The Journal of Geometric Analysis (2023) 33:81
https://doi.org/10.1007/s12220-022-01133-5

®

Check for
updates

Locally Strongly Convex Affine Hypersurfaces
with Semi-parallel Cubic Form

Cece Li'® - Cheng Xing?3 . Huiyang Xu'

Received: 10 June 2022 / Accepted: 3 November 2022 / Published online: 9 January 2023
© Mathematica Josephina, Inc. 2022

Abstract

In this paper, we investigate the locally strongly convex affine hypersurfaces with
semi-parallel cubic form relative to the Levi-Civita connection of affine metric. We
obtain two results on such hypersurfaces which admit at most one affine principal
curvature of multiplicity one: (1) classify these being not affine hyperspheres; (2)
classify these affine hyperspheres with constant scalar curvature. For the latter, by
proving the parallelism of their cubic forms we translate the classification into that of
affine hypersurfaces with parallel cubic form, which has been completed by Hu-Li-
Vrancken (J Differ Geom 87:239-307, 2011).
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1 Introduction

The classical equiaffine differential geometry is mainly concerned with geometric
properties of hypersurfaces in affine space, that are invariant under unimodular affine
transformations. Let R"*! be the (n + 1)-dimensional real unimodular affine space.
On a non-degenerate hypersurface immersion of R"*! | it is well known how to induce
an affine connection V, an affine shape operator S whose eigenvalues are called affine
principal curvatures, and a symmetric bilinear form #, called the affine metric. From
a local point of view, there are two natural tensors, namely the difference tensor K
which is defined as the difference between V and the Levi-Civita connection V of h,
and the cubic form C := Vh. The classical Pick-Berwald theorem states that the cubic
form or difference tensor vanishes, if and only if the hypersurface is a non-degenerate
hyperquadric. In that sense, the cubic form or difference tensor plays the role as the
second fundamental form for submanifolds of real space forms.

In the same style as the Pick-Berwald theorem, geometric conditions on the cubic
form and difference tensor have been used to classify natural classes of affine hypersur-
faces by many geometers in the past decades, see e.g. [5-7, 13, 17-20, 32, 35]. Among
them, one of the most interesting developments may be the classification of locally
strongly convex affine hypersurfaces with parallel cubic form relative to V. In this
subject, F. Dillen, L. Vrancken, et al. obtain the classifications for lower dimensions in
[11, 15, 21, 27], and finally Z. Hu, H. Li and L. Vrancken complete the classification
for all dimensions as follows:

Theorem 1.1 (cf. [23]) Let M be an n-dimensional (n > 2) locally strongly convex
affine hypersurface in R"*1 with VC = 0. Then, M is either a hyperquadric (i.e.,
C = 0) or a hyperbolic affine hypersphere with C # 0, in the latter case either

(1) M is obtained as the Calabi product of a lower dimensional hyperbolic affine

hypersphere with parallel cubic form and a point, or

(ii) M is obtained as the Calabi product of two lower dimensional hyperbolic affine
hyperspheres with parallel cubic form, or

(i) n = %m(m + 1) —1, m >3, (M, h) is isometric to SL(m, R) /SO(m), and M is
affinely equivalent to the standard embedding SL(m, R)/SO(m) — R"*1 or

(v) n =m? —1, m >3, (M, h) is isometric to SL(m, C) /SU(m), and M is affinely
equivalent to the standard embedding SL(m, C)/SU(m) — R**1 or

V) n=2m?>—m—1, m >3, (M, h) is isometric to SU*(2m)/Sp(m), and M is
affinely equivalent to the standard embedding SU* (2m) /Sp(m) — R**1 or

(vi) n = 26, (M, h) is isometric to E¢_26)/Fa, and M is affinely equivalent to the
standard embedding Ee¢_26)/F4 — R?7.

As that did in [23, 24], we say that an affine hypersurface is of semi-parallel (resp.
parallel) cubic form relative to the Levi-Civita connection of affine metric if R-C=0

(resp. VC = 0), where R is the curvature tensor of affine metric, and the tensor R.-C
is defined by

R(X,Y)-C = VxVyc — VyVxC — Vix.y|C (1.1)
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for tangent vector fields X, Y. Obviously, the parallelism of cubic form implies its
semi-parallelism, the converse is not true, we refer to Remark 3.1 for the counter-
examples.

In this paper, we investigate locally strongly convex affine hypersurfaces with semi-
parallel cubic form relative to the Levi-Civita connection of affine metric. First, we
prove that if all the affine principal curvatures of the hypersurface have multiplicity
more than one, then the hypersurface is an affine hypersphere. If further assume that
its affine metric is of constant scalar curvature, by proving the parallelism of the cubic
form we translate the classification into that of Theorem 1.1. More precisely, let H,
A and Ric be the affine mean curvature, Laplacian operator and Ricci curvature of
affine metric &, respectively, we can state the first main result as follows.

Theorem 1.2 Let M" be a locally strongly convex affine hypersurface in R*1 with
R-C =0andn > 2. Assume that M" does not admit any affine principal curvature
of multiplicity one. Then M" is either a hyperquadric (i.e., C = 0) or a hyperbolic
affine hypersphere with non-positive scalar curvature k and C # 0. Moreover, there
hold

20k = |VC|7, (12)
(n+ D H = |R|} + ||Ric|?, (1.3)
where || - || denotes the tensorial norm with respect to h. If additionally assume that

K is constant for n > 3, then VC = 0, and M" is affinely equivalent to one of the
examples in Theorem 1.1.

Remark 1.1 For a locally strongly convex affine hypersurface M", Theorems 1.1
and 1.2 imply that:

(1) If n > 3, itis an affine hypersphere with R - C = 0 and constant scalar curvature
if and only if VC = 0. . .
(2) If n = 2, itis an affine sphere with R - C = 0 if and only if VC = 0.

We conjecture that any locally strongly convex affine hypersphere with R-C=0
must satisfy VC = 0.

Second, if the hypersurface admits exactly one affine principal curvature of mul-
tiplicity one, then the number of its distinct affine principal curvatures is either three
or two (i.e., the hypersurface is quasi-umbilical), which are further classified, respec-
tively. These results are given precisely in the following theorems.

Theorem 1.3 Let M" be a locally strongly convex affine hypersurface in R+ with
R -C = 0andn > 3. If it admits exactly one affine principal curvature of multiplicity
one, then the number of its distinct affine principal curvatures is either two or three.

'[heorem 1.4 Let M™ be a locally strongly convex affine hypersurface in R"*! with
R-C = 0andn > 5. Assume that there are exactly three distinct affine principal
curvatures [L1, L2, 3 of multiplicity (1, ny, n3) withny > 2 and nz > 2, respectively.
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Then (M", h) is locally isometric to the warped product Ry x M> x; M3, and each
Wi is a function which depends only on t such that o3 # 0,

(= p2) (2 = p3)* = 2(u1 — p3) (2 + pa).-
Moreover, M" is affinely equivalent to
F(t, p2, p3) = (2(0)92(p2), y3(1)$3(p3)),
where y», y3 are nonzero functions satisfying
vs =33 — w2y, yi = (mz,%)/_%

and ¢; : M; — R %1 is a locally strongly convex proper affine hypersphere with the
affine mean curvature H; fori = 2, 3, which are nonzero constant defined by

2
M2—p3’

Hy = py — 3(u2 — 13)*t?, Hy = pat® +

@2 is an ellipsoid if Hy > 0 and is of semi-parallel cubic form otherwise, whereas ¢3
is an ellipsoid if H3 > 1.

Theorem 1.5 Let M" be a locally strongly convex quasi-umbilical affine hypersurface
inR"™ ! withR-C =0andn > 3. Then (M", h) is locally isometric to the warped
product Ry x ¢ Mo, and M" is affinely equivalent to one of the immersions explicitly
described in Theorem 6.1, where the warped function f(t) = 1 ort.

Remark 1.2 The examples in Theorems 1.4 and 1.5 are the generalized Calabi com-
positions of affine hyperspheres in some special forms. The construction method of
such examples initially originates from E. Calabi [8], and now has been extended and
characterized by F. Dillen, L. Vrancken, Z. Hu, H. Li, et al. in [1, 2, 12, 22].

This paper is organized as follows. In Sect. 2, we briefly review the local theory of
equiaffine hypersurfaces, some results and concepts of warped product manifolds. In
Sect. 3, we begin with the Tsinghua principle to study the properties of the hypersur-
faces involving the affine principal curvatures, the difference tensor and the eigenvalue
distributions of affine shape operator, and present the proof of Theorem 1.2. Based on
these properties, in Sect. 4 we obtain Theorem 1.3 by showing the number of the affine
principal curvatures being three or two. In either case, we prove the warped product
structure, discuss all the possibilities of the immersion and complete the proofs of
Theorems 1.4 and 1.5 in last two sections, respectively.

