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Abstract

Let k € N,  be homogeneous of degree zero, integrable on §¢~! and have vanishing
moment of order k, a be a function on R¥ such that Va € LOO(R"), and Tq 4.k be the
d-dimensional Calderén commutator defined by

Qx —
Tg, a:k f(x) = p.v./ x—)

R |x — y|dtk

(a(x) —a()* f(y)dy.

In this paper, the authors prove that if

1
sup / 12(6)] log? <—)d9 < o0,
resd-1Jgd-1 6 - ¢

with 8 € (1, 00), then for zé—fl < p < 2B, Tq, 4 is bounded on LP(Rd).
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1 Introduction

We will workon R?, d > 2. Letk € N, Q be homogeneous of degree zero, integrable
on S9! the unit sphere in R4, and have vanishing moment of order £, that is, for all
multi-indices y € Zi,

/ Q6)07do =0, |y| = k. (1.1)
gd—1

Let a be a function on R? such that Va € L™ (R?). Define the d-dimensional Calderén
commutator 7q 4. x by

Qx —y)

o f ) =pv. [ o —am) F)y. (12

R4

For simplicity, we denote Tq 4.1 by Tq .. Commutators of this type were introduced
by Calderén [1], who proved that if Q2 € Llog L(Sd_l), then Tq , is bounded on
LP(RY) for all p € (1, 00). It should be pointed out that Calderén’s result in [1]
also holds for Tq 4. k. Pan et al. [13] improved Calderén’s result, and obtained the
following conclusion.

Theorem 1.1 Let Q2 be homogeneous of degree zero, satisfy the vanishing moment
(1.1) with k = 1, a be a function on R? such that Va € L*®(R%). Suppose that
Q e H' (8971 (the Hardy space on §91), then Tq 4 is bounded on LP(RY) for all
p € (1, 00).

Chen et al. [4] showed that the converse of Theorem 1.1 is also true. Precisely, Chen
at al. [4, p. 1501] established the following result.

Theorem 1.2 Let Q be homogeneous of degree zero, Q2 € Lip, (89=1Y for some a €
(0, 11, and satisfy the vanishing moment (1.1) withk = 1, a € Llloc(]Rd). If Tq 4 is

bounded on LP (RY) for some p € (1, 00), then Va € L®(R?).

Hofmann [10] considered the weighted L? boundedness with A, weights for
Tq 4: k> and proved that if 2 € L (891 and satisfies (1.1), then for p € (1, oco)and
w e Ap(Rd), TQ 4:k 1s bounded on LP (R4, w), where and in the following, AP(Rd)
denotes the weight function class of Muckenhoupt, see [7, Chap. 9] for the definition
and properties of A ,,(Rd). Ding and Lai [5] considered the weak type endpoint esti-
mate for Tq_, and proved that Q € Llog L(S~') is a sufficient condition such that
Tq.q is bounded from L'(R9) to L > (RY).

For B € [1, 00), we say that @ € GSg(S9~1)if @ € L1($97!) and

sup / |Q(0)|10g’3 <;>d0 < 0. (1.3)
51 c -6

;ES”[_]
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The condition (1.3) was introduced by Grafakos and Stefanov [8] in order to study the
L? (R4) boundedness for the homogeneous singular integral operator defined by

_ Qx—y)
To f(x) —p.v./ —— Sy, (1.4)
Re X — Yl

where Q is homogeneous of degree zero and has mean value zero on S4~!. Obviously,
L(log L)P(si—1y ¢ GS,g(Sd_l). On the other hand, as it was pointed out in [8], there
exist integrable functions on $9=1 which are not in H'(59~") but satisfy (1.3) for all
B € (1, c0). Thus, it is of interest to consider the L? (R¢) boundedness for operators
such as Tq and Tq 4.k wWhen @ € GSg (Sd"). Grafakos and Stefanov [8] proved
that if 2 € GS,g(Sd_l) for some B € (1, oo, then Tgq is bounded on L?(R?) for
14+ 1/ < p < 1+ B. Fan et al. [6] improved the result of [8], and proved the
following result.

Theorem 1.3 Let Q2 be homogeneous of degree zero, integrable and have mean value
zero on 8471 Suppose that Q2 € GSﬁ(Sd_l) with B € (1, 00), then for 22—51 <p<

2B, Tq is bounded on LP (R?).

The purpose of this paper is to establish the L” (R?) boundedness of T ,.x When
Qe GSp (S4=1) for some B > 1. Our main result can be stated as follows.

Theorem 1.4 Let k € N, Q be homogeneous of degree zero, satisfy the vanishing
moment (1.1), a be a function on R such that Va € L®(R?). Suppose that Q €
GS;;(S‘F]) with B € (1, co), Then for 2;—’31 < p < 2B, Tq, 4.k is bounded on

LP(RY).

