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Abstract
Let k ∈ N, � be homogeneous of degree zero, integrable on Sd−1 and have vanishing
moment of order k, a be a function on R

d such that ∇a ∈ L∞(Rd), and T�, a;k be the
d-dimensional Calderón commutator defined by

T�, a;k f (x) = p. v.
∫
Rd

�(x − y)

|x − y|d+k

(
a(x) − a(y)

)k
f (y)dy.

In this paper, the authors prove that if

sup
ζ∈Sd−1

∫
Sd−1

|�(θ)| logβ

(
1

|θ · ζ |
)
dθ < ∞,

with β ∈ (1, ∞), then for 2β
2β−1 < p < 2β, T�, a; k is bounded on L p(Rd).

Keywords Calderón commutator · Fourier transform · Littlewood–Paley theory ·
Calderón reproducing formula · Approximation

The research of Jiecheng Chen was supported by the NNSF of China under Grant #12071437, the research
of Guoen Hu (corresponding) author was supported by the NNSF of China under Grants #11871108, and
the research of Xiangxing Tao was supported by the NNSF of China under Grant #12271483.

B Guoen Hu
guoenxx@163.com

Jiecheng Chen
jcchen@zjnu.edu.cn

Xiangxing Tao
xxtao@zust.edu.cn

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of
China

2 Department of Mathematics, School of Science, Zhejiang University of Science and Technology,
Hangzhou 310023, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-022-01056-1&domain=pdf
http://orcid.org/0000-0002-0424-8981


14 Page 2 of 25 J. Chen et al.

Mathematics Subject Classification 42B20

1 Introduction

We will work on R
d , d ≥ 2. Let k ∈ N, � be homogeneous of degree zero, integrable

on Sd−1, the unit sphere in R
d , and have vanishing moment of order k, that is, for all

multi-indices γ ∈ Z
d+,

∫
Sd−1

�(θ)θγ dθ = 0, |γ | = k. (1.1)

Let a be a function onR
d such that∇a ∈ L∞(Rd). Define the d-dimensional Calderón

commutator T�,a; k by

T�,a;k f (x) = p.v.
∫
Rd

�(x − y)

|x − y|d+k

(
a(x) − a(y)

)k
f (y)dy. (1.2)

For simplicity, we denote T�,a; 1 by T�,a . Commutators of this type were introduced
by Calderón [1], who proved that if � ∈ L log L(Sd−1), then T�,a is bounded on
L p(Rd) for all p ∈ (1, ∞). It should be pointed out that Calderón’s result in [1]
also holds for T�,a; k . Pan et al. [13] improved Calderón’s result, and obtained the
following conclusion.

Theorem 1.1 Let � be homogeneous of degree zero, satisfy the vanishing moment
(1.1) with k = 1, a be a function on R

d such that ∇a ∈ L∞(Rd). Suppose that
� ∈ H1(Sd−1) (the Hardy space on Sd−1), then T�,a is bounded on L p(Rd) for all
p ∈ (1, ∞).

Chen et al. [4] showed that the converse of Theorem 1.1 is also true. Precisely, Chen
at al. [4, p. 1501] established the following result.

Theorem 1.2 Let � be homogeneous of degree zero, � ∈ Lipα(Sd−1) for some α ∈
(0, 1], and satisfy the vanishing moment (1.1) with k = 1, a ∈ L1

loc(R
d). If T�, a is

bounded on L p(Rd) for some p ∈ (1, ∞), then ∇a ∈ L∞(Rd).

Hofmann [10] considered the weighted L p boundedness with Ap weights for
T�,a; k , and proved that if� ∈ L∞(Sd−1) and satisfies (1.1), then for p ∈ (1, ∞) and
w ∈ Ap(R

d), T�,a;k is bounded on L p(Rd , w), where and in the following, Ap(R
d)

denotes the weight function class of Muckenhoupt, see [7, Chap. 9] for the definition
and properties of Ap(R

d). Ding and Lai [5] considered the weak type endpoint esti-
mate for T�,a , and proved that � ∈ L log L(Sd−1) is a sufficient condition such that
T�,a is bounded from L1(Rd) to L1,∞(Rd).

For β ∈ [1, ∞), we say that � ∈ GSβ(Sd−1) if � ∈ L1(Sd−1) and

sup
ζ∈Sd−1

∫
Sd−1

|�(θ)| logβ

(
1

|ζ · θ |
)
dθ < ∞. (1.3)
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The condition (1.3) was introduced by Grafakos and Stefanov [8] in order to study the
L p(Rd) boundedness for the homogeneous singular integral operator defined by

T� f (x) = p. v.
∫
Rd

�(x − y)

|x − y|d f (y)dy, (1.4)

where� is homogeneous of degree zero and has mean value zero on Sd−1. Obviously,
L(log L)β(Sd−1) ⊂ GSβ(Sd−1). On the other hand, as it was pointed out in [8], there
exist integrable functions on Sd−1 which are not in H1(Sd−1) but satisfy (1.3) for all
β ∈ (1, ∞). Thus, it is of interest to consider the L p(Rd) boundedness for operators
such as T� and T�,a; k when � ∈ GSβ(Sd−1). Grafakos and Stefanov [8] proved
that if � ∈ GSβ(Sd−1) for some β ∈ (1, ∞], then T� is bounded on L p(Rd) for
1 + 1/β < p < 1 + β. Fan et al. [6] improved the result of [8], and proved the
following result.

Theorem 1.3 Let � be homogeneous of degree zero, integrable and have mean value
zero on Sd−1. Suppose that � ∈ GSβ(Sd−1) with β ∈ (1, ∞), then for 2β

2β−1 < p <

2β, T� is bounded on L p(Rd).

The purpose of this paper is to establish the L p(Rd) boundedness of T�, a;k when
� ∈ GSβ(Sd−1) for some β > 1. Our main result can be stated as follows.

Theorem 1.4 Let k ∈ N, � be homogeneous of degree zero, satisfy the vanishing
moment (1.1), a be a function on R

d such that ∇a ∈ L∞(Rd). Suppose that � ∈
GSβ(Sd−1) with β ∈ (1, ∞), Then for 2β

2β−1 < p < 2β, T�, a; k is bounded on

L p(Rd).

Different from the operator T� defined by (1.4), T�,a; k is not a convolution operator,
and the argument in [6, 8] does not apply to T�, a; k directly. To prove Theorem 1.4,
we will first prove the L2(Rd) boundedness of T�,a;k by employing the ideas used
in [10], together with some new localizations and decompositions. The argument in
the proof of L2(Rd) boundedness is based on a refined decomposition appeared in
(2.10). To prove the L p(Rd) boundedness of T�,a; k , we will introduce a suitable
approximation to T�,a; k by a sequence of integral operators, whose kernels enjoy
Hörmander’s condition. We remark that the idea approximating rough convolution
operators by smooth operators was originated by Watson [16].

