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Abstract
This paper presents a Meyer–Vietoris type gluing formula for a conformal invariant
of a Riemannian surface with boundary that is defined by the determinant of the
Dirichlet-to-Neumann operator. The formula is used to bound the asymptotics of the
invariant under degeneration. It is shown that the associated height function on the
moduli space of hyperbolic surfaces with geodesic boundary is proper only in genus
zero. Properness implies a compactness theorem for Steklov isospectral metrics in the
case of genus zero. The formula also provides asymptotics for the determinant of the
Laplacian with Dirichlet or Neumann boundary conditions. For the proof, we derive
an extension of Kirchhoff’s weighted matrix tree theorem for graph Laplacians with
an external potential.

Keywords Dirichlet-to-Neumann operator · Steklov eigenvalue · Determinants of
elliptic operators · Graph Laplacian
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1 Statement of Results

Let (M, g) be a connected compact oriented Riemannian surface with nonempty
boundary of total length �(∂M). The Dirichlet-to-Neumann operator DN(M) is a
self-adjoint pseudo-differential operator of order 1 in L2(∂M), which contains a great
deal of information about M . In fact, DN(M) essentially determines the conformal
class of the metric g, and hence the Riemann surface structure of M (see [21], and also
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[13]). The spectrum of DN(M) consists of the Steklov eigenvalues, which have been
studied by many authors. For a survey, see [10, 11], or [4], and the references therein.

Because DN(M) is a self-adjoint elliptic operator of positive order, the formal
product of the Steklov eigenvalues can be defined via the zeta-regularized determinant
Det∗(DN(M)), according to the Ray-Singer procedure [23] (the asterisk indicates
that the zero eigenvalue has been omitted). Determinants of elliptic operators often
package global information through heat invariants in a way that reflects the geometry
more transparently than the individual eigenvalues themselves. The determinant of the
Dirichlet-to-Neumann operator for planar domainswas first considered byEdward and
Wu [7], who showed that for a simply connected bounded domain� ⊂ Cwith smooth
boundary, Det∗(DN(�)) = �(∂�). More generally, in [12, Theorem 1.1], Guillarmou
and Guillopé proved that for any compact Riemannian surface M with boundary,

I (M) := Det∗(DN(M))

�(∂M)
(1)

is a conformal invariant of the metric on M . Equation (1) therefore defines a positive,
real-valued functionof the underlyingbiholomorphic equivalence class of theRiemann
surface structure. We shall refer to I (M) as the DN-invariant of a Riemann surface
M with boundary.

What kind of information does the DN-invariant provide about M? To give some
idea, in this paper we prove a Meyer–Vietoris type expression for I (M) similar to
the gluing formulas obtained in [3, 8, 31]. Using this we show thatI (M) detects the
existence of long thin separating cylinders in M (or in terms of hyperbolic geometry,
short geodesics), at least when there are relatively few “isolated” components. This
in turn leads to a compactness theorem for families of genus zero hyperbolic surfaces
with geodesic boundary and the same Steklov eigenvalue spectrum. We make the
observation that the invariant I (M) may be expressed as a ratio of determinants of
Laplace operators on M with Neumann and Dirichlet conditions (see Proposition 2.2
below), whereas by doubling the surface we have an expression for the product of
these determinants. Therefore, combining the asymptotic properties arising from the
Meyer–Vietoris theorem in this paper with the results ofWolpert for closed hyperbolic
surfaces (see [32]), we obtain bounds on the asymptotic behavior of the determinant
of the Laplacian with Dirichlet and Neumann boundary conditions.

Let us briefly explain the gluing formula. Suppose � ⊂ M is a disjoint collection
of oriented closed smoothly embedded curves γ : S1 ↪→ M not meeting ∂M . Let M�

denote the (possibly disconnected) surface with boundary obtained from M \ � by
adjoining two boundary components for every component of �. ByI (M�) we mean
the product of the DN-invariants over the connected components of M� . LetN (M, �)

denote the Neumann jump operator in L2(�) (cf. [3]). This is simply the pairwise sum
of the DN operators associated to M� for each component in �. We emphasize that in
definingN (M, �),Dirichlet conditions are imposed on ∂M . LetNA(M, �) the jump
operator on M� defined in [31] for the trivial bundle with trivial framing and Alvarez
boundary conditions on ∂M . More precisely, this is defined for a general surface with
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boundary as follows. For complex valued functions ϕ, let ϕ′, ϕ′′ denote the real and
imaginary parts, respectively. Also, let ı : ∂M ↪→ M be the inclusion and ∗ the Hodge
operator of the metric induced on the boundary. Then we define

DNA(M)( f , g) := ((∗ı∗(∂̄ϕ))′, ϕ′ ◦ ı) , (2)

where ( f , g) are real functions on ∂M , and ϕ is harmonic on M satisfying

(ϕ′′ ◦ ı, (∗ı∗(∂̄ϕ))′′) = ( f , g) .

In the case of M� , the jump operator NA(M, �) in L2(�) is then the pairwise sum
of DNA(M�) operators as in the case of N (M, �). We emphasize that the harmonic
extension is such that ϕ′′ satisfies Dirichlet boundary conditions on ∂M , whereas ϕ′
satisfies Neumann conditions. The operatorNA(M, �) plays the role of the Neumann
jump operator for mixed Dirichlet–Robin type boundary conditions. A key difference,
however, is that NA(M, �) is a pseudo-differential operator of order zero. Its deter-
minant is defined as in [9] with the aide of an auxiliary pseudo-differential operator
Q of order 1. For simplicity, in this paper we fix a particular Q with ζQ(0) = 0 once
and for all (cf. (12)). See [31] for more details.

Finally, associated to � is a simple graph G� whose vertices V (G�) are the con-
nected components {Mi } of M \ � and whose edges E(G�) are the intersections
∂Mi ∩ ∂Mj for distinct i and j , which correspond to a union of possibly more than
one component of�. Themetric g on M gives aweight function onG�; namely, a map
ωg : E(G�) → R

+ obtained by setting ωg(i j) to be the sum total of the lengths of the
components of� in ∂Mi ∩∂Mj . Let�(G�,ωg) be the associated weighted graph Lapla-
cian.1 We note in passing that this type of graph Laplacian has previously appeared in
the study of small eigenvalues of Laplace operators on hyperbolic surfaces (see [2, 5,
24]). We now can state the main result.

Theorem 1.1 For any compact connected oriented Riemannian surface M with ∂M �=
∅, and � ⊂ M as above, the following holds:

I (M) = I (M�)
(
det∗�(G�,ωg)

) (2 · Det∗Q NA(M, �))

(DetN (M, �))2
.

In Sect. 3, we illustrate Theorem 1.1 with an explicit computation for the disk and
annulus, and we use the result to obtain asymptotic formulas in the case of multiply
connected planar domains (see Theorem 3.1).

As discussed in [29–31], gluing formulas of the type in Theorem 1.1 above are
convenient for computing the asymptotic behavior of determinants. In Sect. 4, we use
this to prove bounds onI (M) for degenerating hyperbolic surfaces. This is contained
in Theorems 4.1 and 4.7 below. As a consequence, following [22] we define the height
function on the moduli space of Riemann surfaces with boundary by

H (M) := − logI (M) .

1 Graph Laplacians will appear throughout the paper. Notation and the relevant results can be found in
Sect. 6, which is independent of the other sections of this paper.
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Then we have the following:

Theorem 1.2 Fix integers g ≥ 0 and n ≥ 1, where n ≥ 3 if g = 0. Let
M(g; b1, . . . , bn) denote the moduli space of hyperbolic surfaces of genus g and
geodesic boundaries of lengths b1, . . . , bn. Then H (M) is a proper function on
M(g; b1, . . . , bn) if and only if g = 0.

The above is analogous to the result of Osgood–Phillips–Sarnak and Khuri on flat
surfaces for the height function associated to the Laplacian with Dirichlet boundary
conditions [17, 22].