Different from the operator Tg, defined by (1.4), Tq 4. k is not a convolution operator,
and the argument in [6, 8] does not apply to Tq 4. x directly. To prove Theorem 1.4,
we will first prove the L?(R¢) boundedness of Tq 4k by employing the ideas used
in [10], together with some new localizations and decompositions. The argument in
the proof of L?(R?) boundedness is based on a refined decomposition appeared in
(2.10). To prove the L?(R?) boundedness of Tq 4.k, we will introduce a suitable
approximation to Tq 4.« by a sequence of integral operators, whose kernels enjoy
Hormander’s condition. We remark that the idea approximating rough convolution
operators by smooth operators was originated by Watson [16].

In what follows, C always denotes a positive constant that is independent of the
main parameters involved but whose value may differ from line to line. We use the
symbol A < B to denote that there exists a positive constant C such that A < CB.
Constant with subscript such as Ci, does not change in different occurrences. For
any set £ C R4, xE denotes its characteristic function. For a cube Q C R4 and
A € (0, 00), LQ denotes the cube with the same center as Q whose side length is A
times that of Q. For a suitable function f, we denote fthe Fourier transform of f.
For p € [1, oo], p’ denotes the dual exponent of p, namely, p’ = p/(p — 1).
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2 Proof of Theorem 1.4: L2(RY) Boundedness

This section is devoted to the proof of the L?(RY) boundedness of TQ 4: k- For sim-
plicity, we only consider the case k = 1. As it was pointed out in [10, Sect. 2], the
argument in this section still works for all k£ € N, if we proceed by induction on the
order k.

Letg¢ € Cgo(Rd) be a radial function, supp¢ C B(0, 2), ¢(x) = 1 when |x| < I.
Set p(x) = ¢p(x) — ¢(2x). We then have that

Z(p(Z_jx) =1, x| > 0. 2.1)
JEZ
Letg;(x) = p(27/x) for j € Z.
For a function Q € L'(5?~"), define the operator Wg j by

W ~h(x)=f X ) e = Dh(dy 2.2)
“ R x =y He '

Lemma 2.1 Let 2 be homogeneous of degree zero, integrable on S, satisfy the
vanishing moment (1.1) with k = 1 and Q € GS/g(Sd’l)for some B € (1, ), a
be a function on R? such that Va € L>®RY). Then, for any r € (0, o0), functions
n. n2 € C§° (RY) which are supported on balls of radius no larger than r,

2
| /R ) Ta,am@dx| S 12 s [T (Injlls s + V0,1 @)
j=1

Recall that under the hypothesis of Lemma 2.1, the operator Tg ,, defined by

I dy, T=m=d  (23)

TQ,mf(-x):p.V./ Q(.X—y)(xm_

R x =yl

is bounded on L*(R?) (see [8]). Lemma 2.1 can be proved by repeating the proof of
Lemma 2.5 in [10].

Lety € C° (R?) be a radial function, have integral zero and supp ¥ C B(0, 1).
Let Qy be the operator defined by Q f(x) = s * f (x), where s (x) = s~y (s 1x).
We assume that

o 4ds
/ FTeorE =1,
0 S

Then, the Calderén reproducing formula

/ Ty 2.4)

N
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holds true. In addition, the Littlewood—Paley theory tells us that

00 d 2
([, 1erP )"

For each fixed j € Z, set

ey S Ml 25)

Tg o f (x) 2[ Kj(x, y)f(y)dy,
Rd
where
Qx—y)

r =y @) = a(»)e;(lx = ).

Kj(x,y) = |

Lemma 2.2 Let Q2 be homogeneous of degree zero, integrable on Sl and Q e
GSﬁ(Sd_l)forsome B e, o), thenforjeZand0 <s <2/,

10sWa, j fll 2@y S 277 1og 7P 27 /s + DI fll 2 ey -
Proof Let Kq j(x) = liz‘%go j (]x]). By Plancherel’s theorem, it suffices to prove that

Vs (§)Ka () S 27 log P27 /s + 1). 2.6)
As it was proved by Grafakos and Stefanov [8, p. 458], we know that
[Kej @) S 277 log P (12| + 1),
On the other hand, it is easy to verify that
Vs (§)] S min(1, |s]).
Observe that (2.6) holds true when [2/&| < 1, since
Is€1log™ (27181 + 1) = 5 12/&1log P (12781 + 1) S 37 Slog P2/ /s + 1),
If |s&| > 1, we certainly have that
Vs &) Ka ;] S 277 log #2761+ 1) S 27 log P (27 /s + 1).
Now, we assume that s|&| < 1 and |2j$| > 1, and
27k <5 <2 K)okt g < 2k
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for k € N and k; € Z respectively. Then j + k1 € N, j +k; < k and
|s&[log P (2718 + 1) S 277+ k)P Sk Slog P27 /s + 1).
This verifies (2.6). m]

Lemma 2.3 Let Q2 be homogeneous of degree zero, satisfy the vanishing moment (1.1)
withk =1 and Q € GSg (Sd_l)for some B € (1, 00), a be a function on RY with
Va € L®(RY). Then

(i) Tq..1 € BMO(RY); _
(ii) forany j € Z and s € (0, 27];

10T (Ul oo qray S IS sa-17277 s

Conclusion (ii) is just Lemma 2.4 in [10], while (i) of Lemma 2.3 can be proved by
mimicking the proof of Lemma 2.3 in [10], since for all 1 <m < d, Tq ,, defined by
(2.3) is bounded on Lz(Rd) when Q2 € GSg (Sd_l) for B > 1. We omit the details for
brevity.