2 Preliminaries

In this section, we briefly recall the local theory of equiaffine hypersurfaces. For more
details, we refer to the monographs [26, 29].
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Let R"*! denote the standard (n + 1)-dimensional real unimodular affine space
that is endowed with its usual flat connection D and a parallel volume form w, given
by the determinant. Let F : M" — R™*! be an oriented non-degenerate hypersurface
immersion. On such a hypersurface, up to a sign there exists a unique transversal
vector field &, called the affine normal. A non-degenerate hypersurface equipped with
the affine normal is called an (equi)affine hypersurface, or a Blaschke hypersurface.
Denote by X, Y, Z, W the tangent vector fields on M”" from now on. By the affine
normal we have

DxF,Y = F,VxY + h(X, Y)§, (Gauss formula)  (2.1)
Dx& = —F,SX, (Weingarten formula)  (2.2)

which induce on M" the affine connection V, a symmetric bilinear form £, called
the affine metric, the affine shape operator S whose eigenvalues are called affine
principal curvatures, and the cubic form C := Vh. An affine hypersurface is called
locally strongly convex if h is definite, we always choose &, up to a sign, such that % is
positive definite. We call a locally strongly convex affine hypersurface quasi-umbilical
if it admits exactly two distinct affine principal curvatures, one of which is simple.

Let V be the Levi-Civita connection of the affine metric /. The difference tensor
K is defined by

K(X,Y):=VyxY — VxY. (2.3)

We also write KxY and Ky = Vy — @X. Since both V and V have zero torsion, K
is symmetric in X and Y. It is related to the totally symmetric cubic form C by

CX,Y,Z)=-2h(K(X,Y), Z), 2.4)

which implies that the operator Ky is symmetric relative to 4. Moreover, K satisfies
the apolarity condition, namely, tr Ky = 0 for all X.

The curvature tensor R of affine metric 4, S and K are related by the following
Gauss and Codazzi equations:

R(X,Y)Z = §[n(Y, 2)SX — h(X, Z)SY + h(SY, Z)X — h(SX, Z)Y] 05
—[Kx, KylZ,
VxK)(Y, Z) = (VyK)(X, Z) 06
= LAY, 2)SX — h(X, Z)SY — h(SY, Z)X + h(SX, Z)Y],
(VxS)Y — (Vy$)X = K(SX,Y) — K(SY, X), (2.7)
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where, by definitions, [Kx, Ky]Z = KxKyZ — KyKxZ, and

R(X,Y)Z =VxVyZ — VyVxZ — Vix.y1Z,
(VxK)(Y,Z)=Vx(K(Y,Z)) — K(VxY.Z) — K(Y,VxZ),
(VxS)Y = Vx(SY) — SVxY.

Contracting Gauss equation (2.5) we obtain
x=H+1/J, (2.8)

where J = n(n+l)h(K’ K),H = %tr S, x = ﬁ and « are the Pick invariant, affine

mean curvature, normalized scalar curvature and scalar curvature of &, respectively.
Recall the second covariant differentiation of K, defined by

Vi K =VxVyK =V K,
and the following Ricci identity:

(V3 K)Z. W) — (V3 yK)(Z, W) = (R(X,Y)  K)(Z. W)
= RX,V)K(Z,W) — K(R(X,Y)Z, W) — K(Z, R(X, Y)W).

The affine hypersurface M" is called an affine hypersphere if S = H id. Then it
follows from (2.7) that H is constantifn > 2. M" is said to be a proper (resp. improper)
affine hypersphere if H is nonzero (resp. zero). Moreover, a locally strongly convex
affine hypersphere is called parabolic, elliptic or hyperbolic according to H = 0,
H > 0or H < 0, respectively. For affine hyperspheres, the Gauss and Codazzi
equations reduce to

R(X,Y)Z = H[h(Y,Z)X — h(X, Z)Y] — [Kx, Ky1Z, (2.9)
(VxK)(Y, Z) = (VyK)(X, Z). (2.10)

We collect the following two results for later use.

Theorem 2.1 _(cf. Theorem 6.2 of [24]) A locally strongly convex affine surface M 2 in
R3 satisfies R - C = 0 if and only if either M? is locally a quadric or (M?, h) is flat.

Theorem 2.2 (cf. Theorem 1 of [1]) Let M > 2 bea locally strongly convex
affine hypersurface of the affine space R™*2 such that its tangent bundle is an orthog-
onal sum, with respect to the affine metric h, of two distributions: a one-dimensional
distribution D1 spanned by a unit vector field T and an m-dimensional distribution
D», such that

KT, T)=MmT, K(T,X)=xnX,
ST =T, SX=uX, VXeD,.
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Then either MV is an affine hypersphere such that K1 = 0 or is affinely congruent
to one of the following immersions:

(1) f@, x1, .., xm) = V1 (1), y2(0)g2(x1, . .., X)), for y1, y2 such that
evivnvy —vi'vy) <0;
(2) f@, x1, s xm) = V1(OCX1, -, Xm) + v2(t)em1, for yi, ya such that

I

sgn(m V2 = Vf/yz/) = sgn(yin) # 0;
(3) [, x1,. .. xm) = C(x1, ..., Xm) + V2D emt1 + Y1 (O emy, for y1, ya such that
sgn(y1yy — vi'va) = sen(y)) # 0.

Here g5 : R™ — R™*1isaproper affine hypersphere centered at the origin with affine
mean curvature €, and C : R™ — R 2 is an improper affine hypersphere, given by
Cxty ooy Xm) = X1y ooy X, P(X1, .« .., X)), 1), with the affine normal e, 1.

Finally, we review some notions of warped product manifolds and subbundles.
For Riemannian manifolds (B, gg), (M1, g1), ..., (M, gr) and positive functions
fis---s ft ©+ B = R, the manifold M := B x M| x --- x My equipped with the
metric h = gp @ flzgl ®--- D szgk is a warped product manifold with warped
functions f;, denoted by B x sy My x - - - X 5, M. Let V be the Levi-Civita connection
of a Riemannian manifold (M, h). A subbundle E C T M is called auto-parallel if
@XY € E holds for all X, Y € E. Whereas a subbundle E is called totally umbilical
if there exists a vector field V € E- such that h(%xY, Z)=h(X,Y)h(V, Z) for all
X, Y € E and Z € EL, here we call V the mean curvature vector of E. If, moreover,
h(VxV, Z) = 0 holds, we say that E is spherical. We conclude this section by the
decomposition theorem of Riemannian manifolds.

Theorem 2.3 (cf. Theorem 4 of [28]) Let M be a Riemannian manifold, and let T M =
@f:o E; be an orthogonal decomposition into nontrivial vector subbundles such that
E; is spherical and Ell is autoparallel for i = 1, ..., k. Then, for every point p €
M there is an isometry ¥ of a warped product My X sy My X --- X . My onto a
neighbourhood of p in M such that ¥ ({po} X - - - X {pi—1} X M; x {pi+1} x - - x{px})
is an integral manifold of E; fori =0, ...,k and all py € My, ..., px € My.

3 Properties of Affine Hypersurfaces with R-C=0

From this section on, when we say that an affine hypersurface has semi-parallel cubic
form, it always means that R - C = 0, equivalently R - K = 0. Then, by the Ricci
identity of K we have

RX,Y)K(Z,W) =KRX,Y)Z, W)+ K(Z, R(X,Y)W). (3.1

@ Springer



81 Page80f33 C.Lietal

In fact, by (2.4) and the Ricci identities of C and K, the equivalence above follows
from the following formula:

(R-C)U,V,X,Y,Z)=(R(U,V)-C)(X,Y,Z)
=—C(X,Y,RWU,V)Z)—C(X,R(U,V)Y,Z)—CRWU,VX,Y,Z)
=2[h(KxY,R(U,V)Z) +h(KxR(U, V)Y, Z) + h(KyR(U, V)X, Z)](3.2)
= —2h(R(U,V)KxY — KxR(U, V)Y — KyR(U, V)X, Z)
= —2h((RWU,V)-K)X,Y), Z).

Remark 3.1 Besides examples in Theorem 1.1, we see from (3.1) that all flat affine
hypersurfaces satisfy R - C = 0. Therefore, to see the examples whose cubic forms
are semi-parallel but not parallel, we refer to Remark 6.2 in [24] for such flat surfaces,
and Theorem 4.1 in [3] for the flat and quasi-umbilical affine hypersurfaces.

In what follows, if no other stated, we always assume that M" is a locally strongly
convex affine hypersurface with semi-parallel cubic form. First, by using the Codazzi
equations for both the shape operator and the difference tensor, we obtain some lin-
ear equations involving the components of the difference tensor and affine principal
curvatures as follows.

