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Abstract
We show that any smooth solution to the mean curvature flow equations coming out
of a rotationally symmetric double cone is also rotationally symmetric.
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1 Introduction

We say a family of properly embedded smooth hypersurface {Σt }t∈I ⊂ R
n+1 is a

solution of the mean curvature flow (MCF) equations if

(
∂x

∂t

)⊥
= HΣt (x). (1)

Here HΣt (x) denotes the mean curvature vector of Σt at x , and x⊥ is the normal
component of x .

In this article, we are interested in solutions of MCF coming out of a rotationally
symmetric double cone, by which we mean a (hyper)cone C ⊂ R

n+1 whose link
L(C) = C ∩ S

n is a smooth hypersurface of Sn and has two connected components
lying in two separate hemispheres. More explicitly, we consider a cone of the form
(up to an ambient rotation so that the axis of symmetry is x1-axis)

x21 =
{
m1(x22 + x23 + · · · + x2n+1) x1 ≥ 0

m2(x22 + x23 + · · · + x2n+1) x1 < 0
(2)
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where m1,m2 > 0 are constants related to the aperture of the cone. Solutions coming
out of cones arise naturally in the singularity analysis of MCF. In particular, the self-
expanders, which are special solutions of the MCF satisfying Σt = √

tΣ for some
hypersurface Σ ⊂ R

n+1, are often thought of as models of MCF flowing out of a
conical singularity (see for example [1]). Self-expanders satisfy the elliptic equation:

HΣ(x) = x⊥

2
, (3)

which is the Euler-Lagrange equation of the functional
∫
Σ
e|x |2/4dHn . We can, there-

fore, talk about the Morse index of a given self-expander, and the Morse flow lines
between two self-expanders (asymptotic to the same cone C) are examples of non-
self-similar solutions coming out of the cone.

We show that, given a smooth double cone C ⊂ R
n+1 and a smooth solution to the

MCF, {Σt }t∈[0,T ], asymptotic to C, then the flow inherits the rotational symmetry of
C at all times. More precisely we prove

Theorem 1 Let C ⊂ R
n+1 be a smooth, rotationally symmetric double cone. Suppose

{Σt }t∈[0,T ) is a smooth solution to the mean curvature flow asymptotic to C, in the
sense that

lim
t→0+ Hn�Σt = Hn�C (4)

as Radon measures, then Σt is also rotationally symmetric (with the same axis of
symmetry) for any t ∈ [0, T ).

Remark 1 It is likely that only a finite number of such solutions exist. These include
self-expanders and Morse flow lines between two self-expanders asymptotic to the
same cone, some of which can be constructed using methods from [5]. In particular,
the latter solutions might develop singularities. Indeed, when the parameters m1 and
m2 in (2) are sufficiently small, by [15], we can find an unstable (connected) catenoidal
self-expander and a disconnected self-expander whose two components are given by
the unique self-expanders asymptotic to the top part and bottom part of the cone. One
expects that there exists a Morse flow line connecting these two self-expanders. Such
a flow line will necessarily develop a neck pinch in order to become disconnected.

As an easy corollary we obtain the following rotational symmetry result:

Corollary 1 Let C ⊂ R
n+1 be a smooth, rotationally symmetric double cone, then any

smooth self-expander Σ asymptotic to C is also rotationally symmetric (with the same
axis of symmetry).

Remark 2 Singular self-expanders asymptotic to C do exist, but our theorem only
applies in the smooth case. The smoothness assumption is in place to avoid further
technicality introduced by the moving plane method, see Sect. 2.4.

The rotational symmetry is known in many other cases. Fong and McGrath [13]
showed that same conclusion holds if the cone is rotationally symmetric and the
expander is mean convex. Bernstein-Wang (Lemma 8.3 in [4]) later showed that same
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conclusion holds if the cone is rotationally symmetric and the expander is weakly
stable (in particular, mean convexity implies weak stability so this generalizes the
Fong-cGrath result). In contrast, our result applies to all solutions coming out of the
cone and does not assume any extra condition about the flow other than smoothness.
For other geometric flows, Chodosh [8] proved rotational symmetry of expanding
asymptotically conical Ricci solitons with positive sectional curvature.