It is conjectured that nonequivalent surfaces with the same Steklov spectrum are
rare (see [14]). Unfortunately, the height H (M) does not seem to provide much
information on this question in higher genus. In genus zero, however, as in [22] we
can draw the following consequence.

Corollary 1.3 Fix a surface M of genus zero with at least three boundary components.
LetF be a family of hyperbolicmetrics on M with geodesic boundary that aremutually
Steklov isospectral. Then F is precompact in the C∞ topology.

A compactness theorem for Steklov isospectral simply connected planar domains has
been proven in [6] and [15].

We also obtain asymptotic results for determinants of Laplace operators on M .
For a hyperbolic surface M with nonempty geodesic boundary, let [Det�D]M and
[Det∗ �N ]M denote the zeta-regularized determinants of the Laplace operators �D

and �N on M with Dirichlet and Neumann boundary conditions on ∂M , respectively.
We set {κi } to be the collection of all eigenvalues for both Dirichlet and Neumann
problems on M that satisfy 0 < κi < 1/4. As a consequence of Theorem 4.1 and
work of Wolpert on the asymptotic behavior of the Selberg zeta function [32], in
Corollary 5.1 below we give bounds on the asymptotic behavior of [Det�D]M and
[Det∗ �N ]M . In particular, we have the following:

Corollary 1.4 Let HD(M) := − log[Det�D]M denote the height function for the
determinant of the Laplacian with Dirichlet boundary conditions on ∂M. Then
HD(M) is a proper function on M(g; b1, . . . , bn).

We point out that this result has already been obtained by Young-Heon Kim. The
estimate found in this paper,

HD(M) ≥
∑

γ∈�

(
π2

3�(γ )
+ 3

2
log �(γ )

)
+ 1

2

∑

i

log(1/κi ) − logC ,

is on the one hand sharper than that in [18, Thm. 3.3], and in particular it incorporates
the small eigenvalues (as suggested should be possible in [18, Rem. 3.3]). In the case
of genus zero, we also obtain a more precise statement, and an upper bound (see
Corollary 5.1). On the other hand, in Corollary 1.4 the boundary lengths are fixed,
whereas Kim’s result does not assume this. It may be possible to obtain the additional
terms in [18, Thm. 3.3] that account for varying boundary lengths using the methods
here, but we have not pursued this.

123



The Determinant of the Dirichlet-to-Neumann Operator Page 5 of 27 51

Finally, in order to prove Theorem 1.2 we found it necessary to derive a general
formula for the determinant of a weighted graph Laplacian with a positive diagonal
potential (see Theorem 6.1). The result is an extension of Kirchhoff’s weighted matrix
tree theorem [19], and thus it may be of independent interest.

2 The Gluing Formula

2.1 Preliminary Remarks on Determinants

Here, we briefly review some facts about determinants of operators. For a strictly
positive, self-adjoint, elliptic pseudo-differential operator A of positive order acting
on a Hilbert space V of functions (or sections of a bundle) on a compact manifold M ,
possibly with boundary and elliptic boundary conditions, the complex power A−s is
trace class for Re s 
 0 (see [25, 26]). The trace ζA(s) = tr A−s has a meromorphic
continuation to the plane and is regular at s = 0. The zeta-regularized determinant of
A is defined as

Det A := exp
(−ζ ′

A(0)
)

. (3)

This is extended to operators with a kernel by defining Det∗ A via the restriction of
the trace to (ker A)⊥.

Let A(ε) be a differential family of such (invertible) operators with

A = A(0) , B = d

dε
A(ε)

∣∣
ε=0,

and suppose A−1B is trace class. Then

d

dε
logDet A(ε)

∣∣
∣∣
ε=0

= tr(A−1B) . (4)

Determinants of more general operators are defined in [20]. For example, if A has
order zero, then a determinant may be defined as follows (see [9] for details). Define

Log A := i

2π

∫

C
dz(log z)(z − A)−1 ,

where log is the principal branch and the contour C contains the spectrum of A. Pick a
positive self-adjoint pseudo-differential operator Q on M of order 1. We then define

logDetQ A := f .p. tr(Q−s Log A)

∣∣∣
∣
s=0

, (5)
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where “f.p.” denotes the finite part of the meromorphic extension. If A is not positive,
by convention we set (see [31, p. 479]):

logDetQ A := 1

2
logDetQ(A2) .

The formula for variations (4) continues to hold with this definition of determinant.
Finally, we need the following result whose proof is straightforward. Suppose that

A is of positive order and acts on V . Let π be the orthogonal projection operator to
a finite dimensional subspace V0, and V1 = ker(1 − π). With respect to the splitting
V = V0 ⊕ V1, write

A =
(
A0 B†

B A1

)
.

Lemma 2.1 Assume A1 is invertible. Then the operator A−s
1 on V1 is trace class for

Re s 
 0. The zeta function ζA1(s) has a meromorphic continuation that is regular at
s = 0. If Det A1 := exp(−ζ ′

A1
(0)), then

Det A = det(A0 − B†A−1
1 B)Det(A1) . (6)

Equation (6) holds for zero-th order operators A as well, replacing Det by DetQ,
where we assume that Q preserves the splitting V0 ⊕ V1.

2.2 Proof of Theorem 1.1

Let us return to the context of the Introduction, where M is a compact Riemannian
surface with nonempty boundary. We begin by giving a different expression for the
invariant I (M).

Proposition 2.2 Let A(M) denote the area of M and κg the geodesic curvature of ∂M.
Then

I (M) = Det∗ �N

A(M)Det�D
exp

(
− 1

2π

∫

∂M
κgds

)
. (7)

Proof By the Polyakov–Alvarez formula [1], the right-hand side of (7) is conformally
invariant (see [28, eqs. (4) and (5)]). Hence, it suffices to prove (7) in the case of
geodesic boundary. Let M̂ be the double of M along ∂M . Then by decomposing the
spectrum with respect to the isometric involution on M̂ , we have

[
Det∗ �

]
M̂ = [Det�D Det∗ �N

]
M . (8)

On the other hand, by [3, Theorem B*], cutting M̂ along ∂M gives

[Det∗ �]M̂ = [Det�D]
2
M

A(M̂)

�(∂M)
Det∗(2DN(M)) . (9)
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Now A(M̂) = 2A(M), and since ζDN(M)(0) = −1 (cf. [12, 30]), we have

Det∗(2DN(M)) = 1

2
Det∗(DN(M)) .

The result now follows from (8), (9), and the definition (1).

Let � ⊂ M be as in the Introduction, and recall that � is assumed to be oriented.
Hence, the boundary components of M� are signed, depending upon whether the
orientations induced from the outward normals agree with those of �. This allows us
to define a map δ� from functions on ∂M� to functions on � by taking the difference
of the values on the two sheets of the double cover ∂M� → �. With this understood,
we have the following:

Lemma 2.3 Let Mi , i = 1, . . . , p, denote the connected components of M� . Let
{� j }pj=1 be any basis of locally constant functions on M� . Then

det∗(δ�i , δ� j )�

det(�i , � j )M�

= det∗�(G�,ωg)∏p
i=0 A(Mi )

.

Proof The statement is independent of the choice of basis, so choose �i to be the
characteristic function on Mi . Clearly, det(�i , � j )M� =∏p

i=1 A(Mi ). We also have

(δ�i , δ� j )� =
{

�(∂Mi ∩ �)∗ i = j ,

−�(∂Mi ∩ ∂Mj ) i �= j .

The ∗means we omit components of � that bound only Mi . Now the result follows by
the definition of (G�, ωg) and the graph Laplacian from the Introduction (see Sect. 6
for more details).

Proof of Theorem 1.1 Use a small modification of [3, Theorem B*] to incorporate the
boundary ∂M , and write

[Det�D]M =
p∏

i=0

[Det�D]Mi DetN (M, �) .

On the other hand, by a similar modification of [31, Theorem 3.3], we have

[
Det�D Det∗ �N

]
M

2A(M)
=

p∏

i=0

[
Det�D Det∗ �N

]
Mi

det∗(δ�i , δ� j )�

det(�i , � j )M�

Det∗Q NA(M, �) .

