )h(∇̂XT ,Y ) = (μ1 − μi )h(∇̂Y T , X),

(λi − λ j )h(∇̂T X ,Y ) = (λ1 − 2λ j )h(∇̂XT ,Y ) = (λ1 − 2λi )h(∇̂Y T , X).
(4.15)

Assume on the contrary that h(∇̂T X ,Y ) �= 0, then (4.15) imply that h(∇̂XT ,Y )

and h(∇̂Y T , X) are nonzero, too. And we further see from (4.15) that

(μ1 − μ j )(λi − λ j ) = (μi − μ j )(λ1 − 2λ j ),

(μ1 − μi )(λi − λ j ) = (μi − μ j )(λ1 − 2λi ).
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By subtracting these equations, we get (μi − μ j )(λi − λ j ) = 0. This is a contraction
to λi �= λ j . Therefore, h(∇̂T X ,Y ) = 0. Then, the conclusions follow from the first
line equation in (4.15), and the last equation of (4.10). ��

By the Codazzi equation (2.6) and (4.1), taking the inner product of

(∇̂T K )(X ,Y ) − (∇̂X K )(T ,Y ) = 0 (4.16)

with X ′ and Y , respectively, by Lemma 4.1 we have

(λi − λ j )h(∇̂XY , X ′) = h(KX X
′, ∇̂T Y ) = −λi h(X , X ′)h(∇̂T T ,Y ),

X(λ j ) = h(KYY , ∇̂XT − ∇̂T X) = λ j h(∇̂T T , X).
(4.17)

Lemma 4.2 It holds that

∇̂T T = 0, h(∇̂XY , X ′) = 0,

T (λi ) = (2λi − λ1)ρi + 1
2 (μ1 − μi ),

X(λ1) = X(λi ) = X(μ1) = X(μi ) = 0,

ρiλ j − ρ jλi + 1
2 (μi − μ j ) = 0,

(4.18)

where X , X ′ ∈ D(μi ), Y ∈ D(μ j ), i �= j > 1.

Proof Since h(∇̂T T , T ) = 0, there exist unit vector fields V i
0 ∈ D(μi ) such that

∇̂T T = a2V
2
0 + · · · + amV

m
0

for some differential functions ai . Then, we see from the first equation of (4.12) and
(4.17) that

V i
0 (λ1) = ai (λ1 − 2λi ), V i

0 (λ j ) = aiλ j , j �= i > 1. (4.19)

Recall from the apolarity condition that λ1 + n2λ2 + · · · + nmλm = 0, then

V i
0 (λi ) = (1 + 2/ni )aiλi . (4.20)

Let {V i
0 , . . . , V

i
ni−1} be an orthonormal frame of D(μi ) for i > 1. Taking X =

V i
j , X

′ = Li (V i
0 , V

i
j ) in the last equation of (4.10), by Lemma 3.4 we obtain

(μ1 − μi )h(∇̂V i
j
T , Li (V i

0 , V
i
j )) = (T (μi ) + (μi − μ1)λi )h(V i

j , L
i (V i

0 , V
i
j )),

(μ1 − μi )

ni−1∑

j=0

h(∇̂V i
j
T , Li (V i

0 , V
i
j ))

= (T (μi ) + (μi − μ1)λi )

ni−1∑

j=0

h(V i
0 , L

i (V i
j , V

i
j )) = 0.

(4.21)
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Considering the Codazzi equation (2.6) of the following form

h((∇̂V i
j
K )(V i

0 , T ), V i
j ) = h((∇̂V i

0
K )(V i

j , T ), V i
j ), j �= 0 (4.22)

we get

V i
0 (λi ) = h(KV i

j
V i
j , ∇̂V i

0
T ) − h(KVi

0
V i
j , ∇̂V i

j
T ), j = 1, . . . , ni − 1,

which together with (4.21) further shows that

(ni − 1)V i
0 (λi ) =

ni−1∑

j=1

h(KV i
j
V i
j , ∇̂V i

0
T ) −

ni−1∑

j=1

h(KV i
0
V i
j , ∇̂V i

j
T )

= −h(KV i
0
V i
0 , ∇̂V i

0
T ) −

ni−1∑

j=1

h(KV i
0
V i
j , ∇̂V i

j
T )

= −
ni−1∑

j=0

h(∇̂V i
j
T , Li (V i

0 , V
i
j )) = 0.

(4.23)

It follows from (4.20) that aiλi = 0, thus ai = 0. Then ∇̂T T = 0. Together with
(4.17), (4.10) and (4.12), by (4.14) we have (4.18) except the last equation.

Finally, we consider the Codazzi equation (2.6) of the following form

h((∇̂Y K )(X , X),Y ) = h((∇̂X K )(Y , X),Y ) + 1
2 (μ j − μi ). (4.24)

Since h(∇̂X X ,Y ) = 0, and similarly h(∇̂Y Y , X) = 0, then by (4.1) direct computa-
tions from (4.24) show the last equation of (4.18). ��
Lemma 4.3 If the number m of distinct affine principal curvatures is at least three,
then m = 3.

