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Abstract
We deal with the following critical Choquard equation

−ε2�u + V (x)u = P(x)|u|p−2u

+εμ−3
( ∫

R3

Q(y)|u(y)|6−μ

|x − y|μ dy
)
Q(x)|u|4−μu, x ∈ R

3,

where ε > 0 is a small parameter, 0 < μ < 3, p ∈ (4, 6). Under some conditions
on the potential functions V (x), P(x), and Q(x), we obtain the existence of multiple
solutions and their asymptotical behavior as ε → 0.
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1 Introduction andMain Results

In this paper, we consider the following critical Choquard equation

− ε2�u + V (x)u = P(x)|u|p−2u

+εμ−3
( ∫

R3

Q(y)|u(y)|6−μ

|x − y|μ dy
)
Q(x)|u|4−μu, x ∈ R

3, (1.1)
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where ε > 0 is a parameter, 0 < μ < 3, p ∈ (4, 6). The potential functions
V (x), P(x), and Q(x) are three bounded and continuous functions in R

3 satisfying
inf
x∈R3

V (x) > 0, inf
x∈R3

P(x) > 0 and inf
x∈R3

Q(x) > 0.

The Choquard equation

−�u + u =
( ∫

R3

u2(y)

|x − y|dy
)
u, x ∈ R

3,

was used by Pekar [17] to describe the quantum theory of polaron at rest. Then it
was introduced by Choquard [10] as an approximation to Hartree–Fock theory of one-
component plasma. Penrose [18] also derived it as a model of self-gravitating matter,
in which quantum state reduction is understood as a gravitational phenomenon. Lieb
[10] proved the existence and uniqueness (up to translations) of solutions by using
symmetric decreasing rearrangement inequalities. Lions [11] obtained the existence of
infinitelymany spherically symmetric solutions.Ma andZhao [14] showed the positive
solutions of this equation must be radially symmetric and monotone decreasing about
some fixed point by the method of moving planes. Moroz and Van Schaftingen [15]
studied the generalized Choquard equation

−�u + u = (Iα ∗ |u|p)|u|p−2u, x ∈ R
3,

where Iα is a Riesz potential and p > 1. For an optimal range of parameters, they
showed the regularity, positivity, and radial symmetry of the ground states and derived
decay property at infinity as well.

Gao and Yang [6] studied the Brezis–Nirenberg type problem of the nonlinear
Choquard equation

−�u − λu =
( ∫

�

|u(y)|2∗
μ

|x − y|μ dy
)
|u|2∗

μ−2u, x ∈ R
3,

where � is a bounded domain and λ is a parameter, N ≥ 3 and 2∗
μ = 2N−μ

N−2 is
the critical exponent under the sense of Hardy–Littlewood–Sobolev inequality. They
established some existence results for this equation. Shen, Gao, and Yang [19] inves-
tigated the critical Choquard equation with potential well

−�u + (λV (x) − β)u = (|x |−μ ∗ |u|2∗
μ)|u|2∗

μ−2u, x ∈ R
N ,

where λ, β > 0, 0 < μ < N , N ≥ 4, 2∗
μ is the critical exponent. They proved the

existence of ground state solutions which localize near the potential well inf V−1(0)
and also characterize the asymptotic behavior as λ → ∞. Furthermore, the multiple
solutions were also established by Lusternik–Schnirelmann category theory.

For the semiclassical problem, Liu and Tang [12] studied the following subcritical
equation

−ε2�w + V (x)w = ε−θW (x)(Iθ ∗ (W |w|p))|w|p−2w, w ∈ H1(RN ),
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where ε > 0, N > 2, θ ∈ [2. N+θ
N−2 ). The potential functions V (x), W (x) are bounded

positive functions. By using pseudo-index theory, they established the multiplicity of
solutions. Alves et al. [1] studied the following critical equation

−ε2�u + V (x)u = εμ−3
( ∫

R3

Q(y)(|u(y)|6−μ + F(u(y)))

|x − y|μ dy
)

(
Q(x)(|u|4−μu + 1

6 − μ
f (u))

)
, x ∈ R

3,

where ε > 0 is a parameter, 0 < μ < 3. The potential functions V (x) and Q(x)
are two bounded and continuous functions in R

3 satisfying infx∈R3 V (x) > 0 and
infx∈R3 Q(x) > 0. When Q(x) ≡ 1 and V (x) satisfies

min
x∈R3

V (x) < lim inf|x |→∞ V (x),

they proved the existence of ground state solution and multiple solutions. Moreover,
the concentration phenomenonwas also considered. Zhang and Zhang [29] considered
the following critical Choquard equation

−ε2�u + V (x)u = εμ−3
( ∫

R3

|u(y)|6−μ + Q(y)F(u(y))

|x − y|μ dy
)

(
|u|4−μu + 1

6 − μ
Q(x) f (u)

)
, x ∈ R

3,

where ε > 0 is a parameter, 0 < μ < 3. The potential functions V (x) and Q(x) are
two bounded and continuous functions. Under the condition,

Q(x) ≥ lim|x |→∞ Q(x), x ∈ R
3,

and

V ∩ Q = {x ∈ R
3 : V (x) = Vmin, Q(x) = Qmax} 	= ∅,

they established a relationship between the category of the set V ∩ Q and the number
of solutions by employing the Lusternik–Schnirelmann category theory.

On the other hand, the reduction methods are also used to study the Choquard
equation. Wei and Winter [22] considered

−ε2�u + V (x)u = 1

8πε2
(
1

|x | ∗ u2)u, x ∈ R
3,

where ε > 0, V ∈ C2(R3) and inf x∈R3 V (x) > 0. They proved that for any given
positive integer K , if P1, P2, ..., PK ∈ R

3 were given nondegenerate critical points of
V (x), then for ε sufficiently small, there existed a positive solution for the equation and
this solution had exactly K local maximum points Qε

i (i = 1, 2, ..., K )with Qε
i → Pi
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as ε → 0. Luo, Peng and Wang [13] also investigated the above problem. For ε

small enough, by using a local Pohozaev type of identity, blow-up analysis, and the
maximum principle, they showed the uniqueness of positive solutions concentrating at
the nondegenerate critical points of V (x). For more results about Choquard equations,
we refer to [5, 7–9, 16, 23, 26, 28, 31] and the references therein.

