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Abstract
The spectral theory on the S-spectrum was introduced to give an appropriate mathe-
matical setting to quaternionic quantum mechanics, but it was soon realized that there
were different applications of this theory, for example, to fractional heat diffusion
and to the spectral theory for the Dirac operator on manifolds. In this seminal paper
we introduce the harmonic functional calculus based on the S-spectrum and on an
integral representation of axially harmonic functions. This calculus can be seen as a
bridge between harmonic analysis and the spectral theory. The resolvent operator of
the harmonic functional calculus is the commutative version of the pseudo S-resolvent
operator. This new calculus also appears, in a natural way, in the product rule for the
F-functional calculus.

Keywords Harmonic analysis · S-spectrum · Integral representation of axially
harmonic functions · Harmonic functional calculus · Resolvent equation · Riesz
projectors · F-functional calculus

Mathematics Subject Classification 47A10 · 47A60

1 Introduction

Thenotionof S-spectrumandof S-resolvent operators for quaternionic linear operators
and for linear Clifford operators have been identified only in 2006 using methods in
hypercomplex analysis. The originalmotivation for the investigation of a newnotion of
spectrum was the paper [8] of Birkhoff and von Neumann, where the authors showed
that quantum mechanics can also be formulated using quaternions, but they did not
specify what notion of spectrum one should use for quaternionic linear operators. The
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appropriate notion is that of S-spectrum, which has also been used for the spectral
theorem for quaternionic linear operators, see [2], and for Clifford algebra linear
operators, see [14].

The quaternionic spectral theory on the S-spectrum is systematically organised in
the books [13, 20] while for the Clifford setting see [19]. In particular, the history of
the discovery of the S-spectrum and the formulation of the S-functional calculus are
explained in the introduction of the book [20] with a complete list of references.

Nowadays there are several research directions in the area of the spectral theory
on the S-spectrum, and without claiming completeness we mention: the characteristic
operator function, see [5], slice hyperholomorphic Schur analysis, see [4], and several
applications to fractional powers of vector operators that describe fractional Fourier’s
laws for nonhomogeneous materials, see for example [6, 21, 23]. These results on the
fractional powers are based on the H∞-functional calculus (see the seminal papers
[3, 12]).

The main purpose of this paper is to show that using the Fueter mapping theorem
and the spectral theory on the S-spectrum we can define a functional calculus for
harmonic functions in four variables. This new calculus can be seen as the harmonic
version of the Riesz-Dunford functional calculus.

Before to explain our results we need some further explanations of the setting in
which we will work.

1.1 The Fueter–Sce–Qian Extension Theorem and Spectral Theories

The Fueter–Sce–Qian mapping theorem is a crucial result that constructs hyperholo-
morphic (in a suitable sense) quaternionic or Clifford algebra valued functions starting
from holomorphic functions of one complex variable and it consists of a two steps pro-
cedure: the first step gives slice hyperholomorphic functions and the second one gives
the Fueter regular functions in the case of the quaternions, or monogenic functions
in the Clifford algebra setting. Prior to the introduction of slice hyperholomorphic
functions, the first step was simply seen as an intermediate step in the construction.
We point out that the Fueter–Sce–Qian mapping theorem has deep consequences in
the spectral theories, in fact it determines their structures in the hypercomplex setting,
as we shall see in the sequel.

To further clarify the two steps procedure we summarize the construction in the
quaternionic case (which was originally introduced by Fueter, see [28]). Denoting by
O(D) the set of holomorphic functions on D ⊆ C

+, by SH(�D) the set of induced
functions on�D (which turn out to be the set of slice hyperholomorphic functions) and
by AM(�D) the set of axially monogenic functions on �D , the Fueter construction
can be visualized as:

O(D)
TF1−−−−→ SH(�D)

TF2=�−−−−−→ AM(�D),

where TF1 denotes the first linear operator of the Fueter construction and TF2 = �

is the Laplace operator in four dimensions. The Fueter mapping theorem induces
two spectral theories: in the first step we have the spectral theory on the S-spectrum
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associatedwith theCauchy formula of slice hyperholomorphic functions; in the second
step we obtain the spectral theory on the monogenic spectrum associated with the
Cauchy formula of monogenic functions.

We also note that the Fueter mapping theorem allows to use slice hyperholomorphic
functions to obtain the so-called F-functional calculus, see [11, 15, 16, 18], which is a
monogenic functional calculus on the S-spectrum. It is based on the idea of applying
the operator TF2 to the slice hyperholomorphic Cauchy kernel, as illustrated by the
diagram:

SH(�D) AM(�D)
⏐
⏐
�

Slice Cauchy Formula
TF2=�−−−−→ Fueter theorem in integral form

⏐
⏐
�

⏐
⏐
�

S−Functional calculus F−Functional calculus

where � is the Laplace operator in four dimensions.

Remark 1.1 Observe that in the above diagram the arrow from the space of axi-
ally monogenic functions AM(�D) is missing because the F-functional calculus
is deduced from the slice hyperholomorphic Cauchy formula. Moreover, we use the
set of slice hyperholomorphic functions SH(�D), that contains the set of intrinsic
functions.

To proceed further we fix the notation for the quaternions, that are defined as follows:

H = {q = q0 + q1e1 + q2e2 + q3e3 | q0, q1, q2, q3 ∈ R},

where the imaginary units satisfy the relations

e21 = e22 = e23 = −1 and e1e2 = −e2e1 = e3,

e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

Given q ∈ H we call Re(q) := q0 the real part of q and q = q1e1 + q2e2 + q3e3

the imaginary part. The modulus of q ∈ H is given by |q| =
√

q20 + q21 + q22 + q23 ,

the conjugate of q is defined by q = q0 − q and we have |q| = √
qq . The symbol S

denotes the unit sphere of purely imaginary quaternions

S = {q = q1e1 + q2e2 + q3e3 | q21 + q22 + q23 = 1}.

Notice that if J ∈ S, then J 2 = −1. Therefore, J is an imaginary unit, and we denote
by

CJ = {u + Jv | u, v ∈ R},
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an isomorphic copyof the complexnumbers.Given anon-real quaternionq = q0+q =
q0 + Jq |q|, we set Jq = q/|q| ∈ S and we associate to q the 2-sphere defined by

[q] := {q0 + J |q| | J ∈ S}.

We recall that the Fueter operator D and its conjugate D are defined as follows

D := ∂q0 +
3

∑

i=1

ei∂qi and D := ∂q0 −
3

∑

i=1

ei∂qi .

The operators D and D factorize the Laplace operator DD = DD = �.

1.2 The Fine Structure of Hyperholomorphic Spectral Theory and Related
Problems

In this paper we further refine the above diagram, observing that, in the case of the
quaternions, the map TF2 can be factorized as TF2 = � = DD, so there is an inter-
mediate step between slice hyperholomorphic functions and Fueter regular functions,
and the intermediate class of functions that appears is the one of axially harmonic
AH(�D) functions, see Definition 3.3. Thus the diagram becomes as follows:

O(D)
TF1−−−−→ SH(�D)

D−−−−→ AH(�D)
D−−−−→ AM(�D).

It is important to define precisely what wemean by intermediate functional calculus
between the S-functional calculus and the F-functional calculus, both from the points
of view of the function theory and of the operator theory. The notions of fine structures
of the spectral theory on the S-spectrum arise naturally from the Fueter extension
theorem.

Definition 1.2 (Fine structure of the spectral theory on the S-spectrum) We will call
fine structure of the spectral theory on the S-spectrum the set of functions spaces and
the associated functional calculi induced by a factorization of the operator TF2, in the
Fueter extension theorem.

Remark 1.3 In the Clifford algebra setting the map TF2 becomes the Fueter–Sce oper-

ator given by TFS2 = �
n−1
2

n+1 and its splitting is more involved. We are investigating it
in general, when n is odd, and in the case n = 5 we have a complete description of
all the possible fine structures, see [24]. When n is even the Laplace operator has a
fractional power and so one has to work in the space of distributions using the Fourier
multipliers, see [33].
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The fine structure of the quaternionic spectral theory on the S-spectrum is illustrated
in the following diagram

SH(�D) AH(�D) AM(�D)
⏐
⏐
�

Slice Cauchy Formula
D−−−−−→ AH in integral form

D−−−−−→ Fueter theorem in integral form
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

S − Functional calculus Harmonic functional calculus F − functional calculus

where the description of the central part of the diagram, i.e., the fine structure, is the
main topic of this paper.

Remark 1.4 As for the space of axially monogenic functions, the arrow from the space
of axially harmonic functions is missing. In fact, like the F-functional calculus, also
the harmonic functional calculus is deduced from the slice hyperholomorphic Cauchy
formula.

To sum up, the main problems addressed in this paper are:

Problem 1.5 In the Fueter extension theorem consider the factorization

SH(�D)
D−−−−→ X(�D)

D−−−−→ AM(�D),

and give an integral representation of the functions in the space X(�D) :=
D(SH(�D)) and, using this integral transform, define its functional calculus.

Problem 1.6 Determine a product rule formula for the F- functional calculus.

As we will see in the sequel the above problems are related. In fact, the product rule
of the F-functional calculus is based on the functional calculus in Problem 1.5.

1.3 Structure of the Paper andMain Results

The paper consists of 9 sections, the first one being this introduction. In Sects. 2 and 3
we give the preliminary material on spectral theories in the hyperholomorphic setting
and the underlying function theories. In Sects. 3 and 4 we consider axially harmonic
functions, see Definition 3.3. Using the Cauchy formulas of left (resp. right) slice
hyperholomorphic functions we write an integral representation for axially harmonic
functions, see Theorem 4.16. More precisely, let W ⊂ H be an open set and let U be
a slice Cauchy domain such that U ⊂ W . Then, for J ∈ S and dsJ = ds(−J ) we
have that if f is left slice hyperholomorphic on W , then the function f̃ (q) = D f (q)

is harmonic and it admits the following integral representation

f̃ (q) = − 1

π

∫

∂(U∩CJ )

Qc,s(q)−1dsJ f (s), q ∈ U , (1.1)
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where

Qc,s(q)−1 := (s2 − 2Re(q)s + |q|2)−1.

We note that the presence of − 1
π

in front of (1.1) is justified by the computations
performed in (4.5). A similar representation is obtained also for right slice hyper-
holomorphic functions. The integral depends neither on U nor on the imaginary unit
J ∈ S.

The integral representation (1.1) is the crucial point to define the harmonic func-
tional calculus, also called Q-functional calculus because its resolvent operator is the
commutative pseudo S-resolvent operator Qc,s(T )−1.

Let T = T0 + T1e1 + T2e2 + T3e3 be a quaternionic bounded linear operator with
commuting components T�, � = 0, ..., 3. We define the S-spectrum of T as

σS(T ) = { s ∈ H | s2I − s(T + T ) + T T

is not invertible as bounded linear operator},

where T = T0 − T1e1 − T2e2 − T3e3. The commutative pseudo S-resolvent operator
Qc,s(T )−1 is defined as:

Qc,s(T )−1 = (s2 − s(T + T ) + T T )−1

for s /∈ σS(T ). The harmonic functional calculus is defined in Definition 5.7, but
roughly speaking for every function f̃ = D f , with f left slice hyperholomorphic, we
define the harmonic functional calculus as

f̃ (T ) := − 1

π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ f (s),

whereU is an arbitrary bounded slice Cauchy domainwith σS(T ) ⊂ U ,U ⊂ dom( f ),
dsJ = ds(−J ) and J ∈ S is an arbitrary imaginary unit. A similar definition holds
for f̃ = fD with f right slice hyperholomorphic.

In Sect. 6 we introduce possible resolvent equations for the harmonic functional
calculus and in Sects. 7 and 8 we study some of its properties. In particular, we have
the Riesz projectors, see Theorem 7.2. Specifically, let T = T1e1 + T2e2 + T3e3 and
assume that the operators T�, � = 1, 2, 3, have real spectrum. Let σS(T ) = σ1 ∪ σ2
with dist(σ1, σ2) > 0 and assume that G1, G2 ⊂ H are two bounded slice Cauchy
domains such that σ1 ⊂ G1, G1 ⊂ G2 and dist(G2, σ2) > 0. Then the operator

P̃(T ) := 1

2π

∫

∂(G2∩CJ )

s dsJQc,s(T )−1

is a projection, i.e., P̃2 = P̃. Moreover, the operator P̃ commutes with T .
Section 9 concludes the paper and contains some properties of the F-functional

calculus, such as the product rule, that can be proved using the Q-functional calculus.
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2 Preliminary Results on Functions and Operators

We recall some basic results and notations that we will need in the following.

2.1 Hyperholomorphic Functions and the Fueter Mapping Theorem

Definition 2.1 Let U ⊆ H.

• We say that U is axially symmetric if, for every u + Iv ∈ U , all the elements
u + Jv for J ∈ S are contained in U .

• We say that U is a slice domain if U ∩ R 
= ∅ and if U ∩ CJ is a domain in CJ

for every J ∈ S.

Definition 2.2 An axially symmetric open set U ⊂ H is called slice Cauchy domain
if U ∩ CJ is a Cauchy domain in CJ for every J ∈ S. More precisely, U is a slice
Cauchy domain if, for every J ∈ S, the boundary of U ∩ CJ is the union of a finite
number of nonintersecting piecewise continuously differentiable Jordan curves inCJ .

On axially symmetric open sets we define the class of slice hyperholomorphic func-
tions.

Definition 2.3 (Slice hyperholomorphic functions) LetU ⊆ H be an axially symmet-
ric open set and let

U = {(u, v) ∈ R
2 | u + Sv ∈ U }.

We say that a function f : U → H of the form

f (q) = α(u, v) + Jβ(u, v)

is left slice hyperholomorphic if α and β are H-valued differentiable functions such
that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U , (2.1)

and if α and β satisfy the Cauchy–Riemann system

∂uα(u, v) − ∂vβ(u, v) = 0, ∂vα(u, v) + ∂uβ(u, v) = 0.

Right slice hyperholomorphic functions are of the form

f (q) = α(u, v) + β(u, v)J ,

where α, β satisfy the above conditions.