Proof By Remark 4.2 it is sufficient to prove m �= 4. On the contrary, assume m = 4,
let μ2, μ3, μ4 be the three different affine principal curvatures of multiplicity more
than one. For any X ∈ D(μ2), Y ∈ D(μ3), Z ∈ D(μ4), by (4.1) we consider the
Codazzi equation (2.6) of the following form

h((∇̂Y K )(X , Z), T ) = h((∇̂X K )(Y , Z), T )

to obtain that

(λ3 − λ4)h(∇̂XY , Z) = (λ2 − λ4)h(∇̂Y X , Z). (4.25)

It follows from Lemma 3.3 (ii) that

(μ3 − μ4)h(∇̂XY , Z) = (μ2 − μ4)h(∇̂Y X , Z) = (μ2 − μ3)h(∇̂Z X ,Y ). (4.26)
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First, we claim that

h(∇̂XY , Z) = h(∇̂Y X , Z) = h(∇̂Z X ,Y ) = 0. (4.27)

On the contrary, assume that h(∇̂XY , Z) �= 0, then the linear homogeneous system of
equations (4.25) and (4.26) has nonzero solutions, thus its determinant vanishes:

(μ2 − μ4)(λ3 − λ4) = (μ3 − μ4)(λ2 − λ4). (4.28)

By the first equation of (4.6) we have

μ2 − μ4 = 2λ3(λ2 − λ4), μ3 − μ4 = 2λ2(λ3 − λ4),

which together with (4.28) imply that λ2 = λ3, a contradiction to Remark 4.1. There-
fore, h(∇̂XY , Z) = 0. Together with (4.26) the claim (4.27) follows.

Next, we consider the Gauss equations for unit vector fields X ∈ D(μi ), Y ∈
D(μ j ). From (4.27), Lemmas 4.1 and 4.2 we see that

∇̂Y Y − ρ j T ∈ D(μ j ), ∇̂XY ∈ D(μ j ), ∇̂Y X , ∇̂T X ∈ D(μi ),

which imply that h(∇̂X ∇̂Y Y , X) = −h(∇̂Y Y , ∇̂X X) = −ρiρ j . Then, by straightfor-
ward computation we obtain

h(R̂(X ,Y )Y , X) = h(∇̂X ∇̂Y Y − ∇̂Y ∇̂XY , X) − h(∇̂∇̂XY
Y − ∇̂∇̂Y X

Y , X)

= −ρiρ j + h(∇̂XY , ∇̂Y X) − 0 − h(Y , ∇̂∇̂Y X
X)

= −ρiρ j .

(4.29)

On the other hand, it follows from (4.3) and (4.6) that h(R̂(X ,Y )Y , X) = 0, thus
ρiρ j = 0, which means that ρ2ρ3 = ρ3ρ4 = ρ2ρ4 = 0. Then at least two of
ρ2, ρ3, ρ4 are zero locally. Without loss of generality, we assume that ρ2 = ρ3 = 0.
From the last equation of (4.18) for i = 2, j = 3 we have μ2 = μ3, a contradiction
to μ2 �= μ3. ��

By Lemma 4.3 we finish the proof of Theorem 1.3.

5 Proof of Theorem 1.4

In this section, we continue the analysis of Sect. 4 for m = 3 to complete the proof of
Theorem 1.4. Let F : Mn → R

n+1 be a locally strongly convex affine hypersurface
with R̂ ·C = 0 and n ≥ 5. Assume that there are exactly three distinct affine principal
curvaturesμ1, μ2, μ3 of multiplicity (1, n2, n3)with n2 ≥ 2 and n3 ≥ 2, respectively.

First, we will prove the warped product structure of (Mn, h). By the apolarity
condition we have

λ1 + n2λ2 + n3λ3 = 0, (5.1)
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which together with the equations of the third line in (4.18) gives that

X(λi ) = Y (λi ) = X(μi ) = Y (μi ) = 0, i = 1, 2, 3 (5.2)

for any X ∈ D(μ2), Y ∈ D(μ3). Then, we can show the following lemma.

Lemma 5.1 There hold that

X(ρi ) = Y (ρi ) = 0, ∀ X ∈ D(μ2), ∀ Y ∈ D(μ3),

T (λi ) = (2λi − λ1)ρi + 1
2 (μ1 − μi ),

T (μi ) = (μi − μ1)(ρi − λi ), i = 2, 3,

ρ2λ3 − ρ3λ2 + 1
2 (μ2 − μ3) = 0,

ρ2ρ3 = 0, T (ρ2) = ρ2
2 , T (ρ3) = ρ2

3 .