Motivated by the above works, we are concerned with the existence and concentra-
tion behavior of positive solutions for (1.1). We note that (1.1) involves three different
potentials. This brings a competition between the potentials V , P , and Q: each one
would like to attract ground states to their minimum or maximum points, respectively.
It makes difficulties in determining the concentration position of solutions. This kind
of problem can be traced back to [20, 21] for the semilinear Schrödinger equation.
See also [24, 25, 27, 30] for other related results. We first recall the following famous
Hardy–Littlewood–Sobolev inequality.

Proposition 1.1 (Hardy–Littlewood–Sobolev inequality). Let t, r > 1 and 0 < μ < 3
with 1

t + μ
3 + 1

r = 2, f ∈ Lt (R3) and h ∈ Lr (R3). There exists a sharp constant
C(t, μ, r), independent of f , h, such that

∫

R3

∫

R3

f (x)h(y)

|x − y|μ dxdy ≤ C(t, μ, r)| f |t |h|r .

Remark 1.2 By Proposition 1.1, the term

∫

R3

∫

R3

|u(x)|r |u(y)|r
|x − y|μ dxdy

is well defined if |u|r ∈ Ls(R3) satisfies 2
s + μ

3 = 2. Therefore, for u ∈ H1(R3),

we will require sr ∈ [2, 6]. Then 6−μ
3 ≤ r ≤ 6 − μ. Here, 6−μ

3 is called the lower
critical exponent and 6−μ is called the upper critical exponent in the sense of Hardy–
Littlewood–Sobolev inequality.

Proposition 1.3 (Optimizers for SH ,L ). [6] Define

SH ,L = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫
R3

∫
R3

|u(x)|6−μ|u(y)|6−μ

|x−y|μ dxdy)
1

6−μ

.

Then SH ,L is achieved if and only if

u = C
( b

b2 + |x − a|2
) 1

2
,

where C > 0 is a fixed constant, a ∈ R
3 and b > 0 are parameters.

Remark 1.4 [6] In fact,

U (x) = 3
1
4

(1 + |x |2) 1
2
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is a minimizer for S, the best Sobolev constant, and is also the minimizer for SH ,L .
Moreover,

SH ,L = S

C(3, μ)
1

6−μ

,

where C(3, μ) is the sharp constant in Proposition 1.1.

To state our main results, some hypotheses about the potential functions are needed
as follows:

(H1) V∞ > Vmin or Pmax > P∞,
(H2) Q(x) ≤ Q∞ for x ∈ R

3,
(H3) V ∩ P ∩ Q = {x ∈ R

3 : V (x) = Vmin, P(x) = Pmax, Q(x) = Qmax} 	= ∅,

where

Vmin := min
x∈R3

V (x), V := {x ∈ R
3 : V (x) = Vmin}, V∞ := lim inf|x |→∞ V (x),

Pmax := max
x∈R3

P(x), P := {x ∈ R
3 : P(x) = Pmax}, P∞ := lim sup

|x |→∞
P(x),

Qmax := max
x∈R3

Q(x), Q := {x ∈ R
3 : Q(x) = Qmax}, Q∞ := lim sup

|x |→∞
Q(x).

Obviously, under the assumptions (H1), the set V ∩ P ∩ Q is bounded.
Our main results are as follows:

Theorem 1.5 Suppose that the potentials V (x), P(x), Q(x) satisfy conditions (H1),
(H2) and (H3). Then

(i) For any δ > 0, there exists εδ > 0 such that problem (1.1) has at least
cat(V∩P∩Q)δ (V ∩ P ∩ Q) solutions for ε ∈ (0, εδ), where (V ∩ P ∩ Q)δ =
{x ∈ R

3 : dist(x,V ∩ P ∩ Q) ≤ δ}.
(ii) For εn → 0 as n → ∞, up to a subsequence, there exists yn such that uεn (x+ yn),

where uεn is a solution in (i), converges in H1(R3) to a ground state solution u of

− �u + Vminu = Pmax|u|p−2u +
( ∫

R3

Q2
max|u(y)|6−μ

|x − y|μ dy
)
|u|4−μu, x ∈ R

3,

(1.2)

The proof of our main results is based on the variational method. The main diffi-
culties lie in two aspects: (i) The unboundedness of the domain R

3 and the critical
exponent under the sense of Hardy–Littlewood–Sobolev inequality lead to the lack of
compactness. Some arguments developed by Brezis and Nirenberg [3] can be applied
to prove that the functional associated with (1.1) satisfies the Palais-Smale (PS) con-
dition under some energy level. (i i) When the critical term has a potential Q(x), the
proof of the existence of multiple solutions become more complicated. As far as we
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know, there are no results about this problem. By using Lusternik–Schnirelmann the-
ory, we establish the relationship between the category of the set V ∩ P ∩ Q and the
number of solutions.

This paper is organized as follows. In the forthcoming section, we collect some
necessary preliminary lemmas which will be used later. In Sect. 3, we are devoted to
the energy functional with constant coefficients. In Sect. 4, the PS condition is given.
In Sect. 5, the Lusternik–Schnirelmann theory is applied to prove the existence of
multiple solutions.

Notation. In this paper, we make use of the following notations.

• For any R > 0 and x ∈ R
3, BR(x) denotes the open ball of radius R centered at

x .
• The letter C stands for positive constants (possibly different from line to line).
• ”→” denotes the strong convergence and "⇀" denotes the weak convergence.

• |u|q = (
∫
R3 |u|qdx) 1

q denotes the norm of u in Lq(R3) for 2 ≤ q ≤ 6.

2 Preliminaries

The standard norm of E := H1(R3) is given by

‖u‖ =
( ∫

R3
(|∇u|2 + u2)dx

)1/2
.

Since V (x) is bounded and infx∈R3 V (x) > 0, we have the following equivalent norm

‖u‖ε =
( ∫

R3
(|∇u|2 + V (εx)u2)dx

)1/2
.

For f ∈ L1
loc(R

3), define

Iμ ∗ f (x) =
∫

R3

f (y)

|x − y|μ dy,

and this integral converges in the classical Lebesgue sense for a.e. x ∈ R
3 if and only

if f ∈ L1(R3, (1 + |x |)−μdx).

