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Abstract
In this work, we obtain a short-time existence result for harmonic map heat flow cou-
pled with a smooth family of complete metrics in the domain manifold. Our results
generalize short-time existence results for harmonic map heat flow by Li-Tam (Invent
Math 105(1):1–46, 1991) and Chen-Zhu (J Differ Geom 74:119–154, 2006). In par-
ticular, we prove the short-time existence of harmonic map heat flow along a complete
Ricci flow g(t) on M into a complete manifold with curvature bounded from above,
under the assumption: (i) |Rm(g(t))| ≤ a/t ; (ii) g(t) is uniformly equivalent to g(0);
and (iii) the initial map is smooth and with uniformly bounded energy density.
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1 Introduction

In this work, wewant to extend some previous short-time existence results of harmonic
map heat flow. Harmonic map heat flow was first introduced by Eells and Sampson
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[4] to obtain harmonic map between two Riemannian manifolds. As a first step, they
proved the short-time existence for harmonic map heat flows between compact mani-
folds. Later in [16], Peter Li and the second author proved the short-time existence for
harmonic map heat flow from a complete noncompact Riemannian manifold (Mm, g)
with Ricci curvature bounded from below to another complete Riemannian manifold
(Nn, h) so that the initial map f has bounded energy density and f (M) is bounded.
Under an additional condition that the curvature Rm(h) of h is nonpositive, one can
remove the assumption that f (M) is bounded. From the point of view of PDE, one
would like to understand whether this is still true under a weaker assumption that
Rm(h) ≤ κ for some κ ≥ 0.

On the other hand,Hamilton [7] used harmonicmapheat flowon compactmanifolds
along a Ricci flow of the domain manifold to obtain uniqueness result of Ricci flow.
Later, Chen and Zhu studied the uniqueness of Ricci flow on complete noncompact
manifolds following Hamilton’s strategy. In [2], Chen and Zhu proved that if a Ricci
flow g(t), 0 ≤ t ≤ T , which is complete on a noncompact manifold M , has uniformly
bounded curvature, then one can obtain short-time solution for harmonic map heat
flow along the Ricci flow from (M, g(t)) to (M, g(T )) with identity map as initial
data. From this together with some careful estimates, they obtained uniqueness result
on Ricci flow with uniformly bounded curvature on noncompact manifold.

The uniqueness result was generalized to Ricci flow which may have unbounded
curvature. In [10], Kotschwar introduced an energy method to obtain a more general
uniqueness result. The method has been developed further by Lee [12] and Ma–Lee
[18]. In [18], Ma and Lee proved that if two complete solutions of the Ricci flows with
the same initial metric on a noncompact manifolds with curvature bounded by a/t for
some a > 0 so that the deformed metrics are uniformly equivalent to the initial metric,
then they are the same.

One may wonder if one can use harmonic map heat flow to obtain similar results.
Short-time existence results on harmonic map heat flow in [16] and the above unique-
ness results on Ricci flow motivate the study in this work.

Our main result can be described as follows. Let Mm be a noncompact manifold
with dimension m and let g(t) be a smooth family of complete metrics defined on
M × [0, T ] so that

∂

∂t
g(x, t) = H(x, t). (1.1)

Let (Nn, h) be another complete Riemannian manifold with dimension n. We want to
study the initial value problem for the harmonic map heat flow:

{
∂
∂t F(x, t) = τ(F)(x, t)
F(x, 0) = f (x)

(1.2)

where f (x) is a smooth map from M to N and τ(F)(x, t) is the tension field of the
map F(·, t) : M → N with respect to g(t) and h. For more details of the definitions
of harmonic map heat flow and related quantities, see Sect. 4.1.

Consider the following assumptions:
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(a1) 2Ric(g(t)) + H(t) ≥ −K (t)g(t) in M × [0, T ] where K (t) ≥ 0 and

K0 =:
∫ T

0
K (t)dt < ∞.

(a2) |H | ≤ at−1 and |∇H | ≤ at− 3
2 for some a > 0. Here, the norm and the covariant

derivative are with respect to g(t).
(a3) The curvature of h is bounded from above: Rm(h) ≤ κ for some κ ≥ 0.

We obtain the following short-time existence result.

Theorem 1.1 Let (Mm, g(t)) and (N , h) be as above satisfying assumptions (a1–a3).
Suppose there exists a smooth exhaustion function γ on M and C0 > 0 such that

C−1
0 (dT (p, x) + 1) ≤ γ (x) ≤ C0 (dT (p, x) + 1)

and

|∇k
T γ | ≤ C0

for 1 ≤ k ≤ 2, where dT is the distance function and ∇T is the covariant derivative
with respect to g(T ). Given any smooth map f : M → N such that

sup
M

e( f ; g(t)) ≤ e0

for all t ∈ [0, T ] for some constant e0 where e( f ; g(t)) is the energy density of the
map f from (M, g(t)) to (N , h), the harmonic heat flow (1.2) has a short-time smooth
solution F with initial map f defined on M × [0, T0] such that

sup
M×[0,T0]

e(F) ≤ C; sup
M×[0,T0]

|τ(F)|g(t) ≤ Ct−
1
2

for some C > 0 depending only on m, n, K0, κ, a, e0 and

T0 = min{T ,
1

2
(2κe0 exp(K0))

−1}.

In particular, if κ = 0, then the harmonic map heat flow exists on M × [0, T ].
In the theorem, the assumption on the existence of γ is satisfied if g(T ) has bounded

curvature, see [21]. The condition that e( f ; g(t)) is uniformly bounded is satisfied if
(i) e( f ; g(0)) is uniformly bounded and g(t) is uniformly equivalent to g(0); or more
generally, if (ii) e( f ; g(t0)) is uniformly bounded for some t0 and g(t) ≥ Cg(t0) for
some C > 0. We should also remark that the bounds in conclusion of the theorem do
not depend on C0.

Suppose g(t) = g(0) is fixed, then H = 0. In this case, (a1) is satisfied if Ric(g) ≥
−Kg for some K ≥ 0. If g has bounded curvature, then the short-time existence result
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in [16] is still true without assuming the initial map has bounded image, provided
(N , h) has curvature bounded from above. See Corollary 4.1.

If g(t) is a solution to the Ricci flow, we have

Theorem 1.2 Let (Mm, g(t)), t ∈ [0, T ] with T > 0, be a complete solution of the
Ricci flow on a noncompact manifold. Suppose (Nn, h) is another complete manifold
with Rm(h) ≤ κ for some κ ≥ 0. Let f : M → N be a smooth map with bounded
energy density, namely, supM e( f ; g(0)) ≤ e0. Assume that |Rm(g(t))| ≤ a/t for
some a > 0 on M × [0, T ] and assume that g(t) ≥ b−1g(0) for some b > 0 on
M × [0, T ], then there exists a smooth solution F to the heat flow for harmonic map
along g(t) with initial map f defined on M × [0, T0] such that

sup
M×[0,T0]

e(F) ≤ C1; |τ(F)|g(t)(·, t) ≤ C1t
− 1

2

for some C1 > 0 depending only on m, n, κ, a, b, e0 and

T0 = min{T ,
1

2
(2κbe0)

−1}.

In particular, if κ = 0, then the harmonic map heat flow exists on M × [0, T ].

The theorem is a corollary of Theorem 1.1 by the fact that H = −2Ric in this case
and by the covariant derivatives estimates of the curvature tensor along Ricci flow by
Shi [20].

To prove our results, instead of solving Dirichlet problem as in [2], we will use
the method of iteration which was introduced by Eells and Sampson in their seminal
work [4] and was also used in [16]. One key point is to obtain good estimates for the
fundamental solution of the heat equation. For the case of fixed metric, the estimates
are contained in [15]. For the case of time-dependent metrics, we apply the estimates
in [1] instead. We also obtain a new estimate, see Theorem 2.1.

Finally, we would like to point out that we are still unable to give another proof
of the uniqueness result on Ricci flow as in [18]. The main difficulty is that the sec-
ond fundamental form of the identity map from (M, g(0)) to (M, g(T )) may not be
bounded. If the curvature of the Ricci flow |Rm(g(t))| ≤ at−1+α with α > 1

2 , then
one can prove that the second fundamental form mentioned above is bounded and one
can obtain uniqueness. On the other hand, recently, the results in Theorem 1.1 have
also been used in [14] to study of Lipschitz rigidity problem in geometry of scalar
curvature.