The result now follows from Proposition 2.2 and Lemma 2.3. Notice that all the factors
involving geodesic curvature along � cancel pairwise.
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3 Examples

3.1 Disks and Annuli

By [7] and [12], or alternatively [28] and eq. (7), or indeed by a direct calculation, it
follows that I (M) = 1 for the disk, and I (M) = 2π/ log ρ for the annulus with
modulus (log ρ)/2π , 1 < ρ < ∞. If M is a euclidean disk of radius R and � the
circle centered at the origin of radius r , 0 < r < R, then Theorem 1.1 states in this
case that

1 = 4π

log ρ
(2πr)

Det∗Q NA

(DetN )2
, (10)

where ρ = R/r andN ,NA denote the operators for the pair (M, �), and we have used
that det∗ �(G�,ωg) = 2πr in this case. Let us verify (10) directly. The operatorsN ,NA

have eigenvalues 1/r log ρ, and 1/2r log ρ, corresponding to the constant functions
on �. It therefore suffices to show that

(Det′ N )2 = (2πr)2 Det′Q NA , (11)

where the prime indicates the determinant of the operator restricted to the space
L2
0(�) ⊂ L2(�) orthogonal to the constants. For the operator Q we may choose

Q

(
∑

n∈Z
fne

inθ

)

= f0 +
∑

n �=0

|n| fneinθ , (12)

so that ζQ(0) = 0 as in the Introduction. Since ζN (0) = −1, we must prove

logDet′ N̂ = 1

2
logDet′Q NA , (13)

where N̂ = (2πr)N . Set τ = ρ−1.
Now by a direct calculation one finds (recall (2))

N
⎛

⎝
∑

n �=0

fne
inθ

⎞

⎠ =
∑

n �=0

|n|an
r

fne
inθ ,

NA

(∑

n �=0

(
fn
gn

)
einθ

)
=
∑

n �=0

an

(
0 −iσ(n)

iσ(n) − 2r
|n|

)(
fn
gn

)
einθ ,

where an = 2
1−τ 2|n| and σ(n) is the sign of n. For fixed R, regard N̂ and NA as

operators depending upon τ . Then as τ → 0,

ζN̂ (0)(s) = 2(4π)−sζ(s) , (NA(0))2 = 4 · id ,
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where ζ(s) is the Riemann zeta function. Belowwe use that ζ(0) = −1/2 and ζ ′(0) =
− 1

2 log(2π). Hence, on the one hand,

logDet′Q NA(0) = 1

2
logDet′Q(NA(0))2 = 1

2
f .p. tr

(
Q−s log(4) · id)∣∣s=0

= 4 log(2) f .p.(ζ(s))
∣∣
s=0 = −2 log(2) .

On the other hand,

−ζ ′̂
N (0)

(0) = 2(log(4π)ζ(0) − 2ζ ′(0)) = − log(2).

Thus, (13) is satisfied in this case.
Next, by direct calculation,

d

dτ
logDet′Q NA = f .p. tr

(
Q−sN̂−1 d

dτ
N̂
)∣∣∣∣

s=0
.

But since the derivative of an with respect to τ vanishes rapidly with n, the operator
N̂−1(dN̂ /dτ) is trace class, and so

d

dτ
logDet′ N̂ = tr

(
N̂−1 d

dτ
N̂
)

= f .p. tr

(
Q−sN̂−1 d

dτ
N̂
)∣∣∣∣

s=0

= d

dτ
logDet′Q NA .

Thus, (13) is proven.

3.2 Multiply Connected Planar Domains

Next, consider a planar domain M(ε), ε = (ε1, . . . , εn), obtained by removing disks
of radius εi > 0 (with fixed centers at a1, . . . , an) from a disk of fixed radius, which
without loss of generality we may choose to be the unit disk D. The following gener-
alizes the case of the annulus in the previous section.

Theorem 3.1 lim
ε→0

I (M(ε))

n∏

i=1

log(1/εi ) = (2π)n.

Proof Fix an ε0 > 0, ε0 < 1
2 min{|ai − a j | | i �= j}, and such that Dε0(ai ) � D.

Then set ε0 = (ε0, . . . , ε0). We suppose ε < ε0, and let Aεi denote the annulus
εi ≤ |z − ai | ≤ ε0. Recall thatI (Aεi ) = 2π/ log(ε0/εi ). Then taking � in Theorem
1.1 to be the collection of curves ∂Dε0(ai ), we have
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I (M(ε)) = I (M(ε0))(det
∗�(G�,ωg))

(2 · Det∗Q NA(M(ε), �))

(DetN (M(ε), �))2

×
n∏

i=1

2π

log(ε0/εi )
. (14)

Since the first two factors on the right-hand side of (14) are fixed independent of
the εi , it suffices to analyze the determinants of the Neumann jump operators. But
by direct calculation, the Dirichlet-to-Neumann operator on an annulus of modulus ρ

(with Dirichlet conditions on the inner boundary) is equal to the Dirichlet-to-Neumann
operator on the disk of radius ε0 up to a trace-class operator whose norm → 0 as
εi → 0. To be precise, on the n-th Fourier mode, DN(Aε) acts as

DN(Aε)(gne
inθ ) = |n|

ε0

(
1 + 2ρ−2|n|

1 − ρ−2|n|

)
gne

inθ .

It follows that as εi → 0, DetN (M(ε), �) tends to the determinant of the correspond-
ing operator on the domain with Aεi replaced by the disk Dε0(ai ). The same holds
forNA(M(ε), �). Applying the gluing formula once again to the limit, we obtain the
result.

4 Asymptotics ofI (M)

4.1 Genus Zero

Aswe have seen in Sect. 3.2, general bounds on the invariantI (M) are obtained from
Theorem 1.1 by judicious choices of �. This can be done on a case-by-case basis; to
get overall uniform estimates is combinatorially complicated. For simplicity, here we
treat only the genus zero case in complete generality. In higher genus, we find rough
estimates that suffice for the application to the Laplacian with Dirichlet conditions.
Recall that by a “short geodesic” on a hyperbolic surface, we mean a simple closed
geodesic of length less than the absolute constant c0 appearing in the collar lemma
(cf. [16]).

Theorem 4.1 Fix positive numbers b1, · · · , bn, n ≥ 3, and δ > 0. Then there is a
constant C ≥ 1 depending only on c0, (b1, · · · , bn), and δ, such that the following
holds. For any hyperbolic surface M of genus zerowith geodesic boundary components
of lengths b1, · · · , bn, let � be the collection of short geodesics on M and �(G�,ωg)

the graph Laplacian from the Introduction. Then

C−1

∏
γ∈� �(γ )

det(�(G�,ωg) + D)
≤ I (M) ≤ C

∏
γ∈� �(γ )

det(�(G�,ωg) + D)
, (15)

where D is the diagonal matrix with entries δ for the vertices corresponding to the
components of M� that intersect ∂M, and zeros elsewhere.
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Proof The proof proceeds in several steps. Recall that we denote the connected com-
ponents of M \ � by Mi .
Step 1 First, about each γ ∈ � we choose a conformal annulus Aγ of modulus
(log ρ(γ ))/2π , 1 < ρ(γ ) < +∞. We choose a local coordinate 1/ρ(γ ) ≤ |z| ≤ 1
for Aγ . By a conformal change we adjust the hyperbolic metric to be euclidean in a
neighborhood of the boundary ∂Aγ . Introduce the notation

λ(γ ) := 1/ log ρ(γ ) . (16)

The significance ofλ(γ ) is that it is the value of theDN-operator for Aγ at the boundary
|z| = 1 for the characteristic function of this boundary. The value the DN-operator at
the other boundary is−λ(γ ). By the collar lemma andWolpert’s estimate (cf. [33]), we
may choose Aγ such that the length �(γ ) (in the hyperbolic metric) of the geodesic in
(M, g) homotopic to γ satisfies �(γ ) ∼ 2π2/ log ρ(γ ). Thus, we have a comparison
between λ(γ ) and �(γ ) that is uniform as �(γ ) → 0.