Remark 2.1 By Hardy–Littlewood–Sobolev inequality, Iμ defines a linear continuous

map from L
6

6−μ (R3) to L
6
μ (R3).

Define F : E → R by

F(u) =
∫

R3

∫

R3

Q(εx)Q(εy)|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy.

To prove the properties about F(·), for simplicity, we assume that Q(x) ≡ 1 in the
following three Lemmas.
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Lemma 2.2 Let un⇀u in E and un → u, a.e. in R
3. Then

Iμ ∗ |un|6−μ → Iμ ∗ |u|6−μ, a.e. in R
3, as n → ∞.

Proof By Hardy–Littlewood–Sobolev inequality, Iμ ∗ |un|6−μ ∈ L
6
μ (R3). Choose a

function v ∈ L
6

6−μ (R3) satisfying v > 0 in R
3. Then

∫

R3

∣∣∣Iμ ∗ |un|6−μ − Iμ ∗ |u|6−μ
∣∣∣vdx

≤
∫

R3

∫

R3

∣∣|un(y)|6−μ − |u(y)|6−μ
∣∣v(x)

|x − y|μ dxdy

=
∫

R3
Iμ ∗ v

∣∣|un(y)|6−μ − |u(y)|6−μ
∣∣dy.

Since Iμ∗v ∈ L
6
μ (R3), and

∣∣∣|un(y)|6−μ−|u(y)|6−μ
∣∣∣⇀0 in L

6
6−μ (R3), we can obtain

∫

R3

∣∣∣Iμ ∗ |un|6−μ − Iμ ∗ |u|6−μ
∣∣∣vdx → 0, as n → ∞.

It follows from v > 0 that the result holds. �
Lemma 2.3 Let un⇀u in E and un → u, a.e. in R

3. Then

∫

R3
(Iμ ∗ |un − u|6−μ|u|5−μ)

6
5 dx → 0, a.e. in R

3, as n → ∞,

and
∫

R3
(Iμ ∗ |u|6−μ|un − u|5−μ)

6
5 dx → 0, a.e. in R

3, as n → ∞.

Proof Let vn = un − u, then

∫

R3
(Iμ ∗ |un − u|6−μ|u|5−μ)

6
5 dx =

∫

R3
(Iμ ∗ |vn|6−μ)

6
5 |u| 6(5−μ)

5 dx .

ByHardy–Littlewood–Sobolev inequality, (Iμ∗|vn|6−μ)
6
5 ∈ L

5
μ (R3), and is bounded

in L
5
μ (R3). From Lemma 2.2, Iμ ∗ |vn|6−μ → 0, a.e. in R

3, as n → ∞. Then, we

have (Iμ ∗ |vn|6−μ)
6
5 ⇀0 in L

5
μ (R3). It follows from |u| 6(5−μ)

5 ∈ L
5

5−μ (R3) that the
first result holds. Similarly, the second limit can be obtained. �
Lemma 2.4 Let un⇀u in E and un → u, a.e. in R

3. Then

(i) F(un − u) = F(un) − F(u) + on(1);
(ii) F ′(un − u) = F ′(un) − F ′(u) + on(1), in (H1(R3))−1.
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Proof The first part (i) has been proved in [6]. We just prove the second part (i i). In
fact, for any φ ∈ H1(R3),

∣∣∣〈F ′(un − u), φ〉 − 〈F ′(un), φ〉 + 〈F ′(u), φ〉
∣∣∣

≤ C
∣∣∣
∫

R3

(
Iμ ∗ |un − u|6−μ|un − u|4−μ(un − u) − Iμ ∗ |un|6−μ|un|4−μun

+ Iμ ∗ |u|6−μ|u|4−μu
)
φ

∣∣∣
≤ C

∣∣∣Iμ ∗ |un − u|6−μ|un − u|4−μ(un − u) − Iμ ∗ |un|6−μ|un|4−μun

+ Iμ ∗ |u|6−μ|u|4−μu
∣∣∣ 6
5

|φ|6

≤ C
∣∣∣Iμ ∗ |un − u|6−μ|un − u|4−μ(un − u) − Iμ ∗ |un|6−μ|un|4−μun

+ Iμ ∗ |u|6−μ|u|4−μu
∣∣∣ 6
5

‖φ‖.

Next, we prove that

∣∣∣Iμ ∗ |un − u|6−μ|un − u|4−μ(un − u) − Iμ ∗ |un|6−μ|un|4−μun

+Iμ ∗ |u|6−μ|u|4−μu
∣∣∣ 6
5

= on(1).

Let vn = un − u. Then, for any small δ > 0,

∣∣∣Iμ ∗ |un − u|6−μ|un − u|4−μ(un − u) − Iμ ∗ |un|6−μ|un|4−μun
∣∣∣

=
∣∣∣Iμ ∗ |vn|6−μ|vn|4−μvn − Iμ ∗ |vn + u|6−μ|vn + u|4−μ(vn + u)

∣∣∣

=
∣∣∣
∫ 1

0

d

dt

(
Iμ ∗ |vn + tu|6−μ|vn + tu|4−μ(vn + tu)

)
dt

∣∣∣

≤ C
[
Iμ ∗ (|vn|5−μ|u| + |u|6−μ)(|vn|5−μ + |u|5−μ) + Iμ ∗ (|vn|6−μ

+ |u|6−μ)(|vn|4−μ|u| + |u|5−μ)
]

≤ C
[
(δ Iμ ∗ |vn|6−μ + C(δ)Iμ ∗ |u|6−μ)(|vn|5−μ + |u|5−μ)

+ Iμ ∗ (|vn|6−μ + |u|6−μ)(δ|vn|5−μ + C(δ)|u|5−μ)
]

≤ C
[
δ(Iμ ∗ |vn|6−μ|vn|5−μ + Iμ ∗ |vn|6−μ|u|5−μ + Iμ ∗ |u|6−μ|vn|5−μ)

+ C(δ)(Iμ ∗ |u|6−μ|vn|5−μ + Iμ ∗ |vn|6−μ|u|5−μ) + C(δ)Iμ ∗ |u|6−μ|u|5−μ
]

= C
[
δ fn + C(δ)gn + C(δ)Iμ ∗ |u|6−μ|u|5−μ

]
,
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where

fn = Iμ ∗ |vn|6−μ|vn|5−μ + Iμ ∗ |vn|6−μ|u|5−μ + Iμ ∗ |u|6−μ|vn|5−μ,

and

gn = Iμ ∗ |u|6−μ|vn|5−μ + Iμ ∗ |vn|6−μ|u|5−μ.