(5.3)

Proof Let {X1, . . . , Xn2} (resp. {Y1, . . . ,Yn3}) be an orthonormal frame of D(μ2)

(resp. D(μ3)). Lemmas 4.1 and 4.2 imply that

∇̂XY =
∑

b jY j , ∇̂Y X =
∑

ai Xi ,

[X , X ′] = ∇̂X X
′ − ∇̂X ′ X ∈ D(μ2),

(5.4)

which simplify the Gauss equation as

0 = R̂(X , X ′)T = ∇̂X (−ρ2X
′) − ∇̂X ′(−ρ2X) + ρ2[X , X ′]

= −X(ρ2)X
′ + X ′(ρ2)X ,

so we have X(ρ2) = 0. Similarly, we get Y (ρ3) = 0.
Analogously, using (5.4), from

0 = R̂(X ,Y )T = −∇̂X (ρ3Y ) + ∇̂Y (ρ2X) −
∑

j

b j ∇̂Y j T +
∑

i

ai ∇̂Xi T

= −X(ρ3)Y + Y (ρ2)X ,

we get X(ρ3) = Y (ρ2) = 0. Together with Lemmas 4.1 and 4.2 we have proved (5.3)
except the equations of last line in (5.3).

By the same computations as that did in (4.29), we have ρ2ρ3 = 0. Analogously, it
follows from (4.3) and (4.6) that R̂(X , T )T = 0. On the other hand, by Lemmas 4.1
and 4.2 we also have

R̂(X , T )T = ∇̂T (ρ2X) − ∇̂∇̂X T
T + ∇̂∇̂T X

T

= T (ρ2)X + ρ2∇̂T X − ρ2
2 X − ρ2∇̂T X

= (T (ρ2) − ρ2
2 )X .

Thus, T (ρ2) = ρ2
2 . Similarly, we get T (ρ3) = ρ2

3 . ��
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Now, it follows from Lemma 4.1 that

∇̂XT = −ρ2X , ∇̂Y T = −ρ3Y .

Togetherwith previous lemmas inSect. 4we see thatD(μi ) (i = 1, 2, 3) are integrable,
and both D(μ1) ⊕ D(μ3) and D(μ1) ⊕ D(μ2) are auto-parallel. Moreover, one can
show thatD(μ2) (resp.D(μ3)) is spherical with the mean curvature vector ρ2T (resp.
ρ3T ). Therefore, by Theorem 2.3 we conclude that Mn is locally a warped product
R × f2 M2 × f3 M3, where R, M2 and M3 are, respectively, integral manifolds of
the distributions D(μ1),D(μ2) and D(μ3). The warping functions f2 and f3 are
determined by

ρi = −T (ln fi ), i = 2, 3.

By the warped product structure, we always take the local coordinates {t, xi , y j }
on Mn such that ∂

∂t = T , span{ ∂
∂x1

, . . . , ∂
∂xn2

} = D(μ2) and span{ ∂
∂ y1

, . . . , ∂
∂ yn3

} =
D(μ3), and also let X , X ′ ∈ D(μ2) and Y ,Y ′ ∈ D(μ3) for convention. Then we see
from (5.2) and (5.3) that all the functions μi , λi , ρ j and f j depend only on t . Denote
by ∂t () = (·)′, they are related by (4.2), (4.6) and (5.3):

(μ1 − μ2)λ2 = (μ1 − μ3)λ3 �= 0, μ2 + μ3 = 2λ2λ3 �= 0,

μ1 + μi = 2λi (λ1 − λi ), ρ′
i = ρ2

i , i = 2, 3,

ρ2ρ3 = 0, ρ2λ3 − ρ3λ2 + 1
2 (μ2 − μ3) = 0.

(5.5)

By the equations of last line in (5.5), without loss of generality, from now on we
assume ρ2 = 0 locally, thus ρ3 �= 0. Then, we can solve from the equations above for
the warping function f3 and ρ3 to get that, up to a translation and a direction of the
parametric t ,

f2 = 1, f3 = t, ρ3 = − 1
t , (5.6)

where locally we take t > 0. Together with (5.5) we further see that

λ2 = 1
2 (μ2 − μ3)ρ

−1
3 , λ3 = μ2+μ3

μ2−μ3
ρ3, λ1 − λ2 = μ1+μ2

μ2−μ3
ρ3. (5.7)

Second,wewill showsomeproperties for the functions as above in next two lemmas.
Recall from Remark 4.1 that λ2, λ3 are nonzero and distinct, we can prove the similar
results for μ2 and μ3 as follows.

Lemma 5.2 Locally, both μ2 and μ3 are nonzero and distinct.

Proof As μ1, μ2, μ3 are distinct, by ρ2 = 0 we see from the equations of third line in
(5.3) that T (μ2) �= 0, thus μ2 cannot vanish identically, locally let μ2 �= 0.
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Assume that μ3 = 0. Then μ2μ1 �= 0. From Lemma 5.1 and (5.5) we see that

λ3 = ρ3, (μ1 − μ2)λ2 = μ1λ3,

2λ3λ2 = μ2, λ1 − λ2 = μ1+μ2
2λ2

,
(5.8)

which together with (5.1) imply that

λ2 = 1
2μ2ρ

−1
3 , λ1 = 1

2μ2ρ
−1
3 + (1 + μ1/μ2)ρ3,

μ1 − μ2 = 2ρ2
3μ1/μ2, λ1 = − 1

2n2μ2ρ
−1
3 − n3ρ3.