Notation The set of left (resp. right) slice hyperholomorphic functions onU is denoted
by the symbol SHL(U ) (resp. SHR(U )). The subset of intrinsic slice hyperholomor-
phic functions consists of those slice hyperholomorphic functions such that α, β are
real-valued function and is denoted by N (U ).
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Remark 2.4 If the axially symmetric setU does not intersect the real line then we can
set

U = {(u, v) ∈ R × R
+ | u + Sv ∈ U }.

and

f (q) = α(u, v) + Jβ(u, v), (u, v) ∈ U .

The function f is left slice hyperholomorphic if α and β satisfy the Cauchy–Riemann
system. Similarly, under the same conditions on α and β, f (q) = α(u, v) + β(u, v)J
is said right slice hyperholomorphic.

Functions in the kernel of the Fueter operator are called Fueter regular functions
and are defined as follows.

Definition 2.5 (Fueter regular functions) Let U ⊂ H be an open set. A real differen-
tiable function f : U → H is called left Fueter regular if

D f (q) := ∂q0 f (q) +
3

∑

i=1

ei∂qi f (q) = 0.

It is called right Fueter regular if

f (q)D := ∂q0 f (q) +
3

∑

i=1

∂qi f (q)ei = 0.

There are several possible definitions of slice hyperholomorphicity, that are not
fully equivalent, but Definition 2.3 of slice hyperholomorphic functions is the most
appropriate one for the operator theory and it comes from the Fueter mapping theorem
which, inspired by [28], can be stated as follows:

Theorem 2.6 (Fuetermapping theorem) Let f0(z) = α(u, v)+iβ(u, v) be a holomor-
phic function defined in a domain (open and connected) D in the upper-half complex
plane and let

�D = {q = q0 + q | (q0, |q|) ∈ D}

be the open set induced by D in H. Then the operator TF1 defined by

f (q) = TF1( f0) := α(q0, |q|) + q

|q|β(q0, |q|)
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maps the set of holomorphic functions in the set of intrinsic slice hyperholomorphic
functions. Moreover, the function

f̆ (q) := TF2

(

α(q0, |q|) + q

|q|β(q0, |q|)
)

,

where TF2 = � and � is the Laplacian in four real variables q�, � = 0, 1, 2, 3, is in
the kernel of the Fueter operator i.e.

D f̆ = 0 on �D.

Remark 2.7 In the late of 1950s, Sce extended the Fueter mapping theorem to the
Clifford setting in the case of odd dimensions, see [35]. In this case, the operator TFS2

becomes TFS2 := �
n−1
2

n+1, where �n+1 is the Laplacian in n + 1 dimensions, so in
this case we are dealing with a differential operator. For a translation of Sce works in
hypercomplex analysis with commentaries see [22]; this includes also the version of
the Fueter mapping theorem for octonions. In 1997, Qian proved that the Fueter–Sce

theorem holds also in the case of even dimensions. In this case the operator �
n−1
2

n+1 is
a fractional operator, see [33, 34].

Using the theory of monogenic functionMcIntosh and his collaborators introduced
the spectral theory on the monogenic spectrum to define functions of noncommuting
operators on Banach spaces. They developed the monogenic functional calculus and
several of its applications, see the books [29] and the papers [30, 31].

We now recall the slice hyperholomorphic Cauchy formulas that are the starting
point to construct the hyperholomorphic spectral theories on the S-spectrum. We will
be in need the following result [20, Thm. 2.1.22], [20, Prop. 2.1.24].

Theorem 2.8 Let s, q ∈ H with |q| < |s|, then
+∞
∑

n=0

qns−n−1 = −(q2 − 2Re(s)q + |s|2)−1(q − s)

and

+∞
∑

n=0

s−n−1qn = −(q − s)(q2 − 2Re(s)q + |s|2)−1.

Moreover, for any s, q ∈ H with q /∈ [s], we have

−(q2 − 2Re(s)q + |s|2)−1(q − s) = (s − q)(s2 − 2Re(q)s + |q|2)−1

and

−(q − s)(q2 − 2Re(s)q + |s|2)−1 = (s2 − 2Re(q)s + |q|2)−1(s − q).
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In view of Theorem 2.8 there are two possible representations of the Cauchy kernels
for both the left and the right slice hyperholomorphic functions.

Definition 2.9 Let s, q ∈ H with q /∈ [s] then we define

Qs(q)−1 := (q2 − 2Re(s)q + |s|2)−1, Qc,s(q)−1 := (s2 − 2Re(q)s + |q|2)−1,

that are called pseudo Cauchy kernel and commutative pseudo Cauchy kernel, respec-
tively.

Definition 2.10 Let s, q ∈ H with q /∈ [s] then
• We say that the left slice hyperholomorphic Cauchy kernel S−1

L (s, q) is written in
the form I if

S−1
L (s, q) := Qs(q)−1(s − q).

• We say that the right slice hyperholomorphic Cauchy kernel S−1
R (s, q) is written

in the form I if

S−1
R (s, q) := (s − q)Qs(q)−1.

• We say that the left slice hyperholomorphic Cauchy kernel S−1
L (s, q) is written in

the form II if

S−1
L (s, q) := (s − q)Qc,s(q)−1.

• We say that the right slice hyperholomorphic Cauchy kernel S−1
R (s, q) is written

in the form II if

S−1
R (s, q) := Qc,s(q)−1(s − q).

In this article, unless otherwise specified, we refer to S−1
L (s, q) and S−1

R (s, q)

written in the form II.
The following results will be very important in the sequel.

Lemma 2.11 Let s /∈ [q]. The left slice hyperholomorphic Cauchy kernel S−1
L (s, q)

is left slice hyperholomorphic in q and right slice hyperholomorphic in s. The right
slice hyperholomorphic Cauchy kernel S−1

R (s, q) is left slice hyperholomorphic in s
and right slice hyperholomorphic in q.

Theorem 2.12 (The Cauchy formulas for slice hyperholomorphic functions) Let U ⊂
H be a bounded slice Cauchy domain, let J ∈ S and set dsJ = ds(−J ). If f is a left
slice hyperholomorphic function on a set that contains U then

f (q) = 1

2π

∫

∂(U∩CJ )

S−1
L (s, q) dsJ f (s), for any q ∈ U . (2.2)
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If f is a right slice hyperholomorphic function on a set that contains U, then

f (q) = 1

2π

∫

∂(U∩CJ )

f (s) dsJ S
−1
R (s, q), for any q ∈ U . (2.3)

These integrals depend neither on U nor on the imaginary unit J ∈ S.

Moreover, for slice hyperholomorphic functions hold a version of the Cauchy inte-
gral theorem holds.

Theorem 2.13 (Cauchy integral Theorem) Let U ⊂ H be open, let J ∈ S, and let
f ∈ SHL(U ) and g ∈ SHR(U ). Moreover, let DJ ⊂ U ∩ CJ be an open and
bounded subset of the complex plane CJ with DJ ⊂ U ∩CJ such that ∂DJ is a finite
union of piecewise continuously differentiable Jordan curves. Then

∫

∂DJ

g(s)dsJ f (s) = 0,

where dsJ = ds(−J ).

Now, we recall what happens when we apply the second Fueter operator TF2 := �,
where � = ∑3

i=0 ∂2qi , to the slice hyperholomorphic Cauchy kernel.

Proposition 2.14 Let q, s ∈ H and q /∈ [s]. Then:
• The function �S−1

L (s, q) is a left Fueter regular function in the variable q and
right slice hyperholomorphic in s.

• The function �S−1
R (s, q) is a right Fueter regular function in the variable q and

left slice hyperholomorphic in s.

In [20, Thm. 2.2.2] there are the explicit computations of the functions

(s, q) �→ �S−1
L (s, q), (s, q) �→ �S−1

R (s, q).

Theorem 2.15 Let q, s ∈ H with q /∈ [s]. Then we have

�S−1
L (s, q) = −4(s − q)(s2 − 2Re(q)s + |q|2)−2

and

�S−1
R (s, q) = −4(s2 − 2Re(q)s + |q|2)−2(s − q).

We recall the definition of the F-kernels.

Definition 2.16 Let q, s ∈ H. We define for s /∈ [q], the left F-kernel as

FL(s, q) := �S−1
L (s, q) = −4(s − q)Qc,s(q)−2,

and the right F-kernel as

FR(s, q) := �S−1
R (s, q) = −4Qc,s(q)−2(s − q).
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We recall the following relation between the F-kernel and the commutative pseudo
Cauchy kernel Qc,s(q)−1.

Theorem 2.17 Let s, q ∈ H be such that q /∈ [s], then

FL(s, q)s − qFL(s, q) = −4Qc,s(q)−1

and

sFR(s, q) − FR(s, q)q = −4Qc,s(q)−1

The following result plays a key role, see [20, Thm. 2.2.6].

Theorem 2.18 (The Fueter mapping theorem in integral form) Let U ⊂ H be a slice
Cauchy domain, let J ∈ S and set dsJ = ds(−J ).

• If f is a left slice hyperholomorphic function on a set W , such that U ⊂ W, then
the left Fueter regular function f̆ (q) = � f (q) admits the integral representation

f̆ (q) = 1

2π

∫

∂(U∩CJ )

FL(s, q)dsJ f (s). (2.4)

• If f is a right slice hyperholomorphic function on a set W , such that U ⊂ W, then
the right Fueter regular function f̆ (q) = � f (q) admits the integral representa-
tion

f̆ (q) = 1

2π

∫

∂(U∩CJ )

f (s)dsJ FR(s, q). (2.5)

The integrals depend neither on U and nor on the imaginary unit J ∈ S.

2.2 The S-functional Calculus

Wenow recall some basic facts of the S-function calculus, see [19, 20] formore details.
Let X be a two sided quaternionic Banach module of the form X = XR ⊗ H, where
XR is a real Banach space. In this paper we consider B(X) the Banach space of all
bounded right linear operators acting on X .

In the sequel we will consider bounded operators of the form T = T0 + T1e1 +
T2e2 + T3e3, with commuting components Ti acting on the real vector space XR, i.e.,
Ti ∈ B(XR) for i = 0, 1, 2, 3. The subset of B(X) given by the operators T with
commuting components Ti will be denoted by BC(X).

Now let T : X → X be a right (or left) linear operator. We give the following.

Definition 2.19 Let T ∈ B(X). For s ∈ H we set

Qs(T ) := T 2 − 2Re(s)T + |s|2I.
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We define the S-resolvent set ρS(T ) of T as

ρS(T ) := {s ∈ H : Qs(T )−1 ∈ B(X)},

and we define the S-spectrum σS(T ) of T as

σS(T ) := H \ ρS(T ).

For s ∈ ρS(T ), the operator Qs(T )−1 is called the pseudo S-resolvent operator of T
at s.

Theorem 2.20 Let T ∈ B(X) and s ∈ H with ‖T ‖ < |s|. Then we have

∞
∑

n=0

T ns−n−1 = −Qs(T )−1(T − sI),

and

∞
∑

n=0

s−n−1T n = −(T − sI)Qs(T )−1.

According to the left or right slice hyperholomorphicity, there exist two different
resolvent operators.

Definition 2.21 (S-resolvent operators) Let T ∈ B(X) and s ∈ ρS(T ). Then the left
S-resolvent operator is defined as

S−1
L (s, T ) := −Qs(T )−1(T − sI),

and the right S-resolvent operator is defined as

S−1
R (s, T ) := −(T − sI)Qs(T )−1.

The so-called S-resolvent equation, see [1, Thm. 3.8], involves both S-resolvent
operators and the Cauchy kernel of slice hyperholomorphic functions and is recalled
in the next result:

Theorem 2.22 (S-resolvent equation) Let T ∈ B(X) then for s, p ∈ ρS(T ), with
q /∈ [s], we have

S−1
R (s, T )S−1

L (p, T ) =
[ (

S−1
R (s, T ) − S−1

L (p, T )
)

p

−s̄
(

S−1
R (s, T ) − S−1

L (p, T )
) ]

Qs(p)
−1, (2.6)

where Qs(p) = p2 − 2Re(s)p + |s|2.
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To give the definition of the S-functional calculus we need the following classes of
functions.

Notation Let T ∈ B(X). We denote by SHL(σS(T )), SHR(σS(T )) and N (σS(T ))

the sets of all left, right and intrinsic slice hyperholomorphic functions f , respectively,
with σS(T ) ⊂ dom( f ).

Definition 2.23 (S-functional calculus) Let T ∈ B(X). Let U be a slice Cauchy
domain that contains σS(T ) and U is contained in the domain of f . Set dsJ = −ds J
for J ∈ S so we define

f (T ) := 1

2π

∫

∂(U∩CJ )

S−1
L (s, T ) dsJ f (s), for every f ∈ SHL(σS(T )) (2.7)

and

f (T ) := 1

2π

∫

∂(U∩CJ )

f (s) dsJ S−1
R (s, T ), for every f ∈ SHR(σS(T )). (2.8)

The definition of S-functional calculus is well posed since the integrals in (2.7) and
(2.8) depend neither on U and nor on the imaginary unit J ∈ S, see [17], [20, Thm.
3.2.6].

2.3 The F-functional Calculus

Let us consider T = T0 + T1e1 + T2e2 + T3e3 such that T ∈ BC(X).

Definition 2.24 Let T ∈ BC(X). For s ∈ H we set

Qc,s(T ) = s2I − s(T + T ) + T T ,

where T = T0 − T1e1 − T2e2 − T3e3. We define the F-resolvent set as

ρF (T ) = {s ∈ H : Qc,s(T )−1 ∈ B(X)}.

Moreover, we define the F-spectrum of T as

σF (T ) = H \ ρF (T ).

By [18, Prop. 4.14] we have that the F-spectrum is the commutative version of the
S-spectrum, i.e., we have

σF (T ) = σS(T ), T ∈ BC(X),

and consequently ρF (T ) = ρS(T ).
For s ∈ ρS(T ) the operatorQc,s(T )−1 is called the commutative pseudo S-resolvent

operator of T .
It is possible to define a commutative version of the S-functional calculus.
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Theorem 2.25 Let T ∈ BC(X) and s ∈ H be such that ‖T ‖ < s. Then,

∞
∑

m=0

Tms−1−m = (sI − T )Qc,s(T )−1,

and

∞
∑

m=0

s−1−mTm = Qc,s(T )−1(sI − T ).