Proof of Theorem 1.4 L*(RY) boundedness. By (2.4), it suffices to prove that for
f.8€CPMY),

ot 4 4 ds dt
[ [, 0ot rmswis S il gl @)
0 0 JRd st
and

© oo 4 4 ds dt
| /0 f /R | 0iTa, 0} f g dx =T S If g lglogs. 28)
t

Observe that (2.8) can be deduced from (2.7) and a standard duality argument. Thus,
we only need to prove (2.7).

We now prove (2.7). Without loss of generality, we assume that [|Val| o gy = 1.
Write

0o pt ds d
/ / / Q?TQ,aQ?f(x)g(x)dx—s—t
0 0 JRA s t

2] t ' o
ZZ/ // QsTsjz,aQ?f(X)Qig(x)dx_s_’
jer’0 JO RY o

o p@Ieha - ds dt
+3 / | / / 0.1 0 f() Q3 grydx =%
ez 2/ Jo R4 s t
oot ; ds dt
+y f | f ] 0 L0 Fgdx =S =Dy + Dy + Ds,
o7 /2 J@ireha Rd st
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d+1
d+2°

We first consider term D;. For each fixed j € Z, let {I; ;}; be a sequence of cubes
having disjoint interiors and side length 2/, such that RY = U,/ j.1- Foreach fixed j, [,
let wj; € CS(R?) such that suppw;; C 48d1;;,0 < wj; < 1 and w;;(x) = 1
when x € 32d1; ;. Let I]’."y[ = 64dl;; and x;; be the center of /; ;. For each [, set

a;1(y) = (@(y) — ax; )w;1(y), and by ;1 (v) = 02(3)x1,,(»). Itis obvious that
for all /,

where o € ( 1) is a constant.

lajill oy S 275 IVaj il pogay S 1,
and for s € (0, 2/] and x € supp Qshy, ;.1
Té,ah(X) =a; (x)Wq, jh(x) — Wgq j(a; h)(x).

For each fixed j and [, let

Dji(s.0) = — Ad[a,-,z, 0,1Wa 10} £ () Qshy j.1(X)dx,

Dj1a(s,1) = [R aj1(0) Qs We, 07 f() Qsh, j1(x)dx,

Dj13(s.1) = /R 0, Wa,jlazi, 010} f (kg j()dx,
and

Dj1a(s, 1) = — /R 0. Wa, (@105 0 (s 1 (),

where and in the following, for a locally integrable function b and an operator U,
[b, U] denotes the commutator of U with symbol b, namely,

[b, Ulh(x) = b(x)Uh(x) — U(bh)(x). 2.9

Observe that both of Q apd Wgq, j are convolution operators and Qs Wq ; = Wq ; O;.
For j € Z and s € (0, 2/], we have that

/Rd 014 ,0F F(x)g(x)dx

- Zw/Rd QsTSé,aQ;‘f(x)Qshs,j,l(.x)dx
I

4
=22 Ditals. 0. (2.10)
n=1 1
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It now follows from Holder’s inequality that

jra—1y1/a
Doy i I TR
il
. @/ rehle 4 ppg-j 48 dt
_H<XJ:XI:/2/ / |X1*Qf| . t) rat
@7emhl/e 1 dsdty?
X“(XJ:XI:/;/ / |WQjales]Qs S]l|2/ss t)

LZ(R‘I).
Invoking the fact that ), x I, < 1, we deduce that
00 (zjtocfl)l/oc d d 1
4 p2p—j GSAIN2
) 2 __)
9> I PO T
ds dt
Jg2 2t
<|( / 104 FP / > 24T L Sl
Jj: 2/>Sml1 o
Let Mg, be the operator defined by
Maf(x) =supr‘d/ 120 = DILFIdy.
r>0 [x—yl<r
The method of rotation of Calderén and Zygmund states that
”MQf”LP(]Rd) S ”Q”Ll(Sd*l)”f”Lﬂ(Rd)v p € (1, 00). (2.11)

Let M be the Hardy—Littlewood maximal operator. Observe that when s € (0, 2/],

|laji, Os1h(x)| < /Rd [Wrs(x = Wllaji(x) —ajiWIh()dy S sMh(x).