(5.9)

Therefore, it holds that

1
2 (n2 + 1)μ2ρ

−1
3 + (n3 + 1)ρ3 + μ1

μ2
ρ3 = 0,

1
2 (μ2 − μ1)ρ

−1
3 + μ1

μ2
ρ3 = 0.

By subtracting these equations we get

μ1 + n2μ2 = −2(n3 + 1)ρ2
3 �= 0, (5.10)

which together with the third equation of (5.9) shows that

μ1 + n2μ2

μ1 − μ2
= −n3 + 1

μ1/μ2
. (5.11)

Then we see that κ0 := μ1/μ2 is the solution of the quadric equation

κ2
0 + nκ0 − n3 − 1 = 0.

It follows from this and (5.10) that κ0 is a constant, κ0 /∈ {0, 1, 2,−n2}, and

μ2 = −2(n3 + 1)

n2 + κ0
ρ2
3 , μ1 = −2(n3 + 1)κ0

n2 + κ0
ρ2
3 . (5.12)

By taking the derivative on both sides of μ2 = 2λ2ρ3 in (5.8), we see from (5.3)
and (5.9) that

μ′
2 = 2ρ2

3λ2 + ρ3(μ1 − μ2) = μ1ρ3.

On the other hand, by (5.12) we haveμ′
2 = 2ρ3μ2 = 2

κ0
μ1ρ3. Combining this with the

equation above, as κ0 �= 2, we get μ1ρ3 = 0, a contradiction to μ1ρ3 �= 0. Therefore,
μ3 �= 0. ��

Furthermore, we see from (5.5) that

ρ3λ2 = 1
2 (μ2 − μ3) = μ2 − λ2λ3 = λ2λ3 − μ3, (5.13)
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which implies that

μ2 = λ2(λ3 + ρ3), μ3 = λ2(λ3 − ρ3). (5.14)

Then, it holds that

μ2(ρ3 − λ3) + μ3λ2 = λ2(ρ3 − λ3)(ρ3 + λ3 − λ2) = μ3(λ2 − ρ3 − λ3).(5.15)

Now, we are ready to prove the following lemma.

Lemma 5.3 Set H2 = μ2 −λ22, H3 = 1+ (μ3 −λ23)/ρ
2
3 . Then H2 and H3 are nonzero

constant. Moreover,

4μ3H2 + (μ2 − μ3)
2H3 = 0,

μ2(ρ3 − λ3) + μ3λ2 = (ρ3 − λ3)H2 �= 0.
(5.16)

Proof By (5.3) and the equations of second line in (5.5) we can check that

(μ2 − λ22)
′ = 0, (

μ3−λ23
ρ2
3

)′ = 0.

Therefore, H2 and H3 are all constant. By Lemma 5.2 and (5.14) we have

ρ3 − λ3 �= 0, H2 = λ2(ρ3 + λ3 − λ2), H3 = (ρ3 − λ3)(ρ3 + λ3 − λ2)ρ
−2
3 .(5.17)

Assume that H2 = 0. Then we see from (5.17) and λ2 �= 0 that

ρ3 = λ2 − λ3 �= 0, μ2 = λ22,

μ3 − λ23 + ρ2
3 = ρ2

3H3 = 0.
(5.18)

Taking the derivative on both sides of ρ3 = λ2 − λ3, by (5.3) and (5.14) we have

ρ2
3 = (λ1 − λ2 − 2λ3)ρ3,

which together with (5.18) implies that

λ1 = 2λ2 + λ3. (5.19)

Combining with (5.1) and (5.18) we obtain

λ3 = − n2+2
n3+1λ2, (λ3 − λ2)

2 = ( n+2
n3+1 )

2λ22 = ρ2
3 ,

which further show that

μ2 = λ22 = ( n3+1
n+2 )2ρ2

3 , μ3 = λ23 − ρ2
3 = − (n3+1)(n+n2+4)

(n+2)2
ρ2
3 .
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By combining this with (5.13) we have

λ2 = 1
2 (μ2 − μ3)ρ

−1
3 = n3+1

n+2 ρ3, λ3 = − n2+2
n+2 ρ3, (5.20)

which imply that

λ′
2 = n3+1

n+2 ρ2
3 . (5.21)

On the other hand, by (5.19) and (5.20) we see from the second equation of (5.3) and
the first equation of (4.7) that

λ′
2 = 1

2 (μ1 − μ2) = λ3λ2 = − (n2+2)(n3+1)
(n+2)2

ρ2
3 .

Together with (5.21) we have ρ3 = 0. This contradiction shows that H2 �= 0.
Now, by H2 �= 0, (5.13)-(5.15) and (5.17) we obtain (5.16), which together with

Lemma 5.2 implies H3 �= 0. ��
Finally, based on previous lemmas, we can prove Theorem 1.4.