Definition 2.26 Let T ∈ BC(X) and s ∈ ρS(T ). We define the left commutative
S-resolvent operator as

S−1
L (s, T ) = (sI − T )Qc,s(T )−1,

and the right commutative S-resolvent operator as

S−1
R (s, T ) = Qc,s(T )−1(sI − T ).

For the sake of simplicity we denote the commutative version of the S-resolvent
operators with the same symbols used for the noncommutative ones. It is possible to
define an S-functional calculus as done in Definition 2.23. Below, when dealing with
the S-resolvent operators, we intend their commutative version.

We conclude with the definition of the F-functional calculus.

Definition 2.27 (F-resolvent operators) Let T ∈ BC(X). We define the left F-
resolvent operator as

FL(s, T ) = −4(sI − T )Qc,s(T )−2, s ∈ ρS(T ),

and the right F-resolvent operator as

FR(s, T ) = −4Qc,s(T )−2(sI − T ), s ∈ ρS(T ).

With the above definitions and Theorem 2.18 at hand, we can recall the F-functional
calculus was first introduced in [18] and then investigated in [11, 15, 16].

Definition 2.28 (The F-functional calculus for bounded operators) Let U be a slice
Cauchy domain that contains σS(T ) and U is contained in the domain of f . Let
T = T1e1 + T2e2 + T3e3 ∈ BC(X), assume that the operators T�, � = 1, 2, 3 have
real spectrum and set dsJ = ds/J , where J ∈ S. For any function f ∈ SHL(σS(T )),
we define

f̆ (T ) := 1

2π

∫

∂(U∩CJ )

FL(s, T ) dsJ f (s). (2.9)
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For any f ∈ SHR(σS(T )), we define

f̆ (T ) := 1

2π

∫

∂(U∩CJ )

f (s) dsJ FR(s, T ). (2.10)

The definition of the F-functional calculus is well posed since the integrals in (2.9)
and (2.10) depend neither on U and nor on the imaginary unit J ∈ S.

The left and right F-resolvent operators satisfy the equalities in the next result [20,
Thm. 7.3.1]:

Theorem 2.29 (Left and right F-resolvent equations) Let T ∈ BC(X) and let s ∈
ρS(T ). The F-resolvent operators satisfy the equations

FL(s, T )s − T FL(s, T ) = −4Qc,s(T )−1

and

sFR(s, T ) − FR(s, T )T = −4Qc,s(T )−1.

3 Axially Harmonic Functions

In this section, we solve the first part of Problem 1.5. We begin by rewriting the
Fueter mapping theorem (see Theorem 2.6) in a more refined way, considering the
factorization of the Laplace operator � in terms of the Fueter operator D and its
conjugate D.

Theorem 3.1 (Fueter mapping theorem (refined)) Let f0(z) = α(u, v) + iβ(u, v) be
a holomorphic function defined in a domain (open and connected) D in the upper-half
complex plane and let

�D = {q = q0 + q | (q0, |q|) ∈ D} (3.1)

be the open set induced by D in H. The operator TF1 defined by

f (q) = TF1( f0) := α(q0, |q|) + q

|q|β(q0, |q|)

maps the set of holomorphic functions in the set of intrinsic slice hyperholomorphic
functions. Then, the function

f̃ (q) := T ′
F2

(

α(q0, |q|) + q

|q|β(q0, |q|)
)

,

where T ′
F2 := D is the Fueter operator, is in the kernel of the Laplace operator, i.e.,

� f̃ = 0 on �D .
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Moreover,

f̆ (q) := T ′′
F2 f̃ ,

where T ′′
F2 = D and D = ∂q0 − ∑3

i=1 ei∂qi , is in the kernel of the Fueter operator,
i.e.,

D f̆ = 0 on �D.

Remark 3.2 The consideration in Remark 2.4 holds obviously also in the case of The-
orem 3.1.

In Theorem 3.1 we have applied to the slice hyperholomorphic function f firstly the
Fueter operator and then the operator D, while in Theorem 2.6 we apply directly the
Laplacian. Therefore, there is a class of functions that lies between the class of slice
hyperholomorphic functions and the class of axially monogenic functions: it is the
so-called class of axially harmonic functions that we introduce below.

Definition 3.3 (Axially harmonic function) Let U ⊆ H be an axially symmetric open
set not intersecting the real line, and let

U = {(u, v) ∈ R × R
+ | u + Sv ∈ U }.

Let f : U → H be a function, of class C3, of the form

f (q) = α(u, v) + Jβ(u, v), q = u + Jv, J ∈ S,

where α and β are H-valued functions. More in general let f be as above and let
U ⊆ H be an axially symmetric open set and consider

U = {(u, v) ∈ R
2 | u + Sv ∈ U },

and assume that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U . (3.2)

Let us set

f̃ (q) := D f (q), for q ∈ U .

If

� f̃ (q) = 0, for q ∈ U

we say that f̃ is axially harmonic on U .
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The axially monogenic functions satisfy a system of differential equations called
Vekua system, see [25, 36, 37]. In the case of axially harmonic functions, the functions
A(q0, r) and B(q0, r) satisfy a second order system of differential equations.

Theorem 3.4 Let U be an axially symmetric open set in H, not intersecting the real
line, and let f̃ (q) = A(q0, r) + ωB(q0, r) be an axially harmonic function on U,
r > 0 and ω ∈ S. Then the functions A = A(q0, r) and B = B(q0, r) satisfy the
following system

⎧

⎪
⎨

⎪
⎩

∂2q0 A(q0, r) + ∂2r A(q0, r) + 2

r
∂r A(q0, r) = 0

∂2q0B(q0, r) + ∂2r B(q0, r) + 2r∂r B(q0, r) − 2B(q0, r)

r2
= 0.

Proof An axially harmonic function is written as

f̃ (q) = A(q0, r) + ωB(q0, r), q = q0 + rω ∈ U

and it is in the kernel of the operator � = DD. We denote the Fueter operator as
D = ∂q0 + ∂q and D = ∂q0 − ∂q , where ∂q = e1∂q1 + e2∂q2 + e3∂q3 . We know that
(see [32])

∂q(A(q0, r) + ωB(q0, r)) = ω∂r A(q0, r) − ∂r B(q0, r) − 2

r
B(q0, r). (3.3)

This implies that

D f (q) = (∂q0 − ∂q )(A(q0, r) + ωB(q0, r))

=
(

∂q0 A(q0, r) + ∂r B(q0, r) + 2

r
B(q0, r)

)

+ ω
(

∂q0 B(q0, r) − ∂r A(q0, r)
)

.

By setting

A′(q0, r) := ∂q0 A(q0, r) + ∂r B(q0, r) + 2

r
B(q0, r) and

B ′(q0, r) := ∂q0B(q0, r) − ∂r A(q0, r),

we get

D f (q0, r) = A′(q0, r) + ωB ′(q0, r).

Now, by applying another time formula (3.3) we obtain

∂q D f (q) = ω∂r A
′(q0, r) − ∂r B

′(q0, r) − 2

r
B ′(q0, r).
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Therefore, we have

� f (q) = DD f (q)

= (∂q0 + ∂q)D f (q0, r)

=
(

∂q0 A
′(q0, r) − ∂r B

′(q0, r) − 2

r
B ′(q0, r)

)

− ω
(

∂q0B
′(q0, r) + ∂r A

′(q0, r)
)

.

Since the function f is axially harmonic we have � f (q) = 0, thus we get

{

∂q0 A
′(q0, r) − ∂r B ′(q0, r) − 2

r B
′(q0, r) = 0

∂q0B
′(q0, r) + ∂r A′(q0, r) = 0.

(3.4)

Now, we write the system (3.4) in terms of A and B by substituting A′ and B ′

∂q0 A
′(q0, r) − ∂r B

′(q0, r) − 2

r
B ′(q0, r)

= ∂2q0 A(q0, r) + ∂q0∂r B(q0, r) + 2

r
∂q0 B(q0, r)

−∂r∂q0 B(q0, r) + ∂2r A(q0, r) − 2

r
∂q0 B(q0, r)

+2

r
∂r A(q0, r)

= ∂2q0 A(q0, r) + ∂2r A(q0, r) + 2

r
∂r A(q0, r). (3.5)

∂q0 B
′(q0, r) + ∂r A

′(q0, r)
= ∂2q0 B(q0, r) − ∂q0∂r A(q0, r) + ∂r∂q0 A(q0, r)

+∂2r B(q0, r) + 2

r
∂r B(q0, r) − 2

r2
B(q0, r)

= ∂2q0 B(q0, r) + ∂2r B(q0, r)

+2r∂r B(q0, r) − 2B(q0, r)

r2
. (3.6)

By putting (3.5) and (3.6) in (3.4) we get the statement. ��

Remark 3.5 If we suppose that a function f is harmonic over the ball Br (p) of radius
r and center p, and continuous in the closure of the ball we can write

f (q) = r2 − |q − p|2
|∂Br (p)|r

∫

∂Br (p)

f (y)

|y − q|4 dy,

where |∂Br (p)| is the measure of the sphere and dy is the surface element.
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4 Integral Representation Axially Harmonic Functions

In this section we show how to write an axially harmonic function in integral form.
The main advantage of this approach is that it is enough to compute an integral of slice
hyperholomorphic functions in order to get an axially harmonic function. The crucial
point to get the integral representation is to apply the Fueter operator D to the slice
hyperholomorphic Cauchy kernels written in second form, see Definition 2.10.

Theorem 4.1 Let s, q ∈ H be such that q /∈ [s] then

DS−1
L (s, q) = −2Qc,s(q)−1

and

S−1
R (s, q)D = −2Qc,s(q)−1.

Proof We prove only the first equality since the second one follows with similar com-
putations. First, we apply ∂q0 and ∂qi for i = 1, 2, 3 to the left slice hyperholomorphic
Cauchy kernel

S−1
L (s, q) = (s − q̄)Qc,s(q)−1.

Thus, we have

∂q0 S
−1
L (s, q) = −Qc,s(q)−1 − (s − q)Qc,s(q)−2(−2s + 2q0)

= −Qc,s(q)−1 − 2q0(s − q)Qc,s(q)−2 + 2(s − q)Qc,s(q)−2s

= −Qc,s(q)−1 + q0
2
FL(s, q) − 1

2
FL(s, q)s,

where FL(s, q) is the left F-kernel, see Definition 2.16. Then, for i = 1, 2, 3 we get

∂qi S
−1
L (s, q) = eiQc,s(q)−1 − 2qi (s − q)Qc,s(q)−2

= eiQc,s(q)−1 + 1

2
qi FL(s, q).

Thus, by Theorem 2.17, we obtain

DS−1
L (s, q) = ∂q0 S

−1
L (s, q) +

3
∑

i=1

ei∂qi S
−1
L (s, q)

= −Qc,s(q)−1 + q0
2
FL(s, q) − 1

2
FL(s, q)s − 3Qc,s(q)−1 + q

2
FL(s, q)

= −4Qc,s(q)−1 − 1

2
(FL(s, q)s − qFL(s, q))

= −2Qc,s(q)−1.

��
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Remark 4.2 Although the slice hyperholomorphic Cauchy kernel written in form I is
more suitable in various cases, like for the definition of S-functional calculus, it does
not allow easy computations of DS−1

L (s, q).

We observe that when we apply the Laplace operator to a monomial qn we get a
polynomial in terms of q and q̄ , see [28, page 316 formula (12)], [27, Thm. 3.2]. The
same feature happens when the Fueter operator is applied to the monomial qn , see [7,
Lemma 1].

Lemma 4.3 For all n ≥ 1 we have

Dqn = qnD = −2
n

∑

k=1

qn−kqk−1.

Remark 4.4 Since

n
∑

k=1

qn−kqk−1 =
n

∑

k=1

qn−kqk−1

we deduce that Dqn is real.

Definition 4.5 Let s, q ∈ H, we define the commutative Q-series as

−2
+∞
∑

m=1

m
∑

k=1

qm−kqk−1s−1−m and − 2
+∞
∑

m=1

m
∑

k=1

s−1−mqm−kqk−1.

Remark 4.6 The two series in Definition 4.5 coincide, where they converge, since
∑m

k=1 q
m−kqk−1 is real.

Proposition 4.7 For s, q ∈ H with |q| < |s|, the commutative Q-series converges.

Proof Toprove the convergence, it is sufficient to prove the convergence of themodulus
of the series, i.e., we consider

+∞
∑

m=1

2m|q|m−1|s|−1−m .

The last series converges by the ratio test. Indeed, since |q| < |s|, we have

lim
m→∞

(m + 1)|q|m |s|−2−m

m|q|m−1|s|−1−m
= lim

m→∞
m + 1

m
|q||s|−1 < 1.

��

123



2 Page 22 of 54 F. Colombo et al.

Lemma 4.8 For q, s ∈ H such that |q| < |s|, we have

Qc,s(q)−1 =
+∞
∑

m=1

m
∑

k=1

qm−kqk−1s−1−m =
+∞
∑

m=1

m
∑

k=1

s−1−mqm−kqk−1.

Proof We prove the first equality since the second one can be proved in a similar way.
By Theorem 2.8, we can expand the left Cauchy kernel as

S−1
L (s, q) =

∞
∑

m=0

qms−1−m .

By Theorem 4.1 and Proposition 4.7, which allows to exchange the series with the
Fueter operator, we have

−2Qc,s(q)−1 = DS−1
L (s, q) =

∞
∑

m=0

(Dqm
)

s−1−m .

We get the statement by applying Lemma 4.3. ��
Remark 4.9 Using the well-known equality

(an − bn) = (a − b)
n

∑

k=1

an−kbk−1

for a = q and b = q , and by Lemma 4.3 we have

Dqn =
{

−2nqn−1 if Im(q) = 0,

−(q)−1(qn − qn) if Im(q) 
= 0.