Lemma 3.1 Let M" (n > 2) be a locally strongly convex affine hypersurface in R"+!1
with R - C = 0. Denote by {eq, ..., ey} the orthonormal frame of M", where e; are
the eigenvector fields of the shape operator S with corresponding eigenvalues |i;,
i=1,...,n. Then, foranyi, j,k, £, there holds
(ke — mi)l8jeK (ex, ei) + h(K (e, ei), ep)ej]

+ (i — uj)0keK (ei, ej) +h(K(ei, ej), ep)er] (3.3)

+ (j — )i K (e, ex) +h(K(ej, ex), eg)e;] = 0.
Proof By the second covariant differentiation of K and (3.2) it holds that

Vi x )Y, 2) = (V3 wK)(Y, Z) = (RW, X) - K)(Y,Z) =0.  (3.4)

On the other hand, direct calculations show that

ow x v {(Viy xK)(Y, Z) — (Vi K)(Y, 2)}

R R 3.5
= ow x. (Vi xK)(Y, Z) — (V§, yK)(X, 2)},

where oW x y denotes the cyclic summation over W, X, Y. Moreover, by the second
covariant differentiation of K we have (see also (3.3) in [3])
(Vi xK)(Y, Z) = (V§, yK)(X, Z)
= (VwVK)(X,Y,Z) — (VwVK)(Y, X, Z)
= Hh(Y., Z)(Vw X — h(X, Z)(Vy S)Y
—h(VwS)Y, Z)X + h((Vw )X, Z)Y},

(3.6)
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where the last equality follows from the covariant differentiation of (2.6) along W.
Together with (2.7), by (3.4) and (3.5) we see that

0 = 20w x.y{(Viy xK)(¥. Z) — (V§, y K)(X. 2)}
=h(Y,Z)(K(SW,X)—K(SX, W))+h(W, Z)(K(SX,Y)—K(SY, X)) 37
+h(X, Z)(KSY, W)—K(SW,Y)+h(K(SY, W)—K(SW,Y), Z)X
+h(K(SW,X)— K(SX, W), Z2)Y + h(K(SX,Y) — K(SY, X), Z)W.

Finally, by taking X =e¢;,Y =e;, W = ¢, Z = ¢; in (3.7) we have (3.3). O

Remark 3.2 The technique used in Lemma 3.1, is based on the Tsinghua principle due
to H. Li, L. Vrancken and X. Wang [3]. For some tensor, it allows one to take the
cyclic permutation of the covariant derivative of its Codazzi equation, use the Ricci
identity in an indirect way and express the tensor in a conveniently chosen frame, see
[4, 9, 10, 14, 25] for its applications in various purposes.

By the notations of Lemma 3.1, we always denote by ©(1;) the eigenvalue distri-
bution of S corresponding to the eigenvalue i; and by #; its dimension. Note that the
conclusion of Lemma 3.1 is the same as Lemma 3.1 of [3], although the assumptions
are different. Therefore, following the proof of Lemma 3.2 in [3], by (3.3) we obtain
the same results as below.

Lemma 3.2 The difference tensor K satisfies:

(i) If i #pjandn;,nj > 2, then K(e;,ej) = 0.

(ii) Ifnj = 1 and n; > 2, then there exist functions A{ = h(Ke,e;, ej) depending on
the choice of |, pj such that K (ej, e;) = k{ e;.

(iii) If there are at least two different eigenvalues ; # i such that nj,ny > 2
and nj = 1, then there exists a differentiable function A; such that it holds that

(j — pdA = (wj — A = Aj.

Furthermore, by Codazzi equation (2.7) we have

ei(pujlej —ej(pidei +njVeej — 1iVe,ei

. . 3.8)
= 8Vgej— SVeei + (i — pnj)K(ei, ej).

By multiplying this with the eigenvector e;, we get the following lemma.
Lemma 3.3 It holds that
(i) ei(uj) = (uj — pidh(Vesej — Kejej, ) fork = j # i
(ii) e ()8 — ej(AlLi)aik + (j — mi)h(Veej, er)
= (i — wiOh(Ve;ei, er) + (i — wjh(Keej, ex) foranyi, j, k.
By taking e;,e; € D(u;) and ¢, € D (i)t in Lemma 3.3 (ii), we see that each
eigenvalue distribution © (u; ) forms an integrable subbundle. Similarly, taking e;, e; €
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D (i) in Lemma 3.3 (i) for i # j, we get that each eigenvalue of multiplicities more
than one is constant on its integral submanifolds.

Next, for more information we also denote by iy, ..., i, the eigenvalue func-
tions of affine shape operator S with the multiplicity one, and by uq, ..., u, the
corresponding unit eigenvector fields. Let w1, ..., iy be the eigenvalues of higher
multiplicities, and v’i e v,ii be the orthonormal eigenvector fields of u;, which span

the distribution ®(w;) fori = 1,...,s. Note from Lemma 3.2 that K(vj., v,’;) €
@;zl Span(u ;) @ D(u;). Define tensors L : D (i;) x D(i;) — D(u;) given by

r
L'(X,X) =KX, X) = > A h(X, Xy, i=1,....s, 3.9)
j=1

which are the projection of K onto the distribution ® (u;), then we are ready to prove
the next two results.

Lemma3.4 Let M" be a locally strongly convex affine hypersurface in R ypith
R - C = 0. If the multiplicity of affine principal curvature |; is more than one, then

(i) The eigenvalue distribution D (;) is integrable, on which p; is constant.
(it) L' is totally symmetric and satisfies the apolarity condition. '
(iii) Forany X, X', X" € ®(u;),W € ©(u;)*, there hold R(X, X') - L' =0, and

RX, X)X = (i = Y DDIX', X)X = h(X, X")X]

o =1 (3.10)
—[Li, L 1X",

R(X, X)W =0.

(iv) Assume that D (u;) is spherical. Denote by RL the curvature tensor of the con-
nection NV+ on the integral manifold of ©(u;) induced from (M", h), and by p; T
the mean curvature vector with the unit vector T € D (u; YL, Then

(R*(X. X" - L) (X", X)
= pH{h(X, X")L'(X', X) — h(X', X" )L'(X, X)
+h(X, X)L'(X', X"y — h(X', X)L'(X, X")
+h(X', L'(X", X)X — h(X, L' (X", X)) X'},

(3.11)

where RH(X, X)X = R(X, X)X" + p?(h(X', X)X — h(X, X")X'). In par-
ticular, if ® (u;) is auto-parallel, i.e., p; = 0, then RL.Li=o0.

Proo_f The previous analysis after Lemma 3.3 gives the proof of the part (i). Note that
h(Ll(v;., v, vy) = h(K (v’j, vp), vp) is totally symmetric. The apolarity condiFion
yields 3% K(uj uj) + 35 ZZ‘:] K(vf), vf,) = 0. Then, for arbitrary v €
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D (1), by (3.9) and Lemma 3.2 there holds

n; ni
DRI V), vh) =T h(K (], v)), vh)

p=1 p=1

ne r
==Y > h(K@h.v5). vh) = > h(K (uj.uj). vi) = 0.
j=1

t#i p=1

(3.12)

Therefore, Z;Ll Li (v;, v;) =0, i.e., the tensor L' satisfies the apolarity condition.
We have proved part (ii).

Denote also by L4, X" = L'(X, X'). By the total symmetry of L', Lemma 3.2 and
(3.9) we have

[Li i LiX/]X// — Li(X, Li(X/, X//)) _ Li(X/, Li(X, X//))
=KX, L'X', X") — KX, L'(X, X"))
=KX, KX,X")-KX,K(X,X")

=Y WX X"VK (uj, X) — h(X, X")K (uj, X)]
j

= [Kx. Kx1X" = > )X, X)X — h(X, X")X"].

J

Together with Gauss equation (2.5), by Lemma 3.2 we further have (3.10). Combining
this with (3.1) we deduce that

RX,X)L'(X",X)=RX, X K(X", X)— Zk{h(X”, X)R(X, X')u;
j
= KRX, X)X",X)+ K(X", R(X, X)X)
= LY(RX, X)X",X)+ L'(X", R(X, X)X)
+y MR, X)HX", X) + h(X", R(X, X)) u,
j
=LY (RX, X)X",X)+ L'(X", R(X, X)X).
This shows the part (iii).
For part (iv), as ©(u;) is spherical, we have

VxX' = VX' 4 pih(X, X)T, VxT = —p; X, X(pi) = 0.
It is well known that the projection @;X of @X/X on ®(u;) defines a connection
that turns out to be the Levi-Civita connection of the induced metric on the integral

r{lanifold of ?D(M,-) from (M", h). Then, by the definition of curvature tensor and
R(X,X') - L' =0, direct computations give (3.11). O
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Proposition 3.1 Let M" be a locally strongly convex affine hypersurface in R with
R - C = 0. If the multiplicity of affine principal curvature u; is more than one, then,
by the notations as above, it holds that either L' = 0, or L' # 0 and

wi— Y 0 <0. (3.13)
j=1

In particular, if M" is an affine hypersphere, then M" is either a hyperquadric (i.e.,
C = 0), or a hyperbolic affine hypersphere with C # 0.