It is also worth mentioning that, although in general given a rotationally symmetric
smooth cone C, there could be multiple self-expanders asymptotic to C , if there
exists a unique self-expander asymptotic to C, it must inherit the rotational symmetry.
Uniqueness holds, for example, when the link of C, L(C), is connected, or, in the
double cone case, when the parameters m1,m2 in (2) are sufficiently large [4]. It is
interesting to determine whether the rotational symmetry holds when the link L(C)

has 3 or more connected components.We suspect that counterexamples exist.We refer
to [3, 4, 6, 7] and [11] for more information on self-expanders.

The proof of Theorem 1 relies on the moving plane method pioneered by Alexan-
drov to prove that embedded compact constant mean curvature hypersurfaces are
round spheres. The method was further employed to minimal surfaces by Schoen [20]
to prove certain uniqueness theorems for catenoids. More recently, Martín-Savas-
Halilaj-Smoczyk [19] showed uniqueness of translators (that is, solutions of the MCF
equation that evolve by translating along one fixed direction) with one asymptotically
paraboloidal end.Choi–Haslhofer–Hershkovits [9] andChoi–Haslhofer–Hershkovits–
White [10] used a parabolic variant of the method to deduce rotational symmetry of
certain ancient solutions to the MCF equation (that is, solutions of the MCF equation
which exist on (−∞, 0)). These methods were further generalized to non-smooth set-
tings very recently by Haslhofer–Hershkovitz–White [14] and by Bernstein–Maggi
[2].

Although a self-expander Σ satisfies an elliptic PDE, the hypersurface obtained
after reflecting a self-expander with respect to a hyperplane does not satisfy the above
equation anymore (it is rather a translated self-expander). For this reason, we could not
directly apply the usual elliptic maximum principle and Hopf lemma, and we need to
work in spacetimeRn+1 ×[0, T ] and use the MCF equations directly with a parabolic
version of the maximum principles, which will lead to the more general Theorem 1.
Consequently, our method is in spirit closer to that used by [9].

2 Preliminaries

2.1 Notations

Throughout the paper, Br (x) will denote the Euclidean ball of radius r centered at
a point x ∈ R

n+1. By a (smooth) MCF in R
n+1, we mean a family of embedded

hypersurfaces {Σt }t∈I for some interval I such that

(
∂x

∂t

)⊥
= HΣt (x) (5)
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for all x ∈ Σt , t ∈ I . Given an open setU ⊂ R
n+1, we say {Σt }t∈I is aMCF inU if the

above equation is satisfied locally (given a local parametrization of the hypersurface)
at every x ∈ Σt ∩U and t ∈ I .

2.2 Pseudolocality for MCF

We will be frequently using the following pseudolocality result of Ilmanen–Neves–
Schulze (see also [12]):

Theorem 2 (Theorem 1.5 of [16]) Let {Σt }t∈(0,T ] be a mean curvature flow in R
n+1.

Given any η > 0, there is δ, ε > 0 such that if x ∈ Σ0 andΣ0 ∩C1(x) is a graph over
B1(x) ∩ Σ0 with Lipschitz constant bounded by ε, then Σt ∩Cδ(x) can be written as
a graph over Bδ(x) ∩ TxΣ0 with Lipschitz bounded by η for any t ∈ [0, δ2) ∩ [0, T ).

Here, for x = (x, xn+1) ∈ R
n+1,

Cr (x) = {(y, yn+1) ∈ R
n+1 | |x − y| < r , |yn+1 − xn+1| < r} (6)

is the closed cylinder centered at x . Roughly speaking, this theorem says that if the
initial data of our MCF are graphical in some cylinder centered at x , then at least for
a short time, the evolution of the hypersurface stays graphical in a possibly smaller
cylinder. We will primarily use this theorem to show that our flow is graphical outside
of a large ball for a short time, although strictly speaking we sometimes need to apply
the above theorem in the context of integral Brakke flow.