Completion of Theorem 1.4’s Proof Define a vector field by

g3 = M(λ2ξ + μ2T ), (5.22)

where M(t) is a nonzero solution of the equation M ′ + M(λ1 − λ2) = 0. Then direct
computations give that

DT g3 = (M ′ + M(λ1 − λ2))(λ2ξ + μ2T ) = 0,

DXg3 = M(−μ2λ2X + μ2(∇̂XT + K (X , T ))) = 0,

DY g3 = g3∗Y = −M(μ2(ρ3 − λ3) + μ3λ2)Y ,

DY ′ DY g3 = −M(μ2(ρ3 − λ3) + μ3λ2)

· [∇̂⊥
Y ′Y + L3(Y ,Y ′) + h(Y ,Y ′)(ξ + (ρ3 + λ3)T )],

(5.23)

where ∇̂⊥
Y ′Y = ∇̂Y ′Y − ρ3h(Y ,Y ′)T is the projection of ∇̂Y ′Y on D(μ3), and L3 is

the projection tensor of K on D(μ3) defined by (3.9).
Similarly, define another vector field

g2 = N ((λ3 − ρ3)ξ + μ3T ), (5.24)

where N (t) is a nonzero solution of N ′ + N (ρ3 + λ1 − λ3) = 0. It holds that

DT g2 = (N ′ + N (ρ3 + λ1 − λ3))((λ3 − ρ3)ξ + μ3T ) = 0,

DY g2 = N (−μ3(λ3 − ρ3)Y + μ3(∇̂Y T + K (Y , T ))) = 0,

DXg2 = g2∗X = N (μ3λ2 + μ2(ρ3 − λ3))X ,

DX ′ DXg2 = N (μ3λ2 + μ2(ρ3 − λ3))

· [∇̂⊥
X ′ X + L2(X , X ′) + h(X , X ′)(ξ + λ2T )],

(5.25)
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where ∇̂⊥
X ′ X is the projection of ∇̂X ′ X on D(μ2), and L2 is the projection tensor of

K on D(μ2) defined by (3.9).
From Lemma 5.3 we have μ2(ρ3 − λ3) + μ3λ2 �= 0. Then, by (5.23) (resp. (5.25))

we see that g3 (resp. g2) is an immersion from the integral manifold M3 (resp. M2)
of D(μ3) (resp. D(μ2)) into the affine space. Moreover, by (5.14), (5.22) and (5.23)
there holds

DY ′ DY g3 = g3∗(∇̂⊥
Y ′Y + L3(Y ,Y ′)) − h(Y ,Y ′)(μ3 − λ23 + ρ2

3 )g3 ∈ D(μ3) + span(g3),

where μ3 − λ23 + ρ2
3 = H3ρ

2
3 �= 0. It follows from Lemma 3.4 that L3 satisfies

apolarity condition, and R̂⊥(Y ,Y ′) · L3 �= 0 in general, thus g3 is a proper affine
hypersphere with affine metric ρ2

3h = f −2
3 h (cf. (5.6)), affine mean curvature H3,

and difference tensor L3. It follows from Proposition 3.1 that g3 is an ellipsoid if
μ3 − λ23 = ρ2

3 (H3 − 1) ≥ 0, i.e., H3 ≥ 1.
Similarly, we have

DX ′ DXg2 = g2∗(∇̂⊥
X ′ X + L2(X , X ′)) − h(X , X ′)(μ2 − λ22)g2 ∈ D(μ2) + span(g2),

where μ2 −λ22 = H2 �= 0. Then, we see from ρ2 = 0 and Lemma 3.4 that L2 satisfies
apolarity condition and R̂⊥ · L2 = 0. Therefore, g2 is a proper affine hypersphere
with affine metric h, affine mean curvature H2, and difference tensor L2. Hence, g2
has semi-parallel cubic form. It follows from Proposition 3.1 that g2 is an ellipsoid if
H2 > 0.

Let β1(t) and β2(t) be functions such that

β ′
1 = −β2, β ′

2 = 1 + β1μ1 − β2λ1.

Denote by δ1 = 1+ μ2β1 − λ2β2 and δ2 = 1+ μ3β1 + (ρ3 − λ3)β2. It follows from
Lemma 5.3 that μ2(ρ3 − λ3) + μ3λ2 �= 0. Then, by choosing the initial conditions
for β1 and β2 appropriately we can let δ1(0) = δ2(0) = 0. Moreover, from (4.6) and
(5.3) we see that

δ′
1 = −λ2δ1, δ′

2 = (ρ3 − λ3)δ2.

Therefore, by the initial conditions we have δ1 = δ2 = 0 identically.
Now, straight computations from above show that

DX (β1ξ + β2T ) = X , ∀ X ∈ D(μ2),

DY (β1ξ + β2T ) = Y , ∀ Y ∈ D(μ3),

DT (β1ξ + β2T ) = T .

Then, up to a translation constant, we can write F : Mn → R
n+1 as

F = β1ξ + β2T .
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From (5.22) and (5.24), as μ2(ρ3 − λ3) + μ3λ2 �= 0, by (5.15) and (5.17) we can
uniquely express ξ and T to obtain

F(t, x, y) = γ2(t)g2(x) + γ3(t)g3(y), (5.26)

where x = (x1, . . . , xn2), y = (y1, . . . , yn3),

γ2(t) = N−1

μ2(ρ3−λ3)+μ3λ2
= 1

H3Nλ2ρ
2
3
,

γ3(t) = −M−1

μ2(ρ3−λ3)+μ3λ2
= − 1

H3Mλ2ρ
2
3
.