With this result, we can prove Theorem 4.1 by using the series expansion of the kernel
in the following way: if |q| < |s| and q 
= 0 then

DS−1
L (s, q) =

∞
∑

m=0

(Dqm
)

s−1−m

= −(q)−1
( ∞

∑

m=1

qms−1−m −
∞
∑

m=1

qms−1−m
)

= −(q)−1(S−1
L (s, q) − S−1

L (s, q))

= −(q)−1(2qQc,s(q)−1)

= −2Qc,s(q)−1,

if |q| < |s| and q = 0, we have
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Qc,s(q)DS−1
L (s, q) = (s2 − 2qs + q2)

(

−2
∞
∑

m=1

mqm−1s−1−m

)

= −2
∞
∑

m=1

mqm−1s1−m + 4
∞
∑

m=1

mqms−m − 2
∞
∑

m=1

mqm+1s−m−1

= −2
∞
∑

m=0

qms−m + 2
∞
∑

m=1

mqms−m − 2
∞
∑

m=2

mqms−m

+ 2
∞
∑

m=2

qms−m

= −2.

Now, we study the regularity of the function DS−1
L (s, q) in both variables.

Proposition 4.10 Let s, q ∈ H be such that q /∈ [s]. The function DS−1
L (s, q) is an

intrinsic slice hyperholomorphic function in s.

Proof This follows by Theorem 4.1 and the shape of the commutative pseudo Cauchy
kernel. ��
Remark 4.11 The function D(S−1

L (s, q)) is not left slice hyperholomorphic in the
variable q. Indeed, let q = u + Iv for an arbitrary I ∈ S then Qc,s(q)−1 = (s2 −
2us + u2 + v2)−1 and we have the following two relations

∂

∂u
Qc,s(u + Iv)−1 = −(−2s + 2u)Qc,s(u + Iv)−2

and

∂

∂v
Qc,s(u + Iv)−1 = −2vQc,s(u + Iv)−2,

which yield

(
∂

∂u
+ I

∂

∂v

)

Qc,s(u + Iv)−1 = −(−2s + 2u + 2Iv)Qc,s(u + Iv)−2

= 2(s − q)Qc,s(u + Iv)−2 = −1

2
FL(s, q).

The function DS−1
L (s, q) turns out to be harmonic in q, as proved in the following

result.

Proposition 4.12 Let s, q ∈ H be such that q /∈ [s]. Then the function DS−1
L (s, q) is

harmonic in the real components of q.
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Proof Since the left slice hyperholomorphic Cauchy kernel is a C∞ function for any
q /∈ [s], we can apply to it a differential operator of any order. Then the result follows
by the facts that the Laplacian is a real operator, thus it commutes with D, and by
Proposition 2.14. Indeed

�DS−1
L (s, q) = D�S−1

L (s, q) = DFL(s, q) = 0. ��
Finally as a consequence of the definition of the F-kernel we have:

Lemma 4.13 Let s, q ∈ H be such that q /∈ [s], then

D2S−1
L (s, q) = FL(s, q̄).

Proof By Theorem 4.1 we have

D2S−1
L (s, q) = −2DQc,s(q)−1. (4.1)

Firstly, we apply the derivatives with respect to q0 and qi , with i = 1, 2, 3 to the
commutative pseudo Cauchy kernel

∂

∂q0
Qc,s(q)−1 = −2(−s + q0)(s

2 − 2q0s + |q|2)−2,

and for i = 1, 2, 3 we get

∂

∂qi
Qc,s(q)−1 = −2qi (s

2 − 2q0s + |q|2)−2.

Thus we obtain

DQc,s(q)−1 = ∂

∂q0
Qc,s(q)−1 +

3
∑

i=1

ei
∂

∂qi
Qc,s(q)−1

= −2(−s + q0 + q)(s2 − 2q0s + |q|2)−2

= 2(s − q)(s2 − 2q0s + |q|2)−2.

Therefore by (4.1) we get

D2S−1
L (s, q) = −4(s − q)(s2 − 2q0s + |q|2)−2 = FL(s, q̄). ��

Remark 4.14 By Proposition 2.14 it is clear that the function FL(s, q̄) is axially anti-
monogenic. This observation together with Lemma 4.13 imply the construction of the
following diagram

O(D)
TF1−−−−→ SH(�D)

D−−−−→ AH(�D)
D−−−−→ AM(�D), (4.2)
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where �D is defined as in (3.1) and AM(�D) is the set of axially anti-monogenic
functions. In order to avoid this set of functions in the constructions like the one in
(4.2) we impose that the composition of the operators appearing in (4.2) must be the
Fueter map (in the case of this paper �). This is very important when we increase the
dimension of the algebra, see [24].

We observe that if we set q = u + Iv and we apply the 2-dimensional Laplacian

�2 := ∂I ∂I =
(

∂

∂u
− I

∂

∂v

) (
∂

∂u
+ I

∂

∂v

)

,

to the commutative pseudo Cauchy kernel we get its square:

Lemma 4.15 Let s, q = u + Iv ∈ H be such that q /∈ [s], then

�2Qc,s(q)−1 = 4Qc,s(q)−2.

Proof We set q = u + Iv, I ∈ S. By Remark 4.11 we know that

∂IQc,s(u + Iv)−1 = 2(s − u − Iv)Qc,s(q)−2.

Now, we have

∂

∂u
∂IQc,s(u + Iv)−1 = −2Qc,s(u + Iv)−2

−4(s − u − Iv)Qc,s(u + Iv)−3(−2s + 2u),

and

∂

∂v
∂IQc,s(u + Iv)−1 = −2IQc,s(u + Iv)−2 − 8(s − u − Iv)Qc,s(u + Iv)−3v.

By definition of the 2-dimensional laplacian and since the variable s commute with
Qc,s(u + Iv), we get

�2Qc,s(q)−1 =
(

∂

∂u
− I

∂

∂v

)

∂IQc,s(u + Iv)−1

= −4(s − u − Iv)Qc,s(u + Iv)−3(−2s + 2u)

+8I (s − u − Iv)Qc,s(u + Iv)−3v

−4Qc,s(u + Iv)−2

= 8(s − u − Iv)(s − u)Qc,s(u + Iv)−3

+8I (s − u − Iv)vQc,s(u + Iv)−2

−4Qc,s(u + Iv)−2

= 8(s2 − su − us + u2 − I sv + I uv + I sv − I uv + v2)

Qc,s(u + Iv)−3 − 4Qc,s(u + Iv)−2
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= 8Qc,s(u + Iv)Qc,s(u + Iv)−3 − 4Qc,s(u + Iv)−2

= 8Qc,s(u + Iv)−2 − 4Qc,s(u + Iv)−2 = 4Qc,s(u + Iv)−2.

��
We conclude this section with an integral representation of axially harmonic functions
that will allow us to define the harmonic functional calculus based on the S-spectrum.

Theorem 4.16 (Integral representation of axially harmonic functions) Let W ⊂ H be
an open set. Let U be a slice Cauchy domain such that U ⊂ W. Then for J ∈ S and
dsJ = ds(−J ) we have:

(1) If f ∈ SHL(W ), then the function f̃ (q) = D f (q) is harmonic and it admits the
following integral representation

f̃ (q) = − 1

π

∫

∂(U∩CJ )

Qc,s(q)−1dsJ f (s), q ∈ U . (4.3)

(2) If f ∈ SHR(W ), then the function f̃ (q) = f (q)D is harmonic and it admits the
following integral representation

f̃ (q) = − 1

π

∫

∂(U∩CJ )

f (s)dsJQc,s(q)−1, q ∈ U . (4.4)

The integrals depend neither on U nor on the imaginary unit J ∈ S.

Proof Weprove only the first statement because the other proof is similar.We canwrite
the function f by using the Cauchy formula for slice hyperholomorphic functions, see
Theorem 2.12. Now, by applying the left Fueter operator to f (q) and by Theorem 4.1
we get

f̃ (q) = D f (q) = 1

2π

∫

∂(U∩CJ )

DS−1
L (s, q)dsJ f (s)

= − 1

π

∫

∂(U∩CJ )

Qc,s(q)−1dsJ f (s). (4.5)

Since f̃ (q) = D f (q) and by Proposition 4.12, it is immediately verified that f̃ (q)

is a harmonic function. The independence of integral in (4.3) from the set U and the
imaginary unit J ∈ S follows by the Cauchy formula. ��
In this section we have described the central part of the following diagram

O(D)
TF1−−−−→ SH(�D)

D−−−−→ AH(�D)
D−−−−→ AM(�D) (4.6)

where �D is defined as in (3.1).
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Remark 4.17 In the quaternionic setting it is possible to obtain another diagrambesides
the one in (4.6). This comes from the factorization � = DD and is called second fine
structure in the quaternionic setting, see Definition 1.2. The set of functions that lies
between the set of slice hyperholomorphic functions and the set of axially monogenic
functions is the set of axially polyanalytic functions of order 2, for more details see
[26].

5 The Harmonic Functional Calculus on the S-spectrum

In this sectionwe introduce the harmonic functional calculus on the S-spectrum,which
is based on the integral representation of axially harmonic functions. Recall that X
denotes a two-sided quaternionic Banach space.

We give meaning to the substitution of the variable q with the operator T in the
power series introduced in Definition 4.5.

Definition 5.1 Let T = T0 + ∑3
i=1 ei Ti ∈ BC(X), s ∈ H, we formally define the

commutative pseudo S-resolvent series as

−2
∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m and − 2
∞
∑

m=1

m
∑

k=1

s−1−mTm−kT
k−1

.

Remark 5.2 The two series in Definition 5.1 coincide, where they converge.

Proposition 5.3 Let T = T0 + ∑3
i=1 ei Ti ∈ BC(X), s ∈ H and ‖T ‖ < |s|, the series

in the Definition 5.1 converges. Moreover, we have

∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m =
∞
∑

m=1

m
∑

k=1

s−1−mTm−kT
k−1 = Qc,s(T )−1. (5.1)

Proof For the convergence of the series it is sufficient to prove the convergence of the
series of the operator norm:

∞
∑

m=1

m‖T ‖m−1|s|−1−m . (5.2)

Since

lim
m→∞

(m + 1)‖T ‖m |s|−2−m

m‖T ‖m−1|s|−1−m
= lim

m→∞
m + 1

m
‖T ‖|s|−1 < 1,

by the ratio test the series (5.2) is convergent. To prove the equality (5.1), we show
that

123



2 Page 28 of 54 F. Colombo et al.

Qc,s(T )

( ∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m

)

=
( ∞

∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m

)

Qc,s(T ) = I. (5.3)

The first equality in (5.3) is a consequence of the following facts: for any positive

integer m the operator
∑m

k=1 T
m−kT

k−1
does not contain any imaginary units, so it

is real and then it commutes with any power of s. Secondly, the components of T are
commuting among them and the operatorQc,s(T ), see Definition 2.24, can be written
as: s2I − 2sT0 + ∑3

i=0 T
2
i .

Now we prove the second equality in (5.3). First we observe that

( ∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m

)

Qc,s(T )

=
( ∞

∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m

)

(s2 − s(T + T ) + T T )

=
∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s1−m −
∞
∑

m=1

m
∑

k=1

Tm+1−kT
k−1

s−m −
∞
∑

m=1

m
∑

k=1

Tm−kT
k
s−m

+
∞
∑

m=1

m
∑

k=1

Tm−k+1T
k
s−1−m .

Making the change of index m′ = 1 + m in the second and fourth series, we have

( ∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m

)

Qc,s(T )

=
∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s1−m −
∞
∑

m′=2

m′−1
∑

k=1

Tm′−kT
k−1

s1−m′ −
∞
∑

m=1

m
∑

k=1

Tm−kT
k
s−m

+
∞
∑

m′=2

m′−1
∑

k=1

Tm′−kT
k
s−m′

= I +
∞
∑

m=2

m
∑

k=1

Tm−kT
k−1

s1−m −
∞
∑

m′=2

m′−1
∑

k=1

Tm′−kT
k−1

s1−m′+

− T s−1 −
∞
∑

m=2

m
∑

k=1

Tm−kT
k
s−m +

∞
∑

m′=2

m′−1
∑

k=1

Tm′−kT
k
s−m′

.
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Simplifying the opposite terms in the first and second series and in the third and fourth
series, we finally get

( ∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m

)

Qc,s(T ) = I +
∞
∑

m=2

T
m−1

s1−m −
∞
∑

m=2

T
m−1

s1−m = I.

��
Lemma 5.4 Let T ∈ BC(X). The commutative pseudo S-resolvent operatorQc,s(T )−1

is a B(X)-valued right and left slice hyperholomorphic function of the variable s in
ρS(T ).

Proof It follows by Proposition 4.10. ��
Remark 5.5 We point out an important difference between the commutative and the
noncommutative pseudo S-resolvent operator. For T ∈ B(X) with noncommuting
components the operator Qc,s(T ) is not well defined because T T 
= T T . But in the
case T ∈ BC(X) then it turns out to be well defined and the inverse is B(X)-valued
slice hyperholomorphic function for s ∈ ρS(T ).

The noncommutative pseudo S-resolvent operator Qs(T )−1 turns out to be well
defined for operators T ∈ B(X) with noncommuting components, but it is not a
B(X)-valued slice hyperholomorphic function.

Remark 5.6 The functional calculus based on axially harmonic functions in integral
form will be called harmonic functional calculus (on the S-spectrum) or, since it
is based on the commutative pseudo S-resolvent operator Qc,s(T )−1, Q-functional
calculus.

Definition 5.7 (Harmonic functional calculus on the S-spectrum) Let T ∈ BC(X) and
set dsJ = ds(−J ) for J ∈ S. For every function f̃ = D f with f ∈ SHL(σS(T )),
we set

f̃ (T ) := − 1

π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ f (s), (5.4)

where U is an arbitrary bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂
dom( f ) and J ∈ S is an arbitrary imaginary unit.
For every function f̃ = fD with f ∈ SHR(σS(T )), we set

f̃ (T ) := − 1

π

∫

∂(U∩CJ )

f (s)dsJQc,s(T )−1, (5.5)

where U and J are as above.