2.3 Parabolic Maximum Principles

In this section, Zr (x, t) will denote the spacetime cylinder of radius r centered at
(x, t) ∈ R

n × R; that is,

Zr (x, t) = {(y, s) ∈ R
n × R | |y − x | < r , s < t < s + r2}. (7)

To carry out the moving plane method, the most important ingredients are the max-
imum principle and Hopf lemma. In our case, we need a version of those theorems
applicable to graphical solutions of MCF; that is, functions u : Zr (0, 0) → R satis-
fying the following parametrized PDE:

ut =
√
1 + |∇u|2 div

(
∇u√

1 + |∇u|2
)

. (8)

Observe that the difference of two graphical solutions to MCF satisfies a second-order
linear parabolic PDE (provided the gradients are bounded a priori, which will be the
case since our solutions are asymptotically conical), so by standard theory of linear
parabolic PDEs [18], we have (cf. Sect. 6.2 in [9]):
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Lemma 1 (Maximum Principle)
Suppose u, v are graphical solutions to the MCF in a parabolic cylinder Zr (0, 0)

with u(0, 0) = v(0, 0). If u ≤ v in Zr (0, 0), then u = v in Zr (0, 0).

Lemma 2 (Hopf Lemma) Suppose u, v are graphical solutions to the MCF in a half
parabolic cylinder Zr (0, 0) ∩ {x1 ≥ 0} with u(0, 0) = v(0, 0) and ∂u

∂x1
(0, 0) =

∂v
∂x1

(0, 0). If u ≤ v in Zr (0, 0) ∩ {x1 ≥ 0}, then u = v in Zr (0, 0) ∩ {x1 ≥ 0}.

2.4 Asymptotically Conical Mean Curvature Flow

Here, we will briefly discuss the class of MCFs we consider in Theorem 1. Given a
smooth cone C ⊂ R

n and a hypersurface Σ , we say Σ is Ck,α-asymptotic to C if

lim
ρ→0+ ρΣ = C in Ck,α

loc (Rn+1 \ {0}).

We need our MCF to be at least C2,α-asymptotic to C in order to apply the maximum
principle and Hopf Lemma stated above. This will almost not be an issue if we assume
our cone is at least C3, as the following proposition shows.

Proposition 1 (cf. Proposition 3.3 in [6]) Let C be a C3 cone and suppose {Σt }t∈(0,T ]
is a MCF such that

lim
t→0+ Hn�Σt = Hn�C, (9)

then we have for α ∈ [0, 1) and t ∈ (0, T ),

lim
ρ→0+ ρΣt = C in C2,α

loc (Rn+1 \ {0}). (10)

Proof In this proof, [ f ]α;A will denote the α-Hölder seminorm of f on the set A,
where A can be a subset the space Rn+1 or time (0, T ).

It is enough to prove that locallyΣt is aC2,α normal graph over C outside of a large
ball. By Theorem 2 (strictly speaking we need to consider the flow together with the
initial condition Σ0 = C as an integral Brakke flow and apply the theorem for Brakke
flows), there is δ > 0 such that Σt ∩ Cδ(x0) can be written as a normal graph over
Cn

δ (x). This induces a map ux0 : [0, δ2) × Cn
δ (x0) → R whose graph describes part

of the flow in the spacetime of the flow:

M = C × {0} ∪
⋃

t∈(0,T )

Σt × {t}. (11)

It follows from interior estimates of [12] that for sufficiently small δ, ux0 satisfies the
estimate

δ−1 sup
Cn

δ (x0)

∣∣ux0(0, ·)∣∣ + sup
Cn

δ (x0)

∣∣∇ux0(0, ·)
∣∣ ≤ 1 (12)
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Since {Σt } is a MCF, ux0 satisfies the parametrized equation

∂ux0
∂t

=
√
1 + ∣∣∇xux0

∣∣2 div
⎛
⎝ ∇xux0√

1 + ∣∣∇xux0
∣∣2

⎞
⎠ (13)

with initial conditions ux0(0, x0) = ∣∣∇xux0(0, x0)
∣∣ = 0. This is a quasilinear parabolic

PDE in divergence form, so Hölder estimates (see e.g., Chapter 6 of [17]) imply that,
given α ∈ (0, 1), there exists some constant C such that

sup
[0,δ2]

[∇xux0(s, ·)]α;Cn
δ/2(x0)