By (5.3), (5.5) and (5.14), direct computations show that

γ ′
2(t) = λ2γ2(t), γ ′

3(t) = (λ3 − ρ3)γ3(t),

where, it follows from (5.6) and (5.7) that

λ2 = 1
2 (μ3 − μ2)t, λ3 − ρ3 = 2μ3

(μ3−μ2)t
.

Furthermore, we put ρ3 = −1/t and (5.7) into the first equation of (5.5) to get

t2(μ1 − μ2)(μ2 − μ3)
2 = 2(μ1 − μ3)(μ2 + μ3).

By (5.7) and Lemma 5.3 we can rewrite the nonzero constants H2 and H3 by

H2 = μ2 − 1
4 (μ2 − μ3)

2t2, H3 = μ3t
2 + 2

μ2−μ3
.

Summing above, we have completed the proof of Theorem 1.4. ��

6 Proof of Theorem 1.5

Let F : Mn → R
n+1 be a locally strongly convex quasi-umbilical affine hypersurface

with R̂ ·C = 0 and n ≥ 3. Denote byμ1, μ2 the two distinct affine principal curvatures
of multiplicity (1, n − 1), respectively. Then, Mn is not an affine hypersphere. Let T
be the unit eigenvector field of the affine principal curvature μ1. As before, omit the
upper index j = 1 for λ

j
i in Lemma 3.2, we have

ST = μ1T , SX = μ2X ,

KT T = λ1T , KT X = λ2X , ∀ X ∈ D(μ2),
(6.1)

where by apolarity condition it holds that

λ1 + (n − 1)λ2 = 0. (6.2)
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Remark 6.1 λ1, λ2 are distinct and nonzero, Mn is affinely equivalent to one of the
three classes of immersions in Theorem 2.2 by taking m = n − 1. In fact, it follows
from (6.1) thatMn satisfies the conditions of Theorem 2.2. In the proof of Theorem 2.2
in [1], it was shown in Lemma 3 that if λ2 = 0, then KT = 0 and Mn is an affine
hypersphere. In our situation, by Mn being not an affine hypersphere we can exclude
this possibility in Theorem 2.2, and obtain the conclusions.

Next, for more information we will show the warped product structure and discuss
all the possibilities of the immersion. By (6.1) we see from (2.5) that

R̂(X , T )T = (λ22 − λ1λ2 + 1
2 (μ1 + μ2))X

for any unit vector field X ∈ D(μ2). Asλ2 �= 0, it follows from (6.2) thatλ1−2λ2 �= 0.
Then, by (3.1) we can compute

h(R̂(X , T )K (T , T ), X) = 2h(K (R̂(X , T )T , T ), X)

to obtain that

λ22 − λ1λ2 + 1
2 (μ1 + μ2) = 0, (6.3)

which together with (6.2) implies that

μ1 + μ2 = −2nλ22 < 0. (6.4)

In the proof of Theorem 2.2 in [1], together with (6.3) it was shown that

∇̂T T = 0, ∇̂XT = −αX , T (α) = α2,

X(α) = X(μ1) = X(μ2) = X(λ2) = 0, ∀ X ∈ D(μ2),

T (λ2) = (n + 1)λ2α + 1
2 (μ1 − μ2),

T (μ2) = (μ2 − μ1)(α − λ2).

(6.5)

Therefore,D(μ1) is auto-parallel and the distributionD(μ2) is sphericalwith themean
curvature vector αT . It follows from Theorem 2.3 that Mn is locally a warped product
R × f M2, where R and M2 are, respectively, integral manifolds of the distributions
D(μ1) and D(μ2). The warping function f is determined by α = −T (ln f ). As
before, we take the local coordinate {t, x1, . . . , xn−1} on Mn such that ∂

∂t = T ,
span{ ∂

∂x1
, . . . , ∂

∂xn−1
} = D(μ2). Hence all functions μi , λi , α and f depend only on

t .
Denote by ∂t () = (·)′, we have α = − f ′/ f . By solving from the equations above

for f and α, we get that, up to a translation and a direction of the parametric t ,

f = 1, α = 0; or f = t, α = − 1
t , (6.6)
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where locally we take t > 0. From (6.4)-(6.6) we can check that (μ2 − λ22)
′ = 0 if

f = 1, and ((μ2 − λ22)/α
2)′ = 0 if f = t . Therefore, by (6.4) and (6.6) we have a

constant:

H0 =
{

μ2 − λ22 = μ1+(2n+1)μ2
2n , if f = 1,

1 + (μ2 − λ22)/α
2 = 1 + μ1+(2n+1)μ2

2n t2, if f = t .
(6.7)

Finally, based on the proof ofTheorem2.2 and (6.6)wewill follow the computations
in [3] for three kinds of immersion in Theorem 2.2 to prove the following theorem,
which give the explicit expressions of the immersions in Theorem 1.5.