Let

�̃ :=
⋃

γ∈�

∂Aγ ,

and set M̃i to be the connected component of

M̊�̃ := M \
⋃

γ∈�

Aγ

that intersects Mi . We let M �̃ denote the (possibly disconnected) Riemann surface
obtained by “capping off” M̊�̃ , i.e., replacing each annulus Aγ by a pair of disks. An
important point is the bounded geometry of M̃i as M varies in the moduli space of
hyperbolic metrics with fixed set � of short geodesics. See [32, 33]. In the following,
we shall call M̃i an isolated component if ∂ M̃i ∩ ∂M = ∅.
Step 2 Let N = N (M, �̃) and NA = NA(M, �̃) be the Neumann jump operators
acting on L2(�̃). For each i , let χi ∈ L2(�̃) denote the function defined by boundary
values of the characteristic function of the component M̃i , i.e., χi is locally constant on
�̃, and is equal to 1 on ∂ M̃i and 0 otherwise. Let us write an orthogonal decomposition

L2(�̃) = V0 ⊕ V1 ,

where V0 is the span of all χi for isolated components M̃i . By a similar analysis to
the one carried out in [29–31], for example, on the orthogonal complement V1, as
the �(γ ) → 0 the operators N and NA converge in trace class to the corresponding
operators N and N A on the capped off components of M �̃ (see also the proof of
Lemma 4.6 below).
Step 3 We must analyze the small eigenvalues of N and NA, which occur from the
restriction to V0. For NA, this refers to the ϕ′′ component. The analysis is therefore
identical for bothN andNA, and so henceforth we deal only withN . For the isolated
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51 Page 12 of 27 R. A. Wentworth

components M̃i , the harmonic function on M̃i with the boundary values of χi is χi

itself, and so the Dirichlet-to-Neumann operator for M̃i annihilates this. On the other
hand, if ∂ M̃i ∩ ∂M �= ∅, then since Dirichlet conditions are imposed on ∂M , the DN
operator is nonzero on the boundary values ofχi . For each collar Aγ ,DN is rotationally
symmetric, and so preserves constants. In terms of the splitting V0⊕V1, we may write

N =
(
A B†

B N0

)
. (17)

Now N0 is uniformly invertible as the lengths �(γ ) → 0. By Lemma 2.1, we have

DetN = det(A − B†N−1
0 B)Det(N0) . (18)

It follows that DetN is estimated by det(A − B†N−1
0 B). Recall the weighted graph

(G�, ωg) from the Introduction. The key result is the following:

Proposition 4.2 Fix δ > 0. There is a constant C ≥ 1 depending only on c0,
(b1, . . . , bn), and δ, such that

C−1 det(�(G�,ωg) + D) ≤ det(A − B†N−1
0 B) ≤ C det(�(G�,ωg) + D) .

We postpone the proof of this proposition to the next section.
Step 5AssumingProposition 4.2,we complete the proof of Theorem4.1. By definition

I (M�̃) = I (M̊�̃)
∏

γ∈�

I (Aγ ) .

Now I (Aγ ) = 2π/ log ρ(γ ) � �(γ )/π , and because M̊�̃ has bounded geometry
over the moduli space, I (M̊�̃) is bounded from above and below away from zero.
Hence, there is an estimate (above and below)

I (M�̃) � C
∏

γ∈�

I (Aγ ) � C
∏

γ∈�

�(γ ) .

Apply Theorem 1.1 to �̃. The lengths of the elements of �̃ are bounded away from
zero, so the factor det∗�(G�̃ ,ωg) in Theorem 1.1 remains bounded above and below
away from zero. From the discussion in Step 2 above, eq. (18), and Proposition 4.2,
we have

Det∗Q NA(M, �̃)

(DetN (M, �̃))2
∼ 1

DetN (M, �̃)
,

and

C−1 det(�(G�,ωM ) + D) ≤ DetN (M, �̃) ≤ C det(�(G�,ωM ) + D) ,

for a constant C . Putting this all together completes the proof.
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Fig. 1 A collar

˜Mi
˜Mj

γij

χi,γij χj,γij

4.2 Proof of Proposition 4.2

Here, we relate the action ofN on the locally constant functions in L2(�̃) associated
to the isolated components of M̊�̃ to the graph Laplacian �(G�,ωM ). This relationship
is contained in the matrix A appearing in (17). Now the key point is that in terms of
the graph Laplacian, the form of the modification to the matrix A in Proposition 4.2,
B†N−1

0 B, corresponds to adding edges with weights that are at least quadratic in the
weights of the graph G� . Using the results in Sect. 6, we then argue that for small
weights such a modification gives only a small perturbation of determinants.

To spell this out precisely, let us introduce some convenient notation. Enumerate
the components M̃i of M̊�̃ , and let Li j denote the adjacency matrix of G� . By the
assumption of genus zero, if Li j �= 0, then there is a unique element γi j ∈ � bounding
Mi and Mj (by definition γi j = γ j i ). Associated to γi j are two elements of �̃, one
bounding M̃i and the other M̃ j . Let χi,γi j and χ j,γi j denote the characteristic functions
of these two components of �̃ (Fig. 1).

We define a weight function on G� by

ωM (i j) :=
{

λ(γi j ) Li j �= 0

0 Li j = 0
, (19)

whereλ(γ ) is defined in (16) above. By the discussion in Step 1 of the previous section,
there is a constant κ ≥ 1, uniform as the �(γ ) → 0, such that for all i, j ,

κ−1ωg(i j) ≤ ωM (i j) ≤ κωg(i j) . (20)

Let G0 ⊂ G� be the (possibly disconnected) subgraph obtained by deleting noniso-
lated vertices and their edges. We identify the vertices of G0 with the basis elements
χi of V0. Then we

Claim 4.3 The matrix A in (17) is the restriction to G0 of the graph Laplacian
�(G�,ωM ).

Proof Let M̃i and M̃ j be isolated components. The claim amounts to the statement
that

〈N (χi ), χ j 〉 = −Li jλ(γi j ) ,

〈N (χi ), χi 〉 =
∑

k isolated

Likλ(γik) +
∑

k not isolated

Likλ(γik) . (21)

This follows by direct calculation of the harmonic extensions of the locally constant
functions χi (cf. Step 1 of the previous section).
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We next consider the other entries of the decomposition (17). As in (21), we have

Bχi =
∑

j

Li jλ(γi j )
{
(χi,γi j )

⊥ − (χ j,γi j )
⊥} . (22)

Here, ⊥ indicates the orthogonal projection to V1 in the decomposition V0 ⊕ V1. Note
that the sum is over all components M̃ j , not just isolated ones. Also, by definition
N0χi = 0. Let us define

Pi j :=
∑

k,k′
Lik L jk′λ(γik)λ(γ jk′)

〈
N−1

0 χi,γik − N−1
0 χk,γik , χ j,γ jk′ − χk′,γ jk′

〉
(23)

Since the summand in (23) is skew-symmetric in j and k′, we have
∑

j Pi j = 0,
and therefore

Pii = −
∑

j �=i

Pi j . (24)

Let Ĝ� denote the complete graph on the vertices of G�; similarly Ĝ0 ⊂ Ĝ� denotes
the complete graph on G0. Define weights for Ĝ� (possibly zero or nonpositive) by

ω̂M (i j) = ωM (i j) + Pi j , i �= j . (25)

If we set (see (32))

μ̂M (i) = μM (i) − Pii ,

then it follows from (24) that

μ̂M (i) =
∑

j �=i

ω̂M (i j) .

Moreover, if M̃i and M̃ j are both isolated, then from (22) we have Pi j =
〈N−1

0 Bχi , Bχ j 〉. Combining this with Claim 4.3, we therefore have the following:

Claim 4.4 The matrix A − B†N−1
0 B is the restriction to Ĝ0 of the graph Laplacian

�(Ĝ�,ω̂M ).