+ sup
Cn

δ/2(x0)
[∇xux0(·, x)]α/2;[0,δ2) ≤ Cδ−α (14)

Schauder estimates (see e.g., Chapter 4 of [17] or [18]) then give higher-order estimates
of the form:

2∑
i=0

(δ/4)i−1 sup
Cn

δ/4(x0))

∣∣∣∇ i
x ux0(s, ·)

∣∣∣ + (δ/4)1+α[∇2
x ux0(s, ·)]α;Cn

δ/4(x0)
≤ C (15)

for s ∈ [0, δ2), and

sup
Cn

δ/4(x0)
[∇xux0(·, x)] 1

2 ;[0,δ2) ≤ C(δ/4)−1. (16)

We may now estimate for s ∈ [0, δ2) that
∣∣ux0(s, x) − ux0(0, x0)

∣∣ ≤ s sup
[0,δ2)

∣∣∂τux0(τ, ·)
∣∣ + |x − x0|2 sup

Cn
δ/4(x0)

∣∣∣∇2ux0(0, ·)
∣∣∣

≤ C(δ/4)−1(|x − x0|2 + s)
(17)

where we used triangle inequality and the fact that
∣∣∇xux0(0, x0)

∣∣ = 0 in the first
inequality, and the MCF equation (13), and the Schauder estimate (15) in the second
inequality. Consequently by triangle inequality again, given 0 < ρ < 1/4,

(ρδ)−1 sup
Cn

ρδ(x0)

∣∣ux0(s, ·)∣∣ ≤ Cρ. (18)

Similarly we can estimate the first-order term as follows:

∣∣∇xux0(s, x) − ∇xux0(0, x0)
∣∣

≤ √
s[∇xux0(·, x0)] 1

2 ;[0,δ2) + |x − x0| sup
Cn

δ/4(x0)

∣∣∣∇2ux0(0, ·)
∣∣∣

≤ C(δ/4)−1(|x − x0| + √
s)

(19)
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where we used Schauder estimates (15) and (16) in the second inequality. Conse-
quently, we also have

sup
Cn

ρδ(x0)

∣∣∇xux0(s, ·)
∣∣ ≤ Cρ. (20)

Combining the above two estimates and (15) with δ/4 replaced by ρδ implies that

2∑
i=0

(ρδ)i−1 sup
Cn

ρδ(x0))

∣∣∣∇ i
x ux0(s, ·)

∣∣∣ + (ρδ)1+α[∇2
x ux0(s, ·)]α;Cn

ρδ(x0)
≤ C(ρ + ρ1+α)

(21)
which can be made less than one by picking ρ sufficiently small depending on C and
α. This proves that Cρδ(x0) is a normal graph over a neighborhood of Cn

ρδ(x0) if x0 is
sufficiently far away.

Unfortunately pseudolocality only gives normal graphicality outside of a large
compact set, and so we cannot conclude that the entire flow will be of class C2,α .
For this reason, it is assumed that the MCF is smooth to begin with in Theorem 1.
We note that it might be possible to remove this assumption using a moving plane
method in non-smooth settings such as those presented in [2, 10] or [14]. Since we
are assuming that the flow and the cone are both smooth, in the proof below, we will
say Σ is asymptotically conical if Σ is C∞-asymptotic to C.

3 Rotational Symmetry

In this section, we prove Theorem 1. A typical picture of the moving plane method
is illustrated in Fig. 1. As claimed before, a direct consequence of the pseudolocality
Theorem 2 is the graphicality of the immortal solution outside of a large ball. For the
next lemma, we denote Σ+ = Σ ∩ {xn+1 > 0} and Σ− = Σ ∩ {xn+1 < 0} for
Σ ⊂ R

n+1.