Theorem 6.1 Let Mn be a locally strongly convex quasi-umbilical affine hypersurface
in Rn+1 with R̂ ·C = 0 and n ≥ 3. Denote by μ1, μ2 the two distinct affine principal
curvatures of multiplicity (1, n − 1), respectively. Then, (Mn, h) is locally isometric
to the warped productR+ × f M2, where f (t) = 1 or t. Moreover, H0 defined by (6.7)
is a constant, and Mn is affinely equivalent to one of the following hypersurfaces:

(1) The immersion (γ1(t), γ2(t)g2(x1, . . . , xn−1)) if H0μ2 �= 0 and f (t) = 1, where
γ ′
1γ

n
2 = 1, γ2 is explicitly given in (6.10), g2 is a hyperbolic affine hypersphere

with semi-parallel cubic form if H0 < 0, or an ellipsoid if H0 > 0.
(2) The immersion (γ1(t), γ2(t)g2(x1, . . . , xn−1)) if H0μ2 �= 0 and f (t) = t , where

γ ′
1γ

n
2 = tn+1, γ2 is a positive solution to the differential equation

γ2 = k(t)1/(n+1), t2k′′(t) − (n + 1)tk′(t) + (n + 1)H0k(t) = 0,

g2 is a locally strongly convex proper affine hyperspherewith affinemean curvature
H0, and it is an ellipsoid if H0 ≥ 1.

(3) The immersion (γ1(t)x,
1
2γ1(t)

∑n−1
i=1 x2i + γ2(t), γ1(t)) if μ2 �= 0, H0 = 0 and

f (t) = 1, where

γ1 = ((n + 1)t)
1

n+1 , γ2 = t((n+1)t)(n+2)/(n+1)

4n+6 , x = (x1, . . . , xn−1).

(4) The immersion (γ1(t)x, γ1(t)g(x)+γ2(t), γ1(t)) ifμ2 �= 0, H0 = 0 and f (t) = t ,
where

γ1 = ( n+1
n+2 t

n+2 + c1)
1

n+1 , γ ′
2 = n+1

n+2γ
′
1 ln t − γ1

(n+2)t , x = (x1, . . . , xn−1),

c1 is a constant, and g(x) is a convex function whose graph immersion is a
parabolic affine hypersphere.

(5) The immersion (x1, . . . , xn−1, g(x1, . . . , xn−1) − 1
n+2 ln t,

1
n+2 t

n+2) if μ2 = 0,
where the warped function f (t) = t and g is a convex function whose graph
immersion is a parabolic affine hypersphere.

Proof We continue the analysis as above. First, we remark that μ2 = 0 if and only if
α = λ2. In fact, it follows from the last equation of (6.5) that α = λ2 if μ2 = 0. If
α = λ2, by taking its derivative on both sides, we see from (6.4) and (6.5) thatμ2 = 0.
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Therefore, μ2 �= 0 if and only if α �= λ2. Then, by H0 defined by (6.7) we divide our
discussions into three cases:

Case I: H0μ2 �= 0; Case II: μ2 �= 0, H0 = 0; Case III: μ2 = 0.
Case I. In this case, by (6.6) and (6.7) we have

μ2
2 + (α − λ2)

2 �= 0, μ2 − λ22 + α2 �= 0. (6.8)

Then it was shown in [1] that Mn is locally given by

F(t, x1, . . . , xn−1) = (γ1(t), γ2(t)g2(x1, . . . , xn−1)),

where g2 is the proper affine hypersphere. The same proof in [1] implies that the
projection tensor L2 of the difference tensor onD(μ2) (cf. (3.9)) is the difference tensor
of g2, and g2 has the affine metric f −2h, affine mean curvature (μ2 − λ22 + α2) f 2 =
H0 �= 0 (cf. (6.6)-(6.8)) and the affine normal −H0g2. Then, by the computations of
this immersion on page 292-294 in [3] we take λ = −H0 in (4.3) of [3], and deduce
that

γ ′
1γ

n
2 = f n+1, γ2 = k(t)1/(n+1),

f 2k′′(t) − (n + 1) f f ′k′(t) + (n + 1)H0k(t) = 0,
(6.9)

where k(t) and γ2 are positive functions.
If f = 1, then α = 0. By Lemma 3.4 (iv) the integral manifold M2 of D(μ2) is

totally geodesic and R̂⊥ ·L2 = 0, i.e., g2 has semi-parallel cubic form. Proposition 3.1
and (6.7) further imply that g2 is an ellipsoid if H0 = μ2 − λ22 > 0. Moreover, (6.9)
reduces to γ ′