This paper is organized as follows. In Sect. 2, we give estimates for the fundamental
solution of heat operator and give a proof of a generalizedmaximum principle. In Sect.
3, we study linear heat equations for homogeneous and in-homogeneous cases and a
semi-linear heat equation closely related to the harmonic map heat flow. In Sect. 4,
we study the harmonic map heat flow and give a proof of Theorem 1.1.
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2 Preliminary

In this section, we will describe some estimates of the fundamental solution (Green’s
function) of heat operator with time-dependent complete metrics on a noncompact
manifold, which will be used later. We will also extend a maximum principle.

2.1 Estimates for Fundamental Solution

Let g(t), t ∈ [0, T ] be a family of complete Riemannian metrics on a manifold Mm .
We always assume M is noncompact and g(t) is smooth in space and time. Recall that
G is the fundamental solution of heat operator ∂

∂t − �g(t) if it satisfies

{
(∂t − �x,t )G(x, t; y, s) = 0, in M × M × (s, T ];
limt→s+ G(x, t; y, s) = δy(x), for y ∈ M .

(2.1)

Let

H := ∂

∂t
g.

Suppose |H(x, t)|, |∇H |(x, t), and |Rm(g)|(x, t) are uniformly bounded in space and
time, where the norms and covariant derivatives are taken with respect to g(t). It is
known that the fundamental solution exists and is positive, see [6] for example. We
have the following estimates for G, see [1].

Theorem 2.1 Let g(t), t ∈ [0, T ] be a family of smooth complete metrics on M as
above with |H |g ≤ H0, |∇H |g ≤ H1, and |Rm(g(t))| ≤ k0. Then, we have the
following:

(a) [1, Theorem 5.5] There are constants C, D > 0 depending only on H0, k0,m, T
such that

G(x, t; y, s) ≤ C

V
1
2
x (

√
t − s)V

1
2
y (

√
t − s)

exp

(
− r2(x, y)

D(t − s)

)

for any 0 ≤ s < t ≤ T . Here, r(x, y) is the distance and Vx (ρ) is the volume of
the geodesic ball of radius ρ with center at x with respect to g(0).

(b) [1, Corollary 4.4] Fix α > 1. For any δ > 0, we have

G(p, t; y, s) ≤ (1 + δ)mα/2 × exp (Aδt + Bα

δt
r2t (p, q)) × G(q, (1 + δ)t; y, s),

where A > 0 depends only on m, T , H0, H1, k0, α, and B depends only on H0, T .
(c) For any x ∈ M, 0 ≤ s < t ≤ T , we have

∫
M
G(x, t; y, s)dVs(y) = 1.
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Proof (a) and (b) are from [1]. It remains to prove (c). We use similar idea as in the
proof of Lemma 5.1 in [1]. Because the curvature of g(0) is bounded, we can find a
smooth function ρ so that

C−1(r(x) + 1) ≤ ρ(x) ≤ C(r(x) + 1), |∇g(0)ρ| + |∇2
g(0)ρ| ≤ C

for someC > 0 depending only on k0 andm [21].Here, r(x) is the distance fromafixed
point p with respect to g(0). Let η be a smooth cutoff function such that 0 ≤ η ≤ 1,

η = 1 on [0, 1] and η = 0 on [2,+∞), η > 0 on [0, 2), 0 ≥ η′/η 1
2 ≥ −C0 and

η′′ ≥ −C0 on [0,+∞)withC0 being a positive absolutely constant. Let φ = η(ρ/R).
For 0 ≤ s1 < s2 < t , we have

∣∣∣∣
∫
M

φG(x, t; y, s2)dVs2(y) −
∫
M

φG(x, t; y, s1)dVs1(y)
∣∣∣∣

=
∣∣∣∣
∫ s2

s1
(

∂

∂s

∫
M

φG(x, t; y, s)dVs(y))ds
∣∣∣∣

=
∣∣∣∣
∫ s2

s1

∫
M

φ

(
∂

∂s
G(x, t; y, s) + h(y, s)G(x, t; y, s)

)
dVs(y)ds

∣∣∣∣
=

∣∣∣∣
∫ s2

s1

∫
M

φ�s,yG(x, t; y, s)dVs(y)ds
∣∣∣∣

=
∣∣∣∣
∫ s2

s1

∫
M
G(x, t; y, s)�s,yφdVs(y)ds

∣∣∣∣ ,

where h = 1
2 trg H , and we have used the fact that G is also the fundamental solution

of the conjugate heat equation i.e., (− ∂
∂s − �s,y − h(y, s))G = 0. Now

�s,yφ = 1

R
φ′�s,yρ + 1

R2 φ′′|∇g(s)ρ|2.

Since |H |, |∇H | are uniformly bounded, we conclude that

|�s,yφ| ≤ C

for some constant independent of R and s. This implies that

∣∣∣∣
∫
M

φG(x, t; y, s2)dVs2(y) −
∫
M

φG(x, t; y, s1)dVs1(y)
∣∣∣∣ ≤ C ′

R

for some constantC ′ independent of s1, s2, where we have also used [1, Corollary 5.2]
so that

∫
M

φG(x, t; y, s)dVs(y) ≤ c
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for some constant c independent of s. Let R → ∞ and note that

lim
s→t−

∫
M
G(x, t; y, s)dVs(y) = 1,

we obtain ∫
M
G(x, t; y, s)dVs(y) = 1.

The result follows. 
�
By the theorem, we can proceed as in the proof of [16, Lemma 2.1] to have the
following:

Corollary 2.1 Under the assumptions in Theorem 2.1, we have

∫
M

|G(p, t; y, s) − G(q, t; y, s)| dVs(y) ≤ C × rt (p, q)√
t − s

(2.2)

for any p, q ∈ M and 0 ≤ s < t ≤ T . Here, C is a constant depending only on
m, H0, H1, k0, and T . Here, rt is the distance function with respect to g(t).

Proof The proof is exactly as in [16]. We sketch the argument here for the sake of
completeness. Let δ > 0 and 1 < α < 4 to be determined later.

∫
M

|G(p, t; y, s) − G(q, t; y, s)|dVs(y)

≤
∫
M

|G(q, (1 + δ)t; y, s) − G(q, t; y, s)|dVs(y)

+
∫
M

|G(p, t; y, s) − G(q, (1 + δ)t; y, s)|dVs(y)
=(I) + (II).

By Theorem 2.1(b) and (c):

(I) ≤
∫
M

|(1 + δ)mα/2 × exp (Aδt) × G(q, (1 + δ)t; y, s) − G(q, t; y, s)|dVs(y)

+
∫
M

|(1 + δ)mα/2 × exp (Aδt) × G(q, (1 + δ)t; y, s) − G(q, (1 + δ)t; y, s)|dVs(y)

≤
∫
M

(1 + δ)mα/2 × exp (Aδt) × G(q, (1 + δ)t; y, s) − G(q, t; y, s)dVs(y)

+
∫
M

[(1 + δ)mα/2 × exp (Aδt) − 1] × G(q, (1 + δ)t; y, s)dVs(y)
=2[(1 + δ)mα/2 × exp (Aδt) − 1].

Here, A is a constant in the theorem. By Theorem 2.1(b) and (c) again,

(II) ≤ 2

[
(1 + δ)mα/2 × exp (Aδt + Bα

δt
r2t (p, q)) − 1

]
.
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Here, B is also the constant in the theorem. Here, A and B are independent of δ.
Hence,

∫
M

|G(p, t; y, s) − G(q, t; y, s)|dVs(y)

≤ 4

[
(1 + δ)mα/2 × exp (Aδt + Bα

δt
r2t (p, q)) − 1

]
.

Let r = rt (p, q). If r√
t

> 1
2
√
B
, we have

∫
M

|G(p, t; y, s) − G(q, t; y, s)|dVs(y) ≤ 2 ≤ 2r√
t
.

If r√
t

≤ 1
2
√
B
, then let δ = r

√
αB√
t

and α = 2. So δ2 = r2αB
t ≤ 1

4α < 1, this means
that δ < 1. So

∫
M

|G(p, t; y, s) − G(q, t; y, s)|dVs(y) ≤ C1 (exp(C2δ) − 1) ≤ C3δ ≤ C4
r√
t
.