Theorem 5.8 The harmonic functional calculus on the S-spectrum is well-defined, i.e.,
the integrals in (5.4) and (5.5) depend neither on the imaginary unit J ∈ S nor on the
slice Cauchy domain U.
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Proof Here we show only the case f̃ = D f with f ∈ SHL(σS(T )), since the other
one follows by analogous arguments.

Since Qc,s(T )−1 is a right slice hyperholomorphic function in s and f is left slice
hyperholomorphic, the independence from the set U follows by the Cauchy integral
formula, see Theorems 2.12 and 2.13.

Now, we want to show the independence from the imaginary unit. Let us consider
two imaginary units J , I ∈ S with J 
= I and two bounded slice Cauchy domains
Uq , Us with σs(T ) ⊂ Uq , Uq ⊂ Us and Us ⊂ dom( f ). Then every s ∈ ∂(Us ∩ CJ )

belongs to the unbounded slice Cauchy domainH\Uq . Recall thatQc,q(T )−1 is right
slice hyperholomorphic on ρS(T ), also at infinity, since limq→+∞ Qc,q(T )−1 = 0.
Thus, the Cauchy formula implies

Qc,s(T )−1 = 1

2π

∫

∂((H\Uq )∩CI )
Qc,q(T )−1dqI S

−1
R (q, s)

= 1

2π

∫

∂(Uq∩CI )

Qc,q(T )−1dqI S
−1
L (s, q). (5.6)

The last equality is due to the fact that ∂
(

(H \Uq) ∩ CI
) = −∂(Uq ∩ CI ) and

S−1
R (q, s) = −S−1

L (s, q). Combining (5.4) and (5.6) we get

f̃ (T ) = − 1

π

∫

∂(Us∩CJ )

Qc,s(T )−1dsJ f (s)

= − 1

π

∫

∂(Us∩CJ )

(

1

2π

∫

∂(Uq∩CI )

Qc,q(T )−1dqI S
−1
L (s, q)

)

dsJ f (s).

Due to Fubini’s theorem we can exchange the order of integration and by the Cauchy
formula we obtain

f̃ (T ) = − 1

π

∫

∂(Uq∩CI )

Qc.q(T )−1dqI

(
1

2π

∫

∂(Us∩CJ )

S−1
L (s, q)dsJ f (s)

)

= − 1

π

∫

∂(Uq∩CI )

Qc,q(T )−1dqI f (q).

This proves the statement. ��
Problem 5.9 Let U be a slice Cauchy domain. It might happen that f , g ∈ SHL(U )

(resp. f , g ∈ SHR(U )) and D f = Dg (resp. fD = gD). Is it possible to show that
for any T ∈ BC(X), with σS(T ) ⊂ U , we have f̃ (T ) = g̃(T )?

We start to address this problem by observing thatD( f −g) = 0 (resp. ( f −g)D =
0). Therefore it is necessary to study the set

(kerD)SHL (U ) := { f ∈ SHL(U ) : D( f ) = 0} resp. (kerD)SHR(U )

:= { f ∈ SHR(U ) : ( f )D = 0}.
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Theorem 5.10 Let U be a connected slice Cauchy domain of H, then

(kerD)SHL (U ) = { f ∈ SHL(U ) : f ≡ α for some α ∈ H}
= { f ∈ SHR(U ) : f ≡ α for some α ∈ H} = (ker D)SHR(U ).

Proof We prove the result in the case f ∈ SHL(U ) since the case f ∈ SHR(U )

follows with similar arguments. We proceed by double inclusion. The fact that

(ker D)SHL (U ) ⊇ { f ∈ SHL(U ) : f ≡ α for some α ∈ H}

is obvious. The other inclusion can be proved observing that if f ∈ (kerD)SHL (U ),
after a change of variable if needed, there exists r > 0 such that the function f can
be expanded in a convergent series at the origin

f (q) =
∞
∑

k=0

qkαk for (αk)k∈N0 ⊂ H and for any q ∈ Br (0)

where Br (0) is the ball centered at 0 and of radius r . By Lemma 4.3, we have

0 = D f (q) ≡
∞
∑

k=1

D(qk)αk = −2
∞
∑

k=1

k
∑

s=1

qk−sqs−1αk, ∀q ∈ Br (0),

If we restrict the previous series in a neighborhood � of 0 of the real line we get

0 =
∞
∑

k=1

qk−1
0 αk ∀ q0 ∈ �

and this implies

αk = 0, ∀k ≥ 1,

which yields f (q) ≡ α0 in � and since U is connected f (q) ≡ α0 for any q ∈ U . ��
We solve the problem 5.9 in the case in which U is connected.

Proposition 5.11 Let T ∈ BC(X) and let U be a connected slice Cauchy domain with
σS(T ) ⊂ U. If f , g ∈ SHL(U ) (resp. f , g ∈ SHR(U )) satisfy the propertyD f = Dg
(resp. fD = gD) then f̃ (T ) = g̃(T ).

Proof We prove the theorem in the case f , g ∈ SHL(U ) since the case f , g ∈
SHR(U ) follows by similar arguments. By definition of the harmonic functional cal-
culus on the S-spectrum, see Definition 5.7, we have

f̃ (T ) − g̃(T ) = − 1

π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ ( f (s) − g(s)).

123



2 Page 32 of 54 F. Colombo et al.

Since Qc,s(T )−1 is slice hyperholomorphic in the variable s by Theorem 2.12, we
can change the domain of integration to Br (0) ∩ CJ for some r > 0 with ‖T ‖ <

r . Moreover, by hypothesis we have that f (s) − g(s) ∈ (ker D)SHL (U ), thus by
Theorem 5.10 and Proposition 5.3 we get

f̃ (T ) − g̃(T ) = − 1

π

∫

∂(Br (0)∩CJ )

Qc,s(T )−1dsJ ( f (s) − g(s))

=
∫

∂(Br (0)∩CJ )

Qc,s(T )−1dsJα

=
∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

∫

∂(Br (0)∩CJ )

s−1−mdsJα = 0.

��
In order to solve Problem 5.9, in the caseU is not connected, we need the following

lemma, which is based on the monogenic functional calculus developed by McIntosh
and collaborators, see [29–31].

Lemma 5.12 Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume that
the operators T�, � = 1, 2, 3, have real spectrum. Let G be a bounded slice Cauchy
domain such that (∂G) ∩ σS(T ) = ∅. For every J ∈ S we have

∫

∂(G∩CJ )

Qc,s(T )−1dsJ = 0. (5.7)

Proof Since �(1) = 0 and �(q) = 0, by Theorem 2.18 we also have

∫

∂(G∩CJ )

FL(s, q)dsJ = �(1) = 0, (5.8)

and

∫

∂(G∩CJ )

FL(s, q)dsJ s = �(q) = 0, (5.9)

for all q /∈ ∂G and J ∈ S. By the monogenic functional calculus [29–31] we have

FL(s, T ) =
∫

∂�

G(ω, T )DωFL(s, ω),

where Dω is a suitable differential form, the open set � contains the left spectrum of
T and G(ω, T ) is the Fueter resolvent operator. By Theorem 2.29 we can write

Qc,s(T )−1 = −1

4
(FL(s, T )s − T FL(s, T )),
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thus we have
∫

∂(G∩CJ )

Qc,s(T )−1dsJ = −1

4

∫

∂(G∩CJ )

FL(s, T )s − T FL(s, T )dsJ

= −1

4

(∫

∂(G∩CJ )

∫

∂�

G(ω, T )DωFL(s, ω)s dsJ

−T
∫

∂(G∩CJ )

∫

∂�

G(ω, T )DωFL(s, ω)dsJ

)

= −1

4

(∫

∂�

G(ω, T )Dω

(∫

∂(G∩CJ )

FL(s, ω)dsJ s

)

−T
∫

∂�

G(ω, T )Dω

(∫

∂(G∩CJ )

FL(s, ω)dsJ

))

= 0

where the second equality is a consequence of the Fubini’s Theorem and the last
equality is a consequence of formulas (5.8) and (5.9). ��

Finally in the following result we give an answer to Problem 5.9.

Proposition 5.13 Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T�, � = 1, 2, 3, have real spectrum. Let U be a slice Cauchy
domain with σS(T ) ⊂ U. If f , g ∈ SHL(U ) (resp. f , g ∈ SHR(U )) satisfy the
property D f = Dg (resp fD = gD) then f̃ (T ) = g̃(T ).

Proof If U is connected we can use Proposition 5.11. If U is not connected then
U = ∪n

l=1Ul where the Ul are the connected components of U . Hence, we have
f (s) − g(s) = ∑n

l=1 χUl (s)αl and we can write

f̃ (T ) − g̃(T ) = −
n

∑

l=1

1

π

∫

∂(Ul∩CJ )

Qc,s(T )−1dsJαl .

The last summation is zero by Lemma 5.12. ��
We conclude this section with some algebraic properties of the harmonic functional

calculus.

Proposition 5.14 Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T�, � = 1, 2, 3, have real spectrum.

• If f̃ = D f and g̃ = Dg with f , g ∈ SHL(σS(T )) and a ∈ H, then

( f̃ a + g̃)(T ) = f̃ (T )a + g̃(T ).

• If f̃ = fD and g̃ = gD with f , g ∈ SHR(σS(T )) and a ∈ H, then

(a f̃ + g̃)(T ) = a f̃ (T ) + g̃(T ).
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Proof The above identities follow immediately from the linearity of the integrals in
(5.4), resp. (5.5). ��

Proposition 5.15 Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T�, � = 1, 2, 3, have real spectrum.

• If f̃ = D f with f ∈ SHL(σS(T )) and assume that f (q) = ∑∞
m=0 q

mam with
am ∈ H, where this series converges on a ball Br (0) with σS(T ) ⊂ Br (0). Then

f̃ (T ) = −2
∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

am .

• If f̃ = fD with f ∈ SHR(σS(T )) and assume that f (q) = ∑∞
m=0 amq

m with
am ∈ H, where this series converges on a ball Br (0) with σS(T ) ⊂ Br (0). Then

f̃ (T ) = −2
∞
∑

m=1

m
∑

k=1

amT
m−kT

k−1
.

Proof We prove the first assertion since the second one can be proven similarly. We
choose an imaginary unit J ∈ S and a radius 0 < R < r such that σS(T ) ⊂ BR(0).
Then the series expansion of f converges uniformly on ∂(BR(0) ∩ CJ ), and so

f̃ (T ) = − 1

π

∫

∂(BR(0)∩CJ )

Qc,s(T )−1 dsJ

∞
∑

l=0

slal

= − 1

π

∞
∑

l=0

∫

∂(BR(0)∩CJ )

Qc,s(T )−1 dsJ s
lal .

By replacing Qc,s(T )−1 with its series expansion, see Proposition 5.3, we further
obtain

f̃ (T ) = − 1

π

∫

∂(BR(0)∩CJ )

∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m dsJ

∞
∑

l=0

slal

= − 1

π

∞
∑

m=1

m
∑

k=1

∞
∑

l=0

Tm−kT
k−1

∫

∂(BR(0)∩CJ )

s−1−m dsJ s
lal

= −2
∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

am .

The last equality is due to the fact that
∫

∂(BR(0)∩CJ )
s−1−m dsJ sl is equal to 2π if

l = m, and 0 otherwise. ��
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6 The Resolvent Equations for Harmonic Functional Calculus

In this sectionweprove various resolvent equations for the pseudo S-resolvent operator
Qc,s(T )−1. The first version of this equation is written in terms of Qc,s(T )−1 and of
the S-resolvent operators.

Theorem 6.1 (The Q-resolvent equation with S-resolvent operators) Let T ∈ BC(X).
Then, for p, s ∈ ρS(T ) with s /∈ [p], the following equalities hold

Qc,s(T )−1Qc,p(T )−1 =
{

[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]

p

−s̄
[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]
}

(p2 − 2s0 p + |s|2)−1, (6.1)

and

Qc,s(T )−1Qc,p(T )−1= (p2 − 2s0 p + |s|2)−1{s
[

Qc,s(T )−1S−1
L (p, T )

−S−1
R (s, T )Qc,p(T )−1

]

−
[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]

p̄
}

.

(6.2)

Proof By the definition of left S-resolvent operator we have

Qc,p(T )−1 p = TQc,p(T )−1 + S−1
L (p, T ). (6.3)

By iterating (6.3) we get

Qc,s(T )−1Qc,p(T )−1(p2 − 2s0 p + |s|2)
= Qc,s(T )−1[Qc,p(T )−1 p]p − 2s0Qc,s(T )−1Qc,p(T )−1 p

+|s|2Qc,s(T )−1Qc,p(T )−1

= Qc,s(T )−1[TQc,p(T )−1 + S−1
L (p, T )]p

−2s0Qc,s(T )−1[TQc,p(T )−1 + S−1
L (p, T )]

+|s|2Qc,s(T )−1Qc,p(T )−1

= Qc,s(T )−1T [Qc,p(T )−1 p] + Qc,s(T )−1S−1
L (p, T )p

−2s0Qc,s(T )−1[TQc,p(T )−1 + S−1
L (p, T )]

+|s|2Qc,s(T )−1Qc,p(T )−1

= Qc,s(T )−1T [TQc,p(T )−1 + S−1
L (p, T )] + Qc,s(T )−1S−1

L (p, T )p

−2s0Qc,s(T )−1[TQc,p(T )−1
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+S−1
L (p, T )] + |s|2Qc,s(T )−1Qc,p(T )−1.