By the discussion in Sect. 6 below (cf. (41)), we conclude

Lemma 4.5 Fix δ > 0, and let D denote the diagonal matrix with entry δ for all non-
isolated components, and zeros elsewhere. Then det(A − B†N−1

0 B) is the coefficient
of δk in det(�(Ĝ�,ω̂M ) + D), where k is the number of nonisolated components.

Given distinct vertices vi , v j ∈ V (G�), then since G� is a tree there is a unique
geodesic gi j inG� fromvi tov j .Moreover, there is a 1-1 correspondence� ↔ E(G�).
For γ ∈ �, we shall say γ ∈ gi j if the edge associated to γ lies on gi j .
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Lemma 4.6 Fix ε0, 0 < ε0 < 1. There are constants κ ≥ 1 and C > 0 such that if
λ(γ ) is sufficiently small with respect to ε0 for all γ ∈ �, then

κ−1ωM (i j) ≤ ω̂M (i j) ≤ κω(i j) , Li j �= 0 ; (26)

|ω̂M (i j)| ≤ C
∏

γ∈gi j
λ(γ ) , Li j = 0 . (27)

Proof By explicit computation, we may write N0 = N 0 + R, where R is diagonal
with respect to the orthogonal decomposition V1∩⊕γ∈�L2(∂Aγ ), and the component
pieces Rγ → 0 in trace class as λ(γ ) → 0. If fn denotes the n-th Fourier mode of a
function f on one boundary component of ∂Aγ , n �= 0, then the n-th Fourier mode
of Rγ ( f ) on this component is

|n|ρ−2|n|

1 − ρ−2|n| fn ,

and on the other component of ∂Aγ it is

− 2|n|ρ−|n|

1 − ρ−2|n| f−n .

In particular, given ε0 then for sufficiently small λ(γ ) the norm of R is bounded by

ε0λ(γ ). Since N−1
0 is uniformly bounded, we have N0 = N 0(1 + N−1

0 R), where

N−1
0 R has small norm in trace class bounded on each component by �(γ ). Let f be

supported on ∂ M̃i and g on ∂ M̃ j , and fix p ≥ 1. We claim there is a constant C ′ > 0,
independent of i, j, p and the λ(γ ), such that

|〈(N−1
0 R)p f , g〉| ≤ C ′ε p

0 ‖ f ‖‖g‖
∏

γ∈gi j
λ(γ ) .

This follows easily by induction on p. We now apply this estimate, and use the expres-
sion

N−1
0 = N−1

0 +
∞∑

p=1

(−1)p(N−1
0 R)pN−1

0

in the definition (23) of Pi j . For example, for i �= j , one of the terms is

∑

k,k′
Lik L jk′λ(γik)λ(γ jk′)〈N−1

0 χk,γik , χk′,γ jk 〉

=
∑

k

Lik L jkλ(γik)λ(γ jk)〈N−1
0 χk,γik , χk,γ jk 〉

+
∑

k,k′
Lik L jk′λ(γik)λ(γ jk′)O

⎛

⎝
∏

γ∈gkk′
λ(γ )

⎞

⎠ , (28)
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where we have used the fact that N−1
0 (χk,γik ) is supported on ∂ M̃k for any i . Notice

that the second term on the right-hand side of (28) contains λ(γ ) for every γ ∈ gi j ,
and therefore satisfies both (i) and (ii). The first term vanishes if Li j �= 0, and so
automatically satisfies (i). If Li j = 0, it contributes λ(γik)λ(γ jk) for each vertex k
“subadjacent” to i and j (see Fig. 2). In particular, this term satisfies (ii). The other
terms in (23) are treated similarly.

Finally, we complete the proof of Proposition 4.2. Fix δ > 0, and suppose M� has
k nonisolated components. By the result of Lemma 4.5 and the expansion (33), if the
weights λ(γ ) are sufficiently small compared to δ for all γ ∈ �, then the determinants
are dominated by the δk coefficients. It therefore suffices to relate det(�(Ĝ�,ω̂M ) + D)

to det(�(G�,ωg) + D). From (27) and Corollary 6.4, there is a constant C ≥ 1 such
that

C−1 det(�(G�,ω̃M ) + D) ≤ det(�(Ĝ�,ω̂M ) + D) ≤ C det(�(G�,ω̃M ) + D) ,

where ω̃M is the restriction of the weight function ω̂M on Ĝ� to G� . By (26) and
Corollary 6.2, there is constant C1 ≥ 1 such that

C−1
1 det(�(G�,ωM ) + D) ≤ det(�(G�,ω̃M ) + D) ≤ C1 det(�(G�,ωM ) + D) .

Finally, using (20) and the same comparison between ωM and ωg gives upper and
lower bounds on det(�(G�,ωg) +D). Combining these statements completes the proof
of Proposition 4.2.

4.3 Higher Genus

In higher genus, the graph G� will not be a tree in general. This leads to a more
complicated perturbation of the graph Laplacian. Nevertheless, it is clear from the
proof of Theorem 4.1 that there is a uniform upper bound onDetN (M, �̃). Indeed, the
discussion concerned the low eigenvalues, whereas as the operator on the orthogonal
complement in the previous section converges in trace class.As a consequence, directly
from Theorem 1.1, we have the following:

Theorem 4.7 Fix positive numbers g ≥ 1 and b1, · · · , bn, n ≥ 1. Then there is a
positive constant C, depending only on c0 and (b1, · · · , bn), such that the following
holds. For any hyperbolic surface M of genus zerowith geodesic boundary components
of lengths b1, · · · , bn and short geodesics �,

Fig. 2 Added edge

•

•

•
i

k

j

λ(γik) λ(γjk)

λ(γik)λ(γjk)
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C−1
∏

γ∈�

�(γ ) ≤ I (M) .

5 Further Results

5.1 Properness and Steklov Isospectral Surfaces

Now we provide proofs of the other consequences of Theorems 1.1 and 4.1.

Proof of Theorem 1.2 Let {Mj } be a sequence of genus zero hyperbolic surfaces with
geodesic boundaries of fixed lengths b1, . . . , bn . After passing to a subsequence, we
may assume there is a nonempty collection � j of geodesics all of whose lengths
�(γ ) → 0 as j → ∞, and all other geodesics have lengths bounded away from zero.
Since the Mj have genus zero, In this case, (#� + 1)

∏
ωMj (γ ) = det∗�(G�,ωM j )

(see (39)), and each ωMj (γ ) is comparable to the length �Mj (γ ). We can then use (15)
and Corollary 6.3 below to conclude that

I (Mj ) ≤ C max
{
�(γ1) · · · �(γk−1) | γ1, . . . , γk−1 ∈ � j distinct

}
, (29)

where k is the number of nonisolated components of (Mj )� j that intersect ∂Mj . We
may assume k is constant and C is independent of j . Then (29) implies that

H(Mj ) ≥ (k − 1) min
γ∈� j

log(1/� j (γ )) − logC . (30)

For a connected tree with more than one vertex, there are at least two vertices having
only a single edge. Since the components of (Mj )� j must have at least 3 boundary
components, this implies k ≥ 2. Since � j (γ ) → 0, (30) implies that H(Mj ) is
unbounded along {Mj }.

If g �= 0, then we may find a family of surfaces Mε with a geodesic γε of length
�(ε) ∼ 1/ log(1/ε), such that Mε \ γε consists of two components: one component
M ′

ε containing all components of the boundary ∂M(ε), and an isolated component Nε

obtained by removing a disk of radius ε from a genus one Riemann surface N . As in
the proof above, we may choose an annulus Aε about γε whose boundary lengths are
bounded above and below. Now apply Theorem 1.1 to the case where � = ∂Aε. Then
the Neumann jump operators N and NA both have a small eigenvalue ∼ 1/ log(1/ε)
corresponding to the constant function 1 on the component of ∂Aε meeting Nε, and
0 on the other component of ∂Aε. As in the proof above, orthogonal to this space,
the operators converge up to trace class to the corresponding operators on N and the
surface M ′

ε union a disk. The small eigenvalue cancels the vanishing ofI (Aε) in the
gluing formula, with the remaining factors bounded. Hence,H(Mε) remains bounded
as ε → 0.