Here, C1 − −C4 are positive constants depending only on m, H0, H1, k0, and T .
Therefore, we complete the proof of this corollary. 
�

2.2 A GeneralizedMaximum Principle

In this subsection, we want to show the following generalized maximum principle
which will be used later frequently. This type of maximum principle was originated
in the work of Karp and Li [9]. Different variants were obtained before, see [3, 17,
19]. We will use a trick in [3] to prove the following generalization of the maximum
principle in [19].

Theorem 2.2 Let g(x, t), t ∈ [0, T1] be a family of smooth Riemannian metrics on
Mm, with ∂

∂t g = H, so that sup
M×[0,T1]

|H | ≤ R0. Suppose f (x, t) is a smooth function

such that
(

∂
∂t − �g(t)

)
f ≤ 0 whenever f > 0, and

∫ T1

0

∫
M
exp (−ar20 (x)) f 2+(x, t)dV0dt < ∞ (2.3)

for some constant a > 0, where r0(x) is the distance function to a fixed point p with
respect to g(0) and f+ = max{ f , 0} is the positive part of f . If f (x, 0) ≤ 0 for all
x ∈ M, then f (x, t) ≤ 0 for all (x, t) ∈ M × [0, T1].
Proof In [19], it was assumed that ∂

∂t g ≤ 0. To prove the result in our setting, let
F(x, t) be such that dVt = eF(x,t)dV0. For 0 < T ≤ T1, which will be specified later,
let

h(x, t) = − θr2t (x)

4(2T − t)
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for 0 ≤ t ≤ T . Here, θ > 0 is a constant which will be chosen later and rt (x) is the
distance function to a fixed point p with respect to g(t). Then,

∂

∂t
h = − θr2t (x)

4(2T − t)2
− θrt (x)

2(2T − t)
× (

∂

∂t
rt )

= − θ−1|∇h|2 − θrt (x)

2(2T − t)
× (

∂

∂t
rt )

≤ − θ−1|∇h|2 + θ−1(2T − t)R0|∇h|2

because

|∇h|2 = θ2r2t (x)

4(2T − t)2

and | ∂
∂t rt | ≤ 1

2 R0rt .
Now we assume T ≤ min{T1, 1

4R0
} and choose θ = 1

4 , we obtain

∂

∂t
h ≤ −2|∇h|2 (2.4)

for 0 ≤ t ≤ T .
Next, let β > 0 be a constant and 0 ≤ φ(x) ≤ 1 be be the smooth function such

that φ = 1 in B0(p, R), φ = 0 outside B0(p, 2R) and |∇̃φ| ≤ 2
R , where ∇̃ denotes

the gradient with respect to g(0). We have

0 ≥
∫ T

0
e−βt

∫
M

φ2eh f+
(

∂

∂t
− �g(t)

)
f dVtdt

=1

2

∫ T

0
e−βt

∫
M

φ2eh
∂

∂t
( f 2+)dVtdt −

∫ T

0
e−βt

∫
M

φ2eh f+(�t f )dVtdt .

(2.5)

Now let us estimate the last two terms in (2.5).
By integration by parts and Cauchy–Schwartz inequality, we have

∫
M

φ2eh f+(�t f )dVt ≤
∫
M
eh f 2+|∇φ|2dVt +

∫
M

φ2eh f 2+|∇h|2dVt

≤
∫
M
eh f 2+|∇φ|2dVt −

∫
M

φ2eh f 2+
∂

∂t
hdVt .

(2.6)

On the other hand, since Then ∂
∂t dVt = ( ∂

∂t F)dVt = trg H
2 dVt , we have

1

2

∫ T

0
e−βt

∫
M

φ2eh
∂

∂t
( f 2+)dVtdt

= 1

2

[
(e−βt

∫
M

φ2eh f 2+dVt )|T0 −
∫ T

0
e−βt

∫
M

φ2eh(
∂

∂t
h) f 2+dVtdt

−
∫ T

0
e−βt

∫
M

φ2eh f 2+(
∂

∂t
F)dVtdt + β

∫ T

0
e−βt

∫
M

φ2eh f 2+dVtdt
]
.

(2.7)
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Since | ∂
∂t F | ≤ C1(n, R0) for some constantC1 depending only on n, R0, if we choose

β = C1(n, R0), then by by (2.4), (2.5), (2.6), (2.7), we have

∫
M

φ2(x)eh(x,T ) f 2+(x, T )dVT ≤4eβT
∫ T

0
e−βt

∫
M
eh f 2+|∇φ|2dVtdt

≤C(n, R0, T1)e
βT

∫ T

0

∫
M
eh f 2+|∇̃φ|2dV0dt .

(2.8)

Let R → ∞ in (2.8), we have

∫
M
eh(x,T ) f 2+(x, T )dVT

≤ lim inf
R→∞

C(n, R0, T1)eβT

R2

∫ T

0

∫
B0(p,2R)−B0(p,R)

e
− r20 (x)

C(R0,T1)T f 2+dV0dt .

Hence, if T < 1
aC(R0,T1)

, by the assumption (2.3), we have

∫
M
eh(x,T ) f 2+(x, T )dVT ≤ 0.

This implies f (x, T ) ≤ 0 for all x ∈ M . We can repeat the argument above to show
that f ≤ 0 in [0, T ) if T < 2

aC(R0,T1)
. One then can start with T and show that f ≤ 0

in [0, 2T ) as long as 2T < T1. From this, it is easy to see that the theorem is true. 
�

3 Results on Heat Equation

3.1 Linear Equation

To prepare the construction of harmonic map heat flow, we first study the linear heat
equation. Let Mm be a noncompact smooth manifold with dimension m ≥ 3 and let
g(t) be a family of smooth complete Riemannian metrics on M , 0 ≤ t ≤ T for some
T > 0. This means that g(t) is smooth both in space and time on M × [0, T ]. Denote

H(x, t) := ∂

∂t
g(x, t). (3.1)

Let F(x, t) be a bounded smooth function on M × [0, T ] and f (x) be a bounded
smooth function on M . We want to study the following problems:

⎧⎨
⎩

(
∂

∂t
− �g(t)

)
u = F in M × [0, T ];

u(x, 0) = 0;
(3.2)
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and ⎧⎨
⎩

(
∂

∂t
− �g(t)

)
v = 0 in M × [0, T ];

v(x, 0) = f (x).
(3.3)

Here, �g(t) is the Laplacian operator with respect to g(t).

Proposition 3.1 With the above notation and assumptions, there is a solution u of (3.2)
and a solution v of (3.3) so that both u and v are smooth in M × [0, T ]. Moreover,

⎧⎨
⎩

sup
M×[0,T ]

|u| ≤ T sup
M×[0,T ]

|F |;
sup

M×[0,T ]
|v| ≤ sup

M
| f |.

Proof This is standard. For any R >> 1, let 0 ≤ φR ≤ 1 be a smooth function on M
so that φR = 1 in Bp(R) and φR = 0 outside Bp(2R) where p ∈ M is a fixed point
and Bp(r) is the geodesic ball of radius r with respect to g(0). By [5, Theorems 7,
12, Chapter 3], there is a smooth solution uR of the following initial-boundary value
problem ⎧⎨

⎩
(

∂
∂t − �g(t)

)
uR = φRF in �R × [0, T ];

uR(x, 0) = 0 in x ∈ �R;
uR(x, t) = 0 in (x, t) ∈ ∂�R × [0, T ].

where �R is a bounded domain in M with smooth boundary and with Bp(2R) � �R .
Since ∣∣∣∣

(
∂

∂t
− �g(t)

)
uR

∣∣∣∣ ≤ sup
M×[0,T ]

|F | =: m,

we have

(
∂

∂t
− �g(t)

)
(uR − tm) ≤ 0,

(
∂

∂t
− �g(t)

)
(uR + tm) ≥ 0.

By the maximum principle, one can conclude that

sup
�R×[0,T ]

|uR | ≤ T sup
M×[0,T ]

|F |.

From this one may conclude that for any bounded domain D in M , and for any k ≥ 1,
the derivatives of uR with respect to space up to order k and the derivatives with
respect to t up to order [k/2] are bounded in D × [0, T ] by a constant independent of
R, provided R is large enough. Here, [k/2] is the integral part of k/2. See [11, Chapter
4] for example. From this, by taking a convergent subsequence, one can find a smooth
solution of (3.2) so that

sup
M×[0,T ]

|u(x, t)| ≤ T sup
M×[0,T ]

|F |.
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Similarly, one can construct solution v to (3.3) with the following estimate:

sup
M×[0,T ]

|v| ≤ sup
M

| f |.