Therefore,

∣∣∣Iμ ∗ |vn|6−μ|vn|4−μvn − Iμ ∗ |un|6−μ|un|4−μun + Iμ ∗ |u|6−μ|u|4−μu
∣∣∣
6
5

≤ C
[
δ( fn)

6
5 + C(δ)(gn)

6
5 + C(δ)(Iμ ∗ |u|6−μ|u|5−μ)

6
5

]
.

Define

Gδ,n(x) = max
{∣∣∣Iμ ∗ |vn |6−μ|vn |4−μvn − Iμ ∗ |un |6−μ|un |4−μun + Iμ ∗ |u|6−μ|u|4−μu

∣∣∣
6
5

−Cδ( fn)
6
5 − CC(δ)(gn)

6
5 , 0

}
.

It is easy to see that

0 ≤ Gδ,n(x) ≤ C(δ)(Iμ ∗ |u|6−μ|u|5−μ)
6
5 ∈ L1(R3).

By Lemma 2.2, we can obtain

fn → 0, a.e. in R
3, as n → ∞,

gn → 0, a.e. in R
3, as n → ∞,

and

∣∣∣Iμ ∗ |vn|6−μ|vn|4−μvn − Iμ ∗ |un|6−μ|un|4−μun + Iμ ∗ |u|6−μ|u|4−μu
∣∣∣ → 0,

a.e. in R
3, as n → ∞.

Thus,

Gδ,n(x) → 0, a.e. in R
3, as n → ∞.

Then, we have

∫

R3
Gδ,n(x) → 0, as n → ∞. (2.1)

123
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By the definition of Gδ,n(x) and the boundedness of fn in L
6
5 (R3),

∫

R3

∣∣∣Iμ ∗ |vn|6−μ|vn|4−μvn − Iμ ∗ |un|6−μ|un|4−μun + Iμ ∗ |u|6−μ|u|4−μu
∣∣∣
6
5
dx

≤ C
[
δ

∫

R3
( fn)

6
5 dx + C(δ)

∫

R3
(gn)

6
5 dx

]
+

∫

R3
Gδ,n(x)dx

≤ C
[
Cδ + C(δ)

∫

R3
(gn)

6
5 dx

]
+

∫

R3
Gδ,n(x)dx

Thus, by Lemma 2.2 and (2.1),

lim sup
n→∞

∫

R3

∣∣∣Iμ ∗ |vn |6−μ|vn |4−μvn − Iμ ∗ |un |6−μ|un |4−μun + Iμ ∗ |u|6−μ|u|4−μu
∣∣∣
6
5
dx ≤ Cδ.

It follows from the arbitrariness of δ that
∣∣∣Iμ ∗ |vn|6−μ|vn|4−μvn − Iμ ∗ |un|6−μ|un|4−μun + Iμ ∗ |u|6−μ|u|4−μu

∣∣∣ 6
5

= on(1).

�
Making the change of variable x → εx , we can rewrite problem (1.1) as

− �u + V (εx)u = P(εx)|u|p−2u +
( ∫

R3

Q(εy)|u(y)|6−μ

|x − y|μ dy
)
Q(εx)|u|4−μu, x ∈ R

3.

(2.2)

Thus, the corresponding energy functional is

Iε(u) = 1

2
‖u‖2ε − 1

p

∫

R3
P(εx)|u|pdx − 1

2(6 − μ)
F(u).

It is easy to check that Iε is well defined on E and Iε ∈ C1(E, R). Then we can define
the Nehari manifold

Nε = {u ∈ E \ {0} | 〈I ′
ε(u), u〉 = 0}.

Lemma 2.5 There exists C0 > 0 which is independent of ε such that

‖u‖ε > C0 and Iε(u) ≥ p − 2

2p
C2
0 , for all u ∈ Nε.

Proof For any u ∈ Nε, we have

‖u‖2ε =
∫

R3
P(εx)|u|pdx + F(u).

123
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It follows from the Hardy–Littlewood–Sobolev inequality and Sobolev embedding
theorem that

F(u) =
∫

R3

∫

R3

Q(εx)Q(εy)|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy ≤ C |u|2(6−μ)
6 ≤ C‖u‖2(6−μ)

ε .

Without loss of generality, we assume that ‖u‖ε ≤ 1. Then

‖u‖2ε ≤ C(‖u‖p
ε + ‖u‖2(6−μ)

ε ) ≤ C‖u‖p
ε .

Thus, the first desired result follows. On the other hand, we have

Iε(u) = 1

2
‖u‖2ε − 1

p

∫

R3
P(εx)|u|pdx − 1

2(6 − μ)
F(u)

≥ 1

2
‖u‖2ε − 1

p

∫

R3
P(εx)|u|pdx − 1

p
F(u)

= 1

2
‖u‖2ε − 1

p
(

∫

R3
P(εx)|u|pdx + F(u))

≥ (
1

2
− 1

p
)‖u‖2ε

≥ p − 2

2p
C2
0 .

�
Lemma 2.6 For any u ∈ E\{0}, there exists a unique t(u) > 0 such that t(u)u ∈ (N )ε
and

Iε(t(u)u) = max
t≥0

Iε(tu).

Proof For any u ∈ E \ {0}, define g(t) = Iε(tu), t ∈ [0,+∞). Then

g(t) = t2

2
‖u‖2ε − t p

p

∫

R3
P(εx)|u|pdx − t2(6−μ)

2(6 − μ)
F(u).

It is easy to see that g(t) > 0 for t > 0 small and g(t) < 0 for t > 0 large enough, so
there exists t0 > 0 such that

g′(t0) = 0 and g(t0) = max
t≥0

g(t) = max
t≥0

Iε(tu).