In what follows, C always denotes a positive constant that is independent of the
main parameters involved but whose value may differ from line to line. We use the
symbol A � B to denote that there exists a positive constant C such that A ≤ CB.
Constant with subscript such as C1, does not change in different occurrences. For
any set E ⊂ R

d , χE denotes its characteristic function. For a cube Q ⊂ R
d and

λ ∈ (0, ∞), λQ denotes the cube with the same center as Q whose side length is λ

times that of Q. For a suitable function f , we denote f̂ the Fourier transform of f .
For p ∈ [1, ∞], p′ denotes the dual exponent of p, namely, p′ = p/(p − 1).
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2 Proof of Theorem 1.4: L2(Rd) Boundedness

This section is devoted to the proof of the L2(Rd) boundedness of T�,a; k . For sim-
plicity, we only consider the case k = 1. As it was pointed out in [10, Sect. 2], the
argument in this section still works for all k ∈ N, if we proceed by induction on the
order k.

Let φ ∈ C∞
0 (Rd) be a radial function, suppφ ⊂ B(0, 2), φ(x) = 1 when |x | ≤ 1.

Set ϕ(x) = φ(x) − φ(2x). We then have that

∑
j∈Z

ϕ(2− j x) ≡ 1, |x | > 0. (2.1)

Let ϕ j (x) = ϕ(2− j x) for j ∈ Z.
For a function � ∈ L1(Sd−1), define the operator W�, j by

W�, j h(x) =
∫
Rd

�(x − y)

|x − y|d+1 ϕ j (x − y)h(y)dy. (2.2)

Lemma 2.1 Let � be homogeneous of degree zero, integrable on Sd−1, satisfy the
vanishing moment (1.1) with k = 1 and � ∈ GSβ(Sd−1) for some β ∈ (1, ∞), a
be a function on R

d such that ∇a ∈ L∞(Rd). Then, for any r ∈ (0, ∞), functions
η1, η2 ∈ C∞

0 (Rd) which are supported on balls of radius no larger than r,

∣∣∣
∫
Rd

η2(x)T�, aη1(x)dx
∣∣∣ � ‖�‖L1(Sd−1)r

−d
2∏
j=1

(‖η j‖L∞(Rd ) + r‖∇η j‖L∞(Rd )

)
.

Recall that under the hypothesis of Lemma 2.1, the operator T�,m defined by

T�,m f (x) = p. v.
∫
Rd

�(x − y)(xm − ym)

|x − y|d+1 f (y)dy, 1 ≤ m ≤ d (2.3)

is bounded on L2(Rd) (see [8]). Lemma 2.1 can be proved by repeating the proof of
Lemma 2.5 in [10].

Let ψ ∈ C∞
0 (Rd) be a radial function, have integral zero and suppψ ⊂ B(0, 1).

Let Qs be the operator defined by Qs f (x) = ψs ∗ f (x), whereψs(x) = s−dψ(s−1x).
We assume that

∫ ∞

0
[ψ̂(s)]4 ds

s
= 1.

Then, the Calderón reproducing formula

∫ ∞

0
Q4

s
ds

s
= I (2.4)
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holds true. In addition, the Littlewood–Paley theory tells us that

∥∥∥
( ∫ ∞

0
|Qs f |2 ds

s

)1/2∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ). (2.5)

For each fixed j ∈ Z, set

T j
�, a f (x) =

∫
Rd

K j (x, y) f (y)dy,

where

K j (x, y) = �(x − y)

|x − y|d+1 (a(x) − a(y)
)
ϕ j (|x − y|).

Lemma 2.2 Let � be homogeneous of degree zero, integrable on Sd−1 and � ∈
GSβ(Sd−1) for some β ∈ (1, ∞), then for j ∈ Z and 0 < s ≤ 2 j ,

‖QsW�, j f ‖L2(Rd ) � 2− j log−β(2 j/s + 1)‖ f ‖L2(Rd ).

Proof Let K�, j (x) = �(x)
|x |d+1 ϕ j (|x |). By Plancherel’s theorem, it suffices to prove that

|ψ̂s(ξ)K̂�, j (ξ)| � 2− j log−β(2 j/s + 1). (2.6)

As it was proved by Grafakos and Stefanov [8, p. 458], we know that

|K̂�, j (ξ)| � 2− j log−β(|2 jξ | + 1).

On the other hand, it is easy to verify that

|ψ̂s(ξ)| � min{1, |sξ |}.

Observe that (2.6) holds true when |2 jξ | ≤ 1, since

|sξ | log−β(2 j |ξ | + 1) = s

2 j
|2 jξ | log−β(|2 jξ | + 1) � s

2 j
� log−β(2 j/s + 1).

If |sξ | ≥ 1, we certainly have that

|ψ̂s(ξ)K̂�, j (ξ)| � 2− j log−β(2 j |ξ | + 1) � 2− j log−β(2 j/s + 1).

Now, we assume that s|ξ | < 1 and |2 jξ | > 1, and

2−k2 j < s ≤ 2−k+12 j , 2k1−1 < |ξ | ≤ 2k1
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for k ∈ N and k1 ∈ Z respectively. Then j + k1 ∈ N, j + k1 ≤ k and

|sξ | log−β(2 j |ξ | + 1) � 2 j−k+k1( j + k1)
−β � k−β � log−β(2 j/s + 1).

This verifies (2.6). �
Lemma 2.3 Let � be homogeneous of degree zero, satisfy the vanishing moment (1.1)
with k = 1 and � ∈ GSβ(Sd−1) for some β ∈ (1, ∞), a be a function on R

d with
∇a ∈ L∞(Rd). Then

(i) T�,a1 ∈ BMO(Rd);
(ii) for any j ∈ Z and s ∈ (0, 2 j ];

‖QsT
j

�,a1‖L∞(Rd ) � ‖�‖L1(Sd−1)2
− j s.

Conclusion (ii) is just Lemma 2.4 in [10], while (i) of Lemma 2.3 can be proved by
mimicking the proof of Lemma 2.3 in [10], since for all 1 ≤ m ≤ d, T�,m defined by
(2.3) is bounded on L2(Rd) when � ∈ GSβ(Sd−1) for β > 1. We omit the details for
brevity.

Proof of Theorem 1.4 L2(Rd) boundedness. By (2.4), it suffices to prove that for
f , g ∈ C∞

0 (Rd),

∣∣∣
∫ ∞

0

∫ t

0

∫
Rd

Q4
s T�, aQ

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.7)

and

∣∣∣
∫ ∞

0

∫ ∞

t

∫
Rd

Q4
s T�, aQ

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.8)

Observe that (2.8) can be deduced from (2.7) and a standard duality argument. Thus,
we only need to prove (2.7).