�
To construct harmonic map heat flow, we also need some estimates of the gradients

of the solutions obtained in the previous proposition. In order to obtain the estimates,
we need more conditions on g(t). As before, let

H = ∂

∂t
g.

Proposition 3.2 With the notation and assumptions as in Proposition 3.1. Moreover,
assume that

|H |g(t), |∇H |g(t), |Rm(g(t))|g(t) ≤ K

for some K > 0 on M × [0, T ].
(i) The solutions u, v obtained in Proposition 3.1 satisfy the following gradient esti-

mates:

sup
M

|∇u|(·, t) ≤ C(m, K , T )

(
sup

M×[0,t]
|F |

)
t
1
2

and

sup
M

|∇v|(·, t) ≤ eC(m,K )t sup
M

|∇ f |

for all 0 ≤ t ≤ T , for some constants C(m, K ) depending only on m, K and
C(m, K , T ) depending only on m, K , T .

(ii) The solution v obtained in Proposition 3.1 satisfies the following estimate:

|v(x, t) − f (x)| ≤ C(m, K , T )t
1
2 sup

M
|∇ f |

for all (x, t) ∈ M × [0, T ] for some constant C(m, K , T ) depending only on
m, K, and T .

Proof (i) Let us prove the estimate of |∇v| first. Obviously, we may assume that |∇ f |
is uniformly bounded. Otherwise, the estimate is obvious. By the Bochner formula
and the fact that |H | and |Rm(g(t))| are uniformly bounded by K , one can conclude
that

(
∂

∂t
− �g(t)

)
|∇v| ≤ C(m, K )|∇v|,
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whenever |∇v| > 0. So we have

(
∂

∂t
− �g(t)

)(
e−C(m,K )t |∇v|

)
≤ 0.

On the other hand, since v is bounded and

(
∂

∂t
− �g(t)

)
v = 0,

one can conclude by using cutoff functions and integrating by parts that

∫ T

0

∫
M
exp(−ar20 (x))|∇v|2dV0dt < ∞

for some a > 0. Here, we have used the fact that |H | is bounded so that g(t) and
g0 are uniformly equivalent and volume comparison because |Rm(g(0))| is bounded.
Apply the maximum principle Theorem 2.2 to the function

e−C(m,K )t |∇v| − sup
M

|∇ f |,

one can conclude that

|∇v|(x, t) ≤ eC(m,K )t sup
M

|∇ f |.

in M × [0, T ].
Next we want to estimate |∇u|. Since |H |, |∇H |, |Rm(g(t))| are bounded by K ,

we can construct the fundamental solutionG(x, t; y, s) of the heat operator as in Sect.
2.1 with estimates as in [1]. If we let

w(x, t) =
∫ t

0

∫
M
G(x, t; y, s)F(y, s)dVs(y)ds,

then
(

∂
∂t − �g(t)

)
w = F in M × (0, T ] which is continuous up to t = 0 so that

w(x, 0) = 0. Moreover, w is bounded by Theorem 2.1. By the maximum principle
Theorem 2.2, we conclude that u ≡ w. Hence,

u(x, t) =
∫ t

0

∫
M
G(x, t; y, s)F(y, s)dVs(y)ds.
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Then, by Corollary 2.1 we have

|u(x, t) − u(x ′, t)| ≤
∫ t

0
ds

∫
M

|G(x, t; y, s) − G(x ′, t; y, s)| × |F(y, s)|dVs(y)

≤ ( sup
M×[0,t]

|F |) ×
∫ t

0
ds

∫
M

|G(x, t; y, s) − G(x ′, t; y, s)|dVs(y)

≤C( sup
M×[0,t]

|F |) ×
∫ t

0

rt (x, x ′)√
t − s

ds

≤Crt (x, x
′) × ( sup

M×[0,t]
|F |) × t

1
2 .

From this, it is easy to see that the estimate for |∇u| is true.
To prove (ii), for x ∈ M ,

|v(x, t) − f (x)|
=

∣∣∣∣
∫
M
G(x, t; y, 0) f (y)dV0(y) − f (x)

∣∣∣∣
=

∣∣∣∣
∫
M
G(x, t; y, 0)( f (y) − f (x))dV0(y)

∣∣∣∣
≤ sup

M
|∇ f |

∫
M
G(x, t; y, 0)r(x, y)dV0(y)

where r(x, y) is the distance between x, y with respect to g(0) and we have used
Theorem 2.1. By Theorem 2.1 and volume comparison, one can proceed as in [16] to
conclude that ∫

M
G(x, t; y, 0)r(x, y)dV0(y) ≤ C1t

1
2

for some constant C1 depending only on m, K , T . From this, (ii) follows. 
�

3.2 A Semi-linear Heat Equation

Wewant to use the results in Sect. 3.1 to study the following semi-linear equation. Let
g(t) be a smooth family of complete metrics defined on M with t ∈ [0, T ]. We want
to consider the following system of semi-linear equation which is closely related to
harmonic map heat flow:

{(
∂
∂t − �g(t)

)
u = FBC (u)〈∇uB,∇uC 〉 in M × [0, T ];

u(0, x) = f (x),
(3.4)

where u = (uA) : M × [0, T ] → R
q is a vector-valued function and f = ( f A) :

M → R
q and FBC = (F A

BC ) : Rq → R
q are smooth functions. The ∇uB and the
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inner product 〈∇uB,∇uC 〉 are taken with respect to g(t). As before, let

H := ∂

∂t
g.

Lemma 3.1 Assume

|H |g(t), |∇H |g(t), |Rm(g(t))|g(t) ≤ K

for some K > 0 on M × [0, T ] and |F | ≤ L . Suppose f is a smooth function so that
f and |∇ f | are bounded with

m := sup
M

(∑
A

|∇ f A|2
) 1

2

< ∞.

Then, there is a constant T1 > 0 depending only on m, q, K , L, T , andm so that (3.4)
has a smooth solution in M × [0, T1] with u and |∇u| uniformly bounded.
Proof We use iteration as in [4, 16]. Define u−1 = 0 and define uk inductively: uk is
the solution of the following linear equation:

{(
∂
∂t − �g(t)

)
uk = FBC (uk−1)〈∇uk−1,B,∇uk−1,C 〉 in M × [0, T ];

uk(0, x) = f (x),
(3.5)

for k ≥ 0 where uk = (uk,A). The equation for each component is

(
∂

∂t
− �g(t)

)
uk,A = F A

BC (uk−1)〈∇uk−1,B,∇uk−1,C 〉.

First we want to show that uk is well defined and smooth in M × [0, T ] for all
k ≥ 0. Suppose uk−1 is well defined and smooth so that

sup
M×[0,T ]

|∇uk−1|2 < ∞.

Note that this is true for k = 1, by Propositions 3.1, 3.2 and assumptions on f . Since
|F | is bounded and the inductive hypothesis, by Propositions 3.1 and 3.2, then for all
k ≥ 1 (3.5) has a solution uk which is smooth in M × [0, T ], is uniformly bounded
and

sup
M×[0,T ]

|∇uk |2 < ∞.

Next we want to show that if 0 < T1 ≤ T is small enough, then |∇uk | will be
uniformly bounded independent of k in M × [0, T1]. By Proposition 3.2, we have

|∇uk,A|(·, t) ≤ C(m, K , T )t
1
2 sup
M×[0,t]

|F A
BC (uk−1)||∇uk−1,B | |∇uk−1,C | + eC(m,K )t sup

M
|∇ f A|
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Let

pk(t) := sup
M×[0,t]

(∑
A

|∇uk,A|2(·, t)
) 1

2

.

We have
pk(t) ≤ C1(t

1
2 p2k−1 + m)

for some constant C1 depending only on m, q, K , T , L . So

C1t
1
2 pk(t) ≤

(
C1t

1
2 pk−1(t)

)2 + C2
1 t

1
2m.

Suppose T1 is such that C2
1T

1
2
1 m ≤ 1

4 , then for 0 < t ≤ T1

C1t
1
2 p0(t) ≤

(
C1t

1
2 p−1(t)

)2 + C2
1 t

1
2m = C2

1 t
1
2m ≤ 1

2

because u−1 = 0. Inductively, we conclude that

C1t
1
2 pk(t) ≤

(
C1t

1
2 pk−1(t)

)2 + C2
1 t

1
2m ≤ 1

4
+ 1

4
= 1

2
.