Lemma 3 Let C, {Σt }t∈(0,T ) be as in Theorem 1. For each t ∈ [0, T ), there is R =
R(C,Σ, t) such that (Σt )

+ \ BR(0) is graphical over Π0 \ BR(0), where Π0 =
{xn+1 = 0}; that is, the projection π : (Σt )

+ \ BR(0) → Π0 is injective. The same
holds for (Σt )

−.
Proof Fix a time t0 ∈ [0, T ). By Proposition 1, there exists R = R(Σ, t0) > 0 such
that Σ+

t0 \ BR(0) is asymptotically conical to C. Since Σ0 = C, we can treat the
flow as an integral Brakke flow starting from C. By the pseudolocality theorem for
Brakke flows, i.e., Theorem 2, given η > 0, there exists t1 such that for 0 < t < t1 and
x ∈ C\B1(0),Σ

+
t ∩C√

t1(x) can bewritten as a normal graph over Bn√
t1
(x)∩TxC with

Lipschitz constant bounded by η. By parabolic rescaling, we see that, for 0 < t < 2t0
and x ∈ C \ B√

2t0t
−1
1

(0), Σ+
t ∩ C√

2t0(x) can be written as a normal graph over

Bn√
2t0

(x) ∩ TxC with Lipschitz constant bounded by η. In particular, putting t = t0
gives the desired graphicality.

Thus, we have proven that for every given t ∈ (0, T ) and η > 0, there is R =
R(Σ, t, η) such that Σ+

t \ BR(0) is a normal graph over C with Lipschitz constant
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Fig. 1 A typical picture of the
moving plane

Πs

(M+
s )∗

C × [0, ∞)

M−
s

bounded byη. SinceC∩{xn+1 > 0} is a Lipschitz graph overΠ0, the unit normal vector
νΠ0 is not contained in any tangent space to x ′ ∈ (C ∩ {xn+1 > 0}) \ {0}. Therefore,
by taking η sufficiently small, we may make sure that νΠ0 is also not contained in any
tangent space to x ∈ Σ+

t \ BR(0) (here R = R(t, η), but of course, η in turn depends
on t). This proves that Σ+

t \ BR(0) is graphical over Π0 as well.

For the rest of the section, let

Πs = {(x, xn+1) ∈ R
n+1 | xn+1 = s} × [0,∞) ⊂ R

n+1 × [0,∞) (22)

be the hyperplane at level s in spacetime. Given a set A ⊂ R
n+1 × [0,∞) and

t, s ∈ [0,∞), we let
At = {(x, xn+1, t

′) ∈ A | t ′ = t} (23)

be the time t slice of A,

A+
s = {(x, xn+1, t) ∈ A | xn+1 > s} (24)

be the part of A lying above Πs , A−
s be the part of A lying below Πs and finally

A∗
s = {(x, xn+1, t) | (x, 2s − xn+1, t) ∈ A} (25)

be the reflection of A across Πs , but we will often drop the subscript s when it is
understood to avoid excessive subscripts. Given two sets A, B ⊂ R

n+1 × [0,∞) we
say A > B if for any (x, xn+1, t) ∈ A we have xn+1 > yn+1 for any (x, yn+1, t) ∈ B
(if there is any such point).

Proof of Theorem 1 Without loss of generality assume that C’s axis of symmetry is the
x1-axis. Evidently it suffices to show that the flow preserves the reflection symmetry
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Fig. 2 Boundary touching

Πs

(M+
s )∗

C × [0, ∞)

across any hyperplane containing the x1-axis, which without loss of generality, we
will take to be {xn+1 = 0}.

We will use the moving plane method on the spacetimeRn+1 ×[0,∞). The space-
time track

M =
⋃

t∈[0,T )

Σt × {t} (26)

is a properly embedded hypersurface inRn+1×[0, T ) asymptotic to C×[0, T ), in the
sense that at each time slice t , Σt is C2,α-asymptotic to C as we have demonstrated in
Proposition 1. Let

S = {s ∈ [0,∞) | (M+
s )∗ > M−

s , (M+
s )t is graphical over (Πs)

t for t ∈ [0, T ]}.
(27)

Here by graphical, we meant that (M+
s )t can be written as a normal graph over (Πs)

t .
Alternatively, since our solution is smooth, we can require that the vertical vector
en+1 = (0, . . . , 0, 1) is not contained in the tangent space of any point p ∈ (M+

s )t .
We first note that since the cone is symmetric across Π0, we have (C+

s )∗ > C−
s for

every s > 0. It is not hard to see that S is an open set. In fact, we just need to show
that en+1 is not in the tangent space at infinity for (M+

s )t . By Proposition 1,

lim
ρ→0+ ρ(M+

s )t = C (28)

inC2,α
loc (Rn+1\{0}), so eventually the tangent space at a point p ∈ (M+

s )t will lie close
to the tangent space of C. Since the cone is not vertical, en+1 is clearly not contained
in the tangent space of any point on C, so by the convergence, there is ε > 0 such that
en+1 is not in the tangent space of any point p ∈ (M+

s−ε)
t (Figs. 2, 3).