We now prove (2.7). Without loss of generality, we assume that ‖∇a‖L∞(Rd ) = 1.
Write

∫ ∞

0

∫ t

0

∫
Rd

Q4
s T�, aQ

4
t f (x)g(x)dx

ds

s

dt

t

=
∑
j∈Z

∫ 2 j

0

∫ t

0

∫
Rd

QsT
j

�, aQ
4
t f (x)Q

3
s g(x)dx

ds

s

dt

t

+
∑
j∈Z

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0

∫
Rd

QsT
j

�, aQ
4
t f (x)Q

3
s g(x)dx

ds

s

dt

t

+
∑
j∈Z

∫ ∞

2 j

∫ t

(2 j tα−1)
1
α

∫
Rd

Q4
s T

j
�, aQ

4
t f (x)g(x)dx

ds

s

dt

t
:= D1 + D2 + D3,
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where α ∈
(
d+1
d+2 , 1

)
is a constant.

We first consider term D2. For each fixed j ∈ Z, let {I j,l}l be a sequence of cubes
having disjoint interiors and side length 2 j , such that Rd = ∪l I j,l . For each fixed j, l,
let ω j,l ∈ C∞

0 (Rd) such that suppω j,l ⊂ 48d I j,l , 0 ≤ ω j,l ≤ 1 and ω j,l(x) ≡ 1
when x ∈ 32d I j,l . Let I ∗

j,l = 64d I j,l and x j,l be the center of I j,l . For each l, set

a j,l(y) = (a(y) − a(x j,l))ω j,l(y), and hs, j,l(y) = Q2
s g(y)χI j,l (y). It is obvious that

for all l,

‖a j,l‖L∞(Rd ) � 2 j , ‖∇a j,l‖L∞(Rd ) � 1,

and for s ∈ (0, 2 j ] and x ∈ supp Qshs, j,l ,

T j
�, ah(x) = a j,l(x)W�, j h(x) − W�, j (a j,l h)(x).

For each fixed j and l, let

D j,l,1(s, t) = −
∫
Rd

[a j,l , Qs]W�, j Q
4
t f (x)Qshs, j,l(x)dx,

D j,l,2(s, t) =
∫
Rd

a j,l(x)QsW�, j Q
4
t f (x)Qshs, j,l(x)dx,

D j,l,3(s, t) =
∫
Rd

QsW�, j [a j,l , Qs]Q4
t f (x)hs, j,l(x)dx,

and

D j,l,4(s, t) = −
∫
Rd

QsW�, j (a j,l Qs Q
4
t f )(x)hs, j,l(x)dx,

where and in the following, for a locally integrable function b and an operator U ,
[b, U ] denotes the commutator of U with symbol b, namely,

[b, U ]h(x) = b(x)Uh(x) −U (bh)(x). (2.9)

Observe that both of Qs andW�, j are convolution operators and QsW�, j = W�, j Qs .
For j ∈ Z and s ∈ (0, 2 j ], we have that

∫
Rd

Q4
s T

j
�, aQ

4
t f (x)g(x)dx

=
∑
l

∫
Rd

QsT
j

�, aQ
4
t f (x)Qshs, j,l(x)dx

=
4∑

n=1

∑
l

D j,l,n(s, t). (2.10)
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It now follows from Hölder’s inequality that

∣∣∣∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
D j,l,1(s, t)

ds

s

dt

t

∣∣∣

≤
∥∥∥
( ∑

j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
|χI ∗

j,l
Q4

t f |22− j s
ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

×
∥∥∥
( ∑

j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
|W�, j [a j,l , Qs]Qshs, j,l |2 1

2− j s

ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

.

Invoking the fact that
∑

l χI ∗
j,l

� 1, we deduce that

∥∥∥
(∑

j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
|χI ∗

j,l
Q4

t f |22− j s
ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

�
∥∥∥
( ∫ ∞

0
|Q4

t f |2
∫ t

0

∑
j : 2 j≥sα t1−α

2− j s
ds

s

dt

t

)1/2∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ).

Let M� be the operator defined by

M� f (x) = sup
r>0

r−d
∫

|x−y|<r
|�(x − y)|| f (y)|dy.

The method of rotation of Calderón and Zygmund states that

‖M� f ‖L p(Rd ) � ‖�‖L1(Sd−1)‖ f ‖L p(Rd ), p ∈ (1, ∞). (2.11)

Let M be the Hardy–Littlewood maximal operator. Observe that when s ∈ (0, 2 j ],
∣∣[a j,l , Qs]h(x)

∣∣ ≤
∫
Rd

|ψs(x − y)||a j,l(x) − a j,l(y)||h(y)|dy � sMh(x).

This, together with (2.11), yields

∥∥∥
( ∑

j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
|W�, j [a j,l , Qs]Qshs, j,l |2(2− j s)−1 ds

s

dt

t

) 1
2
∥∥∥2
L2(Rd )

�
∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
‖M�MQshs, j,l‖2L2(Rd )

2− j s
ds

s

dt

t

�
∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
‖hs, j,l‖2L2(Rd )

2− j s
ds

s

dt

t
� ‖g‖2L2(Rd )

,
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where the last inequality follows from the fact that

∫ ∞

s

∑
j :2 j≥sα t1−α

2− j s
dt

t
� 1.

Therefore,

∣∣∣∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
D j,l,1(s, t)

ds

s

dt

t

∣∣∣
� ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.12)

Similar to the estimate (2.12), we have that

∣∣∣∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
D j,l,3(s, t)

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.13)

To estimate the term
∫ ∞
2 j

∫ (2 j tα−1)1/α

0 D j,l,2(s, t)
ds
s

dt
t , we write

D j,l,2(s, t) =
∫
Rd

QsW�, j Q
4
t f (x)[a j,l , Qs]hs, j,l(x)dx

+
∫
Rd

QsW�, j Q
4
t f (x)Qs(a j,l hs, j,l)(x)dx

= D1
j,l,2(s, t) + D2

j,l,2(s, t).