Hence, we let T1 > 0 so that T
1
2
1 = min{T 1

2 , 1
4C

−2
1 (1 + m)−1}, then

pk(T1) ≤ 1

2
C−1
1 T

− 1
2

1

for all k. From this and by the proof of Proposition 3.1, we also conclude that uk are
uniformly bounded on M × [0, T1].

We claim that in any bounded coordinate neighborhood U , for any l ≥ 1, there is
a constant C independent of k so that |Dα

t D
β
x uk | ≤ C if 2α + β ≤ l. Here Dt and Dx

are partial derivatives with respect to t and local coordinates x . If the claim is true,
then by a diagonal process, we can find a smooth solution of (3.4) in M × [0, T1], so
that |u| and |∇u| are uniform bounded in space and time.

The idea of the claim is as follows. For each k, the right hand side of (3.5) is
uniformly bounded. By standard theory, we have some Hölder norm of the ∇uk being
bounded. This will imply bounds of higher derivatives for uk+1 etc. We sketch the
proof as follows. Let φ be a smooth cutoff function with support inside a bounded
coordinate neighborhood U so that it is 1 in an open set V � U . Then, one can check
that (

∂

∂t
− �g(t)

)
(φ(uk − f )) = Gk
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where Gk is uniformly bounded by a constant independent of k and is zero outsideU .
Moreover, φ(uk − f ) = 0 at t = 0. By [5, Theorem 4, p. 191], we have

|uk |δ + |Dxu
k |δ ≤ C

in V × [0, T1] for some constant C and δ > 0 independent of k. Here, | · |δ is
the Hölder norm in V × [0, T1] with respect to the distance function d(P, Q) =(|x − x ′|2 + |t − t ′|) 1

2 for P = (x, t), Q = (x ′, t ′). From this and the Schauder
estimates, one may get |uk+1|2+δ being uniformly bounded in V ′ × [0, T1] for any
V ′ � V . Then, |uk+2|3+δ is uniformly bounded in V ′′ � V ′ and so on. This proves
the claim. 
�

4 Short-Time Existence of Harmonic Map Heat Flow

We will obtain a short-time existence result for harmonic map heat flow coupled with
a smooth family of complete metrics in the domain manifold. First, let us recall the
basic facts about the harmonic map heat flow.

4.1 The Harmonic Map Heat Flow

Let (Mm, g) and (Nn, h) be two Riemannian manifolds and f : (Mm, g) → (Nn, h)

be a smoothmap.Let∇, ∇̃ beRiemannian connections onM, N respectively.Consider
the vector bundle T ∗(M)⊗ f −1(T (N )) overM . Let D be the connection on this bundle
defined as (for ω a 1-form and Y a vector field along f ):

DX (ω ⊗ Y ) = ∇Xω ⊗ Y + ω ⊗ ∇̃ f∗XY .

In general, one can extend the connection to ⊗k(T ∗(M)) ⊗ f −1(T (N )). If in local
coordinates x in M , y in N , a section of this bundle is given by

s = uα
i1...ikdx

i1 ⊗ · · · ⊗ dxik ⊗ ∂yα ,

then

s|p := D∂x p s

= uα
i1...ik ;pdx

i1 ⊗ · · · ⊗ dxik ⊗ ∂yα + uα
i1...ikdx

i1 ⊗ · · · ⊗ dxik ⊗ ∇̃ f∗(∂x p )∂yα

= uα
i1...ik ;pdx

i1 ⊗ · · · ⊗ dxik ⊗ ∂yα + f β
p u

α
i1...ikdx

i1 ⊗ · · · ⊗ dxik ⊗ ∇̃∂yβ
∂yα .

Here and in the following, ‘ ; ’ will denote the covariant derivative with respect to
∇ and ‘ | ’ will denote the covariant derivative with respect to the connection D on the
bundle T ∗(M) ⊗ f −1(T (N )).
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In case we have a smooth map f : M × [0, T ] → N , we may also consider
Dt = D∂t . If

s = uα
i1...ikdx

i1 ⊗ · · · ⊗ dxik ⊗ ∂yα

then

s|t =Dt (s)=∂t u
α
i1...ikdx

i1 ⊗ · · · ⊗ dxik ⊗ ∂yα + f β
t u

α
i1...ikdx

i1 ⊗ · · · ⊗ dxik ⊗∇̃∂yβ
∂yα .

Now consider a smooth map f : M × [0, T ] → N and its derivative

s := d f = f α
i dx

i ⊗ ∂yα .

The energy density of f is defined by

e( f ) := |s|2g,h := gi j f α
i f β

j hαβ

in local coordinates. The second fundamental form of f is defined by

Ds := Dd f .

In local coordinates,

Ds = Dd f =sα
i | jdxi ⊗ dx j ⊗ ∂yα

= f α
;i jdx

i ⊗ dx j ⊗ ∂yα + f α
i f β

j dx
i ⊗ dx j ⊗ ∇̃∂yβ

∂yα .

Note that sα
i | j = sα

j |i . The tension field of f is defined by

τ( f ) := trg(Ds),

which is the trace of the second fundamental form and is a vector field along f . In
local coordinates

τ( f )α := gi j sα
i | j .

Suppose g(t) is a smooth family of metrics on M , t ∈ [0, T ]. Then, the harmonic map
heat flow f (x, t) coupled with varying metrics g(t) is defined by

∂

∂t
f = τ( f ). (4.1)

Here, f : M × [0, T ] → N is a smooth map and the tension field on the right is
computed with respect to g(t). See the seminal paper by Eells and Sampson [4]. Note
that in [4], the metric g is fixed.
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In local coordinates, (4.1) can be expressed as

∂

∂t
f α(x, t) = gi j (x, t)( f α

i j − �k
i j f

α
k + �̃α

βγ f β
i f γ

j ). (4.2)

Here, f α
i , f α

i j denote the partial derivatives of f α and �, �̃ are the connections of g(t)
and h, respectively.

4.2 A Priori Estimates

We want to obtain some a priori estimates for the energy density and the norm of the
tension field for solutions of harmonic map heat flow. Let us first estimate the energy
density. Let g(t) be a smooth family of complete metrics onMm which is noncompact,
t ∈ [0, T ] and let (Nn, h) be another complete Riemannian manifold. Suppose

F : M × [0, T ] → N

is a solution to the harmonic map heat flow. As before, let

H = ∂

∂t
g.

Direct computations give:

Lemma 4.1 In local coordinates of xi in M and yα in N,

(
∂

∂t
− �g(t)

)
e(F) = − gil gk j (Hkl + 2Rkl) F

α
i Fβ

j hαβ − 2|DdF |2

+ 2gpqgi j Fσ
p F

γ
q Fτ

i F
β
j Sγ τβσ .

where Ri j is Ricci tensor of g(t) and S is the curvature tensor of N .

Proof This is well known [4]. The only difference is that g also depends on t , and we
have a term involving ∂t g = H . 
�
Lemma 4.2 Let (Mm, g(t)), (N , h) and F be as in the previous lemma so that e(F) is
uniformly bounded in space and time. Suppose that |H |g(t) is uniformly bounded by
L. Suppose

2Ric(g(t))(x, t) + H(x, t) ≥ −K (t)g(x, t)

for some K (t) ≥ 0 so that

K0 =:
∫ T

0
K (t)dt < ∞,
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and suppose Rm(h) ≤ κ for some κ ≥ 0. Let

e0 = sup
M

e(F)(·, 0).

Then,
e(F)(·, t) ≤ exp(λ(t))v(t)

on [0, T1] where

v(t) =
(
e−1
0 − 2κ exp(K0)t

)−1
, λ(t) :=

∫ t

0
K (τ )dτ

and T1 = min{T , 1
2 (2κe0 exp(K0))

−1}. Hence, e(F)(·, t) ≤ 2e0 exp(K0) for t ∈
[0, T1]. In particular if κ = 0, then T1 = T .

Proof Let s = dF = Fα
i dx

i ⊗ ∂yα in local coordinates of x ∈ M and F(x, ·) in N .
Let S be the curvature tensor of (N , h), then by Lemma 4.1, we have

(
∂

∂t
− �g(t))e(F) ≤ K (t)e(F) + 2κe2(F).