It follows from g′(t0) = 0 that t0u ∈ Nε.
If there exist 0 < t1 < t2 such that t1u ∈ Nε and t2u ∈ Nε. Then

1

t p−2
1

‖u‖2ε =
∫

R3
P(εx)|u|pdx + t2(6−μ)−p

1 F(u),
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and

1

t p−2
2

‖u‖2ε =
∫

R3
P(εx)|u|pdx + t2(6−μ)−p

2 F(u).

It follows that

(
1

t p−2
1

− 1

t p−2
2

)
‖u‖2ε =

(
t2(6−μ)−p
1 − t2(6−μ)−p

2

)
F(u),

which is a contradiction. �

Lemma 2.7 For any ε > 0, let

cε = inf
u∈Nε

Iε(u), c∗
ε = inf

u∈E\{0}max
t≥0

Iε(tu), c∗∗
ε = inf

γ∈�
sup

t∈[0,1]
Iε(γ (t)),

where

�ε = {γ (t) ∈ C([0, 1], E) | γ (0) = 0, Iε(γ (1)) < 0}.

Then, cε = c∗
ε = c∗∗

ε .

Proof We divide the proof into three steps.
Step1. c∗

ε = cε. By Lemma 2.6, we have

c∗
ε = inf

u∈E\{0}max
t≥0

Iε(tu) = inf
u∈E\{0} Iε(t(u)u) = inf

u∈Nε

Iε(u) = cε.

Step2. c∗
ε ≥ c∗∗

ε . For any u ∈ E \ {0}, there exists T large enough, such that
Iε(Tu) < 0. Define γ (t) = tT u, t ∈ [0, 1]. Then we have γ (t) ∈ �ε and, therefore,

c∗∗
ε = inf

γ∈�ε

sup
t∈[0,1]

Iε(γ (t)) ≤ sup
t∈[0,1]

Iε(γ (t)) ≤ max
t≥0

Iε(tu).

It follows that c∗
ε ≥ c∗∗

ε .
Step3. c∗∗

ε ≥ cε. For any u ∈ E \ {0} with ‖u‖ε small, we know

‖u‖2ε >

∫

R3
P(εx)|u|pdx + F(u). (2.3)
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We claim that every γ (t) ∈ �ε has to cross Nε. Otherwise, by the continuity of γ (t),
(2.3) still holds when u is replaced by γ (1). Then, we can obtain

Iε(γ (1)) = 1

2
‖γ (1)‖2ε − 1

p

∫

R3
P(εx)|γ (1)|pdx − 1

2(6 − μ)
F(γ (1))

≥ 1

2
‖γ (1)‖2ε − 1

p

∫

R3
P(εx)|γ (1)|pdx − 1

p
F(γ (1))

≥ 1

2
‖γ (1)‖2ε − 1

p
‖γ (1)‖2ε

> 0,

which contradicts the definition of γ (1). It follows from the claim that c∗∗
ε ≥ cε. �

One can easily check that the functional Iε satisfies the mountain-pass geometry
that is the following lemma holds ( [26]).

Lemma 2.8 Iε has the mountain geometry structure.

(i) There exist a0, r0 > 0 independent of ε, such that Iε(u) ≥ a0, for all u ∈ E with
‖u‖ε = r0.

(ii) For any u ∈ E \ {0}, limt→∞ Iε(tu) = −∞.

Lemma 2.9 For any ε > 0 and Q(x) ≡ q, we have cε <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H ,Lq
−2
5−μ , where

q is a positive constant.

Proof For any ε > 0, define

Uε(x) = 1√
ε
U

( x
ε

)
, uε(x) = φ(x)Uε(x), x ∈ R

3,

where φ(x) ∈ C∞
0 (R3) is such that φ = 1 on B1(0) and φ = 0 on Bc

2(0). From
Lemma 2.6 in [1], we know that

∫

R3
|∇uε |2dx = C(3, μ)

3
2(6−μ) S

3
2
H ,L + O(ε), (2.4)

∫

R3

∫

R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy ≥ C(3, μ)
3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ), (2.5)

and

∫

R3
|uε |tdx =

⎧
⎪⎨
⎪⎩

O(ε
6−t
2 ), t ∈ (3, 6),

O(ε
3
2 |lnε|), t = 3,

O(ε
t
2 ), t ∈ [2, 3).

(2.6)
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Then, for t > 0,

Iε(tuε) = t2

2

∫

R3
(|∇uε |2 + V (εx)u2ε)dx − t p

p

∫

R3
P(εx)|uε |pdx

− q2t2(6−μ)

2(6 − μ)

∫

R3

∫

R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy

≤ t2

2
(C(3, μ)

3
2(6−μ) S

3
2
H ,L + O(ε)) − q2t2(6−μ)

2(6 − μ)
(C(3, μ)

3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ))

+ C(t2O(ε) − t pO(ε
6−p
2 )) := h(t).

It is easy to see that h(t) → −∞ as t → +∞, h(0) = 0 and h(t) > 0 as t is small.
Therefore, there exists tε > 0 such that h(t) attains its maximum. Then, differentiating
h at tε , we can obtain

(C(3, μ)
3

2(6−μ) S
3
2
H ,L + O(ε)) − t2(6−μ)−2

ε q2(C(3, μ)
3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ))

= −C(O(ε) − t p−2
ε O(ε

6−p
2 )).

When ε is small enough, it follows from the above expression that there exist t1, t2 > 0
independent of ε such that t1 < tε < t2. Noting

t2

2
(C(3, μ)

3
2(6−μ) S

3
2
H ,L + O(ε)) − q2t2(6−μ)

2(6 − μ)
(C(3, μ)

3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ))

attains its maximum at

( C(3, μ)
3

2(6−μ) S
3
2
H ,L + O(ε)

q2(C(3, μ)
3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ))

) 1
2(6−μ)−2

.