Proof SetA = u;— Zr,':l ()\{ )2. It follows from Lemma 3.4 that L' is totally symmetric
and satisfies the apolarity condition. Moreover,

R(X,XLI(X", X) = L' (R(X, X X", X)+ L' (X", R(X, X)X), 314
R(X, XHX" = A[h(X', X)X — h(X, X")X'] — [LY, L\ 1X" e
for any vector fields X, X', X" € D (u;).

Assume that L’ # 0. Fix a point p € M", we now choose an orthonormal basis of
D (ui)(p) with respect to the affine metric £ in the following way. Let U, D (u;) =
{u € D(u;)(p)lh(u, u) = 1}. Since h is positive definite, U,D (u;) is compact. We
define a function f(u) = h(LLu, u) on Up®D(u;). Let ey be an element of U,D (u;)
at which f attains an absolute maximum. Since L’ # 0, we have f(e;) > 0.

Let u € Up®(u;) such that h(e;, u) = 0, and define another function g(t) =
f(eicost + usint). Then we have g'(0) = 3h(Ly e1,u), g"(0) = 6h(Ly u, u) —
3f(ey). Since g attains an absolute maximum at r = 0, we have g’(0) = 0, thus
h(L}, e1.u) = 0. Then e is an eigenvector of L} with eigenvalue v; = f(e;) > 0.

Leteo, ..., e,; be orthonormal vectors of D (1, )(p), orthogonal to e, which are the
remaining eigenvectors of L, corresponding to the eigenvalues vy, ..., vy, respec-
tively.

Since e is an absolute maximum point of f, we know that g”(0) < 0. This irn_plies
that for every j > 2, we have v — 2v; > 0. From the apolarity condition of L’e1 we
have

vl_|_1)2+...+|)ni=(), (315)
By applying (3.14) we have

viR(er, ¢j)er = R(er, ej)L (e1, e1) = 2L (R(e1, ¢j)ey, e1),
R(er, ejer = —hej — [LL, L} Jer = (—=h — v} +viv))e;,
which imply that
(1 = 20))(=A — V7 4 viv)) = 0. (3.16)
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If vi = 2v; forall j > 2, then (3.15) implies that vi = 0, this is a contradiction to
v = f(e1) > 0. Hence, there exists an integer k € {1, ..., n; — 1} such that, after
rearranging the ordering,

i

v2=~~~=vk=%v1,vk+1<%v1,...,vn.<%v1. (3.17)
Moreover, if j > k, we see from (3.16) that
— A =i+ =0. (3.18)
Subtracting this for j, £ > k, we have
(vj —ve)(vi —vj —vy) =0.

Note from (3.17) that vi —v; — v > 0. Thus vy = --- = v, := vo. Then, it
follows from (3.15) and (3.18) that

_ k41 _ g — Gk+D@ni—k+D 2
Vo = 2(n; —k) Vi, A= —4(n,'—k)2 vy > 0.

Hence, (3.13) follows. The first part has been proved.

If M" is an affine hypersphere, from Lemma 3.4 we see that ® (i) (p) is the tangent
space T, M" with n; = n, the projection tensor L' is nothing but K, u; = H, and
r=204(qG.e., Z;’:l (k{ )2 =0). Following the same process as above, we see that either
K =0or K # 0and H < 0. The conclusion follows. O

Remark 3.3 For the affine hypersphere, Proposition 3.1 extends the result of Proposi-
tion 2.1in [15] from VC to R - C = 0. The technique, which is employed to construct
a typical orthonormal basis on ©(u;)(p), was introduced by Ejiri [16] and has been
extended and widely applied for various purposes, see e.g. [5, 7, 9-11, 15, 21, 23, 30,
31, 33, 34].

Finally, we conclude this section by proving Theorem 1.2.

Completion of Theorem 1.2’s Proof Let M" be a locally strongly convex affine hyper-
surface in R" ! with R - C = 0 and n > 2, whose affine principal curvatures are all
of the multiplicity at least two. Then, for n = 2, 3, M" is an affine hypersphere.

For n > 4, we assume that there exist at least two different affine principal cur-
vatures, namely u; and ;. Then, M" is not an affine hypersphere, and thus K # 0.
By Gauss equation (2.5) and Lemma 3.2 (i) we see that, for any unit vector fields
X, X' €eD(ui), Y € D(uj),

K(X,Y)=0, K(X, X) € D(u),
RX, V)Y = 3(ui + u)X, RO, Y)X = =3 (i + pj)Y.
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By (3.1) we further obtain that

0=RX,Y)K(Y,X)=K(RX,Y)Y,X)+ K, RX,Y)X)

. (3.19)
= 5(ui + nj)(KxX — KyY).

As K # 0, there must exist a unit vector Xo € D(u;,) for some p;, such that
h(Kx,Xo0, Xo) # 0. Let X = Xq in (3.19), by multiplying this with X, we have

ig + 1 =0 (3.20)

for any wu; # ui,. This means that there are exactly two different affine principal
curvatures, namely @1 and po, and @ = —uo.

For any unit vector fields X, X’ € ®(u;) and Y, Y" € D(uz), by Lemma 3.3 (i)
we have X (1) = —X(u2) = 0. Similarly, Y (u2) = —Y (1) = 0. Hence, ©1 and
o are constant. Then, takinge; = X, ej =Y, ey = X' ande; =Y, e; =X, e =Y’
respectively in Lemma 3.3 (ii), by Lemma 3.2 (i) we have

h(VxY,X)=0, h(VyX,Y) =0, (3.21)

which imply that VyX,VxX € D(ui)and VxY, Vy Y’ € D(u2). Together with the
Codazzi equation (2.6) we see that

0=h((VxK)(Y, X) = (VyK)(X, X), ) = 3 (1 — 2) = 1, (3.22)

which implies that up = —p; = 0. This is a contradiction to @1 # u». Therefore,
M" has a single affine principal curvature, i.e., it is an affine hypersphere.

In summary, M" is an affine hypersphere for n > 2. Then, Proposition 3.1 implies
that M" is either a hyperquadric or a hyperbolic affine hypersphere with C # 0.

For such affine hyperspheres, denote by {eq, ..., e,} an orthonormal frame relative
toh,set A;jr = h(Keej, er), we see from (2.10) that the components of first covariant

differentiation A; jx ¢ are totally symmetric. It follows from R-K = 0and the apolarity
condition that the components of second covariant differentiation A; jx ¢ are symmet-
ric and trace-free in any two indices. Then, by n(n — 1)J = h(K, K) = Z(A,-jk)2
we have

%n(n —DAJ = Z(Aijk,z)z + Z AjjkAijkee = Z(Aijk,z)z» (3.23)
where, by (2.4) there holds (cf. (7) of [6])
Aijee = (Ve K)(eire)), ex) = =5 (Ve,O) (i e ex).

Together withn(n — 1)J = k —n(n — 1) H, we have (1.2). Recall the formula (3.32)
in [26] for the Laplacian of J on affine hyperspheres:

s — DA =Y (Aije)® + Y (Rip)* + D _(Rijie)* — (n + DcH. (3.24)
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Combining with (3.23) we obtain (1.3), which implies that « H > 0, and thus ¥ < 0
on the hyperbolic affine hypersphere.

Furthermore, for n = 2, it follows from Theorem 2.1 that M? is affinely equivalent
to either a quadric or a flat affine sphere, and thus « is constant. Together with the
assumption that « is constant for n > 3, we see from (1.2) that VC = 0 forn > 2.
Then, M" is affinely equivalent to one of the examples in Theorem 1.1. O

4 Proof of Theorem 1.3

Let M” be a locally strongly convex affine hypersurface in R"*! with R-C=0
and n > 3. Assume that u1, ..., i, are the m distinct affine principal curvatures of
multiplicity (1, na, ..., ny) withm > 2 and n; > 2, respectively. Then, M" is not an
affine hypersphere, and thus K # 0.