Repeating the estimate for D j,l,1, we have that

∣∣∣∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
D1

j,l,2(s, t)
ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.14)

Write

∣∣∣∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
D2

j,l,2(s, t)
ds

s

dt

t

∣∣∣

≤
∥∥∥
(∑

j

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
|Q2

s (2
jW�, j )Q

3
t f |2 logσ (2 j/s + 1)

ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

×
∥∥∥
( ∑

j

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0

∣∣2− j Qt
( ∑

l

a j,l hs, j,l
)∣∣2 log−σ

(2 j

s
+ 1

)ds
s

dt

t

) 1
2
∥∥∥
L2(Rd )

:= I1I2,
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where σ > 1 is a constant such that 2β − σ > 1. Invoking the estimate (2.5), we
obtain that

I2 �
( ∑

j

∫ 2 j

0

∥∥2− j
∑
l

a j,l hs, j,l
∥∥2
L2(Rd )

log−σ (2 j/s + 1)
ds

s

) 1
2

�
( ∑

j

∫ 2 j

0

∥∥∑
l

|hs, j,l |
∥∥2
L2(Rd )

log−σ (2 j/s + 1)
ds

s

) 1
2

=
( ∫ ∞

0
‖Q2

s g‖2L2(Rd )

∑
j :2 j≥s

log−σ (2 j/s + 1)
ds

s

) 1
2 � ‖g‖L2(Rd ).

Note that Q2
s (2

jW�, j ) = Qs(2 jW�, j )Qs . It follows from Lemma 2.2 and (2.5) that

I1 =
( ∑

j

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
‖Q2

s (2
jW�, j )Q

3
t f ‖2L2(Rd )

logσ
(2 j

s
+ 1

)ds
s

dt

t

) 1
2

�
( ∑

j

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
‖QsQ

3
t f ‖2L2(Rd )

log−2β+σ (2 j/s + 1)
ds

s

dt

t

) 1
2

�
∥∥∥
( ∫ ∞

0

∫ ∞

0
|QsQ

3
t f |2

ds

s

dt

t

) 1
2
∥∥∥2
L2(Rd )

� ‖ f ‖L2(Rd ).

The estimates for I1 and I2 show that

∣∣∣ ∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
D2

j,l,2(s, t)
ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

This, together with (2.14), gives us that

∣∣∣ ∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
D j,l,2(s, t)

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.15)

We now estimate term corresponding to
∫ ∞
2 j

∫ (2 j tα−1)1/α

0 D j,l,4(s, t)
ds
s

dt
t . Write

∣∣∣∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
D j,l,4(s, t)

ds

s

dt

t

∣∣∣

≤
∥∥∥
( ∑

j

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
|QsQ

3
t f |2 log−σ (2 j/s + 1)

ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )
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×
∥∥∥
( ∑

j

∫ ∞

2 j

∫ (2 j tα−1)1/α

0

∣∣∣Qt

( ∑
l

a j,lW�, j Qshs, j,l
)∣∣∣2 logσ

(2 j

s
+ 1

)ds
s

dt

t

) 1
2
∥∥∥
L2(Rd )

:= I3I4.

Obviously,

I3 �
∥∥∥
( ∫ ∞

0

∫ ∞

0
|QsQ

3
t f |2

ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ).

On the other hand, it follows from Littlewood–Paley theory and Lemma 2.2 that

I4 �
( ∑

j

∫ 2 j

0

∥∥∥ ∑
l

a j,lW�, j Qshs, j,l
∥∥∥2
L2(Rd )

logσ
(2 j

s
+ 1

)ds
s

) 1
2

�
( ∑

j

∫ 2 j

0
22 j

∑
l

‖W�, j Qshs, j,l‖2L2(Rd )
logσ

(2 j

s
+ 1

)ds
s

) 1
2

�
( ∑

j

∫ 2 j

0

∑
l

‖hs, j,l‖2L2(Rd )
log−2β+σ

(2 j

s
+ 1

)ds
s

) 1
2 � ‖g‖L2(Rd ),

since ‖a j,l‖L∞(Rd ) � 2 j , and the supports of functions {a j,lW�, j Qshs, j,l} have
bounded overlaps. The estimate for I4, together with the estimate for I3, gives us that

∣∣∣ ∑
j

∑
l

∫ ∞

2 j

∫ (2 j tα−1)1/α

0
D j,l,4(s, t)

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.16)

Combining inequalities (2.12), (2.13), (2.15) and (2.16) leads to that

|D2| � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

The estimate for D1 is fairly similar to the estimate D2. For example, since

∫ t

0

∑
j : 2 j≥t

2− j s
ds

s
� 1,

∫ ∞

s

∑
j :2 j≥t

2− j s
dt

t
� 1,

we have that

∣∣∣∑
j

∑
l

∫ 2 j

0

∫ t

0
D j,l,1(s, t)

ds

s

dt

t

∣∣∣

≤
∥∥∥
( ∑

j

∑
l

∫ 2 j

0

∫ t

0
|χI ∗

j,l
Q4

t f |22− j s
ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )
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×
∥∥∥
( ∑

j

∑
l

∫ 2 j

0

∫ ∞

0
|W�, j [a j,l , Qs]Qshs, j,l |2(2− j s)−1 ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

The estimates for terms
∑

j
∑

l

∫ 2 j

0

∫ t
0 D j,l,i (s, t)

ds
s

dt
t (i = 2, 3, 4) are parallel to the

estimates for
∑

j
∑

l

∫ ∞
2 j

∫ (2 j tα−1)1/α

0 D j,l,i (s, t)
ds
s

dt
t . Altogether, we have that

|D1| � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

It remains to consider D3. This was essentially proved in [10, pp. 1281–1283]. For
the sake of self-contained, we present the details here. Set

h(x, y) =
∫ ∫

ψs(x − z)
∑

j :2 j≤sα t1−α

K j (z, u)[ψt (u − y) − ψt (x − y)]dudz.

Let H be the operator with integral kernel h. It then follows that

|D3| �
∣∣∣
∫ ∞

0

∫ t

0

∫
Rd

HQ3
t f (x)Q

3
s g(x)dx

ds

s

dt

t

∣∣∣
+

∣∣∣∑
j∈Z

∫ ∞

2 j

∫ t

(2 j tα−1)
1
α

∫
Rd

(QsT
j

�, a1)(x)Q
4
t f (x)Q

3
s g(x)dx

ds

s

dt

t

∣∣∣
= |D31| + |D32|.

As in [10, p. 1282], we obtain by Lemma 2.1 and the mean value theorem that

|h(x, y)| �
( s
t

)�

t−dχ{(x,y):|x−y|≤Ct}(x, y),

where � = (d + 2)α − d − 1 ∈ (0, 1). Then we have

|HQ3
t f (x)| �

( s
t

)�

M(Q3
t f )(x),

and

|D31| �
∫ ∞

0

∫ t

0

∫
Rd

|M(Q3
t f )(x)||Q3

s g(x)|dx
( s
t

)� ds

s

dt

t

�
∥∥∥
( ∫ ∞

0

∫ t

0
|M(Q3

t f )|2
( s
t

)� ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

×
∥∥∥
( ∫ ∞

0

∫ ∞

s
|Q3

s g|2
( s
t

)� dt

t

ds

s

) 1
2
∥∥∥
L2(Rd )
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�
∥∥∥
( ∫ ∞

0
|M(Q3

t f )|2
dt

t

) 1
2
∥∥∥
L2(Rd )

∥∥∥
( ∫ ∞

0
|Q3

s g|2
ds

s

) 1
2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

As for D32, we split it into three parts as follows:

D32 =
∑
j∈Z

∫ ∞

0

∫ t

0
−

∑
j∈Z

∫ 2 j

0

∫ t

0
−

∑
j∈Z

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0
= D321 − D322 − D323.