This, together with (2.11), yields
(2]l()t l)l/ot 1ds dt
ZZ[ / Wajlaj1, 010shs 111227 T5)" )
2J
@/l - ds dt
Y /2 , /0 IMoM Qs jill 72 ga)2 /s~ —
i

(zjtafl)l/a d

o0
2 _ . dsdt 2
SEY T il 5 S el
jol

L2(R%)
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where the last inequality follows from the fact that
o - dt
[ ¥ s
§jizmsero !
Therefore,
oo e ds dt
‘ZZ . Djrals, )—=—
j / 27 0 S
Sz way gl L2 way- (2.12)

Similar to the estimate (2.12), we have that

. 1
o @l ds dr
X[ Dua S Sl @13
7 ] 2J 0 st

@/l ds dt

0 Dj2(s, 1)< <L, we write

To estimate the term [, PR

D 1a(s. 1) = fR 0, Wa 0! F@)lay1, Qslh 1(x)dx

+ fR [ 0:Wa ;01 f (%) Qs(ajihs j.)(x)dx

=D} 5.0+ D?),’z(s, 1).

Repeating the estimate for D; ; 1, we have that

o p@iehE ds di
>3 D} 1265, 0= S 1l I8 2y (2.14)
; 7 2] 0 s t

Write
iy L
’ /°° f(zjt ])a D2, ,( z)fds @
E E : S,
7 2/ Jo Jl2 st

o e ds diy}
2] N3 F12 1000 (n) as arya
< H(Ej:/zj /0 10127 Wa. )0} f1P10g” 2/ /s + D)

L2(RY)

st L2(R9)

o cQiehe 27 ds dt\}
AL L et e ()5 7)

=11,
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where 0 > 1 is a constant such that 28 — o > 1. Invoking the estimate (2.5), we
obtain that

Y —j o ni ds\3
23 (XJ:/O |2 Xl:"j»lh&j,l”iz(ﬂ&d) log™? 2/ /s + 1)T>2
2 2 _ ; ds\ 3
S(Z [ 1 sl oo toe o @15+ D)
j I

00 3 ) ds 1
([T 102000, ¥ tor @ s +0%) <tz

Jji2i>s

Note that Q2(2/ Wq ;) = Q4(2/ Wq_ ;) Q;. It follows from Lemma 2.2 and (2.5) that

N N

el j 2J ds dt\;
I = <Z/2 /o ||Q§(2JWQ,j)Q,3fII%2(Rd)log" ( + 1)__>2
. J
J
e - ds di
(X /y fo 100} F 12 gy log 272 /s + === )
j

([ [ reerrt )

The estimates for I; and I, show that

L2RY) S ||f||L2(Rd)-

co It/ D2 d_sﬂ _
> HRGT)) SN 2ayllgll 2 gay:
; 7 2J 0 s 1

This, together with (2.14), gives us that
oo p@IThi ds dt
3> / | / Dy 2. D L 172 8l 2y 215)
- 2/ Jo st
J 1
. . Jjra—1y1/a .
We now estimate term corresponding to f2°,° fo(zlt ) Dj .4, t)ds—“it—’. Write

oo p@IeTh ds dt
)ZZ _ Djra(s,t)——
j 1Y st

o @iyl ' 1
< H(;/z / 10,0 P 1og 7@ s + LY

L2 (Rd)
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H Z/z, /zna 1yl/a ‘Q, ZQJ[WQJQS S”)‘ log” (21+1)dssa;t)

= I31y.

LZ(]R‘I)

Obviously,

LS H(/Ooofooo|QsQ?f|2ds—“i—t);

On the other hand, it follows from Littlewood—Paley theory and Lemma 2.2 that
L < 2 5 (2 ds\ 3
4N(2jj 0 ]Za,zWQ,Qs YJI\LZ(W)log (=+1)%)

Y 2j 2 o (2 ds\2

(] 27 20 1WasQuhs il Yoe (5 +1) )

j I
27 j
B 2/ ds
(X[ S sl o (2 41) ) < e,
j !

L2RY) S ||f||L2(Rd)~

N

N

since ||a; .1l oo we) < 2/, and the supports of functions {ajiWq, jOshs, j1} have
bounded overlaps. The estimate for 14, together with the estimate for I3, gives us that

oo @I ds dt
b33 / | f D14 D=L S 1N gl ey (2:16)
; ] 2J 0 s t

Combining inequalities (2.12), (2.13), (2.15) and (2.16) leads to that

D2l S 1f 12 ey 181l L2 a)-

The estimate for Dy is fairly similar to the estimate D;. For example, since

/szs—<1fs Zst—<1

J:2/>t ji2i=t

we have that

‘ZZ/ / Dju(s, t)det
NEX [ [ meirir i)

L2(RY)
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IWa,jlaji, Qs1Qshs, ), jid
< ( ZZ/[ 4700 Q1. P 24

S Iz ey ligl L2 way-

L2(RY)

. i .
The estimates for terms } . > /g 2 fot Dj.i(s, t)% % (i =2, 3, 4) are parallel to the
Jjra— l 1/
estimates for ;> I fo @' Dj (s, Z)% %. Altogether, we have that

IDil S N f 12 way gl L2 may-

It remains to consider D3. This was essentially proved in [10, pp. 1281-1283]. For
the sake of self-contained, we present the details here. Set

h(x,y)=//%(x—z) > K@ wlYiw—y) — Y (x — y)ldudz.