Assume that m > 3, and thus n > 5. For our purpose, it is sufficient to prove

m = 3. In Lemmas 3.2-3.4, as r = 1 we always omit the upper index j = 1 of )»ij for
simplicity. Denote by T the unit eigenvector field of the affine principal curvature 1,
by Lemma 3.2 we have

ST =T, SX =u; X, SY = u;Y,
KrT =MT, KrX =7X, KrY =AY, “.1)
K(X,Y)=0,VXeDu), VY € D(u;),

where
(1 — pidki = (w1 — pphj = A1, i #j>2. 4.2)
In the following, if no other stated, we always assume the unit vector fields
X, X' €D, Y. Y €D(uj), i #j =2
From the Gauss equation (2.5), by (4.1) we have

R(T, X)X = (0} — Aihi + S + )T,
R(T, X)T = —( — M + (w1 + 1) X,

R(Y,X)Y = (ihj — 2(ui + )X, (4.3)
R, X)X = (5(ui + pj) — kihj)Y,
R(T, X)Y = 0.
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Notice that KyY — A;T € D(u;), by (3.1) and (4.3) we can compute

R(T,X)K(X,T) = K(R(T,X)X,T)+ KX, R(T, X)T),
RY,X)K(X,Y)=K(R(Y,X)X,Y)+ K(X, R, X)Y), (4.4)
R(T, X)K(Y,Y) = 2K (R(T, X)Y,Y)

to obtain respectively that

(AF = Aihi + 5 (1 + u))(KxX + (0 — 2)T) =0,
(Aidj — 3(ui + u))(KxX — KyY) =0, (4.5)
(hf = hidi + 5 (w1 + ui))h; X = 0.

Remark 4.1 X, # 0, and it follows from (4.2) that A, ..., A, are all nonzero and
distinct. Otherwise, if A} = 0, by (4.2) and the apolarity condition we see that 1; = 0
foralli > 1, thus K7 = 0. As K # 0, there must exist a unit vector X € D (;,) for
some eigenvalue p;, 7% w1 such that h(Kx,Xo, Xo) # 0. Taking the inner product
with X of the first two equations in (4.5) for X = X, we have

M1+ Mig = (i + pip =0,
thus u; = w1 = —u;y, i.e., m = 2. This is a contradiction to m > 3.

By multiplying the last two equations in (4.5) respectively with 7 and X, by
Remark 4.1 we have

Wi+ i =2xirj #0, 0 #j>1,

. (4.6)
w1+ =2x A1 —Ap), @ > 1.
By subtracting these equations, we further obtain that
m1—pj=2xA1 — A —Aj) #0, @7

mi— =20 = Aj))(A1 — A —Aj) #0.

Remark 4.2 m < 4. 1f there exist three different affine principal curvatures (;, /4, ftx
of multiplicity more than one, then from (4.2) and (4.6) we have

?»_jzm—ltk:m—FMj @38)
Moo MU — MG Wik '

which further implies that

w1 = wi +pmj+ pg. 4.9)

Then 1 is uniquely determined by (4.9) for fixed 1; and ;. Therefore, m < 4.
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By taking special vector fields in Lemma 3.3, we can obtain that

X(u1) = (w1 — udh(VrT, X), X(ui) =0,

Y (u)h(X, X') = (u; — u)h(VxY, X'),

(i — uDh(Vr X, Y) = (uy — u)h(VxT, Y), (4.10)
(wj — udh(VrY, X) = (uy — ud)h(Vy T, X),

T(u)h(X, X') = (1 — u)h(VxT + 1 X, X').

By the Codazzi equation (2.6) and (4.1), taking the inner product of
(VxK)(T, T) = (VrK)(X, T) + 3 (i — n)X (4.11)
with T, X" and Y, respectively, we see that

X(A) = (1 = 24)h(Vr T, X),
(h1 = 22)h(VxT, X') = h((T () + (i — )X — KxVrT, X'), (4.12)
O = ANh(Vr X, Y) = (A — 24 ))h(VxT, Y).

By changing the role of X, Y in the last equation of (4.12), we also get
Ooj = A)h(V1Y, X) = (A — 22)h(Vy T, X). (4.13)

Then we are ready to prove the following results.

Lemma 4.1 It holds that

h(VrX,Y) =h(VxT,Y) = h(VyT, X) =0,

R . (4.14)
VxT = —piX, pi = % + i,
where X € D (), Y € D(uj), i #j > L
Proof From (4.10), (4.12) and (4.13) we have
(i = uph(Vr X, Y) = (1 — ph(Vx T, ¥) = (ui — u)h(Vy T, X), @is)

O = ADh(Vr X, Y) = (M = 24 ))h(VxT, Y) = (A — 24)h(Vy T, X).

Assume on the contrary that h(@TX, Y) # 0, then (4.15) imply that h(@x T,Y)
and h(VyT, X) are nonzero, too. And we further see from (4.15) that

(1 — wj)Ai —Aj) = (i — uj)(A1 —24),
(1 — i) (hi — ) = (ui — (A1 —225).
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By subtracting these equations, we get (i; — /4j)(A; — A;) = 0. This is a contraction
to A; # Aj. Therefore, h(@TX ,Y) = 0. Then, the conclusions follow from the first
line equation in (4.15), and the last equation of (4.10). O

By the Codazzi equation (2.6) and (4.1), taking the inner product of
(VT K)(X.Y) = (VxK)(T.Y) =0 (4.16)
with X’ and Y, respectively, by Lemma 4.1 we have

(hi = 2ph(VxY, X") = h(Kx X', V7Y) = —=2h(X, XYu(V7 T, Y),

o A ~ “4.17)
X(\j) =h(KyY,VxT — V7 X) =A;jh(VrT, X).
Lemma 4.2 It holds that
VrT =0, h(VxY,X') =0,
T (i) = Qh — A)pi + 51 — i), 4.18)

X(r1) = X)) = X(u1) = X(ui) =0,
pikj — pjki + 5 (i — pj) =0,

where X, X' € D(wi), Y € D(uj), i #j > L.
Proof Since h(@TT, T) = 0, there exist unit vector fields Vé € ®(u;) such that
ViT =a Vg + -+ an V§!

for some differential functions a;. Then, we see from the first equation of (4.12) and
(4.17) that

Vi) = ai(a —2x), Vi) =airj, j#i> L. (4.19)
Recall from the apolarity condition that A| + noiy + - -+ + n, A, = 0, then
Vi) = (1 +2/n)aik;. (4.20)

Let {Vé, e V,fi_l} be an orthonormal frame of ©(u;) for i > 1. Taking X =
V}, X =L} (Vé, lef) in the last equation of (4.10), by Lemma 3.4 we obtain

(1 = wi)h (Vi T, L Vg, Vi) = (T (i) + (i = )2 h(V, LE(VG, Vi),
ni—1

(1= ) Y (Vi T, LV, V)

= 4.21)
ni—1 ) ) ) '
= (T () + (i — %) Y h(VE LI (VE, Vi) =0
j=0
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Considering the Codazzi equation (2.6) of the following form
(Vi )V, T), Vi) = h((Vy KV T), V), #0 (4.22)
we get
Vo) = h(KV}V;vVV(;'T) —h(KVé-VJ’», VV;T)’ j=1...,n—1,

which together with (4.21) further shows that

ni—1 ni—1
(ni —HVg0) =Y h(Ky; VEVyT) = > WKy Vi, VyiT)
j=1 j=1
n,-—l

= —h(Kyi V3. Vi T) = D (K V1, %v;ﬁ T) (4.23)
j=1

n;i—1
=— Z h(VyiT, L'V, Vi) =0.
J
j=0

It follows from (4.20) that a;A; = 0, thus @; = 0. Then @TT = 0. Together with
(4.17), (4.10) and (4.12), by (4.14) we have (4.18) except the last equation.
Finally, we consider the Codazzi equation (2.6) of the following form

h(VyK)(X, X),Y) = h((VxK)(Y, X), Y) + % (1 — i) (4.24)

Since h(@xX, Y) = 0, and similarly h(@y Y, X) = 0, then by (4.1) direct computa-
tions from (4.24) show the last equation of (4.18). O

Lemma 4.3 If the number m of distinct affine principal curvatures is at least three,
then m = 3.

Proof By Remark 4.2 it is sufficient to prove m # 4. On the contrary, assume m = 4,
let uy, 13, 14 be the three different affine principal curvatures of multiplicity more
than one. For any X € ®(u2), Y € D(u3), Z € D(ua), by (4.1) we consider the
Codazzi equation (2.6) of the following form
(VYK (X, 2), T) = h(VxK)(Y, Z), T)

to obtain that

(h3 = (VXY , Z) = (2 = 2)h(Vy X, Z). (4.25)
It follows from Lemma 3.3 (ii) that

(13 — p)h(VxY, Z) = (u2 — pa)h(Vy X, Z) = (2 — u3)h(VzX, Y). (4.26)
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First, we claim that
h(VxY,Z) =h(VyX,Z) = h(VzX,Y) = 0. (4.27)

On the contrary, assume that h(@XY , Z) # 0, then the linear homogeneous system of
equations (4.25) and (4.26) has nonzero solutions, thus its determinant vanishes:

(12 — na)(A3 — Aa) = (U3 — La) (A2 — A4). (4.28)
By the first equation of (4.6) we have
w2 — g = 223002 — A4), U3 — g = 2A2(A3 — A4),

which together with (4.28) imply that A» = A3, a contradiction to Remark 4.1. There-
fore, h(&x Y, Z) = 0. Together with (4.26) the claim (4.27) follows.