Then, we have

h(tε) ≤ 5 − μ

2(6 − μ)
q

−2
5−μ

( C(3, μ)
3

2(6−μ) S
3
2
H ,L + O(ε)

(C(3, μ)
3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ))

1
6−μ

) 6−μ
5−μ + C

(
t2ε O(ε) − t pε O(ε

6−p
2 )

)

≤ 5 − μ

2(6 − μ)
q

−2
5−μ

( C(3, μ)
3

2(6−μ) S
3
2
H ,L + O(ε)

(C(3, μ)
3
2 S

6−μ
2

H ,L − O(ε
6−μ
2 ))

1
6−μ

) 6−μ
5−μ + C

(
t22O(ε) − t p1 O(ε

6−p
2 )

)

≤ 5 − μ

2(6 − μ)
q

−2
5−μ

( C(3, μ)
3

2(6−μ) S
3
2
H ,L )

(C(3, μ)
3
2 S

6−μ
2

H ,L )
1

6−μ

) 6−μ
5−μ + O(ε) + C

(
t22O(ε) − t p1 O(ε

6−p
2 )

)
.

Since p ∈ (4, 6), then 0 <
6−p
2 < 1. Thus, as ε is small enough, we have

O(ε) + C(t22O(ε) − t p1 O(ε
6−p
2 )) < 0.
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Then, we can get

h(tε) <
5 − μ

2(6 − μ)
q

−2
5−μ

( C(3, μ)
3

2(6−μ) S
3
2
H ,L)

(C(3, μ)
3
2 S

6−μ
2

H ,L )
1

6−μ

) 6−μ
5−μ = 5 − μ

2(6 − μ)
q

−2
5−μ S

6−μ
5−μ

H ,L .

By Lemma 2.7, the proof is completed. �
Lemma 2.10 Any (PS)c sequence {un} for Iε is bounded, and

lim sup
n→∞

‖un‖ε ≤
√

2pc

p − 2
.

Proof Suppose that {un} is a (PS)c sequence of Iε, we have

Iε(un) → c, I ′
ε(un) → 0.

Thus

c + on(1) + on(1)‖un‖ε = Iε(un) − 1

p
〈I ′

ε(un), vn〉

=
(
1

2
− 1

p

)
‖un‖2ε +

(
1

p
− 1

2(6 − μ)

)
F(u).

It follows that

(
1

2
− 1

p

)
‖un‖2ε ≤ c + on(1) + on(1)‖un‖ε.

Then {un} is bounded in E , and the second result holds. �
Lemma 2.11 If u is a critical point of Iε on Nε, then u is a critical point of Iε in E.

Proof Since u is a critical point of Iε on Nε, there exists θ ∈ R such that

I ′
ε(u) = θ J ′

ε(u),

where Jε(u) = 〈I ′
ε(u), u〉.

It follows from u ∈ Nε that

〈J ′
ε(u), u〉 = 2‖u‖2ε − p

∫

R3
P(εx)|u|pdx − 2(6 − μ)F(u)

= (2 − p)‖u‖2ε + (p − 2(6 − μ))F(u) < 0.

Then, by 0 = 〈I ′
ε(u), u〉 = θ〈J ′

ε(u), u〉, we have I ′
ε(u) = 0. �
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3 The Energy Functional with Constant Coefficients

Weneed some results about Eq. (2.2)with constant coefficients. Consider the following
problem

− �u + ku = τ |u|p−2u + ν2
( ∫

R3

|u(y)|6−μ

|x − y|μ dy
)
|u|4−μu, x ∈ R

3, (3.1)

where k, τ , and ν are positive constants. The associated energy functional is

Ikτν(u) = 1

2
‖u‖2k − τ

p

∫

R3
|u|pdx − ν2

2(6 − μ)
F̃(u),

where

‖u‖k =
( ∫

R3
(|∇u|2 + ku2)dx

)1/2
,

F̃(u) =
∫

R3

∫

R3

|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy.

By Lemma 2.7, we have

mkτν := inf
u∈Nkτν

Ikτν(u) = inf
u∈E\{0}max

t≥0
Ikτν(tu),

where Nkτν = {
u ∈ E \ {0} |〈I ′

kτν(u), u〉 = 0
}
. Especially, I∞(u), m∞, and N∞

mean IV∞P∞Q∞(u), mV∞P∞Q∞ , and NV∞P∞Q∞ , respectively.

Lemma 3.1 Problem (3.1) has at least one ground state solution.

Proof By Lemma 2.7 and Lemma 2.8, there exits a sequence {un}which is a (PS)mkτν

sequence of Ikτν . By Lemma 2.10, we know that {un} is bounded in E . Hence, up to
a subsequence, we have

un⇀u in E,

un → u a.e. in R
3,

un⇀u in Lq(R3), for 2 ≤ q ≤ 6.

It is easy to verify that I ′
kτν(u) = 0 .

Case1. u 	= 0.
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For this case, we have u ∈ Nkτν . Therefore, Ikτν(u) ≥ mkτν . Then we get

mkτν = lim
n→∞ Ikτν(un) = lim

n→∞
[
Ikτν(un) − 1

p
〈I ′

kτν(un), un〉
]

= lim
n→∞

[ (
1

2
− 1

p

)
‖un‖2k +

(
1

p
− 1

2(6 − μ)

)
ν2 F̃(un)

]

≥
(
1

2
− 1

p

)
‖u‖2k +

(
1

p
− 1

2(6 − μ)

)
ν2 F̃(u)

= Ikτν(u) − 1

p
〈I ′

kτν(u), u〉
= Ikτν(u) ≥ mkτν .

Thus, Ikτν(u) = mkτν . Moreover, we have un → u in E .
Case2. u = 0.
Since {un} is a (PS)mkτν

sequence of Ikτν , we have

on(1) = 〈I ′
kτν(un), un〉 = ‖un‖2k − τ

∫

R3
|un|pdx − ν2 F̃(un).

Assume that

‖un‖2k → l and τ

∫

R3
|un|pdx + ν2 F̃(un) → l.

It is easy to see that l 	= 0. If
∫
R3 |un|pdx → 0, then ν2 F̃(un) → l. By the definition

of SH ,L , we can get

ν2 F̃(un) ≤ ν2S−(6−μ)
H ,L ‖un‖2(6−μ)

k .