Now, by the definition of the right S-resolvent operator we have

Qc,s(T )−1T = sQc,s(T )−1 − S−1
R (s, T ). (6.4)

This equality implies

Qc,s(T )−1Qc,p(T )−1(p2 − 2s0 p + |s|2)
= [Qc,s(T )−1T ]TQc,p(T )−1

+[Qc,s(T )−1T ]S−1
L (p, T ) + Qc,s(T )−1S−1

L (p, T )p

−2s0[Qc,s(T )−1T ]Qc,p(T )−1 − 2s0Qc,s(T )−1S−1
L (p, T )

+|s|2Qc,s(T )−1Qc,p(T )−1

= [sQc,s(T )−1 − S−1
R (s, T )]TQc,p(T )−1

+[sQc,s(T )−1 − S−1
R (s, T )]S−1

L (p, T )

+Qc,s(T )−1S−1
L (p, T )p − 2s0[sQc,s(T )−1 − S−1

R (s, T )]Qc,p(T )−1

−2s0Qc,s(T )−1S−1
L (p, T )

+|s|2Qc,s(T )−1Qc,p(T )−1

= s[Qc,s(T )−1T ]Qc,p(T )−1 − S−1
R (s, T )TQc,p(T )−1

+sQc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )S−1
L (p, T )

+Qc,s(T )−1S−1
L (p, T )p − 2s0sQc,s(T )−1Qc,p(T )−1

+2s0S
−1
R (s, T )Qc,p(T )−1

−2s0Qc,s(T )−1S−1
L (p, T ) + |s|2Qc,s(T )−1Qc,p(T )−1

= s[sQc,s(T )−1 − S−1
R (s, T )]Qc,p(T )−1 − S−1

R (s, T )TQc,p(T )−1

+sQc,s(T )−1S−1
L (p, T )

−S−1
R (s, T )S−1

L (p, T ) + Qc,s(T )−1S−1
L (p, T )p − 2s0sQc,s(T )−1Qc,p(T )−1

+2s0S
−1
R (s, T )Qc,p(T )−1

−2s0Qc,s(T )−1S−1
L (p, T ) + |s|2Qc,s(T )−1Qc,p(T )−1.

Now, since s2 − 2s0s + |s|2 = 0 we get

Qc,s(T )−1Qc,p(T )−1(p2 − 2s0 p + |s|2)
= (s2 − 2s0s + |s|2)Qc,s(T )−1Qc,p(T )−1 − sS−1

R (s, T )Qc,p(T )−1

−S−1
R (s, T )TQc,p(T )−1

+sQc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )S−1
L (p, T ) + Qc,s(T )−1S−1

L (p, T )p

+2s0S
−1
R (s, T )Qc,p(T )−1

−2s0Qc,s(T )−1S−1
L (p, T )

= −sS−1
R (s, T )Qc,p(T )−1 − S−1

R (s, T )TQc,p(T )−1
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+sQc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )S−1
L (p, T )

+Qc,s(T )−1S−1
L (p, T )p + 2s0S

−1
R (s, T )Qc,p(T )−1 − 2s0Qc,s(T )−1S−1

L (p, T )

= −sS−1
R (s, T )Qc,p(T )−1 + sQc,s(T )−1S−1

L (p, T )

−S−1
R (s, T )[TQc,p(T )−1 + S−1

L (p, T )]
+Qc,s(T )−1S−1

L (p, T )p + 2s0S
−1
R (s, T )Qc,p(T )−1

−2s0Qc,s(T )−1S−1
L (p, T ).

Finally, using another time formula (6.3) and the fact that 2s0 − s = s̄ we obtain

Qc,s(T )−1Qc,p(T )−1(p2 − 2s0 p + |s|2)
= −sS−1

R (s, T )Qc,p(T )−1 + sQc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1 p

+Qc,s(T )−1S−1
L (p, T )p + 2s0S

−1
R (s, T )Qc,p(T )−1

−2s0Qc,s(T )−1S−1
L (p, T )

=
[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]

p

−s̄
[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]

.

It is possible to obtain formula (6.2) with similar computations. ��
Remark 6.2 We can rewrite the equations obtained in Theorem 6.1 by using the left or
right ∗-products, see [19, Chap. 4], in the variables s, p ∈ ρS(T ) with s /∈ [p],

Qc,s(T )−1Qc,p(T )−1 =
[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]

∗s,le f t (p − s̄)(p2 − 2s0 p + |s|2)−1I,

or

Qc,s(T )−1Qc,p(T )−1 = (p − s̄)(p2 − 2s0 p + |s|2)−1I
∗p,right

[

Qc,s(T )−1S−1
L (p, T ) − S−1

R (s, T )Qc,p(T )−1
]

.

Theorem 6.3 (Left and right generalized Q-resolvent equations) Let T ∈ BC(X) with
s ∈ ρS(T ) and set

ML
m(s, T ) :=

m−1
∑

i=0

T
i
S−1
L (s, T )sm−i−1 (6.5)

and

MR
m(s, T ) :=

m−1
∑

i=0

sm−i−1S−1
R (s, T )T

i
.
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Then for m ≥ 1 and s ∈ ρS(T ), the following equations hold

Qc,s(T )−1sm − T
mQc,s(T )−1 = ML

m(s, T ) (6.6)

and

smQc,s(T )−1 − Qc,s(T )−1T
m = MR

m(s, T ).

Proof We prove the result by induction on m. We will prove only (6.6) since the other
equality is proven with similar techniques. The case m = 1 is trivial because

ML
1 (s, T ) = S−1

L (s, t) = Q−1
c,s (T )s − TQ−1

c,s (T ).

We assume that the equation holds for m − 1 and we will prove it for m. By inductive
hypothesis, we have

T
mQc,s(T )−1 = T T

m−1Qc,s(T )−1 = T (Qc,s(T )−1sm−1 − ML
m−1(s, T ))

= TQc,s(T )−1sm−1 − TML
m−1(s, T ).

Since

TML
m−1(s, T ) =

m−2
∑

i=0

T
i+1

S−1
L (s, T )sm−i−2 =

m−1
∑

i=1

T
i
S−1(s, T )sm−i−1

and

TQc,s(T )−1 = Qc,s(T )−1s − S−1
L (s, t),

we have

T
mQc,s(T )−1 = Qc,s(T )−1sm − S−1

L (s, T )sm−1 −
m−1
∑

i=1

T
i
S−1(s, T )sm−i−1

= Qc,s(T )−1sm −
m−1
∑

i=0

T
i
S−1(s, T )sm−i−1

= Qc,s(T )−1sm − ML
m(s, T ).

��
Now, we prove the Q-resolvent equation just in terms of the commutative pseudo

S-resolvent operator.

Theorem 6.4 (The Q-resolvent equation) Let T ∈ BC(X). Then for s, p ∈ ρS(T )

with s /∈ [p], we have the following equation

123



Axially Harmonic Functions and the Harmonic Functional Calculus Page 39 of 54 2

sQc,s(T )−1Qc,p(T )−1 p − sQc,s(T )−1TQc,p(T )−1

−Qc,s(T )−1TQc,p(T )−1 p + Qc,s(T )−1T
2Qc,p(T )−1

=
[

(sQc,s(T )−1 − pQc,p(T )−1)p − s(sQc,s(T )−1 − pQc,p(T )−1)
]

(p2 − 2s0 p + |s|2)−1

+
[

(TQc,p(T )−1 − Qc,s(T )−1T )p − s(TQc,p(T )−1 − Qc,s(T )−1T )
]

(p2 − 2s0 p + |s|2)−1. (6.7)

Proof Starting from the S-resolvent equation (see formula (2.6))

S−1
R (s, T )S−1

L (p, T ) =
[

(S−1
R (s, T ) − S−1

L (p, T ))p − s(S−1
R (s, T ) − S−1

L (p, T ))
]

(p2 − 2s0 p + |s|2)−1

and using the definitions of the S-resolvent operators

S−1
R (s, T ) = Qc,s(T )−1(sI − T ),

and

S−1
L (p, T ) = (pI − T )Qc,p(T )−1,

we obtain that the left hand side of the S-resolvent equation can be rewritten as

S−1
R (s, T )S−1

L (p, T ) = Qc,s(T )−1(sI − T )(pI − T )Qc,p(T )−1

= sQc,s(T )−1Qc,p(T )−1 p − sQc,s(T )−1TQc,p(T )−1

− Qc,s(T )−1TQc,p(T )−1 p + Qc,s(T )−1T
2Qc,p(T )−1.

The right hand side can be rewritten in the following way

[

(S−1
R (s, T ) − S−1

L (p, T ))p − s(S−1
R (s, T ) − S−1

L (p, T ))
]

(p2 − 2s0 p + |s|2)−1

=
[

(Qc,s(T )−1(sI − T ) − (pI − T )Qc,p(T )−1)p+
− s(Qc,s(T )−1(sI − T ) − (pI − T )Qc,p(T )−1)

]

(p2 − 2s0 p + |s|2)−1

=
[

(sQc,s(T )−1 − pQc,p(T )−1)p − s(sQc,s(T )−1 − pQc,p(T )−1)
]

(p2 − 2s0 p + |s|2)−1

+
[

(TQc,p(T )−1 − Qc,s(T )−1T )p − s(TQc,p(T )−1 − Qc,s(T )−1T )
]

(p2 − 2s0 p + |s|2)−1.
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By equating (6.8) and (6.8), we obtain the assertion. ��
Remark 6.5 It is possible to rewrite (6.7) as

sQc,s(T )−1Qc,p(T )−1 p − sQc,s(T )−1TQc,p(T )−1 +
−Qc,s(T )−1TQc,p(T )−1 p + Qc,s(T )−1T

2Qc,p(T )−1

=
(

sQc,s(T )−1 − pQc,p(T )−1
)

∗s,le f t S−1
L (p, s)

+
(

TQc,s(T )−1 − Qc,p(T )−1T
)

∗s,le f t S−1
L (p, s) (6.8)

Remark 6.6 Formula (6.7) or, equivalently, (6.8) can be considered the most appropri-
ate Q-resolvent equation because

(I) it preserves the left slice hyperholomorphicity in s and the right slice hyperholo-
morphicity in p;

(II) the product Qc,s(T )−1Qc,p(T )−1 (multiplied by monomials or bounded opera-
tors) is written in terms of the differenceQc,s(T )−1 −Qc,p(T )−1 entangled with
the left slice hyperholomorphic Cauchy kernel.

For more information of the properties of the resolvent equations in hyperholomorphic
spectral theories see the paper [16].

7 The Riesz Projectors for Harmonic Functional Calculus

We now take advantage of the Q-resolvent equation in Theorem 6.4 to study the Riesz
projectors for the harmonic functional calculus. In the sequel we need the crucial result
originally proved in [1, Lemma 3.23].

Lemma 7.1 (See [20]) Let B ∈ B(X). Let G be an axially symmetric domain and
assume f ∈ N (G). Then for p ∈ G, we have

1

2π

∫

∂(G∩CI )

f (s)dsI (s̄ B − Bp)(p2 − 2s0 p + |s|2)−1 = B f (p).

Theorem 7.2 (The Riesz projectors) Let T = T1e1+T2e2+T3e3 and assume that the
operators Tl , l = 1, 2, 3, have real spectrum. Let σS(T ) = σ1∪σ2 with dist(σ1, σ2) >

0.
Let G1, G2 ⊂ H be two bounded slice Cauchy domains such that σ1 ⊂ G1,

G1 ⊂ G2 and dist(G2, σ2) > 0. Then the operator

P̃(T ) := 1

2π

∫

∂(G2∩CJ )

s dsJQc,s(T )−1 = 1

2π

∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p

is a projection, i.e.,

P̃2 = P̃.
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Moreover, the operator P̃ commutes with T , i.e. we have

T P̃ = P̃T . (7.1)

Proof First, we multiply equation (6.7) by dsJ on the left and we integrate it on
∂(G2 ∩ CJ ) with respect to dsJ , and then we multiply it by dpJ on the right and we
integrate it on ∂(G1 ∩ CJ ) with respect to dpJ . We obtain

∫

∂(G2∩CJ )

s dsJQc,s(T )−1
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p

+
∫

∂(G2∩CJ )

s dsJQc,s(T )−1 T
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ

+
∫

∂(G2∩CJ )

dsJQc,s(T )−1 T
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p

+
∫

∂(G2∩CJ )

dsJQc,s(T )−1 T 2
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ

=
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[

(sQc,s(T )−1 − pQc,p(T )−1)p

−s(sQc,s(T )−1 − pQc,p(T )−1)
]

Qs(p)
−1 dpJ

+
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[

(TQc,p(T )−1 − Qc,s(T )−1T )p

−s(TQc,p(T )−1 − Qc,s(T )−1T )
]

Qs(p)
−1 dpJ , (7.2)

where we set Qs(p) = p2 − 2s0 p + |s|2. By Lemma 5.12 the expression on the
left-hand side of (7.2) simplifies to

∫

∂(G2∩CJ )

s dsJQc,s(T )−1
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p.

Now, we focus on the right hand-side of (7.2). We start by rewriting it as

∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

s[Qc,s(T )−1 p − sQc,s(T )−1]Qs(p)
−1 dpJ

+
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[−Qc,s(T )−1T p + sQc,s(T )−1T ]Qs(p)
−1 dpJ

+
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[sQc,p(T )−1 p − pQc,p(T )−1 p]Qs(p)
−1 dpJ

+
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[−sTQc,p(T )−1 + TQc,p(T )−1 p]Qs(p)
−1 dpJ .

(7.3)
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Now, since G1 ⊂ G2, for any s ∈ ∂(G2 ∩ CJ ) the functions

p → pQs(p)
−1

and

p → Qs(p)
−1

are intrinsic slice hyperholomorphic on G1. By the Cauchy integral formula we have

∫

∂(G1∩CJ )

pQs(p)
−1 dpJ = 0,

∫

∂(G1∩CJ )

Qs(p)
−1dpJ = 0.

Therefore

∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

s[Qc,s(T )−1 p − sQc,s(T )−1]Qs(p)
−1 dpJ = 0

and

∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[−Qc,s(T )−1T p + sQc,s(T )−1T ]Qs(p)
−1 dpJ = 0.

Thus the right hand side in (7.3) is just

∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[sQc,p(T )−1 p − pQc,p(T )−1 p]Qs(p)
−1 dpJ

−
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[sTQc,p(T )−1 − TQc,p(T )−1 p]Qs(p)
−1 dpJ .

We can further simplify the previous expression by applying Lemma 7.1 twice: in the
first integral for

B := pQc,p(T )−1

and in the second integral for

B := TQc,p(T )−1.