Let λ(t) := ∫ t
0 K (τ )dτ ≤ K0 < +∞. Then,

(
∂

∂t
− �g(t))(exp(−λ)e(F)) ≤ 2κ exp(λ)(exp(−λ)e(F))2

≤ 2κ exp(K0)(exp(−λ)e(F))2

Let v(t) be the solution of the ODE

v′ = 2κ exp(K0)v
2

with v(0) = e0. Then,

v(t) =
(
e−1
0 − 2κ exp(K0)t

)−1
.

v(t) is well defined if t < (2κe0 exp(K0))
−1. Let T1 = min{T , 1

2 (2κe0 exp(K0))
−1}.

Let �(x, t) := exp(−λ(t))e(F). Then in M × [0, T1], we have

(
∂

∂t
− �g(t))(� − v) ≤ 2κ exp(K0)(� + v) × (� − v) ≤ C1(� − v)

for some constant C1 > 0 whenever � − v > 0. This implies that

(
∂

∂t
− �g(t)

)
(exp(−C1t)(� − v)) ≤ 0,
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whenever exp(−C1t)(�− v) > 0. Since g(t) is uniformly equivalent to g(0) and the
Ricci curvature of g(t) is bounded from below, one may apply the maximum principle
Theorem 2.2 to conclude that exp(−C1t)(� − v) ≤ 0 in M × [0, T1]. From this it is
easy to see that the result follows. 
�
We should remark that the bounds of e(F) and T1 do not depend on L .

In order to study the distance between F(x, t) and the initial map F(x, 0), we need
to estimate the norm of the tension field. Again by direct computations we have, see
[8]:

Lemma 4.3
(

∂

∂t
− �g(t)

)
|τ(F)|2 =2SδαγβF

δ
k F

γ

k Fα
t Fβ

t − 2Fα
tk F

α
tk − 2Fα

t Hkl F
α
kl

− Fα
t Fα

k (2∇l Hlk + ∇k Hll).

Here, the computation is at x and F(x, t) under normal coordinates with respect to
g(t) and h.

Using this we obtain the following:

Lemma 4.4 With same notation and assumptions as in Lemma 4.2, assume |H | ≤
at−1, |∇H | ≤ at− 3

2 for some a > 0. Suppose

e(F) ≤ m.

in M×[0, T ]. Then, there is a constant C > 0 depending only on m, n, T , a, K0, κ,m
such that

|τ(F)|(x, t) ≤ Ct−
1
2

on M × [0, T ].
Proof By Lemma 4.3, we have

(
∂

∂t
− �g(t)

)
|τ(F)|2 ≤2SδαγβF

δ
k F

γ

k Fα
t Fβ

t − 2Fα
tk F

α
tk − 2Fα

t Hkl F
α
kl

− Fα
t Fα

k (2∇l Hlk + ∇k Hll)

≤C(m, n)
(
κe(F)|τ(F)|2 + at−1|τ(F)||DdF |

+at−
3
2 e(F)

1
2 |τ(F)|

)
− 2Fα

tk F
α
tk .

So at the point where |τ(F)| > 0,

(
∂

∂t
− �g(t)

)
|τ(F)| ≤ C(m, n)

(
κe(F)|τ(F)| + at−1|DdF | + at−

3
2 e(F)

1
2

)
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and (
∂

∂t
− �g(t)

)
(t |τ(F)|)

≤ C(m, n)
(
κe(F)t |τ(F)| + a|DdF | + at−

1
2 e(F)

1
2

)
+ |τ(F)|

≤ C1(|DdF | + t−
1
2 ).

because |τ(F)| ≤ |DdF | and t ≤ T . Here and belowCi will denote a positive constant
depending only on m, n, T , K0, κ, a,m.

On the other hand, by Lemma 4.1, we have

(
∂

∂t
− �g(t)

)
e(F) ≤ K (t)e(F) + 2κe2(F) − 2|DdF |2.

Let λ(t) = ∫ t
0 K (s)ds and � = exp(−λ(t))e(F), then

(
∂

∂t
− �

)
� ≤ −C2

−1|DdF |2 + C2.

So (
∂

∂t
− �

)
t
1
2 � ≤ −C−1

2 t
1
2 |DdF |2 + C3t

− 1
2 .

This implies (
∂

∂t
− �

) (
t |τ(F)| + t

1
2 �

)
≤ C4t

− 1
2

Hence, (
∂

∂t
− �

) (
t |τ(F)| + t

1
2 � − C5t

1
2

)
≤ 0.

Since we do not assume |τ(F)| is bounded, we need to estimate the integral of
|τ(F)|2 in order to apply the maximum principle. Recall

(
∂

∂t
− �

)
� ≤ −C2

−1|DdF |2 + C2

Multiplying a cutoff function to the above inequality and then integrating by part, one
can prove that

∫ T1

0

∫
B0(R)

|DdF |2dV0dt ≤ CVg(0)(2R)

for some constantC independent of R. Here, we have used the fact that� is uniformly
bounded and g(t) is uniformly equivalent to g(0). Using the fact that Vg(0)(2R) ≤
exp(C ′(R + 1)), for some C ′ > 0 independent of R. The lemma follows from the
maximum principle Theorem 2.2. 
�
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Remark 4.1 In the above lemma,wedonot assume that |τ(F)| is bounded. In particular,
we do not assume the tension field of the initial data is bounded. 
�

4.3 Short-Time Existence

LetMm be a noncompactmanifold and let g(t) be a smooth family of completemetrics
defined on M × [0, T ] so that

∂

∂t
g(x, t) = H(x, t). (4.3)

Let (Nn, h) be another complete Riemannian manifold. Recall the following assump-
tions.

(a1) 2Ric(g(t)) + H(t) ≥ −K (t)g(t) in M × [0, T ] where K (t) ≥ 0 and

K0 =:
∫ T

0
K (t)dt < ∞.

(a2) |H | ≤ at−1 and |∇H | ≤ at− 3
2 for some a > 0. Here, the norm and the

covariant derivative are with respect to g(t).
(a3) The curvature of h is bounded from above: Rm(h) ≤ κ for some κ ≥ 0..

We will prove the main short-time existence result of harmonic map heat flow
Theorem 1.1 in this subsection.

As a corollary, we remove a condition that the image of the initial map is bounded in
the short-time existence result [16, Theorem 3.4], provided there is a suitable exhaus-
tion function and curvature of the target manifold is bounded from above.

Corollary 4.1 Let (Mm, g) be a complete noncompact Riemannian manifold with
Ric(g) ≥ −Kg for some K ≥ 0 and let (Nn, h) be another complete noncompact
manifold with Rm(h) ≤ κ for some κ ≥ 0. Suppose there is a smooth function γ on
M satisfying:

C−1
0 (d(p, x) + 1) ≤ γ (x) ≤ C0 (d(p, x) + 1)

and

|∇kγ | ≤ C0, k = 1, 2

for some C0 > 0 where d(p, x) is the distance function on M and p ∈ M is a fixed
point. Then for any smooth map f : M → N with energy density uniformly bounded
by e0, there exists a solution to the harmonic map heat flow F from M ×[0, T0] → N
with initial value F(x, 0) = f (x), where T0 = C1κ

−1 for some C1 depending only
on e0, K. Moreover,

sup
M

e(F(·, t)) ≤ 2e0 exp(Kt).

In particular, if κ = 0, then the heat flow has long time solution.
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As mentioned in the introduction, Theorem 1.2 which is a result on short-time
existence of the harmonic map heat flow coupled with the Ricci flow also follows
immediately from Theorem 1.1 as a corollary.

Before we prove Theorem 1.1, we need the following extension lemma which will
be used later.

Lemma 4.5 Let g(t) be a smooth family of complete metrics on M, t ∈ [0, T ], and
(N , h) is another smooth complete manifold. Let 0 < T1 < T . Suppose F1 is a smooth
solution to the harmonic map heat flow from M × [0, T1] to N and F2 is a smooth
solution to the harmonic map heat flow from M × [T1, T ] to N. Suppose F1 = F2 at
t = T1. Let

F(x, t) =
{
F1(x, t), if (x, t) ∈ M × [0, T1];
F2(x, t), if (x, t) ∈ M × [T1, T ].