Letting n → ∞, we have

l ≤ ν2S−(6−μ)
H ,L l6−μ. (3.2)

Then,

l ≥ ν
−2
5−μ S

6−μ
5−μ

H ,L .
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Thus,

5 − μ

2(6 − μ)
S

6−μ
5−μ

H ,Lν
−2
5−μ > mkτν = lim

n→∞ Ikτν(un)

= lim
n→∞

[1
2
‖un‖2k − τ

p

∫

R3
|un|pdx − ν2

2(6 − μ)
F̃(un)

]

= 1

2
l − 1

2(6 − μ)
l

≥ 5 − μ

2(6 − μ)
S

6−μ
5−μ

H ,Lν
−2
5−μ ,

which is a contradiction. Therefore,
∫
R3 |un|pdx → b > 0 as n → ∞. Thus, by

Lions’s Lemma, there exists {yn} ⊂ R
3, ρ, η > 0 such that

∫

Bρ(yn)
|un|2dx ≥ η. (3.3)

Let ũn(x) = un(x + yn). Then ||̃un|| ≤ C in E . This implies that there exists ũ ∈ E
such that ũn⇀ũ in E and ũn → ũ a.e. in R

3. By (3.3), we get ũ 	= 0. It is easy to
prove that

Ikτν (̃un) → mkτν and I ′
kτν (̃un) → 0.

Thus, we have I ′
kτν (̃u) = 0 and ũ ∈ Nkτν . Then the proof follows from the argument

used in the case of u 	= 0. �
Lemma 3.2 For ki > 0, τi > 0 and νi > 0, i = 1, 2. If

min {k2 − k1, τ1 − τ2, ν1 − ν2} ≥ 0,

then mk1τ1ν1 ≤ mk2τ2ν2 . Additionally, if max {k2 − k1, τ1 − τ2, ν1 − ν2} > 0, then
mk1τ1ν1 < mk2τ2ν2 .

Proof By Lemma 3.1, there exists u ∈ E satisfying Ik2τ2ν2(v) = mk2τ2ν2 =
max
t≥0

Ik2τ2ν2(tu). By Lemma 2.6, there exists t0 > 0 such that Ik1τ1ν1(t0u) =
max
t≥0

Ik1τ1ν1(tu). Then

mk1τ1ν1 ≤ max
t≥0

Ik1τ1ν1(tv) = Ik1τ1ν1(t0v) ≤ Ik2τ2ν2(t0v) ≤ Ik2τ2ν2(v) = mk2τ2ν2 .

�
Lemma 3.3 For any ξ ∈ R

3, lim sup
ε→0

cε ≤ mV (ξ)P(ξ)Q(ξ).
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Proof For any ξ ∈ R
3, by Lemma 3.1, we assume that u is a ground state solution to the

equation corresponding to the functional IV (ξ)P(ξ)Q(ξ). Setuε(x) = ϕ(εx−ξ)u(x− ξ
ε
),

where ϕ ∈ C∞
0 (R3, [0, 1]) is a cut-off function satisfying ϕ = 1, |x | < 1 and

ϕ = 0, |x | ≥ 2. Then, there exists T large enough, such that Iε(Tuε) < 0. Define
γε(t) = tT uε, t ∈ [0, 1]. It is easy to see that γε(t) ∈ �ε in Lemma 2.7. By direct
computation, we have

∫

R3
(|∇uε|2 + V (εx)|uε|2)dx =

∫

R3
(|∇u|2 + V (ξ)|u|2)dx + oε(1),

∫

R3
P(εx)|uε|pdx =

∫

R3
P(ξ)|u|pdx + oε(1)

F(uε) = Q2(ξ)F̃(u) + oε(1),

Therefore,

Iε(γε(t)) = (tT )2

2
‖uε‖2ε − (tT )p

p

∫

R3
P(εx)|uε|pdx − (tT )2(6−μ)

2(6 − μ)
F(uε)

= (tT )2

2
‖u‖2V (ξ) − (tT )p

p

∫

R3
P(ξ)|u|pdx − (tT )2(6−μ)

2(6 − μ)
Q2(ξ)F̃(u) + oε(1)

= IV (ξ)P(ξ)Q(ξ)(tT u) + oε(1)

≤ IV (ξ)P(ξ)Q(ξ)(u) + oε(1) = mV (ξ)P(ξ)Q(ξ) + oε(1)

Thus,

cε ≤ max
0≤t≤1

Iε(γε(t)) ≤ mV (ξ)P(ξ)Q(ξ) + oε(1).

It follows that lim sup
ε→0

cε ≤ mV (ξ)P(ξ)Q(ξ). �

4 The Palais-Smale Condition

Lemma 4.1 Suppose that the condition (H2) holds. Let {un} ⊂ E be a (PS)c sequence

for Iε with c <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H ,L (Q∞)
−2
5−μ and such that un⇀0 in E. Then, one of the

following conclusions holds.

(i) un → 0 in E;
(ii) There exists a sequence {yn} ⊂ R

3 and constants R, β > 0 such that

lim inf
n→∞

∫

BR(yn)
|un|2dx ≥ β.
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Proof Suppose that (i i) does not occur. Then, for any R > 0, one has

lim
n→∞ sup

y∈R3

∫

BR(y)
|un|2dx = 0.

Then, we have

un → u in Lq(R3), for 2 < q < 6.

Noting on(1) = 〈I ′
ε(un), un〉, we can obtain

‖un‖2ε = F(un) + on(1).

By Lemma 2.10, {un} is bounded in E . Up to a subsequence, we can assume that

‖un‖2ε → l and F(un) → l.

Assume by contradiction that l > 0. From condition (H2),

F(un) ≤ (Q∞)2 F̃(un).

By the definition of SH ,L , we can get

F(un) ≤ (Q∞)2S−(6−μ)
H ,L ‖un‖2(6−μ)

ε .

It follows that

l ≥ S
6−μ
5−μ

H ,L (Q∞)
−2
5−μ .

Since Iε(un) = c + on(1), we can deduce that

c ≥ 5 − μ

2(6 − μ)
S

6−μ
5−μ

H ,L (Q∞)
−2
5−μ ,

which is a contradiction with our assumption. Therefore, l = 0 and the conclusion
follows. �
Lemma 4.2 Suppose that the condition (H2) holds. Let {un} ⊂ E be a (PS)c sequence
for Iε with c < m∞ and un⇀0 in E. Then un → 0 in E.

Proof Assume that un � 0 in E . Let {tn} ⊂ (0,+∞) be a sequence such that
{tnun} ⊂ N∞. Then, we claim that the sequence {tn} satisfies that lim sup

n→∞
tn ≤ 1.