Proof of Corollary 1.3 By [10, Theorem 1.7], the lengths of the boundary components
of all the members of F are equal to some fixed lengths (b1, . . . , bn). From Theorem
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1.2, F is contained in a compact subset of the moduli space M(0; b1, . . . , bn). The
result then follows as in [22].

5.2 Dirichlet and Neumann Laplacians

Corollary 5.1 Consider the situation in Theorem 4.1. Let {κi } be the collection of small
eigenvalues, as in the Introduction. Then the constant C may be chosen such that for
any hyperbolic surface M of genus zerowith geodesic boundary components of lengths
b1, · · · , bn,

C−1
∏

γ∈�

exp(−π2/3�(γ ))�−3/2(γ )
(
det(�(G�,ωM ) + D)

∏
κi

)1/2

≤ [Det�D]M
≤ C

∏

γ∈�

exp(−π2/3�(γ ))�−3/2(γ )

×
(
det(�(G�,ωM ) + D)

∏
κi

)1/2
,

and

C−1
∏

γ∈�

exp(−π2/3�(γ ))�−1/2(γ )

( ∏
κi

det(�(G�,ωM ) + D)

)1/2

≤ [Det∗ �N ]M
≤ C

∏

γ∈�

exp(−π2/3�(γ ))�−1/2(γ )

×
( ∏

κi

det(�(G�,ωM ) + D)

)1/2

.

For g ≥ 1 and n ≥ 1, we have

[Det�D]M ≤ C
∏

γ∈�

exp(−π2/3�(γ ))�−3/2(γ )
(∏

κi

)1/2
.

Proof Let M̂ be the double of M . Then decomposing the spectrum with respect to the
isometric involution, the small eigenvalues for the Laplacian on the closed surface M̂
are exactly the collection {κi }. Moreover, since the boundary lengths of M are fixed,
we may ignore them in the asymptotics. Hence, the short geodesics of M̂ correspond
to the short geodesics in M and their mirrors in the double. By [32, Theorem 5.3] there
is a constant B > 1 such that

B−1 ≤ [Det∗ �]M̂∏
γ∈� exp(−2π2/3�(γ ))�−2(γ )

∏
i κi

≤ B . (31)
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On the other hand, from (7) and (8), we have

[Det�D]2M = [Det∗ �]M̂
A(M)I (M)

, [Det�N ]2M = [Det∗ �]M̂ A(M)I (M) .

The result now follows from (31) and Theorems 4.1 and 4.7.

6 Graph Laplacians

6.1 Matrix Tree Theoremwith Potential

For the proof ofTheorem1.2,we require the results in this section, perhapswell known,
but for which we have been unable to locate precise statements in the vast literature on
this subject. For the sake of completeness, we therefore provide proofs here. This will
also allow us to review the construction and basic facts of graph Laplacians. The main
result, Theorem 6.1, is an extension of the weighted matrix tree theorem of Kirchhoff
for the graph Laplacian with an added diagonal potential. Corollary 6.3 then gives a
comparison of the determinants of the graph Laplacians with andwithout the potential.

Let G be an undirected graph with vertex and edge sets V (G) and E(G), respec-
tively. Label the elements of V (G) by vi ∈ V , i = 1, . . . , n. For i �= j we say
(i j) ∈ E(G) if there is an edge between vi and v j . We always assume G is simple,
by which we mean there is at most one edge between distinct vertices, and no edge
from a vertex to itself. A weight function on G is a map ω : E(G) → R. The weight
defines (and is determined by) an associated n × n symmetric matrix:

ωi j :=
{

ω(i j) if (i j) ∈ E ,

0 otherwise.

If we set μi =
∑

(i j)∈E
ωi j , then the (weighted) graph Laplacian is the n × n symmetric

matrix:

(�(G,ω))i j =

⎧
⎪⎨

⎪⎩

−ωi j (i j) ∈ E ,

μi i = j ,

0 otherwise.

(32)

The weight ω is positive if ω(i j) > 0 for all (i j) ∈ E(G). When the weights are pos-
itive, the matrix �(G,ω) is positive semidefinite with a zero eigenvalue of multiplicity
1 if G is connected. We let det∗�(G,ω) denote the product of the nonzero eigenvalues.
By a potential we mean a function δ : V (G) → R. If δi = δ(vi ), then δ is represented
by a diagonal matrix with entries δi , which we will typically denote by D. Given a
potential, we shall say a vertex v is marked if δ(v) �= 0. The potential is positive if
δ(v) is either zero or positive for every v.
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For a connected graphG, let Sp(G) be the set of spanning trees ofG, i.e., connected
trees T ⊂ G such that V (T ) = V (G). For a tree T with � marked vertices v1, . . . , v�,
letE (T ; v1, . . . , v�) denote the set of collections of (�−1) edges e1, . . . , e�−1 ∈ E(T )

such that each of the � connected components of T \ e1 ∪ · · · ∪ e�−1 contains exactly
one marked vertex v j . Finally, for T ∈ Sp(G) and S ∈ E (T ; v1, . . . , v�), we define a
multiplicity:

m(T , S) = #
{
(T ′, S′) | T ′ ∈ Sp(G) , S′ ∈ E (T ′; v1, . . . , v�) , T ′ \ S′ = T \ S

}

For elements of the set above, we shall say that (T ′, S′) is equivalent to (T , S). With
this understood, we are ready to state the main result.

Theorem 6.1 Let (G, ω) be a connected weighted graph with n vertices v1, . . . , vn,
and let �(G,ω) be the graph Laplacian. Fix a potential δ : V (G) → R, δi = δ(vi )

with associated diagonal matrix D. Then

det(�(G,ω) + D)

=
∑

T∈Sp(G)

n∑

�=1

∑

1≤i1<···<i�≤n

∑

S∈E (T ;vi1 ,...,vi� )

δi1 · · · δi�
m(T , S)

∏

e∈E(T )\S
ω(e) . (33)

Theorem 6.1 will be proved in the next section. First, let us draw some conclusions.
An immediate consequence of (33) is the following important

Corollary 6.2 Suppose (G, ω) is a connected graphwith positiveweights and apositive
potential δ. For κ ≥ 1, there is C ≥ 1 depending only on κ , G, and δ, such that the
following holds. For any weight function ω̃ on G with

κ−1ω(e) ≤ ω̃(e) ≤ κ ω(e) (34)

for all e ∈ E(G), we have

C−1 det(�(G,ω) + D) ≤ det(�(G,ω̃) + D) ≤ C det(�(G,ω) + D) .

In the following,we suppose δ has exactly k nonzero entries δ1, . . . , δk at v1, . . . , vk ,
1 ≤ k ≤ n. Suppose first that k = 1. Notice that in this case, no edges are removed:
in the expression (33) the sum over S (and therefore also the multiplicities) is absent.
For ε > 0,

d

dε
log det(�(G,ω) + εD) = tr

(
(�(G,ω) + εD)−1D

)
= δ1(�(G,ω) + εD)−1

11 ;
d

dε
det(�(G,ω) + εD) = δ1 det((�(G,ω) + D)[1]) = δ1 det(�

[1]
(G,ω)) .

Here, we have introduced the following notation: if A = (Ai j ) is an n × n matrix, we
denote by A[k] the (n − 1) × (n − 1) matrix obtained by deleting the k-th row and the
k-th column. Since det�(G,ω) = 0, by integration we get
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det(�(G,ω) + D) = δ1 det(�
[1]
(G,ω)) . (35)

Now by the weighted matrix tree theorem (cf. [27, Thm. VI.27]),

det(�[1]
(G,ω)) =

∑

T∈Sp(G)

∏

e∈E(T )

ω(e) , (36)

and so we obtain (33). In the proof of Theorem 6.1 below, we do not reprove (36) but
rather use it as a starting point for an inductive argument.