Let

ζ(x) =
∫ ∞

1
ψt ∗ ψt ∗ ψt ∗ ψt (x)

dt

t
, Ps =

∫ ∞

s
Q4

t
dt

t
.

Han and Sawyer [9] proved that ζ is a radial function which is supported on a ball
having radius C and has mean value zero. Observe that Ps f (x) = ζs ∗ f (x) with
ζs(x) = s−dζ(s−1x). The Littlewood–Paley theory tells us that

∥∥∥
( ∫ ∞

0
|Ps f |2 ds

s

) 1
2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ).

(i) of Lemma 2.3 states that T�,a1 ∈ BMO(Rd). Recall that suppψ ⊂ B(0, 1) and
ψ has integral zero. Thus for x ∈ R

d ,

|Qs(T�,a1)(x)| ≤ s−d
∫

|x−y|≤s
|ψ(s−1(x − y))||T�,a1(y) − 〈T�,a1〉B(x,s)|dy � 1,

where 〈T�,a1〉B(x,s) denotes the mean value of T�,a1 on the ball centered at x and
having radius s. Therefore,

|D321| =
∣∣∣
∫
Rd

∫ ∞

0
QsT�,a1(x)Ps f (x)Q

3
s g(x)

ds

s
dx

∣∣∣

�
∥∥∥
( ∫ ∞

0
|Ps f |2 ds

s

) 1
2
∥∥∥
L2(Rd )

∥∥∥
( ∫ ∞

0
|Q3

s g|2
ds

s

) 1
2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

From (ii) of Lemma 2.3 and Hölder’s inequality, we obtain that

|D322| �
∥∥∥
( ∑

j

∫ 2 j

0

∫ t

0
2− j s|Q4

t f |2
ds

s

dt

t

)1/2∥∥∥
L2(Rd )

×
∥∥∥
( ∑

j

∫ 2 j

0

∫ t

0
2− j s|Q3

s g|2
ds

s

dt

t

)1/2∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).
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The same result holds true for D323. Combining the estimates for terms D321, D322
and D323 give us that

|D3| � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

This leads to (2.7) and then establishes the L2(Rd) boundedness of T�,a . �

3 Proof of Theorem 1.4: Lp Boundedness

We begin with some lemmas.

Lemma 3.1 Let � ∈ C∞
0 (Rd) be a radial function such that supp� ⊂ {1/4 ≤ |ξ | ≤

4} and
∑
l∈Z

� 3(2−lξ) = 1, |ξ | > 0,

and Sl be the multiplier operator defined by

Ŝl f (ξ) = �(2−lξ) f̂ (ξ).

Let k ∈ Z+, a be a function on R
d such that ∇a ∈ L∞(Rd). Then

∥∥∥
( ∑

l∈Z

∣∣2kl [a, Sl ]k f
∣∣2) 1

2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ), (3.1)

and

∥∥∥ ∑
l∈Z

2kl [a, Sl ]k fl
∥∥∥
L2(Rd )

�
∥∥∥
(∑

l

| fl |2
)1/2∥∥∥

L2(Rd )
, (3.2)

where and in the following, for a locally integrable function a and an operator U,
[a, U ]0 f = U f , while for k ∈ N [a, U ]k denotes the commutator of [a, U ]k−1 and
a, defined as (2.9).

Note that (3.2) follows from (3.1) and a duality argument. For the case of k = 0, (3.1)
follows from Littlewood–Paley theory. Inequality (3.1) with k = 1 was proved in [3,
Lemma 2.3], while for the case of k ≥ 2, the proof of (3.1) is similar to the proof of
[3, Lemma 2.3].

Lemma 3.2 Let k ∈ N, n ∈ Z+ with n ≤ k, D, E be positive constants and E ≤ 1, m
be a multiplier such that m ∈ L1(Rd), and

‖m‖L∞(Rd ) ≤ D−k E
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and for all multi-indices γ ∈ Z
d+,

‖∂γm‖L∞(Rd ) ≤ D|γ |−k .

Let a be a function on R
d with ∇a ∈ L∞(Rd), and Tm be the multiplier operator

defined by

T̂m f (ξ) = m(ξ) f̂ (ξ).

Then for any ε ∈ (0, 1),

‖[a, Tm]n f ‖L2(Rd ) � Dn−k Eε‖ f ‖L2(Rd ).

Proof Our argument here is a generalization of the proof of Lemma 2 in [11], together
with some more refined estimates, see also [12, Lemma 2.3] for the original version.
We only consider the case 1 ≤ n ≤ k, since

‖[a, Tm]0 f ‖L2(Rd ) � D−k Eε‖ f ‖L2(Rd )

holds obviously.
Let ϕ ∈ C∞

0 (Rd) be the same as in (2.1). Recall that suppϕ ⊂ {1/4 ≤ |x | ≤ 4},
and

∑
j∈Z

ϕ(2− j x) ≡ 1, |x | > 0.

Let ϕl,D(x) = ϕ(2−l D−1x) for l ∈ Z. Set

Wl(x) = K (x)ϕl,D(x), l ∈ Z,

where K is the inverse Fourier transform of m. Observing that for all multi-indices
γ ∈ Z

d+, ∂γ ϕ(0) = 0, we thus have that

∫
Rd

ϕ̂(ξ)ξγ dξ = 0.