Thus we obtain

∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[sQc,p(T )−1 p − pQc,p(T )−1 p]Qs(p)
−1 dpJ

−
∫

∂(G2∩CJ )

dsJ

∫

∂(G1∩CJ )

[sTQc,s(T )−1 − TQc,s(T )−1 p]Qs(p)
−1 dpJ
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= 2π
∫

∂(G1∩CJ )

pQc,p(T )−1 dpJ − 2π
∫

∂(G1∩CJ )

TQc,p(T )−1 dpJ

= 2π
∫

∂(G1∩CJ )

pQc,p(T )−1 dpJ .

In the last equation we have used Lemma 5.12. In conclusion Eq. (7.2) reduces to

∫

∂(G2∩CJ )

s dsJQc,s(T )−1
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p

= 2π
∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p

and, by the definition of the operator P̃ given in the statement, the previous equality
means

P̃2 = P̃.

Now, we prove (7.1). Since T0 = 0 and

TQc,p(T )−1 = Qc,p(T )−1 p − S−1
L (p, T ),

we get

T P̃ = − 1

2π

∫

∂(G1∩CJ )

TQc,p(T )−1dpJ p

= − 1

2π

∫

∂(G1∩CJ )

(Qp(T )−1 p − S−1
L (p, T ))dpJ p

= − 1

2π

∫

∂(G1∩CJ )

Qc,p(T )−1dp j p
2 + 1

2π

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ p.

Thus we get

T P̃ = − 1

2π

∫

∂(G1∩CJ )

Qc,p(T )−1dpJ p
2 + 1

2π

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ p.

(7.4)

On the other side, since

Qc,p(T )−1T = Qc,p(T )−1 p − S−1
R (p, T ),
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we get

P̃T = − 1

2π

∫

∂(G1∩CJ )

pdpJQc,p(T )−1T

= − 1

2π

∫

∂(G1∩CJ )

Qc,p(T )−1dpJ p
2 + 1

2π

∫

∂(G1∩CJ )

pdpJ S
−1
R (p, T ).

From the fact that pχG1(p) is intrinsic slice hyperholomorphic in G1, it follows by
[20, Thm. 3.2.11] that

P̃T = − 1

2π

∫

∂(G1∩CJ )

Qc,p(T )−1dpJ p
2 + 1

2π

∫

∂(G1∩CJ )

S−1
L (p, T )pdpJ .

(7.5)

Since (7.4) and (7.5) are equal we get the statement. ��

Remark 7.3 The Q-resolvent equation stated in Theorem 6.1 preserves the slice hyper-
holomorphicity, however it is not useful to prove Theorem 7.2.

Remark 7.4 Theorem 7.2 can be proved using directly the F-functional calculus.
Indeed, in the same hypothesis of the theorem, it is proved in [20, Thm. 7.4.2] that

P̌2
1 = P̌1 and T P̌1 = P̌1T

for

P̌1 := − 1

8π

∫

∂(G1∩CJ )

FL(p, T ) dpJ p
2.

Now, using Theorem 2.29 and [20, Lemma 7.4.1], we have

P̃ = 1

2π

∫

∂(G1∩CJ )

Qc,p(T )−1 dpJ p

= − 1

8π

∫

∂(G1∩CJ )

FL(p, T )p − T FL(p, T ) dpJ p

= − 1

8π

∫

∂(G1∩CJ )

FL(p, T ) dpJ p
2 = P̌ .

8 Further Properties of the Harmonic Functional Calculus

In this sectionwe prove other important properties of the harmonic functional calculus.
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Theorem 8.1 Let T ∈ BC(X). Let m ∈ N0, and let U ⊂ H be a bounded slice Cauchy
domain with σS(T ) ⊂ U. For every J ∈ S we have

Hm(T ) = 1

2π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ s
m+1, (8.1)

where

Hm(T ) :=
m

∑

k=0

Tm−kT
k
.

Proof We start by considering U to be the ball Br (0) with ‖T ‖ < r . We know that

Qc,s(T )−1 =
+∞
∑

n=1

n
∑

k=1

T n−kT
k−1

s−1−n

for every s ∈ ∂Br (0). By Proposition 5.3 we know that the series converges on ∂Br (0).
Thus we have

1

2π

∫

∂(Br (0)∩CJ )

Qc,s(T )−1dsJ s
m+1 = 1

2π

+∞
∑

n=1

n
∑

k=1

T n−kT
k−1

∫

∂(Br (0)∩CJ )

s−n+mdsJ

=
m+1
∑

k=1

Tm+1−kT
k−1 =

m
∑

k=0

Tm−kT
k = Hm(T )

since

∫

∂(Br (0)∩CJ )

s−n+mdsJ =
{

0 if n 
= m + 1

2π if n = m + 1.

This proves the result for the case U = Br (0). Now we get the result for an arbitrary
bounded Cauchy domain U that contains σS(T ). Then there exists a radius r such
that U ⊂ Br (0). The operator Qc,s(T )−1 is right slice hyperholomorphic and the
monomial sm+1 is left slice hyperholomorphic on the bounded slice Cauchy domain
Br (0) \U . By the Cauchy’s integral formula we get

1

2π

∫

∂(Br (0)∩CJ )

Qc,s(T )−1dsJ s
m+1 − 1

2π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ s
m+1

= 1

2π

∫

∂((Br (0)\U )∩CJ )

Qc,s(T )−1dsJ s
m+1 = 0.

Finally we have

1

2π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ s
m+1 = 1

2π

∫

∂(Br (0)∩CJ )

Qc,s(T )−1dsJ s
m+1 = Hm(T ),
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and this concludes the proof. ��

Remark 8.2 Unlike what happens in the S-functional calculus (see [20, Thm. 3.2.2])
we do not have a left slice hyperholomorphic polynomial on the left hand side of
equality (8.1), but we have harmonic polynomials. Another difference with respect to
[20, Thm. 3.2.2] is that in Theorem 8.1 we do not have a difference between right and
left part, because by Proposition 5.3

∞
∑

m=1

m
∑

k=1

Tm−kT
k−1

s−1−m =
∞
∑

m=1

m
∑

k=1

s−1−mTm−kT
k−1 = Qc,s(T )−1.

For the intrinsic functions we have the following result, see [20, Theorem 3.2.11].

Lemma 8.3 Let T ∈ BC(X). If f ∈ N (σS(T )) and U is a bounded slice Cauchy
domain such that σS(T ) ⊂ U and U ⊂ dom( f ), then we have

f̃ (T ) = − 1

π

∫

∂(U∩CJ )

Qc,s(T )−1dsJ f (s) = − 1

π

∫

∂(U∩CJ )

f (s)dsJQc,s(T )−1.

Proof It follows by the definitions of intrinsic functions, of the Q-functional calculus
and Runge’s theorem (see [20, Theorem 2.1.37]). ��

For the Q- functional calculus it is possible to prove a generalized product rule.

Theorem 8.4 Let T ∈ BC(X) and assume f ∈ N (σS(T )) and g ∈ SHL(σS(T )) then

2[D ((.) f g) (T ) − TD( f g)(T )] = f (T )D ((.)g) (T ) − f (T )TD(g)(T ) +
+D ( f (.)) (T )g(T ) − D( f )(T )T g(T ).

(8.2)

Proof Let G1 and G2 be two bounded slice Cauchy domains such that contain σS(T )

and G1 ⊂ G2 and G2 ⊂ dom( f ) ∩ dom(g). We choose p ∈ ∂(G1 ∩ CJ ) and
s ∈ ∂(G2 ∩ CJ ). By Definitions 2.23 and 5.7 for J ∈ S we have

f (T )D ((.)g) (T ) − f (T )TD(g)(T ) + D ( f (.)) (T )g(T ) − D( f )(T )T g(T )

= − 1

2π

∫

∂(G2∩CJ )

f (s)dsJ S
−1
R (s, T )

1

π

∫

∂(G1∩CJ )

Qc,p(T )−1 pdpJ g(p)

+ 1

2π

∫

∂(G2∩CJ )

f (s)dsJ S
−1
R (s, T )

T

π

∫

∂(G1∩CJ )

Qc,p(T )−1dpJ g(p)

− 1

π

∫

∂(G2∩CJ )

Qc,s(T )−1sdsJ f (s)
1

2π

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ g(p)

+ 1

π

∫

∂(G2∩CJ )

Qc,s(T )−1dsJ f (s)
T

2π

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ g(p).
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Since the function f is intrinsic by Lemma 8.3 we get

f (T )D ((.)g) (T ) − f (T )TD(g)(T ) + D ( f (.)) (T )g(T ) − D( f )(T )T g(T )

= − 1

2π2

∫

∂(G2∩CJ )

f (s)dsJ S
−1
R (s, T )

∫

∂(G1∩CJ )

Qc,p(T )−1 pdpJ g(p)

+ 1

2π2

∫

∂(G2∩CJ )

f (s)dsJ S
−1
R (s, T )T

∫

∂(G1∩CJ )

Qc,p(T )−1dpJ g(p)

− 1

2π2

∫

∂(G2∩CJ )

f (s)dsJ sQc,s(T )−1
∫

∂(G1∩CJ )

S−1
L (p, T )dpJ g(p)

+ 1

2π2

∫

∂(G2∩CJ )

f (s)dsJQc,s(T )−1T
∫

∂(G1∩CJ )

S−1
L (p, T )dpJ g(p)

= 1

2π2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

−S−1
R (s, T )Qc,p(T )−1 p

+S−1
R (s, T )TQc,p(T )−1

−sQc,s(T )−1S−1
L (p, T ) + Qc,s(T )−1T S−1

L (p, T )

]

dpJ g(p)

= 1

2π2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

−S−1
R (s, T )(pI − T )Qc,p(T )−1

+Qc,s(T )−1(T − sI)S−1
L (p, T )

]

dpJ g(p)

= 1

2π2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

−S−1
R (s, T )S−1

L (p, T )

−S−1
R (s, T )S−1

L (p, T )

]

dpJ g(p)

= − 1

π2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

S−1
R (s, T )S−1

L (p, T )

]

dpJ g(p).

By the S-resolvent equation (see (2.6)) and by setting Qs(p) := p2 − 2s0 p + |s|2,
we get

f (T )D ((.)g) (T ) − f (T )TD(g)(T ) + D ( f (.)) (T )g(T ) − D( f )(T )T g(T )

= − 1

π2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

(S−1
R (s, T ) − S−1

L (p, T ))p − s̄(S−1
R (s, T )

−S−1
L (p, T ))

]·Qs(p)
−1dpJ g(p)

= − 1

π2

[∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

S−1
R (s, T )pQs(p)

−1dpJ g(p) +

−
∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

S−1
L (p, T )pQs(p)

−1dpJ g(p)
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−
∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ S−1
R (s, T )Qs(p)

−1dpJ g(p)

+
∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ S−1
L (p, T )Qs(p)

−1dpJ g(p)

]

.

From the Cauchy formula we obtain

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

S−1
R (s, T )pQs(p)

−1dpJ g(p) = 0,

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ S−1
R (s, T )Qs(p)

−1dpJ g(p) = 0.

Therefore

f (T )D ((.)g) (T ) − f (T )TD(g)(T ) + D ( f (.)) (T )g(T ) − D( f )(T )T g(T )

= − 1

π2

[

−
∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

S−1
L (p, T )pQs(p)

−1dpJ g(p)

+
∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ S−1
L (p, T )Qs(p)

−1dpJ g(p)

]

= − 1

π2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

s̄ S−1
L (p, T ) − S−1

L (p, T )p
]

Qs(p)
−1dpJ g(p).

Using Lemma 7.1 with B := S−1
L (p, T ) we get

f (T )D ((.)g) (T ) − f (T )TD(g)(T ) + D ( f (.)) (T )g(T ) − D( f )(T )T g(T )

= − 2

π

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ f (p)g(p).

Finally by definition of the S-resolvent operator we obtain

f (T )D ((.)g) (T ) − f (T )TD(g)(T ) + D ( f (.)) (T )g(T ) − D( f )(T )T g(T )

= − 2

π

∫

∂(G1∩CJ )

(pI − T )Qc,p(T )−1dpJ f (p)g(p)

= − 2

π

(∫

∂(G1∩CJ )

Qc,p(T )−1dpJ p f (p)g(p) − T

∫

∂(G1∩CJ )

Qc,p(T )−1dpJ f (p)g(p)

)

= −2
[

TD( f g)(T ) − D ((.) f g) (T )
]

.

��
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9 TheQ-functional Calculus and New Properties of the F-functional
Calculus

The introduction of theQ-functional calculus is essential to prove a product formula for
the F-functional calculus. Before to go through this, we prove the following property
of the F-functional calculus.

Theorem 9.1 Let us consider T ∈ BC(X) and m ∈ N0. Let U ⊂ H be a bounded slice
Cauchy domain with σS(T ) ⊂ U. For every J ∈ S, we have

Qm(T , T ) = − 1

4π(m + 1)(m + 2)

∫

∂(U∩CJ )

FL(s, T )dsJ s
m+2 (9.1)

and

Qm(T , T ) = − 1

4π(m + 1)(m + 2)

∫

∂(U∩CJ )

sm+2dsJ FR(s, T ), (9.2)

where

Qm(T , T ) =
m

∑

j=0

2(m − j + 1)

(m + 1)(m + 2)
Tm− j T

j
.

Proof We start by considering the set U as the ball Br (0) with ||T || < r . Then, by
[16, Thm. 3.9] we know that FL(s, T ) = ∑∞

n=2 −2(n − 1)nQn−2(T , T )s−1−n for
every s ∈ ∂Br (0). This series converges uniformly on ∂Br (0). Thus we have

− 1

4π(m + 1)(m + 2)

∫

∂(Br (0)∩CJ )

FL(s, T )dsJ s
m+2

= 1

2π(m + 1)(m + 2)

+∞
∑

n=0

(n + 1)(n + 2)Qn(T , T )

∫

∂(Br (0)∩CJ )

s−1−n+mdsJ .

Due to the fact that

∫

∂(Br (0)∩CJ )

s−1−n+mdsJ =
{

0 if n 
= m,

2π if n = m,

we obtain

− 1

4π(m + 1)(m + 2)

∫

∂(Br (0)∩CJ )

FL(s, T )dsJ s
m+2 = Qm(T , T ).