For k ≥ 2, the appearance of the multiplicity m(T , E) is a new feature in the
generalized matrix tree expression (33). Its necessity is immediate from the δn term
in case k = n, δ1 = · · · = δn = δ. More illuminating is the simple example in Fig. 3.

Here, the weights are δ(vi ) = δi , i = 1, 2 and zero otherwise. Then one calculates
the δ1δ2 term directly

det(�(G,ω) + D) = δ1δ2(ω13 + ω23)(ω14 + ω24) + · · · (37)

There are 4 spanning trees for G, obtained by removing a single edge. For each tree
T , there are two possible edges S that can be removed to separate v1 from v2. Thus
there are 8 terms in the δ1δ2 sum in (33). But the multiplicity of each pair (T , S) is
clearly 2, corresponding to switching the edge removed to define the tree T with the
edge S removed from T . The 8 terms thus reduce to the 4 terms in (37).

A second special case is where G is a tree. For δi > 0, i = 1, . . . , k, and zero
otherwise, from (33) we have

det(�(G,ω) + D) ≥ δ1 · · · δk min {ω(e1) · · · ω(en−k) | e1, . . . , en−k ∈
E(G) distinct} (38)

We are mostly interested in the case where the edge weights are much smaller than
the δi ’s. The estimate above can probably be improved. However, notice that in the
example (37), ω13ω23 (or ω14ω24) do not appear in the δ1δ2 term. If ω14 and ω24 are
big compared to the other two weights, we cannot replace min by max in (38).

For a connected graph, the weighted matrix tree theorem (the equality (36), which
holds for any principal minor) implies

det∗�(G,ω) = n
∑

T∈Sp(G)

∏

e∈E(T )

ω(e) . (39)

Fig. 3 Example of multiplicity

◦

•

•

◦v1 v2

v3

v4
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In case G is a tree, there is only one term in the sum. Hence, from (35), (36), and (38)
we obtain

Corollary 6.3 Let (G, ω) be a weighted tree with n vertices, and suppose D has exactly
k ≥ 1 nonzero entries δ1, . . . , δk > 0. Then if k = 1,

det∗�(G,ω) = n

δ1
det(�(G,ω) + D) ,

and if k ≥ 2,

det∗(�(G,ω))

det(�(G,ω) + D)
≤ n

δ1 · · · δk max {ω(e1) · · · ω(ek−1) | e1, . . . , ek−1 ∈ E(G) distinct} .

Finally, an important technical result for this paper is the following, which is used in
Sect. 4. Let (G, ω) be a connected, weighted tree with n vertices and positive weights.
Let Ĝ be the complete graph on the vertices of G. Fix κ0 > 0. Suppose ω̂ is a system
of weights (not necessarily positive) for Ĝ satisfying

(i) ω̂(e) = ω(e) for all e ∈ E(G);
(ii) For ê ∈ E(Ĝ) \ E(G) between vertices v1 and v2,

|ω̂(̂e)| ≤ κ0ω(e)

for any e ∈ E(G) along the geodesic in G from v1 to v2.

Corollary 6.4 Fix (G, ω) as above, and let δ : V (G) → R≥0 be a positive potential.
Then for κ0 > 0 sufficiently small (depending upon (G, ω) and δ), there is a constant
C ≥ 1 depending only on G, δ, and κ0, such that if (Ĝ, ω̂) satisfies (i) and (ii) above,

C−1 det(�(G,ω) + D) ≤ det(�(Ĝ,ω̂) + D) ≤ C det(�(G,ω) + D) .

Proof We wish to compare the terms appearing in (33) for (G, ω) and (Ĝ, ω̂). Let T̂
be a spanning tree for Ĝ. Consider a component subtree T̂ ′ of T̂ \ Ŝ, for a separating
set of edges Ŝ. Suppose that T̂ ′ contains an edge ê not in E(G). Let v1 and v2 be the
two vertices of ê. Since T̂ ′ contains only one marked vertex, we may assume v1 is not
marked. Let g be the geodesic in G from v1 to v2. Because T̂ ′ is a tree, we cannot
have g ⊂ T̂ ′, since then g ∪ ê would be a cycle. Hence, let e be the first edge in g
(going from v1 to v2) that is not contained in T̂ ′. Then if we replace ê by e we obtain a
new spanning tree T̂1 (with the same separating set Ŝ) with fewer edges that are not in
E(G). Moreover, by (ii) the product of the edges in T̂ \ Ŝ is strictly less (in absolute
value) than that of T̂1 \ Ŝ. Continuing in this way, we find a new spanning tree T̂• of
Ĝ such that T̂• \ Ŝ ⊂ G. Now there is a unique separating set S ⊂ E(G) such that
T̂• \ Ŝ = G \ S. Thus, the term in the expansion (33) for Ĝ corresponding to (T̂ , Ŝ)

is dominated by the term (G, S) in the expansion for G. This completes the proof.
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6.2 Proof of Theorem 6.1

The proof is by induction on n and k = the number of nonzero entries of D. Thus,
we assume (33) holds for graphs with fewer than n vertices and any D. We have seen
in (36) that by the usual weighted matrix tree theorem, the result holds for all n and
k = 1. Suppose now that k ≥ 2, and that (33) holds for n vertices and potentials with
fewer than k nonzero entries. Wemust show that for D with exactly k nonzero entries,

det(�(G,ω) + D)

=
∑

T∈Sp(G)

k∑

�=1

∑

1≤i1<···<i�≤k

∑

S∈E (T ;vi1 ,...,vi� )

δi1 · · · δi�
m(T , S)

∏

e∈E(T )\S
ω(e) . (40)

Set δk = δ(vk). By the same argument used above to derive (36), we have

det(�(G,ω) + D) = det(�(G,ω) + D)
∣
∣
δk=0 + δk det((�(G,ω) + D)[k]) . (41)

We view the second term on the right-hand side as the determinant of a new weighted
graph G̃ with potential D̃, obtained by deleting vk and all edges at vk . The weight
function ω̃ is the restriction of ω to G̃. Importantly, since the edges of vk have been
deleted, the μ j differ from μ̃ j , and D̃ is determined by the rule

δ̃ j =
{

δ j ( jk) /∈ E(G) ,

δ j + ω jk ( jk) ∈ E(G) ,
(42)

for all v j ∈ G̃. With this interpretation we have

det((�(G,ω) + D)[k]) = det(�(G̃,ω̃) + D̃) . (43)

By induction on k, wemay assume the first term on the right-hand side of (41) satisfies
(33), with δk set to zero. This accounts for all the terms on the right-hand side of (40)
where i� ≤ k − 1. The remaining terms all have i� = k, and therefore a factor of δk .
Given (43), in order to complete the proof we must show that

det(�(G̃,ω̃) + D̃) =
k∑

�=1

∑

1≤i1<···<i�−1≤k−1

δi1 · · · δi�−1

×
∑

T∈Sp(G)

∑

S∈E (T ;vi1 ,...,vi�−1 ,vk )

1

m(T , S)

∏

e∈E(T )\S
ω(e) .

(44)

In the sum above, � = 1 is taken to mean that no δi ’s appear. Let w1, . . . , wm be the
vertices adjacent to vk , with edges f1, . . . , fm . See Fig. 4.

Let us first assume that

(i) G \ {vk} is connected;
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Fig. 4 Marked vertex

◦

•
•
•

•

◦

◦

◦

vk

v1

v2

vk−1

w1

wm

f1

fm

(ii) None of the w j ’s are marked in G.