This, in turn, implies that for all N ∈ N and ξ ∈ R
d ,

|Ŵl(ξ)| =
∣∣∣
∫
Rd

(
m(ξ − η

2l D
) −

∑
|γ |≤N

1

γ !∂
γm(ξ)

( η

2l D

)γ )
ϕ̂(η)dη

∣∣∣

� 2−l(N+1)D−(N+1)
∑

|γ |=N+1

‖∂γm‖L∞(Rd )

∫
Rd

|η|N+1|ϕ̂(η)|dη

� 2−l(N+1)D−k . (3.3)

123



14 Page 16 of 25 J. Chen et al.

On the other hand, a trivial computation gives that for l ∈ Z,

‖Ŵl‖L∞(Rd ) ≤ ‖m‖L∞(Rd )‖ϕ̂l,D‖L1(Rd ) � D−k E . (3.4)

Combining the inequalities (3.3) and (3.4) shows that for any l ∈ Z, N ∈ N and
ε ∈ (0, 1),

‖Ŵl‖L∞(Rd ) � 2−l(N+1)(1−ε)D−k Eε. (3.5)

Let Tm,l be the convolution operator with kernelWl . Inequality (3.5), via Plancherel’s
theorem, tells us that for l ∈ Z and N ∈ N,

‖Tm,l f ‖L2(Rd ) � 2−l(N+1)(1−ε)D−k Eε‖ f ‖L2(Rd ). (3.6)

We claim that for all l ∈ Z, N ∈ N and ε ∈ (0, 1),

‖[a, Tm,l ]n f ‖L2(Rd ) � 2−l(N+1)(1−ε)+ln Dn−k Eε‖ f ‖L2(Rd ). (3.7)

Observe that suppWl ⊂ {x : |x | ≤ D2l+2}. If I is a cube having side length 2l D,
and f ∈ L2(Rd) with supp f ⊂ I , then Tm,l f ⊂ 100d I . Therefore, to prove (3.7),
we may assume that supp f ⊂ I with I a cube having side length 2l D. Let x0 ∈ I
and aI (y) = (a(y) − a(x0))χ100d I (y). Then

‖aI ‖L∞(Rd ) � 2l D.

Write

[a, Tm,l ]n f (x) =
n∑

i=0

(aI (x))
iCi

nTm,l
(
(−aI )

k−i f
)
(x).

It then follows from (3.6) that

‖[a, Tm, l ]n f ‖L2(Rd ) �
n∑

i=0

2il Di‖Tm,l
(
(−aI )

n−i f
)‖L2(Rd )

� 2nl−l(N+1)(1−ε)Dn−k Eε‖ f ‖L2(Rd ).

This yields (3.7).
We now conclude the proof of Lemma 3.2. Recall that E ∈ (0, 1]. It suffices to

prove Lemma 3.2 for the case of ε ∈ (2/3, 1). For fixed ε ∈ (2/3, 1), we choose
N1 ∈ N such that (N1 + 1)(1 − ε) > n, N2 ∈ N such that (N2 + 1)(1 − ε) < n. It
follows from (3.7) that

‖[a, Tm]n f ‖L2(Rd ) ≤
∑
l≤0

‖[a, Tm, l ]n f ‖L2(Rd ) +
∑
l∈N

‖[a, Tm,l ]n f ‖L2(Rd )
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� Dn−k Eε
∑
l∈N

2−l(N1+1)(1−ε)+ln‖ f ‖L2(Rd )

+Dn−k Eε
∑
l≤0

2−l(N2+1)(1−ε)+ln‖ f ‖L2(Rd )

� Dn−k Eε‖ f ‖L2(Rd ).

This completes the proof of Lemma 3.2. �
Lemma 3.3 Let k ∈ N, n ∈ Z+ with n ≤ k, D, A and B be positive constants with
A, B < 1, m be a multiplier such that m ∈ L1(Rd), and

‖m‖L∞(Rd ) ≤ D−k(AB)k+1,

and for all multi-indices γ ∈ Z
d+,

‖∂γm‖L∞(Rd ) ≤ D|γ |−k B−|γ |.

Let Tm be the multiplier operator defined by

T̂m f (ξ) = m(ξ) f̂ (ξ).

Let a be a function on R
d such that ∇a ∈ L∞(Rd). Then for any σ ∈ (0, 1),

∥∥[a, Tm]n f ∥∥L2(Rd )
� Dn−k Aσ Bk−n+σ ‖ f ‖L2(Rd ). (3.8)

Proof Let Tm,l be the same as in the proof of Lemma 3.2. As in the proof of Lemma
3.2, we know that for all l ∈ Z, N ∈ N and ε ∈ (0, 1),

∥∥[a, Tm,l ]n f
∥∥
L2(Rd )

� 2−l(N+1)(1−ε)+nl Dn−k

×B−(N+1)(1−ε)+(k+1)εA(k+1)ε‖ f ‖L2(Rd ). (3.9)

For each fixed σ ∈ (0, 1), we choose ε ∈ (0, 1) such that

(k + 1)ε − k − σ > 1 − ε,

and choose N1 ∈ N such that

(N1 + 1)(1 − ε) > n, −(N1 + 1)(1 − ε) + (k + 1)ε > k − n + σ.

Also, we choose N2 ∈ N such that (N2 + 1)(1− ε) < n. Note that such a N2 satisfies

−(N2 + 1)(1 − ε) + (k + 1)ε > k − n + σ.
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Recalling that B < 1, we have that

B−(N1+1)(1−ε)+(k+1)ε ≤ Bk−n+σ , B−(N2+1)(1−ε)+(k+1)ε ≤ Bk−n+σ .

Our desired estimate (3.8) now follows (3.9) by

‖[a, Tm]n f ‖L2(Rd ) � Dn−k Aσ Bk−n+σ
∑
l∈N

2−l(N1+1)(1−ε)+ln‖ f ‖L2(Rd )

+Dn−k Aσ Bk−n+σ
∑
l≤0

2−l(N2+1)(1−ε)+ln‖ f ‖L2(Rd )

� Dn−k Bk−n+σ Aσ ‖ f ‖L2(Rd ),

since (k + 1)ε > σ and A < 1. This completes the proof of Lemma 3.3. �
The following conclusion is a variant of Theorem 1 in [11], and will be useful in the
proof of Theorem 1.4.

Theorem 3.4 Let k ∈ N, A ∈ (0, 1/2) be a constant, {μ j } j∈Z be a sequence of
functions on R

d\{0}. Suppose that for some β ∈ (1, ∞),

‖μ j‖L1(Rd ) � 2− jk, |μ̂ j (ξ)| � 2− jk min{|A2 jξ |k+1, log−β(2 + |2 jξ |)},

and for all multi-indices γ ∈ Z
d+,

‖∂γ μ̂ j‖L∞(Rd ) � 2 j(|γ |−k).

Let K (x) = ∑
j∈Z μ j (x) and T be the convolution operator with kernel K . Then for

any ε ∈ (0, 1), function a on R
d with ∇a ∈ L∞(Rd),

‖[a, T ]k f ‖L2(Rd ) � log−εβ+1 ( 1
A

)‖ f ‖L2(Rd ).

Proof At first, we claim that for k1 ∈ Z with 0 ≤ k1 ≤ k,

‖T f ‖L2
k1−k (R

d ) � ‖ f ‖L2
k1

(Rd ), (3.10)

where ‖ f ‖L2
kw

(Rd ) for k2 ∈ Z is the Sobolev norm defined as

‖ f ‖2
L2
k2

(Rd )
=

∫
Rd

|ξ |2k2 | f̂ (ξ)|2dξ.