ji2) <serl-e

Let H be the operator with integral kernel 4. It then follows that

oot ds dt
oas| [ [ [ HO 00w
0 0 JRrd s 1
oot ; ds dt
+\Z/A / o / (0L D0 ()03 gndx =L
ez 2 @ite—Ya JRd s t
= |D31] + |D32].
As in [10, p. 1282], we obtain by Lemma 2.1 and the mean value theorem that
s\O _
lh(x, WIS (‘) ™ X (oyyii—y|=Cry (X, ),
1
where 0 = (d + 2)a —d — 1 € (0, 1). Then we have
HO} ) < (5) M@} .

and

|D%1|</ // M@} Hlleiswiax(2) 2
<[ [ menr() ey’
[Ty

L2 (Rd)

L2(RY)
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e H(/OOOIWQ?f)F‘i—tf (/OOO|Q§g|2dS_S>§

S I 2@y 18l 2wy -

L2(RY) L2(RY)

As for D3y, we split it into three parts as follows:

0 pt 27 pr 0o @I
D32=Z/ f—Z/ /—Zf / = D321 — D322 — Da23.
jezr?0 U0 ez 0 JO ey /2 J0

Let
o° dt o ,dt
E(X)Z/; Wt*Wt*Wt*Wt(X)T» PS:/ QIT.

Han and Sawyer [9] proved that ¢ is a radial function which is supported on a ball
having radius C and has mean value zero. Observe that P f(x) = ¢ * f(x) with
Li(x) = s_d{(s_lx). The Littlewood—Paley theory tells us that

00 d %
([ e

(1) of Lemma 2.3 states that T 41 € BMO(RY). Recall that supp ¢ C B(0, 1) and
¥ has integral zero. Thus for x € R?,

@) Sl ey

1Qs(To,aD(x)| = S_df W (s & = Tl () = (Ta.al)Besldy S 1,

[x—yl<s

where (Tq 41)B(x,s) denotes the mean value of Tg 41 on the ball centered at x and
having radius s. Therefore,

o 3 ds
il =| [ [ 0mmaimrso0len Tad

S [ ALY N TN [ AT

S Wz @ay I8l L2 gay-

L2(R4) L2(R4)

From (ii) of Lemma 2.3 and Holder’s inequality, we obtain that

D3| < < H Z/ / 2~ J |Q;f|2ds dt)l/2‘L2(Rd)
IS [t

S I 2wy 181l 2wy -

L2(RY)

@ Springer



14 Page 140f 25 J.Chenetal.

The same result holds true for D3,3. Combining the estimates for terms D331, D322
and D33 give us that

D3| S I f Il L2way g1l L2 way-

This leads to (2.7) and then establishes the LZ(R¢) boundedness of Tq.q. m]

3 Proof of Theorem 1.4: LP Boundedness

We begin with some lemmas.

Lemma3.1 Letw € C° (R?) be a radial function such that suppw C {1/4 < |€| <
4} and

Y oo =1, >0,

leZ
and S; be the multiplier operator defined by
SfE =o' E).

Let k € 7, a be a function on R? such that Va € L™ (R?). Then

(2t st 7)’
leZ

S Al 2 3.1

L2(RY)

and

(3.2)

L2(R4)’

| 3241, sit |
leZ

L2(RY) = ” ( 21: |ﬁ|2)1/2

where and in the following, for a locally integrable function a and an operator U,
[a, U]Of = Uf, while for k € N [a, U1k denotes the commutator of la, U1 and
a, defined as (2.9).

Note that (3.2) follows from (3.1) and a duality argument. For the case of k = 0, (3.1)
follows from Littlewood—Paley theory. Inequality (3.1) with k = 1 was proved in [3,
Lemma 2.3], while for the case of k > 2, the proof of (3.1) is similar to the proof of
[3, Lemma 2.3].

Lemma3.2 Letk € N, n € Zy withn <k, D, E be positive constants and E < 1, m
be a multiplier such that m € L' (Rd), and

—k
||m||LOC(Rd) S D E

@ Springer
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and for all multi-indices y € 7.4,
107 ml| oo ray < D17,

Let a be a function on R¢ with Va € L*®(R?), and T, be the multiplier operator
defined by

T () = m@F©).
Then for any ¢ € (0, 1),
Ita, Tl fll2@ay S D" E°N £ 1l 2may-
Proof Our argument here is a generalization of the proof of Lemma 2 in [11], together

with some more refined estimates, see also [12, Lemma 2.3] for the original version.
We only consider the case 1 < n < k, since

I, Tl fllz2@ey S DFECN £l 2rey
holds obviously.
Letgp € Cgo(Rd) be the same as in (2.1). Recall that suppy C {1/4 < |x| < 4},

and

Z(p(2_jx) =1, x| >0.