By Lemma 3, there is R > 0 such that Σ1 \ BR(0) = M1 \ BR(0) is graphical
over (Π0)

1. Moreover, this graphical scale scales parabolically, so for s > T 2R we
have (M+

s )t is graphical over (Πs)
t for each t ∈ [0, T ]. It is also evident that (M+

s )t

is asymptotic to the translated cone C + 2sen+1. This fact together with the decay
estimate along asymptotically conical MCF (Lemma 5.3(1) of [5]) shows that when s
is large enough the reflected part is disjoint from (M−

s )+0 (that is, the part ofM that lies
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Fig. 3 Interior touching

Πs

(M+
s )∗

C × [0, ∞)

M−
s

below level s and above 0). Together with graphicality, this implies (M+
s )∗ > M−

s
for sufficiently large s, so S is not empty.

Finally we show S is closed. Suppose for a contradiction that (s,∞) ⊂ S (clearly
s ∈ S implies [s,∞) ⊂ S) but s /∈ S. At level s, either the graphicality condition or
the set comparison condition (Ms)

∗ > M−
s is violated. In the first case, by parabolic

rescaling, we may assume for simplicity that the nongraphicality happens first at time
t = 1. This means that there is p ∈ (M+

s )1 such that en+1 ∈ Tp(M+
s )1. Thus, tangent

planes of (M+
s )∗ and M−

s at the point (p, 1) must coincide. If we choose r small
enough, we can ensure that (M+

s )∗ andM−
s are graphical over Zr (p, 1)∩{xn+1 ≤ s}.

Since the tangent planes coincide, we can apply Hopf Lemma Lemma 2 to (M+
s )∗

and M−
s to conclude that these hypersurfaces agree on an open neighborhood of

(p, 1). Moreover, the set (M+
s )∗ ∩ M−

s is closed by definition and open by the
maximum principle, so at least a connected component of (M+

s )∗ must coincide
with a component of M−

s . This implies that (M+
s )∗ is asymptotic to both the cones

C × [0,∞) and (C + 2sen+1) × [0,∞), a contradiction. In the second case, s is
necessarily the first level such that (Ms)

+ ∩M−
s �= ∅, and the graphicality condition

implies that (M+
s )∗ andM−

s must touch at an interior point (p, t) of the flow. Again
for r small enough, they are both graphical solutions of the MCF, so the maximum
principle Lemma 1 implies that (M+

s )∗ and M−
s agree on an open neighborhood of

(p, t). Since we can do this for any point (p, t) ∈ (M+
s )∗ ∩M−

s , at least a connected
component of (M+

s )∗ coincides with a component of M−
s , a contradiction.

We have, thus, proved that S is open, non-empty, and closed, and thus, S = (0,∞)

(note that since we have a strict inequality in our setup, so we cannot conclude directly
that 0 ∈ S). Note that we can run a similar argument starting from the bottom half,
yielding (M−

s )∗ > M+
s for any s < 0. Hence, there must be a point of touching at

s = 0. If the intersection is in the interior we can apply themaximum principle Lemma
1 to conclude that (M+

0 )∗ = M−
0 , i.e., M is symmetric across the reflection with

respect to Π0. The same conclusion holds if the intersection is along the boundary by
using the Hopf lemma Lemma 2 instead.

Remark 3 In the proof of Theorem 1, we actually proved the stronger result that reflec-
tion symmetry is preserved for self-expanders asymptotic to a double cone. This yields,
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for example, that when m1 = m2 in (2), any self-expander asymptotic to C is sym-
metric across the reflection with respect to the plane {x1 = 0}. We do not expect this
to hold for cones whose links have more than 2 components.
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