In fact, by theFourier transfromestimate ofμ j ,wehave that for eachfixed ξ ∈ R
d\{0},

∑
j∈Z

|μ̂ j (ξ)| �
∑

j : 2 j≥|ξ |−1

2− jk + |ξ |k+1
∑

j : 2 j≤|ξ |−1

2 j � |ξ |k .
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This, together with Plancherel’s theorem, gives (3.10).
Let Uj be the convolution operator with kernel μ j , and � ∈ C∞

0 (Rd) such that
0 ≤ � ≤ 1, supp� ⊂ {1/4 ≤ |ξ | ≤ 4} and

∑
l∈Z

� 3(2−lξ) = 1, |ξ | > 0.

Set m j (x) = μ̂ j (ξ), and ml
j (ξ) = m j (ξ)�(2 j−lξ). Define the operator Ul

j by

̂Ul
j f (ξ) = ml

j (ξ)�(2 j−lξ) f̂ (ξ).

Now let Sl be the multiplier operator defined as in Lemma 3.1. Let f ∈ C∞
0 (Rd),

B = B(0, R) be a ball such that supp f ⊂ B, and let x0 ∈ B. We can write

[a, T ]k f =
k∑

n=0

Cn
k (a − a(x0))

k−nT
(
(a(x0) − a)n f )(x)

=
k∑

n=0

Cn
k (a − a(x0))

k−n
∑
l

∑
j

(Sl− jU
l
j Sl− j )

(
(a(x0) − a)n f )

=
∑
l

∑
j

[a, Sl− jU
l
j Sl− j ]k f . (3.11)

We now estimate
∥∥[a, Sl− jUl

j Sl− j ]k f
∥∥
L2(Rd )

. At first, we have thatml
j ∈ L1(Rd)

and

|ml
j (ξ)| � 2− jk min{Ak+12l(k+1), log−β(2 + 2l)}.

Furthermore, by the fact that

|∂γ φ(2 j−lξ)| � 2( j−l)|γ |, |∂γm j (ξ)| � 2 j(|γ |−k),

it then follows that for all γ ∈ Z
d+,

|∂γml
j (ξ)| �

{ 2 j(|γ |−k) if l ∈ N

2 j(|γ |−k)2−|γ |l , if l ≤ 0.

An application of Lemma 3.2 (with D = 2 j , E = min{(A2l)k+1, l−β}) yields

‖[a, Ul
j ]n f ‖L2(Rd ) � 2 j(n−k) min{(A2l)k+1, l−β}ε‖ f ‖L2(Rd ), l ∈ N. (3.12)

On the other hand, we deduce from Lemma 3.3 (with D = 2 j and B = 2l ) that for
some σ ∈ (0, 1),

‖[a, Ul
j ]n f ‖L2(Rd ) � 2 j(n−k)2l(k−n)Aσ2σ l‖ f ‖L2(Rd ), l ≤ 0. (3.13)
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Write

[a, Sl− jU
l
j Sl− j ]k =

k∑
n1=0

Cn1
k [a, Sl− j ]n1

k−n1∑
n2=0

Cn2
k−n1

[a, Ul
j ]n2 [a, Sl− j ]k−n1−n2 .

For fixed n1, n2, n3 ∈ Z+ with n1 + n2 + n3 = k, a standard computation involving
Lemma 3.1, estimates (3.12) and (3.13) leads to that for l ∈ N,

∥∥ ∑
j∈Z

[a, Sl− j ]n1[a, Ul
j ]n2 [a, Sl− j ]n3 f

∥∥2
L2(Rd )

�
∑
j∈Z

22( j−l)n1‖[a, Ul
j ]n2 [a, Sl− j ]n3 f ‖2L2(Rd )

� min{(A2l)k+1, l−β}2ε‖ f ‖2L2(Rd )
;

and for l ∈ Z−,

∥∥ ∑
j∈Z

[a, Sl− j ]n1[a, Ul
j ]n2 [a, Sl− j ]n3 f

∥∥2
L2(Rd )

�
∑
j∈Z

22( j−l)n1‖[a, Ul
j ]n2 [a, Sl− j ]n3 f ‖2L2(Rd )

� A2σ22σ l‖ f ‖2L2(Rd )
.

Therefore,

∑
l

‖[a, Sl− jU
l
j Sl− j ]k f ‖L2(Rd ) =

∑
l: l>log( 1√

A
)

‖[a, Sl− jU
l
j Sl− j ]k f ‖L2(Rd )

+
∑

l: 0≤l≤log( 1√
A
)

‖[a, Sl− jU
l
j Sl− j ]k f ‖L2(Rd )

+
∑
l: l<0

‖[a, Sl− jU
l
j Sl− j ]k f ‖L2(Rd )

�
( ∑
l: l>log( 1√

A
)

l−εβ + Aσ
∑
l: l<0

2σ l
)
‖ f ‖L2(Rd )

+A(k+1)ε
∑

l: 0≤l≤log( 1√
A
)

2(k+1)lε‖ f ‖L2(Rd )

� log−εβ+1(
1

A
)‖ f ‖2L2(Rd )

.

This, via (3.11), leads to our desired conclusion. �
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Proof of Theorem 1.4 L p(Rd) boundedness. By duality, it suffices to prove that T�,a; k
is bounded on L p(Rd) for 2 < p < 2β.

For j ∈ Z, let K j (x) = �(x)
|x |d+k χ{2 j−1≤|x |<2 j }(x). Letω ∈ C∞

0 (Rd) be a nonnegative
radial function such that

suppω ⊂ {x : |x | ≤ 1/4},
∫
Rd

ω(x)dx = 1,

and

∫
Rd

xγ ω(x)dx = 0, 1 ≤ |γ | ≤ k.

For j ∈ Z, set ω j (x) = 2−d jω(2− j x). For a positive integer l, define

Hl(x) =
∑
j∈Z

K j ∗ ω j−l(x).

Let Rl be the convolution operator with kernel Hl . For a function a on R
d such that

∇a ∈ L∞(Rd), recall that [a, Rl ]k denotes the k-th commutator of Rl with symbol a.
We claim that for each fixed ε ∈ (0, 1), l ∈ N,

‖T�,a; k f − [a, Rl ]k f ‖L2(Rd ) � l−εβ+1‖ f ‖L2(Rd ). (3.14)

To prove this, write

Hl(x) −
∑
j∈Z

K j (x) =
∑
j∈Z

(
K j (x) − K j ∗ ω j−l(x)

) =:
∑
j∈Z

μ j,l(x).