Next, we consider the Gauss equations for unit vector fields X € ©D(u;), ¥ €
D(u ). From (4.27), Lemmas 4.1 and 4.2 we see that

VyY —p;T € D(uj), VxY € D(uj), Vy X, VrX € D(ui),

which imply that 2(VxVyY, X) = —h(VyY, VxX) = —p;p;. Then, by straightfor-
ward computation we obtain

hR(X,Y)Y,X)=h(VxVyY — VyVxY, X) — h(%xyy — @@YXY, X)
= —pipj +h(VxY, VyX) —o—h(Y,%YXX) (4.29)
= —pip;.

On the other hand, it follows from (4.3) and (4.6) that h(Ié(X, Y)Y, X) = 0, thus
pipj = 0, which means that p203 = p304 = p2p4 = 0. Then at least two of
02, p3, p4 are zero locally. Without loss of generality, we assume that p; = p3 = 0.
From the last equation of (4.18) fori = 2, j = 3 we have uy = w3, a contradiction
to ua # p3. ]

By Lemma 4.3 we finish the proof of Theorem 1.3.

5 Proof of Theorem 1.4

In this section, we continue the analysis of Sect. 4 for m = 3 to complete the proof of
Theorem 1.4. Let F : M" — R"*! be a locally strongly convex affine hypersurface
with R-C = 0andn > 5. Assume that there are exactly three distinct affine principal
curvatures (1, (2, 13 of multiplicity (1, no, n3) withn, > 2 and n3 > 2, respectively.

First, we will prove the warped product structure of (M", h). By the apolarity
condition we have

A1+ n2ip +n3i3 =0, (5.1
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which together with the equations of the third line in (4.18) gives that
X)) =Y) =X(u) =Yu)=0,i=12,3 (5.2)

forany X € ©(u2), Y € ©(n3). Then, we can show the following lemma.
Lemma 5.1 There hold that

X(pi) =Y(pi) =0, VX €D(n2), VY € D(u3),

T(hi) = QA — A)pi + 5 (1 — i),

T(ui) = (i —p)(pi —Ai), i =2,3, (5.3)
p223 — p3ha + 3 (2 — n3) =0,

p2p3 =0, T(p2) = p3. T(p3) = p3.

Proof Let {X1,..., X,,} (resp. {Y1,...,Y,;}) be an orthonormal frame of ®(u2)
(resp. ®(u3)). Lemmas 4.1 and 4.2 imply that

VxY = ijYj, VyX = ZaiXi,

‘. X (5.4)
[X, X'T=VxX' = VyxX € D(n2),

which simplify the Gauss equation as

0=R(X,X)T = Vx(=p2X') = V(=2 X) + p2[ X, X']
=—-X(p) X + X' (p2) X,

so we have X (p2) = 0. Similarly, we get Y (p3) = 0.
Analogously, using (5.4), from

0=R(X.NT = ~Vx(p3Y) + Vy(02X) = Y b;jVy,T + ) aiVx, T
J i
= —X(p3)Y +Y(p2)X,

we get X (p3) = Y (p2) = 0. Together with Lemmas 4.1 and 4.2 we have proved (5.3)
except the equations of last line in (5.3).

By the same computations as that did in (4.29), we have p2 3 = 0. Analogously, it
follows from (4.3) and (4.6) that R(X, T)T = 0. On the other hand, by Lemmas 4.1
and 4.2 we also have

R(X, T)T = V1(p2X) = Vg T + V¢ T
=T(e)X + V7 X — p3X — V7 X
= (T (p2) — p)X.

Thus, T'(p2) = p3. Similarly, we get T (p3) = p3. o
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Now, it follows from Lemma 4.1 that
VxT = —pmX, VyT = —p3Y.

Together with previous lemmas in Sect. 4 we see that © (u;) (i = 1, 2, 3) are integrable,
and both © (1) & D (u3) and D (1) G D(w2) are auto-parallel. Moreover, one can
show that © (12) (resp. ©(113)) is spherical with the mean curvature vector po T (resp.
p3T). Therefore, by Theorem 2.3 we conclude that M™ is locally a warped product
R Xy, My x g M3, where R, M, and M3 are, respectively, integral manifolds of
the distributions D (1), ®(2) and DO (u3). The warping functions f> and f3 are
determined by

pi=—T(n f), i =2, 3.

By the warped product structure, we always take the local coordinates {, x;, y;}

on M" such that % =T, span{a%l, R ax } = D (u2) and span{ay1 . a>,13} =

D(u3), and also let X, X' € D(up) and Y, Y € ®(uu3) for convention. Then we see
from (5.2) and (5.3) that all the functions ;, A;, p; and f; depend only on ¢. Denote
by 9;() = (-)/, they are related by (4.2), (4.6) and (5.3):

(1 — p2)rz = (1 — u3)As # 0, po +puz =2x43 # 0,
w1+ i =20 — M), pj = pi i =2.3, (5.5)
03 =0, ;A3 — p3ha + %(Mz —u3) =0.
By the equations of last line in (5.5), without loss of generality, from now on we
assume py = 0 locally, thus p3 # 0. Then, we can solve from the equations above for

the warping function f3 and p3 to get that, up to a translation and a direction of the
parametric ¢,

L=1 fs=1 p3=—1, (5.6)
where locally we take r > 0. Together with (5.5) we further see that

o= (o — pa)py ' Ay = BRI sy — 0y = BLE (5.7)

Second, we will show some properties for the functions as above in next two lemmas.
Recall from Remark 4.1 that A, A3 are nonzero and distinct, we can prove the similar
results for o and w3 as follows.

Lemma 5.2 Locally, both wy and ju3 are nonzero and distinct.

Proof As w1, iz, 3 are distinct, by po = 0 we see from the equations of third line in
(5.3) that T (u2) # 0, thus uy cannot vanish identically, locally let o # O.
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Assume that 3 = 0. Then wop; # 0. From Lemma 5.1 and (5.5) we see that

Az = 03, (U1 — u2)r2 = (113,

5.8
20302 = M2, M —k2=%;‘2, ©8)
which together with (5.1) imply that
A= Suapy a = Suapy (L4 11 /p2) 03, (59
1 — o =2p31 /2, Ay = —%n2M2p3_1 —n3p3.
Therefore, it holds that
502+ Dpapy ' + (n3+ Dp3 + 5oy =0,
Fna —ppy + Moy = 0.
By subtracting these equations we get
1+ napg = —2(n3 + p3 # 0, (5.10)
which together with the third equation of (5.9) shows that
1
M1+n2m:_n3+ . 5.11)
W1 — M2 w1/ 12
Then we see that k¢ := w1/u2 is the solution of the quadric equation
2 _
Ky +nkg —n3 —1=0.
It follows from this and (5.10) that kg is a constant, ko ¢ {0, 1, 2, —n3}, and
23+ 1) , 2(n3 + DKo 4
- _ 02, = e, 5.12
H2 ny + Ko F3. 11 ny + Ko r3 ( )

By taking the derivative on both sides of o = 21,03 in (5.8), we see from (5.3)
and (5.9) that

sy = 2p300 + p3(i1 — 12) = 1 p3.

On the other hand, by (5.12) we have ), = 2p3u2 = % 1p3. Combining this with the
equation above, as ko # 2, we get ;1103 = 0, a contradiction to ©1p3 # 0. Therefore,
u3 # 0. mi

Furthermore, we see from (5.5) that
p3ha = 3(ua — p3) = pa — Aohs = Aohs — 3, (5.13)
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which implies that
2 = r2(A3 + p3), U3 = r2(A3 — p3). (5.14)

Then, it holds that
u2(p3 — A3) + u3ry = Aa(p3 — A3)(p3 + A3 — A2) = p3(d2 — p3 — 43).(5.15)

Now, we are ready to prove the following lemma.

Lemma 5.3 Set Hy = upy — )»%, Hy =14+ (u3— k%)/p%. Then H, and Hz are nonzero
constant. Moreover,

4usHy + (12 — u3)*Hy = 0,

(5.16)
w2(p3 — A3) + w3k = (p3 — A3)Ha # 0.

Proof By (5.3) and the equations of second line in (5.5) we can check that
(2 =13 =0, (5 =0,
Therefore, H and H3 are all constant. By Lemma 5.2 and (5.14) we have
p3 =3 # 0, Hy=5a(p3 + 43 — h2), Hz = (p3 — 43)(03 + 43 — 22)p3 (5.17)
Assume that H, = 0. Then we see from (5.17) and A, # O that

p3=hy—h3 #0, ua =13,
13— 25+ p3 = piH3 =0.