Then, F is a smooth solution to the harmonic map heat flow from M × [0, T ] to N.

Proof It is sufficient to show that F is smooth near (p, T1) for all p. Consider local
coordinates xi near a point p in M and yα near the point F(p, T1) in N . Near (p, T1),

∂

∂t
Fα
1 (x, t) =gi j (x, t)

(
(Fα

1 )i j (x, t)

− �k
i j (x, t)(F

α
1 )k(x, t) + �̃α

βγ (F1(x, t))(F
β
1 )i (x, t)(F

γ
1 ) j (x, t)

)
.

Here, (Fα
1 )i , (Fα

1 )i j denote the partial derivatives of Fα
1 and �, �̃ are the Levi-Civita

connections of Riemannian manifolds (M, g(t)) and (N , h), respectively. Similarly,
we have the corresponding equations for F2. Since F1, F2 are smooth up to T1, we
conclude that as (x, t), (x ′, t ′) → (p, T1) with t > T1 > t ′, all the corresponding
space derivatives of F2(x, t) and F1(x ′, t ′) will converge to the same limit. From the
equations, we conclude that ∂t F2(x, t) and ∂t F1(x ′, t ′)will converge to the same limit.
Differentiate the equation with respect to x , we can conclude that ∂t∂

l
x F1(x

′, t ′) and
∂t∂

l
x F2(x, t) will converge to the same limit. Differential the equation with respect

to t , we conclude that ∂t∂t F2(x, t) and ∂t∂t F1(x ′, t ′) will converge to the same limit.
Continue in this way, one can see that the lemma is true. 
�

The proof of Theorem 1.1 follows from the following special case so that condition
(a1) is replaced by a condition on Ric(g(t)) and (a2) is replaced by the conditions that
|H |, |∇H | are uniformly bounded.

Proposition 4.1 Let Mm be a noncompact manifold and let g(t) be a smooth family
of complete metrics defined on M × [0, T ] so that

∂

∂t
g(x, t) = H(x, t).

Let (Nn, h) be another complete manifold. Suppose (a3) is satisfied. Assume |H |g(t) ≤
L, |∇H |g(t) ≤ L in M ×[0, T ] for some constant L > 0 and Ric(g(t)) ≥ −K (t)g(t)
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for some K (t) ≥ 0 so that

K0 :=
∫ T

0
K (t)dt < ∞.

Moreover, assume there exists a smooth exhaustion function γ on M and C0 > 0 such
that

C−1
0 (dT (p, x) + 1) ≤ γ (x) ≤ C0 (dT (p, x) + 1)

and

|∇k
T γ | ≤ C0

for 1 ≤ k ≤ 2, where dT is the distance function and ∇T is the covariant derivative
with respect to g(T ). Let f : (M, g0) → (N , h) be a smooth map such that

sup
M

e( f ) ≤ e0.

Then, there exists a smooth solution F to the heat flow for harmonic map defined on
M × [0, T0] with initial map f such that

sup
M×[0,T0]

e(F) < ∞

for some 0 < T0 ≤ T depending only on m, n, T , K0, κ, L, e0,C0.

Let us prove Theorem 1.1 assuming the proposition is true.

Proof of Theorem 1.1. Fix any small T > s > 0. Let g(s)(t) := g(t+s), 0 ≤ t ≤ T−s.
Then,

∂

∂t
g(s)(t) = H(s + t) =: H (s)(t).

By condition (a2), there is a constantC1 = C1(a, s) such that |H (s)(t)|, |∇H (s)(t)| are
uniformly bounded by C1 on M ×[0, T − s]. Here, the norm and covariant derivative
are with respect to gs(t). By conditions (a1), we have

2Ric(g(t)) ≥ −(K (t) + C1)g(t).

Together with (a3) and the condition on γ , by Proposition 4.1, for any smooth map
f̃ : M → N with energy density bounded by ẽ0, and for any T − s > t0 > 0, the
harmonic map heat flow has a solution F̃ in M × [t0, t0 + T̃0] with initial map f̃ so
that

sup
M×[t0,t0+T̃0]

e(F̃) < ∞.
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Here, T̃0 depends only on m, n, T − s, K0, κ, ẽ0,C1,C0 as long as t0 + T̃0 ≤ T − s.
In particular, the harmonic map heat flow has a solution F (s) in M × [0, T̃1] with

initial map f so that

sup
M×[0,T̃1]

e(F (s)) < ∞.

Here, T̃1 depends only on m, n, T − s, K0,C1, κ, e0,C0 as long as T̃1 ≤ T − s. By
Lemma 4.2, we conclude that

sup
M×[0,T̃1]

e(F (s)) ≤ 2e0 exp(K0)

provided T̃1 ≤ 1
2 (2κe0 exp(K0))

−1. If this is the case, then one can extend the solution
to [0, T̃1 + T̃0] by Lemma 4.5, provided T̃1 + T̃0 ≤ T − s, where T̃0 depends only on
m, n, T − s, K0,C1, κ,C0, and

ẽ0 := 2e0 exp(K0).

Continue in this way, we conclude that the harmonic map heat flow has a solution F (s)

in M × [0, Ts] with initial map f so that

sup
M×[0,Ts ]

e(F (s)) ≤ 2e0 exp(K0)

where

Ts = min{T − s,
1

2
(2κe0 exp(K0))

−1}.

By Lemma 4.4, we have

|τ(F (s))|g(s)(t) ≤ C2t
− 1

2

where C2 depends only on m, n, e0, a, K0, κ . Hence, dN (F (s)(x, t), f (x)) ≤ C3 in
M ×[0, Ts] for some C3 independent of s. In local coordinates, F (s) satisfies a system
of semi-linear equations

∂

∂t
(F (s))α(x, t) = gi js (x, t)

(
(F (s))αi j − �k

i j (gs(x, t))(F
(s))αk + �̃α

βγ (F (s))
β
i (F (s))

γ

j

)
.

Moreover, |∇(F (s))α| are uniformly bounded. Then, we can argue as in the proof
of Lemma 3.1 to conclude that for any precompact domain � ⊂ M , all orders of
derivatives of F (s) are uniformly bounded in � × [0, Ts]. Passing to a subsequence,
we conclude that F (s) will converge on M ×[0, T0] to a solution of the harmonic map
heat flow coupled with g(t) on M × [0, T0] with initial map being f such that e(F)

and |τ(F)| have bounds as stated in the theorem. 
�
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4.4 Proof of Proposition 4.1

Our method is to use conformal change to find solutions on compact domains. We
then obtain estimates for the energy density and the norm of the tension field in order
to take limit as in the proof of Theorem 1.1 under the assumption of Proposition 4.1.
Let χ ∈ (0, 1

8 ), � : [0, 1) → [0,∞) be the function:

�(s) =

⎧⎪⎨
⎪⎩
0, s ∈ [0, 1 − χ ];
−log

[
1 −

(
s − 1 + χ

χ

)2
]
, s ∈ (1 − χ, 1).

(4.4)

Let ϕ ≥ 0 be a smooth function on R such that ϕ(s) = 0 if s ≤ 1 − χ + χ2,
ϕ(s) = 1 for s ≥ 1 − χ + 2χ2

ϕ(s) =
{
0, s ∈ [0, 1 − χ + χ2];
1, s ∈ (1 − χ + 2χ2, 1).

(4.5)

such that
2

χ2 ≥ ϕ′ ≥ 0. Define

F(s) :=
∫ s

0
ϕ(τ)�′(τ )dτ.

From [13], we have:

Lemma 4.6 Suppose 0 < χ < 1
8 . Then, the function F ≥ 0 defined above is smooth

and satisfies the following:

(i) F(s) = 0 for 0 ≤ s ≤ 1 − χ + χ2.
(ii) F′ ≥ 0 and for any k ≥ 1, exp(−kF)F(k) is uniformly bounded.

Let γ be the exhaustion function as in the assumption of the proposition. Let χ = 1
16 .

For ρ > 1, let Uρ be the component of γ −1([0, ρ)) containing a fixed point p. Note
that Uρ exhausts M as ρ → ∞. Now we consider a function on Uρ defined by

φ(x) := F(
γ (x)

ρ
).

and let

g̃(t) := exp(2φ)g(t).