Thus, by (42), G̃ has (k + m − 1) marked points at v1, . . . , vk−1 and w1, . . . , wm .
Since G̃ has (n − 1) vertices and we have assumed the result holds in this case for all
k, by induction we have

det(�(G̃,ω̃) + D̃) =
∑

�=1,...,k
�′=0,...,m

∑

1≤i1<···<i�−1≤k−1
1≤ j1<···< j�′≤m

δi1 · · · δi�−1

×
∑

T̃∈Sp(G̃)

∑

S̃∈E (T̃ ;vi1 ,...,vi�−1 ,w j1 ,...,w j
�′ )

δ̃ j1 · · · δ̃ j�′
m(T̃ , S̃)

∏

e∈E(T̃ )\S̃
ω(e) ,

(45)

where by �′ = 0 we mean no δ̃ j ’s appear, and in the sum we do not allow both � = 1
and �′ = 0. In order to prove the equality of the right-hand sides of (44) and (45), for
a fixed choice of i1, . . . , i�−1, we must find a correspondence between trees and edge
sets in G̃ and G, modulo equivalences.
Case 1. Suppose first that �′ ≥ 1. Let T̃ ∈ Sp(G̃), S̃ ∈ E (T̃ ; i1, . . . , i�−1, j1, . . . , j�′),
so that # S̃ = �+�′−2. Let ẽ1, . . . , ẽ�′−1 ∈ S̃ be the edges that separatew j1, . . . , w j�′ .
To be precise, there is a unique geodesic g12 in T̃ fromw j1 tow j2 , and by definition of
the set E there is an edge in S̃ that is a segment of g12. Choose ẽ1 to be the nearest such
edge to w j1 in the simplicial metric. Now consider the geodesic g23 from w j2 to w j3 .
This may or may not be separated by ẽ1. If it is, then g23 intersects the geodesic g13
from w j1 to w j3 . We then choose ẽ2 to be the nearest edge to w j1 along this geodesic.
If g23 is not separated, choose ẽ2 to be the nearest edge tow j2 . Continuing in this way,
we determine the collection ẽ1, . . . , ẽ�′−1 ∈ S̃. Now define T ⊂ G by

T = (T̃ \ ẽ1 ∪ · · · ∪ ẽ�′−1
) ∪ f j1 ∪ · · · ∪ f j�′ ∪ {vk} .

Weclaim that T is a connected tree.Being a subset of T̃ , T∩G̃ is a tree.By construction,
w j1, . . . , w j�′−1

are in distinct components of T ∩ G̃. It follows that T is a tree as well.
ThatT is connected follows from the fact that the connected components of T̃ \̃e1∪· · ·∪
ẽ�′−1 are in 1-1 correspondencewith the {w ji }. Now the remaining �−1 edges in S̃ – let
us denote them e1, . . . , e�−1 – provide an element S ∈ E (T ; i1, . . . , i�−1, vk). Indeed,
removing e1, . . . , e�−1 separates the vi1 , . . . , vi�−1 from all the w j1, . . . , w j�′−1

, and
further removing ẽ1 ∪ · · · ∪ ẽ�′−1 separates the w j1 , . . . , w j�′−1

from themselves in
T̃ . It follows that in T , vk is separated from the vi1 , . . . , vi�−1 as well. It is clear that
equivalent pairs (T̃ , S̃) give equivalent counterparts (T , S). Indeed,
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T \ S = (T̃ \ S̃) ∪ f j1 ∪ · · · ∪ f j�′ ∪ {vk} .

This construction may be reversed. Starting from the pair (T , S), we construct (T̃ , S̃)

as follows. Let f j1 , . . . , f j�′ be all the edges in T \ S from vk . The first step is to
replace (T , S) with an equivalent pair (T ′, S′) so that f j1 , . . . , f j�′ are the only edges
from vk in T ′. Let f p ∈ S be another such edge, to wp. Let e ∈ E(G̃) be the edge
realizing the minimal distance from the component of T ∩ G̃ containing wp to the
other components. Then if we let T ′ = (T \ f p)∪e, S′ = (S \{ f p})∪{e}, then clearly
T ′ is a tree. Hence, we may assume, up to equivalence, that the edges in T from vk
are not in S. Now the components of T ∩ G̃ are in 1-1 correspondence with the wi j .
Let ẽ1, . . . , ẽ�′−1 be edges in G̃ minimizing the distances between these components.
We set

T̃ = (T ∩ G̃) ∪ ẽ1 ∪ · · · ∪ ẽ�′−1 ,

S̃ = {ẽ1, . . . , ẽ�′−1, e1, . . . , e�−1
}

.

Then the pair (T̃ , S̃) is the desired inverse, modulo equivalence of the previous con-
struction. Finally, notice from (42) that in this construction, δ̃ ji = ω( f ji ). Hence,

∏

e∈T \S
ω(e) = δ̃ j1 · · · δ̃ j�′

∏

e∈T̃ \S̃
ω(e) .

We have therefore found a correspondence of terms in (44) with some f j ∈ T \ S,
and terms in (45) with �′ ≥ 1. As seen above, equivalent pairs (T̃ , S̃) give equivalent
counterparts (T , S).
Case 2. Now suppose �′ = 0, i.e., none of the points w1, . . . , wm are marked. Note
that by our rule this forces � ≥ 2. Let T̃ ∈ Sp(G̃), S̃ ∈ E (T̃ ; i1, . . . , i�−1), so that
now # S̃ = � − 2. If nonempty, enumerate the elements of S̃ by ẽ1, . . . , ẽ�−2. Write a
disjoint union

{w1, . . . , wm} = C1 � · · · � Cq ,

so that each Ci lies in a distinct connected component of T̃ \ ẽ1 ∪ · · · ∪ ẽ�−2. As in the
previous case, we may choose a subset of S̃, which after renumbering we assume to be
ẽ1, . . . , ẽq−1, so that eachCi lies in a distinct connected component of T̃ \̃e1∪· · ·∪ẽq−1.
For each Ci , choose an edge f ji from one of the elements of Ci to vk . We obtain a tree
T ∈ Sp(G) by adding the edges f j1 , . . . , f jq to T̃ , and deleting ẽ1, . . . , ẽq−1. The
new edge set is

S = { f j1 , . . . , f jq , ẽq , . . . , ẽ�−2} ∈ E (T ; vi1 , . . . , vi�−1 , vk) .

Clearly, the choice of f ji ’s give equivalent pairs (T , S). Similarly, equivalent pairs
(T̃ , S̃) give equivalent pairs (T , S). In this case, T \ S = (T̃ \ S̃) ∪ {vk}. Going the
other way, suppose the edges from vk of a spanning tree T are f j1, . . . , f jq , and that
these are all contained in an edge set S. Let ẽq , . . . , ẽ�−2 denote the remaining edges
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in S. Then T ∩ G̃ has exactly q connected components in 1-1 correspondence with
the w ji . Find ẽ1, . . . , ẽq−1 in G̃ connecting these components of wi j ’s, in a manner
exactly the same as in Case 1. We then set

T̃ = (T ∩ G̃) ∪ ẽ1 ∪ · · · ∪ ẽq−1 ,

S̃ = {̃e1, . . . , ẽ�−2} .

This is inverse to the previous construction. Thus, we have a correspondence between
terms in (44) with f j /∈ T \ S, j = 1, . . . ,m, and terms in (45) with no δ̃ j ’s.

We now address assumptions (i) and (ii). Suppose that G \ {vk} is not connected.
Notice that the right-hand side of (45) is multiplicative and that extending spanning
trees of each component of G \ {vk} to include vk uniquely determines a spanning tree
of G. Hence, since the analysis above applies to each component assumption (i) may
be dropped. For (ii), if one of the points, e.g., w1, is marked in G, then after relabeling
we may assume w1 = vk−1. Then

δ̃(w1) = δ(vk−1) + ω( f1) ,

and G̃ has k + m − 2 marked points. In the expression (45), terms involving δ̃(w1)

split into terms with δ(vk−1) and those with ω( f1). The latter correspond to terms in
(44) with vk−1 unmarked, just as in the cases considered above. The terms involving
δ(vk−1) correspond to terms in (44) with vk−1 marked. In this case, in the definition
of T , we include f1 in the set S, but otherwise proceed as above. This completes the
proof.
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