(5.18)
Taking the derivative on both sides of p3 = A2 — A3, by (5.3) and (5.14) we have
P3 = (M — A2 — 243)p3,
which together with (5.18) implies that
Al =2A2 4+ A3. (5.19)

Combining with (5.1) and (5.18) we obtain

h = =12, (=27 = D3 = 03,

n3+1 n3+1
which further show that
2 1\2 2 2 2 1 4) 2
Mo = Ay = (_13:2 )P3, M3 =A3— p3 = _—(n3+(,)1(j£;22+ )/03-
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By combining this with (5.13) we have

o =3(ua — pa)py ' ="BHps, a3 =225, (5.20)
which imply that
Ay =2, (5.21)

On the other hand, by (5.19) and (5.20) we see from the second equation of (5.3) and
the first equation of (4.7) that

2 1
Ay = %(,U«I — 12) = A3y = ——<n2(+nl(2n)3z+ ),Og.

Together with (5.21) we have p3 = 0. This contradiction shows that H> #~ 0.
Now, by Hy # 0, (5.13)-(5.15) and (5.17) we obtain (5.16), which together with
Lemma 5.2 implies H3 # 0. O

Finally, based on previous lemmas, we can prove Theorem 1.4.

Completion of Theorem 1.4’s Proof Define a vector field by
83 = M(\2§ + u2T), (5.22)

where M (t) is a nonzero solution of the equation M’ + M (A — A2) = 0. Then direct
computations give that

Drgs = (M’ + MG — 22)) (Ao + j2T) =0,
Dxg3 = M(—p202X + pa(VxT + K (X, T))) =0,
Dygs = g3, Y = —M(ua(p3 — A3) + u3r2)Y, (5.23)
Dy'Dygs = —M (u2(p3 — A3) + u3hra)
VEY + L3, Y+ h (Y, Y)E + (3 + 29)T)],

where %IJ;,Y = @Y/Y — p3h(Y, YT is the projection of @Y/Y on D(u3), and L3 is
the projection tensor of K on ©(u3) defined by (3.9).
Similarly, define another vector field

g2 = N((A3 — p3)§ + u3T), (5.24)
where N (¢) is a nonzero solution of N’ + N (p3 + A1 — A3) = 0. It holds that

Drgy = (N4 N(p3 + 11 — 23)) (A3 — p3)§ + u3T) =0,
Dygy = N(—u303 — p3)Y + pa(VyT + K(Y. T))) =0,
Dxgr = g2, X = N(uzrz + pna(p3 — A3)) X, (5.25)
Dx'Dx g2 = N(3r2 + ua(pz — 23))
AV X 4 L2(X, X)) 4+ h(X, X')(E 4+ 2T,
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where @)%,X is the projection of Vx'X on D(u2), and L2 is the projection tensor of
K on ®(uy) defined by (3.9).

From Lemma 5.3 we have o (03 — A3) + u3Az2 # 0. Then, by (5.23) (resp. (5.25))
we see that g3 (resp. g2) is an immersion from the integral manifold M3 (resp. M>)
of ®(u3) (resp. ®(u2)) into the affine space. Moreover, by (5.14), (5.22) and (5.23)
there holds

Dy Dygs = g3, (V&Y + L3(Y, Y) — h(Y, Y) (13 — A3 + p3)gs € D(113) + span(g3),

where 3 — A% + ,032 = H3,o32 £ 0. It follows from Lemma 3.4 that L3 satisfies
apolarity condition, and Ry, Y) L3 # 0 in general, thus g3 is a proper affine
hypersphere with affine metric pgh = f3_2h (cf. (5.6)), affine mean curvature Hj,
and difference tensor L3. It follows from Proposition 3.1 that g3 is an ellipsoid if
p3 — A3 =p3(H3 —1) > 0,ie, H3 > 1.

Similarly, we have

Dy Dxgr = g2,(Vi: X + L*(X, X)) — h(X, X) (12 — 23)g2 € D(112) + span(g2),

where ) — A% = Hy # 0. Then, we see from p, = 0 and Lemma 3.4 that L? satisfies

apolarity condition and R+ - L? = 0. Therefore, g2 is a proper affine hypersphere
with affine metric &, affine mean curvature H,, and difference tensor L?. Hence, g2
has semi-parallel cubic form. It follows from Proposition 3.1 that g5 is an ellipsoid if
H; > 0.

Let B1(¢) and B> (¢) be functions such that

Bi=—B2 By=1+Pini — P
Denote by §1 = 1 + 281 — A2f2 and 6o = 1 + u3B1 + (p3 — A3) B2. It follows from
Lemma 5.3 that uy(p03 — A3) + n3ro 7# 0. Then, by choosing the initial conditions

for 81 and B, appropriately we can let ;(0) = §2(0) = 0. Moreover, from (4.6) and
(5.3) we see that

81 = =281, 8 = (p3 — X3)82.

Therefore, by the initial conditions we have §; = §, = 0 identically.
Now, straight computations from above show that

Dx(B1& + B2T) =X, VX € D(uz),
Dy(Bi1& +BT) =Y, VY € D(u3),
Dr (1§ + BT) =T.

Then, up to a translation constant, we can write F : M" — R a6
F = Bi& + BT.
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From (5.22) and (5.24), as u2(p3 — A3) + n3ra # 0, by (5.15) and (5.17) we can
uniquely express & and T to obtain

F(t,x,y) = y2(0)g2(x) + y3() g3 (y), (5.26)
where x = (X1, ..., Xny), ¥y = (V1 - -+ Yn3)>

VZ(I) T pa(p3—Az)+tuzre T H3N)L2p§’

() = i = HyMiap3

By (5.3), (5.5) and (5.14), direct computations show that

Y2 (1) = daya(1), y3(t) = (A3 — p3)y3(0),

where, it follows from (5.6) and (5.7) that

Ay = %(uz — pu)t, A3 — p3 = (MZ_%
Furthermore, we put p3 = —1/¢ and (5.7) into the first equation of (5.5) to get

2 (11 — p2) (o — 13)% = 2(u1 — p13) (w2 + 13).

By (5.7) and Lemma 5.3 we can rewrite the nonzero constants A, and H3 by

2
H2—H3 "

Hy = py — §(uo — u3)t*, Hy = pat® +

Summing above, we have completed the proof of Theorem 1.4. O

6 Proof of Theorem 1.5

Let F : M" — R"*! be alocally strongly convex quasi-umbilical affine hypersurface
with R-C = 0andn > 3. Denote by w1, a2 the two distinct affine principal curvatures
of multiplicity (1, n — 1), respectively. Then, M" is not an affine hypersphere. Let T
be the unit eigenvector field of the affine principal curvature it1. As before, omit the

upper index j = 1 for A/ in Lemma 3.2, we have

ST =T, S§X=uX,

6.1
KrT =0T, KrX =M X, VXeD(u), ©.1)

where by apolarity condition it holds that
M+ (m—=1Dr=0. 6.2)
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Remark 6.1 Ay, 1, are distinct and nonzero, M" is affinely equivalent to one of the
three classes of immersions in Theorem 2.2 by taking m = n — 1. In fact, it follows
from (6.1) that M" satisfies the conditions of Theorem 2.2. In the proof of Theorem 2.2
in [1], it was shown in Lemma 3 that if A = 0, then K7 = 0 and M" is an affine
hypersphere. In our situation, by M" being not an affine hypersphere we can exclude
this possibility in Theorem 2.2, and obtain the conclusions.

Next, for more information we will show the warped product structure and discuss
all the possibilities of the immersion. By (6.1) we see from (2.5) that

R(X,T)T = (A3 — ara + L1 + )X

for any unit vector field X € D (u2). AsAy # 0,itfollows from (6.2) that A1 —2Ap # 0.
Then, by (3.1) we can compute

R(R(X, T)K(T,T), X) = 2h(K(R(X, T)T, T), X)
to obtain that
35 = hha + 3 + p2) =0, (6.3)
which together with (6.2) implies that
w1+ pa = —2n23 < 0. (6.4)
In the proof of Theorem 2.2 in [1], together with (6.3) it was shown that

ViT =0, VxT = —aX, T(x) = o>,

X(a) = X(u1) = X(u2) = X(A2) =0, VX € D(u2),
T(A2) = (n+ Dige + 5 (u1 — pa),

T(u2) = (n2 — pu1)(@ — A2).