Then, g̃ is a smooth family of complete metrics on Uρ so that

∂

∂t
g̃ = H̃

where H̃ = exp(2φ)H .
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Lemma 4.7 With the above notations, under the assumptions as in Proposition 4.1,
we have in Uρ × [0, T ]:
(i) |H̃(t)|g̃(t), |∇̃ H̃(t)|g̃(t) ≤ C for some constant C depending only on L, T ,C0,

where ∇̃ is the derivative with respect to g̃(t).
(ii) 2Ric(g̃(t)) + H̃(t) ≥ −K̃ (t)g̃(t) for some K̃ ≥ 0 so that

∫ T
0 K̃ (t)dt ≤ K̃0 for

some constant K̃0 depending only on L, T , K0,C0.
(iii) |Rm(g̃(t))| is uniformly bounded.
Proof of Theorem 1.1. Since |H | ≤ L , we have

C−1
1 g(t) ≤ g(T ) ≤ C1g(t) (4.6)

for some C1 = C1(L, T ). On the other hand, since |∇H | ≤ L and ∂
∂t g = H , if we

let � and �̄ be the Christoffel symbols of g(t) and ḡ = g(T ), respectively, and let
A = � − �̄, we have |A|g(t) is bounded by a constant depending only on L, T . Since

t∇2γ = ∇2
T γ + A ∗ ∇T γ,

we have
|∇γ |g(t) ≤ C2, |∇2γ |g(t) ≤ C2, (4.7)

for some constant C2 = C2(L, T ,C0). Next we want to compute the gradient and
Hessian of φ. Let the covariant derivative with respect to g(t) be denoted by ;, then

φi = ρ−1F′γi ,
φ;i j = ρ−1F′γ;i j + ρ−2F′′γiγ j .

By Lemma 4.6, { |∇φ|g(t) ≤ C3 exp(φ);
|∇2φ|g(t) ≤ C3 exp(2φ).

(4.8)

for some C3 = C3(L, T ,C0) because φ ≥ 0.

|H̃ |2g̃(t) =g̃i j g̃kl H̃ik H̃ jl

=e−4φgi j gkle4φHik Hi j

=|H |2g(t).

Since
∇̃ H̃ =(∇̃ − ∇)H̃ + ∇ H̃

=(�̃ − �) ∗ e2φ ∗ H + 2e2φφ′ρ−1∇γ ∗ H

+ e2φ ∗ H

=(2φ′ρ−1∇γ ∗ g ∗ g−1) ∗ e2φ ∗ H

+ 2e2φφ′ρ−1∇γ ∗ H + e2φ ∗ H

,
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we have
|∇̃ H̃ |g̃ ≤ C4 (4.9)

for some C4 = C4(L, T ,C0). These prove (i).
To prove (ii), by (4.8), denote the Ricci tensor of g̃ by R̃i j and the Ricci tensor of

g(t) by Ri j , then

R̃i j =Ri j + (m − 2)φ;i j + (m − 2)φiφ j − [�g(t)φ + (m − 2)|∇φ|2]gi j
≥ − K (t)gi j − C5 exp(2φ)gi j

≥ − K̃ (t)g̃i j

where K̃ (t) = K (t) + C5(L, T ,C0), because φ ≥ 0.
To prove (iii),

|R̃m|g̃ ≤ C6 exp(−2φ)
(
|Rm|g + |∇2φ|g + |∇φ|2g

)

for some C6 = C6(m). By using (4.8) and the fact that the curvature of g is uniformly
bounded in Uρ × [0, T ] the result follows. 
�

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1 Let φ, ρ,Uρ, g̃ be as above. We claim that there is T0 > 0
depending only onm, n, K0, κ, e0, L,C0, T such that the heat flow for harmonic map
from (Uρ, g̃(t)) to N with initial map f |Uρ has a solution F (ρ) onUρ ×[0, T0] so that

sup
Uρ×[0,T0]

e(F (ρ)) < ∞.

Suppose the claim is true, using the fact that 2Ric(g̃(t)) + H̃(t) ≥ −K̃ (t)g̃(t) for
some K̃ with

K̃0 :=
∫ T

0
K̃ < ∞

where K̃0 depends only on K0, L,C0, T , one can proceed as in the proof of Theorem
1.1 to conclude the proposition is true by taking limit of a subsequence of F (ρ) with
ρ → ∞.

In order to prove the claim, we use the method as in [4] and [16]. Since the image of
f |Uρ is bounded in N . Let f |Uρ � � � N . Here, � is a bounded domain in N and let
�1 be another bounded domain with � � �1. Isometrically embed a neighborhood
O of �1 into Rq for some q ∈ N. Let W be a bounded tubular neighborhood of O in
R
q . Let π : W → O be the nearest point projection. Write

π = (π1, π2, · · · , πq) = (π A)1≤A≤q .
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We can extend π smoothly from a possible smaller tubular neighborhood V of �1 to
the whole Rq such that each π A is compactly supported and π is not changed in V .

Hence, π A, π A
B := ∂π A

∂zB
, π A

BC := ∂π A

∂zB∂zC
etc are bounded, where z = (zA) are the

standard coordinates of Rq .
Let f : Uρ → N so that f (Uρ) � �. Then we can write

f (x) = ( f A(x)) ∈ R
q .

Note that e( f ) = ∑
A

|∇ f A(x)|2. By Lemma 4.7,

|H̃ |g̃(t), |∇̃ H̃ |g̃(t) ≤ C1

for some C1 = C1(L, T ,C0). |Rm(g̃(t))| ≤ Q which may also depend on ρ. We may
assume

|π A
BC | ≤ D.

Consider the following system of equations:

(
∂

∂t
− �g(t)

)
F A = −π A

BC (F)〈∇FB,∇FC 〉 (4.10)

in Uρ × (0, T ] and F A(x, 0) = f A(x) in Uρ for A = 1, 2, · · · , q. By Lemma
3.1, the system has a smooth solution on Uρ × [0, T1], where T1 depends only on
m, q, D, L, T ,C0, Q, supUρ

e( f ). Moreover, F and |∇F | are uniformly bounded by
a constantC depending only onm, q, D, L, T ,C0, Q, supUρ

e( f ) and�. On the other
hand,

F A(x, t) =
∫
M
G(x, t; y, 0) f A(y)dy +

∫ t

0

∫
M
G(x, t; y, s)QA(y, s)dVs(y)ds

where G is the fundamental solution to the heat equation coupled with g(t) and QA

is the right hand side of (4.10). By Proposition 3.2, we conclude that

|F A(x, t) − f A(x)| ≤ C2t
1
2

for some constant C2 = C2(m, q, D, Q, T , supUρ
e( f )). In particular, there exists

0 < T2 ≤ T1 depending only on m, q, D, Q, T , supUρ
e( f ) such that F(x, t) will

be inside the tubular neighborhood W of O for 0 ≤ t ≤ T2. By the proof of [16,
Lemma 3.2] and the maximum principle Theorem 2.2, we conclude F(x, t) ∈ N for
(x, t) ∈ Uρ × [0, T2]. This implies F(x, t) satisfies the harmonic map heat flow on
Uρ × [0, T2] to N .

Up to now, we have proved the following: If f : Uρ → N is a smooth bounded
map with energy density bounded, then there is a smooth solution F to the heat flow
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for harmonic map with initial data f onUρ ×[0, T2] so that the image and the energy
density of F are uniformly bounded. By Lemma 4.5, we conclude that as long as the
energy of F is uniformly bounded on Uρ × [0, T ′] and F has bounded image, then
F can be extended beyond T ′ as a solution to the harmonic map heat flow so that the
energy is uniformly bounded.

Recall that 2Ric(g̃) + H̃ ≥ −K̃ (t)g̃(t) with K̃0 = ∫ T
0 K̃ < ∞. Using this condi-

tion, by Lemma 4.2, we conclude that

e(F)(·, t) ≤ 2e0 exp(K̃0)

as long as 0 ≤ t ≤ T0 := min{T , 1
2

(
2κe0 exp(K̃0)

)−1}. By Lemma 4.4, there is

constant C3 depending only on m, n, e0, L, K̃0, T , κ such that

|τ(F)|(x, t) ≤ C3t
− 1

2

as long as 0 ≤ t ≤ T0. Since τ(F) = Ft , we have dN ( f (x), F(x, t)) ≤ C5t
1
2 . In

particular, the image of Uρ × [0, T0] is bounded because f (Uρ) is bounded. This
completes the proof of the claim and hence the proposition. 
�
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