JEZ
Let ¢, p(x) = (27! D~ 'x) for [ € Z. Set
Wix) = K(x)¢;,p(x), | € Z,

where K is the inverse Fourier transform of m. Observing that for all multi-indices
y € Zi, ¥ ¢(0) = 0, we thus have that

/ P(&)E7dE = 0.
R4

This, in turn, implies that forall N € Nand & € R4,
— n 1 N \"\~
| (e fp = 3 Jrmeo (gl Yo
W) \fRd(m@ 5~ 2 i m@(5p) ey
ly|<N
S 27D DTEED Y T 97 mll e o / [ " @onldn

lyl=N+1 R
< 27 INHD =k, (3.3)
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On the other hand, a trivial computation gives that for/ € Z,

Wl Loy < Il ooy 9051l 1 ety S DFE. (3.4)

Combining the inequalities (3.3) and (3.4) shows that for any / € Z, N € N and
e € (0, 1),

IWll oo ey S 271 NFDU=e) p~k e, 3.5)

Let 7;,,; be the convolution operator with kernel W;. Inequality (3.5), via Plancherel’s
theorem, tells us that for/ € Z and N € N,

Tt fll 2y S 27 NFDA=ODREL| £1]2 Ra). (3.6)
We claim that forall/ € Z, N € Nand ¢ € (0, 1),
@, T )" fll 2 gay S 27 NFDA=OH DK EEY £l 12 ga). 3.7)

Observe that supp W; C {x : |x| < D2/*2}. If I is a cube having side length 2'D
and f e L*(R?) with supp f C I, then T, f C 100d1. Therefore, to prove (3.7),
we may assume that supp f C I with I a cube having side length 2/D. Let xg € I
and a;(y) = (a(y) — a(xo)) x100a1 (y). Then

!
larllpooray < 2°D.

Write

s Tl f(x) = Z(az(x))"c:;Tm,z((—m)k"'f)(x).

i=0

It then follows from (3.6) that

i@, T, 11" fll 2 ey S 22"D’||Tmz(< —an)"” )l 12ra)
i=0
< znl—l(N-‘rl)(l—S)Dn—kES ”f”Lz(Rd)
This yields (3.7).

We now conclude the proof of Lemma 3.2. Recall that E € (0, 1]. It suffices to
prove Lemma 3.2 for the case of ¢ € (2/3, 1). For fixed ¢ € (2/3, 1), we choose
N € N such that (Ny + 1)(1 —¢) > n, N € Nsuch that (N + 1)(1 —¢) < n. It
follows from (3.7) that

la. Tul" fll2gay < Y Mas T " Fll2gay + O M@y T fllz2ea

<0 leN
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S ankEé‘ Z271(N|+1)(176‘)+ln”f”Lz(Rd)
leN

+Dn—kE8 Z 2—1(N2+1)(1—£)+ln ”f”LZ(Rd)
<0
—k
5 Dn E8||f||L2(Rd).

This completes the proof of Lemma 3.2. O

Lemma3.3 Letk € N, n € Zy withn < k, D, A and B be positive constants with
A, B < 1, m be a multiplier such that m € L! (Rd), and

Imll oty < DT (AB)YH,
and for all multi-indices y € Zi
”8ym||L°0(Rd) < plyi=kpg=lrl
Let Ty, be the multiplier operator defined by
T f &) = m@F©).
Let a be a function on R¥ such that Va € L (R?). Then for any o € (0, 1),
lta, Tl £]| 12 gay S D" * A7 B4 £l 2 gy (3.8)

Proof Let T, ; be the same as in the proof of Lemma 3.2. As in the proof of Lemma
3.2, we know that forall/ € Z, N e Nand ¢ € (0, 1),

la. T £ 2y < 27NV 40l prh

w B~ (N+D(I—e)+(k+1)e 4 (k+1De ”f”Lz(Rd)' (3.9)
For each fixed o € (0, 1), we choose ¢ € (0, 1) such that
k+De—k—0>1—¢,
and choose N € N such that
Ni+D)(A—-&)>n, —-(Ni+ DA —-—e)+k+1)e>k—n+o.
Also, we choose N> € N such that (N> +1)(1 — &) < n. Note that such a N, satisfies
-+ DA —-—e)+k+1e>k—n+o.
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Recalling that B < 1, we have that

B—(N1+1)(l—a)+(k+l)£ - Bk—n+o B—(N2+l)(1—s)+(k+l)£ < Bk—n—&-o.
Our desired estimate (3.8) now follows (3.9) by

”[a, Tm]nf”Lz(]Rd) S Dl’l*kA(T Bk7n+a Z2*Z(Nl+l)(]7€)+ln”f”Lz(Rd)
leN

+Dn—kAO' Bk—n+0‘ Z2—1(N2+1)(1_8)+ln||f||L2(Rd)
[<0

5 Dn—kBk—l’l-‘rO'AO' ||f||L2(]Rd)a

since (k + 1)e > o and A < 1. This completes the proof of Lemma 3.3. O

The following conclusion is a variant of Theorem 1 in [11], and will be useful in the
proof of Theorem 1.4.