(6.5)

Therefore, ® (1) is auto-parallel and the distribution © (11,) is spherical with the mean
curvature vector o7 . It follows from Theorem 2.3 that M" is locally a warped product
R x y M>, where R and M are, respectively, integral manifolds of the distributions
D (1) and D (o). The warping function f is determined by « = —7(In f). As

before, we take the local coordinate {z, xi,...,x,—1} on M" such that % =T,

span{aaTl, e 8xi,1 } = ®(u2). Hence all functions p;, A;, @ and f depend only on

t.
Denote by 3;() = (-)’, we have « = — f’/ f. By solving from the equations above
for f and o, we get that, up to a translation and a direction of the parametric ¢,

f=lLa=0 0 f=t a=—1 (6.6)
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where locally we take ¢+ > 0. From (6.4)-(6.6) we can check that (uy — A )’ =0if
f =1,and ((u2 — A )/az)/ = 0if f = t. Therefore, by (6.4) and (6.6) we have a
constant:
_ 2 _ It1+(2n+l)u2 —
=1t cOrttu 2 &y (6.7)
1+(u2—kz)/a 1+ut if f=

Finally, based on the proof of Theorem 2.2 and (6.6) we will follow the computations
in [3] for three kinds of immersion in Theorem 2.2 to prove the following theorem,
which give the explicit expressions of the immersions in Theorem 1.5.

Theorem 6.1 Let M" be a locally strongly convex quasi-umbilical affine hypersurface
inR" with R- C = 0andn > 3. Denote by 1, o the two distinct affine principal
curvatures of multiplicity (1, n — 1), respectively. Then, (M", h) is locally isometric
to the warped product Ry X y M, where f(t) = 1 ort. Moreover, Hy defined by (6.7)
is a constant, and M" is affinely equivalent to one of the following hypersurfaces:

(1) The immersion (y(t), y2(t)g2(x1, ..., xn—1)) if Hopo # 0 and f(t) = 1, where
vivy = 1, y2 is explicitly given in (6.10), g> is a hyperbolic affine hypersphere
with semi-parallel cubic form if Hy < 0, or an ellipsoid if Hy > 0.

(2) The immersion (y1(t), y2(t)g2(x1, ..., xn—1)) if Hopto # O and f(t) = t, where
vy = "1 vy is a positive solution to the differential equation

v = k@OY D 21 (1) — (n + Dk’ (1) + (n + 1) Hok(t) = 0,

g2 isalocally strongly convex proper affine hypersphere with affine mean curvature
Hy, and it is an ellipsoid if Hy > 1.

(3) The immersion (y1(f)x, %)/1 () Z;’;ﬂ x4+ ), y1(0) if pa # 0, Hy = 0 and
f(t) =1, where

; (142)/(n+1)
y1=((n+ DOyt yy = WD v = (LX)
(4) The immersion (y1()x, y1(t)g(x)+y2(t), y1 (1)) if uz # 0, Hy = 0and f(t) =1,
where

1
n n+2 w1 4/ — ntl Vi —
Y1 —(n+2t +c)n +1 s Vo = n+2yl Int — (n+2)t’x = (X1, ..y Xn—1),

c1 is a constant, and g(x) is a convex function whose graph immersion is a
parabolic affine hypersphere.

(5) The immersion (xq, ... ,.x,,_l, glxy, ..., xn_l? n+2 Int, mt"”) if up = 0,
where the warped function f(t) = t and g is a convex function whose graph
immersion is a parabolic affine hypersphere.

Proof We continue the analysis as above. First, we remark that u, = 0 if and only if
o = Xp. In fact, it follows from the last equation of (6.5) that « = A, if up = 0. If
o = Ay, by taking its derivative on both sides, we see from (6.4) and (6.5) that uy = 0.
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Therefore, puy # 0 if and only if @ # X,. Then, by Hy defined by (6.7) we divide our
discussions into three cases:

Case I: Hyuup #0; Casell: up #0, Hy = 0; CaseIIl: ur = 0.

Case L. In this case, by (6.6) and (6.7) we have

w34 (@ =212 #0, py— A3 4a® #0. (6.8)
Then it was shown in [1] that M" is locally given by

F(ts xlv M} xnfl) = (Vl (t)v J/Z(t)gZ(xl, cec xnfl))v

where g; is the proper affine hypersphere. The same proof in [1] implies that the
projection tensor L? of the difference tensor on D (12) (cf. (3.9)) is the difference tensor
of g», and g» has the affine metric 2, affine mean curvature (o — )\% +a?)fr=
Hoy # 0 (cf. (6.6)-(6.8)) and the affine normal — Hyg». Then, by the computations of
this immersion on page 292-294 in [3] we take A = — Hj in (4.3) of [3], and deduce
that

)/]/J/zn _ fn+l’ v = k(t)l/(n+1),

LK (6) = (n 4+ DK 0) + (n + 1) Hok(1) = 0, ©9
where k(t) and y, are positive functions.

If f =1, then « = 0. By Lemma 3.4 (iv) the integral manifold M> of ®(u») is
totally geodesic and R-- L2 =0,ie., g2 has semi-parallel cubic form. Proposition 3.1
and (6.7) further imply that g is an ellipsoid if Hy = po — A% > 0. Moreover, (6.9)
reduces to y{yy = land y» = k() 0+D where k" (t) + (n + 1) Hok(t) = 0. Solving
this equation we obtain that

(cle«/f(n+l)H()t +C2e7“/7<n+l)H‘)t)m, if Hy <0,
v = 1 (6.10)

(c1 cos(x/(n + 1) Hpt) + c3 sin(y/(n + 1)Hpt))n+1, if Hy > 0,

where the constants cq, c» are chosen such that y» > 0. This is the immersion (1).

If f =t thenw = —1/t. We see from (6.7) and Proposition 3.1 that g, is an
ellipsoid if o — A3 = &>(Ho — 1) > 0, i.e., Hy > 1. Then, (6.9) reduces to y|y} =
"y = k()@ +D and

12k (1) — (n + D)tk’ (t) + (n + 1) Hok(t) = 0. 6.11)

In particular, if k(¢) is a power function of ¢, we deduce that

n+2 2
cit20+1) 1 if Hy = %,

() = (c2t™ + c3t™2)n+1 | if Hy < i'(’:f)lz (6.12)
0, if Hy > o225,
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where ¢ is a positive constant, c», c3 are chosen such that y» > 0, and 11, 12 are the
solutions of the quadric equation 72 — (n42)7 + (n+ 1) Hy = 0. This is the immersion
2).

Case I1. In this case, by (6.6) and (6.7) we have

w4 (@ —212)? #0, pa— 235 +a* =0.
It was shown in [1] that M" is locally given by

F(t,x) = (ri(0)x, y1()g(x) + y2(1), y1(1)),

where x = (x,...,x,—1), and g(x) is a convex function whose graph immersion
is a parabolic affine hypersphere. As before, the same proof in [1] implies that the
projection tensor L? of the difference tensor on D (u2) (cf. (3.9)) is the difference
tensor of g. It follows from the computations of such hypersurfaces on page 294 of
[3] that yy, y» satisfy

1.,

vy — vy 2=l £ =y Ve, (6.13)

If f =1, then o = 0, and thus up — A% = 0, it follows from Proposition 3.1 that

2 = 0, which together with (3.10) of Lemma 3.4 (iii) implies that M”" is a flat and

quasi-umbilical affine hypersurface. We see from Theorem 4.1 of [3] that this is the
immersion (3).

If f = t, by (6.13) we have (y"+1)/ = e(n + D"t ¢ € {—1, 1}, which gives

that y”+1 = ZI; t"+2 4 ¢|. By applying an affine reflection we may assume y; > 0,

then put ¢ = 1 and y; = (”“t’”r2 + e/ +D By (6.13) we get (y5/y]) =
Ziét’l + ¢1t7" 3, which yields that
Vol = Zié Inz — méﬁ + .

Then, since y{'y| = t"* and ¢; = y,

n+l _ n+l n+42
T we have

1
V2 = Zizyl Inz — (n+2)t + ((n+2)2 + C2)V1

and
)/2 = / (21; V] lnt (n+2)t)dt + ((n+2)2 + C2)V1 + c3.

Here, by applying equiaffine transformations we may put c; = —(n + 1)/(n + 2)?
and ¢3 = 0. We have the immersion (4).

Case III. By uy = 0 we have Ay = «. It follows from 1, # 0 and (6.4)-(6.6) that

M=a=- u=0, f=t Hy=0 pj =—2na’ (6.14)
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Moreover, it was shown in [1] that M" is locally given by

F(t,x) = (x, g(x) + y1(0), 2(1)),

where x = (x1,...,x,-1), g(x) is a convex function whose graph immersion is a
parabolic affine hypersphere. It follows from the computations of such hypersurfaces
on page 295 of [3] that y, y» satisfy

v = v =iy 2D, f =Ly VD (6.15)
Then, as f =t in (6.14), we deduce that
vy =" 2yl — (n+ Dy, —1=0, (6.16)
where € € {—1, 1}. Then, we can directly solve these equations to obtain
y(t) = 25" e yi) = =25 + o s,

By applying a translation and a reflection in R”*! we may assume that ¢; = c¢3 = 0,
and y» > 0, i.e., € = 1. Also, by possibly applying an equiaffine transformation we
may put ¢; = 0. Hence, we obtain the immersion (5). O
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