By the vanishing moment of ω, we know that for all multi-indices γ ∈ Z
d+ with

1 ≤ |γ | ≤ k, ∂γ ω̂(0) = 0. By Taylor series expansion and the fact that ω̂(0) = 1, we
deduce that

|ω̂(2 j−lξ) − 1| � min{1, |2 j−lξ |k+1}.

When � ∈ GSβ(Sd−1) for some β ∈ (1, ∞), it was proved in [8, p. 458] that

|K̂ j (ξ)| � 2− jk min{1, log−β(2 + |2 jξ |)}.

Thus, the Fourier transform estimate

|̂μ j,l(ξ)| = |K̂ j (ξ)||ω̂(2 j−lξ) − 1| � 2− jk min{log−β(2 + |2 jξ |), |2 j−lξ |k+1}
(3.15)
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holds true. On the other hand, a trivial computation shows that for all multi-indices
γ ∈ Z

d+,

‖∂γ K̂ j‖L∞(Rd ) � ‖�‖L1(Sd−1)2
(|γ |−k) j ,

and so for all ξ ∈ R
d ,

|∂γ μ̂ j,l(ξ)| �
∑

γ1+γ2=γ

|∂γ1 K̂ j (ξ)||∂γ2 ω̂(2 j−lξ)| � ‖�‖L1(Sd−1)2
j(|γ |−k).

(3.16)

The Fourier transforms (3.15) and (3.16), via Theorem 3.4 with A = 2−l , lead to
(3.14) immediately.

Let ε ∈ (0, 1) be a constant which will be chosen later. An application of (3.14)
gives us that

∥∥[a, R2l ]k f − [a, R2l+1 ]k f ∥∥L2(Rd )
� 2(−εβ+1)l‖ f ‖L2(Rd ). (3.17)

Therefore, the series

T�,a; k = [a, R2]k +
∞∑
l=1

([a, R2l+1 ]k − [a, R2l ]k) (3.18)

converges in L2(Rd) operator norm.
For l ∈ N, let Ll(x, y) = Hl(x − y)(a(x) − a(y))k . We claim that for any y, y′ ∈

R
d ,

∫
|x−y|≥2|y−y′|

|Ll(x, y) − Ll(x, y
′)|dx

+
∫

|x−y|≥2|y−y′|
|Ll(y, x) − Ll(y

′, x)|dx � l. (3.19)

To prove this, let |y − y′| = r . A trivial computation yields

∫
|x−y|≥2r

∣∣Hl(x − y)(a(y) − a(y′))k
∣∣dx � r

∑
j

∫
|x |≥2r

|K j ∗ ω j−l(x)|dx

� rk
∑

j : 2 j−2≥r

‖K j‖L1(Rd )‖ω j−l‖L1(Rd ) � 1,

since ‖K j‖L1(Rd ) � 2− j . For each fixed j ∈ Z, observe that

‖ω j−l(· − y) − ω j−l(· − y′)‖L1(Rd ) � min{1, 2l− j |y − y′|}.
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It then follows from Young’s inequality that

∫
|x−y≥2r

|Hl(x − y) − Hl(x − y′)||a(x) − a(y)|kdx

=
∞∑
n=1

∫
2nr≤|x−y≤2n+1r

|Hl(x − y) − Hl(x − y′)||a(x) − a(y)|kdx

�
∞∑
n=1

(2nr)k
∑

j : 2 j≈2nr

‖K j‖L1(Rd )‖ω j−l(· − y) − ω j−l(· − y′)‖L1(Rd )

�
∞∑
k=1

min{1, 2−k2l} � l.

Combining the estimates above gives us that

∫
|x−y|≥2|y−y′|

|Ll(x, y) − Ll(x, y
′)|dx

≤
∫

|x−y|≥2r

∣∣Hl(x − y)(a(y) − a(y′))k
∣∣dx

+
∫

|x−y≥2r
|Hl(x − y) − Hl(x − y′)||a(x) − a(y)|kdx � l.

Similarly, we can verify that

∫
|x−y|≥2|y−y′|

|Ll(y, x) − Ll(y
′, x)|dx � l.

This establishes (3.19).
Recall that T�, a;k is bounded on L2(Rd). It follows from (3.14) that [a, Rl ]k is

also bounded on L2(Rd) with bound independent of l. This, along with (3.19) and
Calderón-Zygmud theory, tells us that

∥∥[a, Rl ]k f − [a, Rl+1]k f
∥∥
L p(Rd )

� l‖ f ‖L p(Rd ), p ∈ (1, ∞),

and so

∥∥[a, R2l ]k f − [a, R2l+1 ]k f ∥∥L p(Rd )
� 2l‖ f ‖L p(Rd ), p ∈ (1, ∞). (3.20)

Interpolating inequalities (3.17) and (3.20) shows that for any � ∈ (0, 1) and p ∈
(2, ∞),

∥∥[a, R2l ]k f − [a, R2l+1 ]k f ∥∥L p(Rd )
� 2(−2εβ/p+1+�)l‖ f ‖L p(Rd ).
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For each p with 2 < p < 2β, we can choose ε > 0 close to 1 sufficiently, and � > 0
close to 0 sufficiently, such that 2εβ/p − 1 − � > 0. This, in turn, shows that

∞∑
l=1

∥∥[a, R2l ]k f − [a, R2l+1 ]k f ∥∥L p(Rd )
� ‖ f ‖L p(Rd ),

and the series (3.18) converges in the L p(Rd) operator norm. Therefore, T�, a;k is
bounded on L p(Rd) for 2 < p < 2β. This finishes the proof of Theorem 1.4. �
Remark 3.5 Let � be homogeneous of degree zero, integrable and have mean value
zero on Sd−1, T� be the homogeneous singular integral operator defined by (1.4). For
b ∈ BMO(Rd), define the commutator of T� and b by

[b, T�] f (x) = b(x)T� f (x) − T�(b f )(x).

When � ∈ Lipα(Sd−1) with α ∈ (0, 1], Uchiyama [15] proved that [b, T�] is a
compact operator on L p(Rd) (p ∈ (1, ∞)) if and only if b ∈ CMO(Rd), where
CMO(Rd) is the closure of C∞

0 (Rd) in the BMO(Rd) topology, which coincide with
the space of functions of vanishing mean oscillation. When � ∈ GSβ(Sd−1) for
β ∈ (2, ∞), Chen and Hu [2] considered the compactness of [b, T�] on L p(Rd)with
β/(β − 1) < p < β. For other work about the compactness of [b, T�], see [14] and
the references therein. It is of interest to characterize the compactness of Calderón
commutator T�, a; k on L p(Rd) (p ∈ (1, ∞)). We will consider this in a forthcoming
paper.
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