Theorem3.4 Let k € N, A € (0, 1/2) be a constant, {1} ez be a sequence of
functions on R\ {0}. Suppose that for some B € (1, o0),

Il ey S 2775 15 E)] S 27F min{|A27&[*F1, Tog P (2 + 127 )},
and for all multi-indices y € 7.2,
-~ i ,k
187 77 o ray S 2717170,

Let K (x) = Z/GZ wj(x) and T be the convolution operator with kernel K. Then for
any e € (0, 1), function a on RY with Va € L*®(R?),

_ 1
la, T f 2y S log™ P ()1 z2ay-
Proof At first, we claim that for k; € Z with 0 < k; <k,
||Tf||L]§17k(Rd) S ||f||1‘]%l (R4 (3.10)

where || f || L2 ®9) for ky € 7Z is the Sobolev norm defined as
1172 gy = fR EPCIF @) P
2

In fact, by the Fourier transfrom estimate of 11 j, we have that for each fixed ¢ € R4 \{0},

Ym©ls Y, 27 iEt Y 2 Sk

JeZ VEPZET j:2/<|E]7!
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This, together with Plancherel’s theorem, gives (3.10).
Let U; be the convolution operator with kernel 4 ;, and w € C§° (R?) such that
0<w < l,suppw C {1/4 < |§] <4} and

Y @@ =1 I§l>0.

leZ

Setm j(x) = (&), and ml/(é) = mj(é)w(Zj’lé). Define the operator Ui. by

Ulf©) = m ©w @) ).

Now let §; be the multiplier operator defined as in Lemma 3.1. Let f € C§° RY),
B = B(0, R) be aball such that supp f C B, and let xo € B. We can write

k
la, TV f =) Ci(a — ax0) " T ((a(xo) — @)" £)(x)
n=0

= ch (a — a(x)*~ nZZ(SI JUSSI- ) ((a(xo) — a)" f)

—ZZa S ULS1°f. (3.11)

We now estimate || la, Si—; U;- Sl—j]kf ” L2(RY)" At first, we have that mlj e L'(RY)
and

m’,(&)] < 2778 minf AFF12IEHD Tog™F (2 421}
Furthermore, by the fact that

|a)/¢(2j—l§)| < 2(./'—1)|V|’ |3ij(§)| < 2Ai(\)/|—k)’
it then follows that for all y € Z4,

271k if 1 e N
)
|07 m;(E)] S {zj(ww—k)z—\yu, i£1<0.

An application of Lemma 3.2 (with D = 2/, E = min{(A2))¥*1, 1=F}) yields
la, UL fll2@ay S 2770 min{(A2Y L 7P £l 2 gay, €N (3.12)

On the other hand, we deduce from Lemma 3.3 (with D = 2/ and B = 21) that for
some o € (0, 1),

lla, U fllp2ray S 2702 ED 4927 £l ey, 10, (313)
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Write
k k—ny
[a. $iUSi- 1 = 37 Cla. -1 Y7 G2, la. Uj1[a, i1,
n1=0 ny=0

For fixed ny, n», n3 € Z4 with n| + ny + n3 = k, a standard computation involving
Lemma 3.1, estimates (3.12) and (3.13) leads to that for/ € N,

I3 . Si 1" e, USY™la, S 1 £ 72 gy
JEZ

< D20 la, UL la, Si 1 I 2y
JEZ
S min{(A2) L PP £ g

and forl/ € Z_,

| Y la, $i-1 a0, U2la, S 1 £ 32 g,

JEZ
< D220 M e, U, S 1 f 1 gy
JjEZ
S A2 F117 may
Therefore,
Zn[a, Sl,jUj-Sl,j]kflle(Rd) = Z [a, Slij]l'Slfj]kf”Lz(Rd)
l l:l>log(ﬁ)
+ Y e S— U fll ey
l:OSlSlog(ﬁ)
+ Y lla. S ULS- 1 £l 2 gay
1:1<0
S(X AT Y )1l
l:l>10g(ﬁ) 1:1<0
l:OSlSlog(ﬁ)
1
—ef+1, 2
5 lOg (A)”f”Lz(Rd)
This, via (3.11), leads to our desired conclusion. O
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Proof of Theorem 1.4 L?(R?) boundedness. By duality, it suffices to prove that Tq 4. x

is bounded on L?(R?) for2 < p < 28.

For j € Z,1etK(x) = %X{2j71§|x|<2j}(x).Letw € CSO(R”I) be a nonnegative

radial function such that

suppw C {x : |x| < 1/4}, / wx)dx =1,

R4

and
/ x’o(x)dx =0, 1<|y|l<k.
R4
For j € Z,set w;(x) = 2% w(27/x). For a positive integer /, define

Hi(x) = ZK,- s wj_1(x).

JEZ

Let R; be the convolution operator with kernel H;. For a function a on R? such that
Va € L*® (Rd), recall that [a, R;]F denotes the k-th commutator of R; with symbol a.
We claim that for each fixed ¢ € (0, 1),] € N,

ITo.a:k f — [a, R fll2gay S TP F L2y (3.14)

To prove this, write

H(x) =Y Kjx) =Y (Kjx) —Kj*wj(x)) =Y p@jx).