1γ
n
2 = 1 and γ2 = k(t)1/(n+1), where k′′(t)+ (n+1)H0k(t) = 0. Solving

this equation we obtain that

γ2 =
⎧
⎨

⎩
(c1e

√−(n+1)H0t + c2e−√−(n+1)H0t )
1

n+1 , if H0 < 0,

(c1 cos(
√

(n + 1)H0t) + c2 sin(
√

(n + 1)H0t))
1

n+1 , if H0 > 0,
(6.10)

where the constants c1, c2 are chosen such that γ2 > 0. This is the immersion (1).
If f = t , then α = −1/t . We see from (6.7) and Proposition 3.1 that g2 is an

ellipsoid if μ2 − λ22 = α2(H0 − 1) ≥ 0, i.e., H0 ≥ 1. Then, (6.9) reduces to γ ′
1γ

n
2 =

tn+1, γ2 = k(t)1/(n+1) and

t2k′′(t) − (n + 1)tk′(t) + (n + 1)H0k(t) = 0. (6.11)

In particular, if k(t) is a power function of t , we deduce that

γ2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1t
n+2

2(n+1) , if H0 = (n+2)2

4(n+1) ,

(c2tτ1 + c3tτ2)
1

n+1 , if H0 <
(n+2)2

4(n+1) ,

0, if H0 >
(n+2)2

4(n+1) ,

(6.12)
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where c1 is a positive constant, c2, c3 are chosen such that γ2 > 0, and τ1, τ2 are the
solutions of the quadric equation τ 2−(n+2)τ +(n+1)H0 = 0. This is the immersion
(2).

Case II. In this case, by (6.6) and (6.7) we have

μ2
2 + (α − λ2)

2 �= 0, μ2 − λ22 + α2 = 0.

It was shown in [1] that Mn is locally given by

F(t, x) = (γ1(t)x, γ1(t)g(x) + γ2(t), γ1(t)),

where x = (x1, . . . , xn−1), and g(x) is a convex function whose graph immersion
is a parabolic affine hypersphere. As before, the same proof in [1] implies that the
projection tensor L2 of the difference tensor on D(μ2) (cf. (3.9)) is the difference
tensor of g. It follows from the computations of such hypersurfaces on page 294 of
[3] that γ1, γ2 satisfy

(γ ′
1γ

′′
2 − γ ′′

1 γ ′
2) f

2 = γ1γ
′
1, f = |γ n

1 γ ′
1|1/(n+1). (6.13)

If f = 1, then α = 0, and thus μ2 − λ22 = 0, it follows from Proposition 3.1 that
L2 = 0, which together with (3.10) of Lemma 3.4 (iii) implies that Mn is a flat and
quasi-umbilical affine hypersurface. We see from Theorem 4.1 of [3] that this is the
immersion (3).

If f = t , by (6.13) we have (γ n+1
1 )′ = ε(n + 1)tn+1, ε ∈ {−1, 1}, which gives

that γ n+1
1 = n+1

n+2εt
n+2 + c1. By applying an affine reflection we may assume γ1 > 0,

then put ε = 1 and γ1 = ( n+1
n+2 t

n+2 + c1)1/(n+1). By (6.13) we get (γ ′
2/γ

′
1)

′ =
n+1
n+2 t

−1 + c1t−n−3, which yields that

γ ′
2/γ

′
1 = n+1

n+2 ln t − c1
(n+2)tn+2 + c2.

Then, since γ n
1 γ ′

1 = tn+1 and c1 = γ n+1
1 − n+1

n+2 t
n+2, we have

γ ′
2 = n+1

n+2γ
′
1 ln t − γ1

(n+2)t + ( n+1
(n+2)2

+ c2)γ
′
1

and

γ2 =
∫ ( n+1

n+2γ
′
1 ln t − γ1

(n+2)t

)
dt + ( n+1

(n+2)2
+ c2)γ1 + c3.

Here, by applying equiaffine transformations we may put c2 = −(n + 1)/(n + 2)2

and c3 = 0. We have the immersion (4).
Case III. By μ2 = 0 we have λ2 = α. It follows from λ2 �= 0 and (6.4)-(6.6) that

λ2 = α = − 1
t , μ2 = 0, f = t, H0 = 0, μ1 = −2nα2. (6.14)
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Moreover, it was shown in [1] that Mn is locally given by

F(t, x) = (x, g(x) + γ1(t), γ2(t)),

where x = (x1, . . . , xn−1), g(x) is a convex function whose graph immersion is a
parabolic affine hypersphere. It follows from the computations of such hypersurfaces
on page 295 of [3] that γ1, γ2 satisfy

γ ′3
2 = (γ ′′

1 γ ′
2 − γ ′

1γ
′′
2 ) f 2(n+2), f =| γ ′

2 |1/(n+1) . (6.15)

Then, as f = t in (6.14), we deduce that

γ ′
2 = εtn+1, t2γ ′′

1 − (n + 1)tγ ′
1 − 1 = 0, (6.16)

where ε ∈ {−1, 1}. Then, we can directly solve these equations to obtain

γ2(t) = ε
n+2 t

n+2 + c1, γ1(t) = − ln t
n+2 + c2t

n+2 + c3.

By applying a translation and a reflection in R
n+1 we may assume that c1 = c3 = 0,

and γ2 > 0, i.e., ε = 1. Also, by possibly applying an equiaffine transformation we
may put c2 = 0. Hence, we obtain the immersion (5). ��
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