Now, we consider U an arbitrary bounded slice Cauchy domain that contains σS(T ).
We suppose that there exists a radius r such that U ⊂ Br (0). The left F-resolvent
operator FL(s, T ) is right slice hyperholomorphic in the variable s and the monomial

123



2 Page 50 of 54 F. Colombo et al.

sm+2 is left slice hyperholomorphic on the bounded slice Cauchy domain Br (0) \U .
By the Cauchy’s integral theorem (see Theorem 2.13) we get

− 1

4π(m + 1)(m + 2)

∫

∂(Br (0)∩CJ )

FL(s, T )dsJ s
m+2

+ 1

4π(m + 1)(m + 2)

∫

∂(U∩CJ )

FL(s, T )dsJ s
m+2

= − 1

4π(m + 1)(m + 2)

∫

∂((Br (0)\U )∩CJ )

FL(s, T )dsJ s
m+2 = 0.

This implies that

− 1

4π(m + 1)(m + 2)

∫

∂(U∩CJ )

FL(s, T )dsJ s
m+2

= − 1

4π(m + 1)(m + 2)

∫

∂(Br (0)∩CJ )

FL(s, T )dsJ s
m+2

= Qm(T , T ).

��
Remark 9.2 Theorem9.1 is consistent with respect to the definition of the F-functional
calculus. Indeed, the results of the integrals (9.1) and (9.2) are Fueter regular polyno-
mials in T . That kind of polynomials were introduced in [9, 10].

Now, we prove a product rule for the F-function calculus.

Theorem 9.3 Let T ∈ BC(X) and assume f ∈ N (σS(T )) and g ∈ SHL(σS(T )) then
we have

�( f g)(T ) = � f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T ). (9.3)

where D is the Fueter operator.

Proof Let G1 and G2 be two bounded slice Cauchy domains such that contain σS(T )

and G1 ⊂ G2, with G2 ⊂ dom( f ) ∩ dom(g). We choose p ∈ ∂(G1 ∩ CJ ) and
s ∈ ∂(G2 ∩ CJ ). For every J ∈ S, from the definitions of F-functional calculus,
S-functional calculus and Q- functional calculus, we get

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ FR(s, T )

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ g(p)

+ 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ S
−1
R (s, T )

∫

∂(G1∩CJ )

FL(p, T )dpJ g(p)

− 1

(π)2

∫

∂(G2∩CJ )

Qc,s(T )−1dsJ f (s)
∫

∂(G1∩CJ )

Qc,p(T )−1dpJ g(p).
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Since the function f is intrinsic by Lemma 8.3 we have

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ FR(s, T )

∫

∂(G1∩CJ )

S−1
L (p, T )dpJ g(p)

+ 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ S
−1
R (s, T )

∫

∂(G1∩CJ )

FL(p, T )dpJ g(p)

− 1

(π)2

∫

∂(G2∩CJ )

f (s)dsJQc,s(T )−1
∫

∂(G1∩CJ )

Qc,p(T )−1dpJ g(p).

Hence, we have

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= 1

(2π)2

∫

∂(G2∩CJ )

∫

∂(G1∩CJ )

f (s)dsJ
[

FR(s, T )S−1
L (p, T )+

+ S−1
R (s, T )FL(p, T ) − 4Qc,s(T )−1Qc,p(T )−1]dpJ g(p).

By the following equation (see [20, Lemma 7.3.2])

FR(s, T )S−1
L (p, T ) + S−1

R (s, T )FL(p, T ) − 4Qc,s(T )−1Qc,p(T )−1

= [(FR(s, T ) − FL(p, T ))p − s(FR(s, T ) − FL(p, T ))]Qs(p)
−1,

where Qs(p) = p2 − 2s0 p + |s|2, we obtain

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= 1

(2π)2

∫

∂(G2∩CJ )

∫

∂(G1∩CJ )

f (s)
[

(FR(s, T ) − FL(p, T )) p

− s̄ (FR(s, T ) − FL(p, T ))
]Qs(p)

−1dpJ g(p).

By the linearity of the integrals follows that

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

FR(s, T )pQs(p)
−1dpJ g(p)

− 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

FL(p, T )pQs(p)
−1dpJ g(p)

− 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ FR(s, T )Qs(p)
−1dpJ g(p)

+ 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ FL(p, T )Qs(p)
−1dpJ g(p).
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Since the functions p �→ pQs(p)−1, p �→ Qs(p)−1 are intrinsic slice hyperholomor-
phic on Ḡ1, by the Cauchy integral formula, see Theorem 2.13 we have

1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

FR(s, T )pQs(p)
−1dpJ g(p) = 0,

1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ FR(s, T )Qs(p)
−1dpJ g(p) = 0.

Thus, we get

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= − 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

FL(p, T )pQs(p)
−1dpJ g(p) +

+ 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

s̄ FL(p, T )Qs(p)
−1dpJ g(p)

= 1

(2π)2

∫

∂(G2∩CJ )

f (s)dsJ

∫

∂(G1∩CJ )

[

s̄ FL(p, T )

−FL(p, T )p
]Qs(p)

−1dpJ g(p).

By applying Lemma 7.1 with B := FL(p, T ) and by the definition of the F-functional
calculus we obtain

� f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T )

= 1

2π

∫

∂(G1∩CJ )

FL(p, T )dpJ f (p)g(p)

= 1

2π

∫

∂(G1∩CJ )

FL(p, T )dpJ ( f g)(p) = �( f g)(T ).

��
Corollary 9.4 Let T ∈ BC(X) and assume g ∈ N (σS(T )) and f ∈ SHR(σS(T )) then
we have

�( f g)(T ) = � f (T )g(T ) + f (T )�g(T ) − D f (T )Dg(T ). (9.4)

Remark 9.5 The classical formula

�( f g) = �( f ) · g + f · �(g) + 2〈∇ f ,∇g〉, (9.5)

is true for anyC2 quaternionic valued functions and it inspires formula (9.3). However,
formula (9.3) is true only for slice hyperholomorphic functions. Indeed its proof relies
heavily on the slice hyperholomorphic Cauchy integral representation formula. Thus
(9.3) is not applicable in the case when f and g are real valued functions and, in this
sense, it is not a generalization of the formula (9.5).
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Remark 9.6 The product f g in Theorem 9.3 and Corollary 9.4 is respectively slice
hyperholomorphic left or right slice hyperholomorphic.

Remark 9.7 Formula (9.3) is a general case of the well-known formula �(qg(q)) =
q�(g(q))+ 2D(g(q)). Indeed, it is enough to replace the operator T by q and to take
f (q) := q in formula (9.3).

Acknowledgements The authors are grateful to the anonymous referees for their useful comments on the
paper.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alpay,D., Colombo, F., Gantner, J., Sabadini, I.: A new resolvent equation for the S-functional calculus.
J. Geom. Anal. 25, 1939–1968 (2015)

2. Alpay, D., Colombo, F., Kimsey, D.P.: The spectral theorem for quaternionic unbounded normal oper-
ators based on the S-spectrum. J. Math. Phys. 57, 023503 (2016)

3. Alpay, D., Colombo, F., Gantner, J., Sabadini, I.: The H∞functional calculus based on the S-spectrum
for quaternionic operators and for n-tuples of noncommuting operators. J. Funct. Anal. 271, 1544–1584
(2016)

4. Alpay, D., Colombo, F., Sabadini, I.: Slice Hyperholomorphic Schur Analysis, Theory: Advances and
Applications, vol. 256. Birkhäuser, Basel (2017)

5. Alpay, D., Colombo, F., Sabadini, I.: Quaternionic de Branges Spaces and Characteristic Operator
Function. Briefs in Mathematics. Springer, Cham (2020)

6. Baracco, L., Colombo, F., Peloso, M.M., Pinton, S.: Fractional powers of higher order vector operators
on bounded and unbounded domains. arXiv:2112.05380 (to appear in Proc. Edinburgh Math. Soc)

7. Begeher, H.: Iterated integral operators in Clifford analysis. J. Anal. Appl. 18, 361–377 (1999)
8. Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)
9. Cação, I., Falcão, M.I., Malonek, H.: Laguerre derivative and monogenic Laguerre polynomials: an

operational approach. Math. Comput. Model. 53, 1084–1094 (2011)
10. Cação, I., Falcão, M.I., Malonek, H.: Hypercomplex polynomials, Vietoris’ rational numbers and a

related integer numbers sequence. Complex Anal. Oper. Theory 11, 1059–1076 (2017)
11. Colombo, F., Gantner, J.: Formulations of the F - functional calculus and some consequences. Proc.

R. Soc. Edinb. 146, 509–545 (2016)
12. Colombo, F., Gantner, J.: An application of the S-functional calculus to fractional diffusion processes.

Milan J. Math. 86, 225–303 (2018)
13. Colombo, F., Gantner, J.: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion

Processes, Operator Theory: Advances and Applications, vol. 274. Birkhäuser/Springer, Cham (2019)
14. Colombo, F., Kimsey, D.P.: The spectral theorem for normal operators on a Clifford module. Anal.

Math. Phys. 12, Paper No. 25 (2022)
15. Colombo, F., Sabadini, I.: The F-functional calculus for unbounded operators. J. Geom. Phys. 86,

392–407 (2014)
16. Colombo, F.,DeMartino,A., Sabadini, I.: Towards a generalF -resolvent equation andRiesz projectors.

J. Math. Anal. Appl. 517(2), 126652 (2023)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2112.05380


2 Page 54 of 54 F. Colombo et al.

17. Colombo, F., Sabadini, I., Struppa, D.C.: A new functional calculus for non commuting operators. J.
Funct. Anal. 254, 2255–2274 (2008)

18. Colombo, F., Sabadini, I., Sommen, F.: The Fueter mapping theorem in integral form and the F-
functional calculus. Math. Methods Appl. Sci. 33, 2050–2066 (2010)

19. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus. Theory and Applica-
tions of Slice Hyperholomorphic Functions, Progress in Mathematics, vol. 289. Birkhäuser/Springer,
Basel (2011)

20. Colombo, F., Gantner, J., Kimsey, D.P.: Spectral Theory on the S-spectrum for Quaternionic Operators,
Operator Theory: Advances and Applications, vol. 274. Birkhäuser/Springer, Cham (2018)

21. Colombo, F., Deniz-Gonzales, D., Pinton, S.: Fractional powers of vector operators with first order
boundary conditions. J. Geom. Phys. 151, 103618 (2020)

22. Colombo, F., Sabadini, I., Struppa, D.C.: Michele Sce’s Works in Hypercomplex Analysis. A Trans-
lation with Commentaries. Birkhäuser/Springer, Basel (2020)

23. Colombo, F., Deniz-Gonzales, D., Pinton, S.: Non commutative fractional Fourier law in bounded and
unbounded domains. Complex Anal. Oper. Theory 15, Paper No. 114 (2021)

24. Colombo, F., De Martino, A., Pinton, S., Sabadini, I.: The fine structure of the spectral theory on the
S-spectrum in dimension five (2022)

25. Common, A.K., Sommen, F.: Axial monogenic functions from holomorphic functions. J. Math. Anal.
Appl. 179, 610–629 (1993)

26. De Martino, A., Pinton, S.: A polynalytic functional calculus of order 2 on the S-spectrum (to appear
in Proc. Amer. Math. Soc.) arXiv:2207.09125

27. Diki, K., Krausshar, R.S., Sabadini, I.: On the Bargmann–Fock–Fueter and Bergman–Fueter integral
transforms. J. Math. Phys. 60, 083506 (2019)

28. Fueter, R.: Die Funktionentheorie der Differentialgleichungen �u = 0 und ��u = 0 mit vier reellen
Variablen. Commun. Math. Helv. 7, 307–330 (1934)

29. Jefferies, B.: Spectral Properties of Noncommuting Operators. Lecture Notes in Mathematics, vol.
1843. Springer, Berlin (2004)

30. Jefferies, B., McIntosh, A., Picton-Warlow, J.: The monogenic functional calculus. Studia Math. 136,
99–119 (1999)

31. McIntosh, A., Pryde, A.: A functional calculus for several commuting operators. Indiana Univ. Math.
J. 36, 421–439 (1987)

32. Pena-Pena, D.: Cauchy Kowalevski extensions, Fueter’s theorems and boundary values of special
systems in Clifford analysis, PhD Dissertation, Gent (2008)

33. Qian, T.: Generalization of Fueters result to R
n+1. Rend. Mat. Acc. Lincei 9, 111–117 (1997)

34. Qian, T., Li, P.: Singular Integrals and Fourier Theory on Lipschitz Boundaries. Science Press, Beijing
(2019)

35. Sce, M.: Osservazioni sulle serie di potenze nei moduli quadratici, Atti Accad. Naz. Lincei. Rend. CI.
Sci. Fis. Mat. Nat. 23, 220–225 (1957)

36. Sommen, F.: Plane elliptic systems and monogenic functions in symmetric domains. Rend. Circ. Mat.
Palermo 6, 259–269 (1984)

37. Sommen, F.: Special functions in Clifford analysis and axial symmetry. J. Math. Anal. Appl. 130(1),
110–133 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2207.09125

	Axially Harmonic Functions and the Harmonic Functional Calculus on the S-spectrum
	Abstract
	1 Introduction
	1.1 The Fueter–Sce–Qian Extension Theorem and Spectral Theories
	1.2 The Fine Structure of Hyperholomorphic Spectral Theory and Related Problems 
	1.3 Structure of the Paper and Main Results

	2 Preliminary Results on Functions and Operators
	2.1 Hyperholomorphic Functions and the Fueter Mapping Theorem
	2.2 The S-functional Calculus
	2.3 The F-functional Calculus

	3 Axially Harmonic Functions
	4 Integral Representation Axially Harmonic Functions
	5 The Harmonic Functional Calculus on the S-spectrum
	6 The Resolvent Equations for Harmonic Functional Calculus
	7 The Riesz Projectors for Harmonic Functional Calculus
	8 Further Properties of the Harmonic Functional Calculus
	9 The Q-functional Calculus and New Properties of the F-functional Calculus
	Acknowledgements
	References