JEL JEL JEZ

By the vanishing moment of @, we know that for all multi-indices y € Z‘i with
1 <|y| <k, 3”®(0) = 0. By Taylor series expansion and the fact that @(0) = 1, we
deduce that

@(27718) — 1] < min{1, 127761,
When Q € GSﬁ(Sd_l) for some B € (1, 00), it was proved in [8, p. 458] that
K51 S 27  min(1, log™# 2 + [2/&)).
Thus, the Fourier transform estimate

) = 1K@l "e) — 1] S 27 minflog 2 + 127¢)), 12/~ g1}
(3.15)
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holds true. On the other hand, a trivial computation shows that for all multi-indices
d
y e 74,

187 K 1| oo ey S N2 L1 (ga-1,2071704,
and so for all £ € RY,

YIS D 1K EN070QTE)] S 1121 (sa-1y27 P
vi+rn=y
(3.16)
The Fourier transforms (3.15) and (3.16), via Theorem 3.4 with A = 27, lead to
(3.14) immediately.

Let ¢ € (0, 1) be a constant which will be chosen later. An application of (3.14)
gives us that

lla, RyY* f —la, Ryt £ pogay S 25PN £l ey (3.17)

Therefore, the series

To.ak = la. Ro)F +) (la. Rynl* —[a. RyT") (3.18)
=1

converges in L*(R?) operator norm.
Forl € N, let L;(x, y) = H;(x — y)(a(x) — a(y))*. We claim that for any y, y' €
R4,

/ |Li(x,y) — Li(x, y")|dx
[x=y[=2]y—y’|

+f Loy x) = LiGy ) ldx S 1. (3.19)
[x—y[=2]y—y'|
To prove this, let |y — y'| = r. A trivial computation yields

/| . |Hl(x—y)<a<y>—a<y’>)k|dxng/ K % )1 (x)ldx
x—y|>2r j

x|>2r

k
S 1Kl loj-illpea S 1,
ji2i2>r

since || Kl L1 ey S 27/ . For each fixed j € Z, observe that
lwj—1( = ¥) = @j—1C = ¥l 1 ey S minfl, 277 |y — y']}.
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It then follows from Young’s inequality that

/I , |Hi(x — y) — Hi(x = y)lla(x) — a(y)[*dx
X—y=2r

o0

= / |Hi(x = y) = Hi(x = Y)lla(x) —a(y)[‘dx
el 2y <|x—y<2ntly
o0

SY@E Y K @ loj-i¢ = y) = @j—1¢ = V)l i)
n=1 j:2ix2ny
o

<> min{l, 27521} 1.
k=1

Combining the estimates above gives us that

/ [Li(x,y) — Li(x,y)|dx
lx—y|=2|y—y/|
5/ [ = @) = a0/ ax
x—y|>2r

+/ Hi(x — y) — Hi(x —y)lla@) — a(y)lfdx < 1.
v—y>2r
Similarly, we can verify that
/ L1y, x) — Liy ) ldx S 1.
[x—y|=2]y—y'|

This establishes (3.19).

Recall that Tq_4.x is bounded on LZ(R"). It follows from (3.14) that [a, R is
also bounded on L2(R9) with bound independent of /. This, along with (3.19) and
Calderén-Zygmud theory, tells us that

lla, R —Ta, Rt £l pgay S UFlo@ays p € (1, 00),
and so
lta, Ryt f —Ta, Ryt 1 £l gy S 2N poqeys P (1, 00).  (3:20)

Interpolating inequalities (3.17) and (3.20) shows that for any o € (0, 1) and p €
(2, 00),

lla, RyT*f —Ta, Ryt I £y ay S 22FPHHON £l 1y gay.
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For each p with 2 < p < 2, we can choose ¢ > 0 close to 1 sufficiently, and o > 0
close to 0 sufficiently, such that 2¢3/p — 1 — ¢ > 0. This, in turn, shows that

o0
> e, RyY f —Ta, Ryor ¥ f | 1ty S I o reys
=1

and the series (3.18) converges in the LP(R%) operator norm. Therefore, Tq 4. is
bounded on L?(R?) for 2 < p < 2. This finishes the proof of Theorem 1.4. O

Remark 3.5 Let Q2 be homogeneous of degree zero, integrable and have mean value
zero on $97!, T be the homogeneous singular integral operator defined by (1.4). For
b € BMO(R?), define the commutator of Tq and b by

[b, Telf(x) = b(x)Tq f(x) — Ta(bf)(x).

When Q € Lip,(S9~!) with @ € (0, 1], Uchiyama [15] proved that [b, Tg] is a
compact operator on LP(RY) (p € (1, 00)) if and only if b € CMO(Rd), where
CMO(RY) is the closure of C§°(R¢) in the BMO(RY) topology, which coincide with
the space of functions of vanishing mean oscillation. When 2 € GS§g (89=1y for
B € (2, 00), Chen and Hu [2] considered the compactness of [b, Tq] on L? (Rd) with
B/(B — 1) < p < B. For other work about the compactness of [b, Tq], see [14] and
the references therein. It is of interest to characterize the compactness of Calderén
commutator T 4., on L? (R ( p € (1, 00)). We will consider this in a forthcoming

paper.
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