Assume by contradiction that there exists δ > 0 and a subsequence still denoted by
{tn}, such that, for all n ∈ N,

tn ≥ 1 + δ.
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Since 〈I ′
ε(un), un〉 = on(1), we get

‖un‖2ε =
∫

R3
P(εx)|un|pdx + F(un) + on(1). (4.1)

Using tnun ∈ N∞, we have

t2n‖un‖2∞ = t pn P
∞

∫

R3
|un|pdx + t2(6−μ)

n (Q∞)2 F̃(un).

Then, we can obtain

(
1

t p−2
n

− 1

)∫

R3
|∇un |2dx +

∫

R3

(
V∞
t p−2
n

− V (εx)

)
|un |2dx

=
∫

R3
[P∞ − P(εx)]|un |pdx

+
∫

R3

∫

R3
[t (12−2μ−p)
n (Q∞)2 − Q(εx)Q(εy)] |un(x)|

6−μ|un(y)|6−μ

|x − y|μ dxdy + on(1).

By the definition of V∞ and P∞, for any σ > 0, there exists R = R(σ ) > 0, such
that, for |εx | ≥ R,

V (εx) > V∞ − σ >
V∞
t p−2
n

− σ (4.2)

and

P(εx) < P∞ + σ. (4.3)

Moreover, ‖un‖ε is bounded and un → 0 in Lq
loc(R

3), for 2 ≤ q < 6. Then, we can
obtain

∫

R3

(
V∞
t p−2
n

− V (εx)

)
|un|2dx ≤ Cσ + on(1)

and

∫

R3
[P∞ − P(εx)]|un|pdx ≥ −Cσ + on(1).

Therefore,

∫

R3

∫

R3
[t2(6−μ)−p
n (Q∞)2 − Q(εx)Q(εy)] |un(x)|

6−μ|un(y)|6−μ

|x − y|μ dxdy ≤ Cσ + on(1).
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Since tn > 1 + δ and Q(εx) ≤ Q∞, it follows from the above inequality that

∫

R3

∫

R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy ≤ Cσ + on(1).

By the arbitrariness of σ , we can obtain

lim
n→∞

∫

R3

∫

R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy = 0. (4.4)

Since un � 0 in E , by Lemma 4.1, we know that there exists a sequence {yn} ⊂ R
3

and constants R, β > 0 such that

∫

BR(yn)
|un|2dx ≥ β. (4.5)

Set vn(x) = un(x + yn). Then {vn(x)} is a bounded sequence in E . Therefore, there
exists v ∈ E such that

vn → v, a.e. in R
3.

By (4.5), v 	= 0 in E . Then, it follows from Fatou Lemma and (4.4) that

0 <

∫

R3

∫

R3

|v(x)|6−μ|v(y)|6−μ

|x − y|μ dxdy ≤ lim
n→∞

∫

R3

∫

R3

|vn(x)|6−μ|vn(y)|6−μ

|x − y|μ dxdy

= lim
n→∞

∫

R3

∫

R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy = 0,

which is a contradiction.
We next distinguish the following two cases.
Case 1: lim sup

n→∞
tn = 1.

In this case, there exists a subsequence, still denoted by {tn} such that tn → 1 as
n → ∞. Then,

I∞(tnun)

= t2n
2

∫

R3
(|∇un |2 + V∞|un |2)dx − t pn

p

∫

R3
P∞|un |pdx − t2(6−μ)

n

2(6 − μ)
(Q∞)2 F̃(un)

= 1

2

∫

R3
(|∇un |2 + V∞|un |2)dx − 1

p

∫

R3
P∞|un |pdx − 1

2(6 − μ)
(Q∞)2 F̃(un) + on(1).
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Therefore,

Iε(un) − I∞(tnun) = 1

2

∫

R3
(V (εx) − V∞)|un |2dx + 1

p

∫

R3
(P∞ − P(εx))|un |pdx

+ 1

2(6 − μ)

∫

R3

∫

R3
[(Q∞)2 − Q(εx)Q(εy)] |un(x)|

6−μ|un(y)|6−μ

|x − y|μ dxdy

+ on(1).

By (4.2) and un → 0 in L2
loc(R

3),

∫

R3
(V (εx) − V∞)|un|2dx ≥ −Cσ + on(1).

Similarly,

∫

R3
(P∞ − P(εx))|un|pdx ≥ −Cσ + on(1).

Then, noting Q(εx) ≤ Q∞, we can obtain

c ≥ m∞ − Cσ + on(1).

By the arbitrariness of σ , we have c ≥ m∞, which is a contradiction.
Case 2: lim sup

n→∞
tn < 1.

In this case, we may suppose that tn < 1 for all n ∈ N. From (4.1), we can deduce
that

Iε(tnun) = t2n
2

‖un‖2ε − t pn
p

∫

R3
P(εx)|un|pdx − t2(6−μ)

n

2(6 − μ)
F(un)

=(
t2n
2

− t2(6−μ)
n

2(6 − μ)
)‖un‖2ε + (

t2(6−μ)
n

2(6 − μ)
− t pn

p
)

∫

R3
P(εx)|un|pdx + on(1)

≤(
1

2
− 1

2(6 − μ)
)‖un‖2ε + (

1

2(6 − μ)
− 1

p
)

∫

R3
P(εx)|un|pdx + on(1)

=Iε(un) − 1

2(6 − μ)
〈I ′

ε(un), un〉 + on(1)

=Iε(un) + on(1).
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Using this result, we have

m∞ ≤ I∞(tnun)

= Iε(tnun) + t2n
2

∫

R3
(V∞ − V (εx))|un |2dx

− t pn
p

∫

R3
(P∞ − P(εx))|un |pdx − t2(6−μ)

n

2(6 − μ)

∫

R3

∫

R3
[(Q∞)2 − Q(εx)Q(εy)]

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy

≤ Iε(tnun) + t2n
2

∫

R3
(V∞ − V (εx))|un |2dx − t pn

p

∫

R3
(P∞ − P(εx))|un |pdx

≤ Iε(tnun) + Cσ + on(1)

≤ Iε(un) + Cσ + on(1),

which means that c ≥ m∞, a contradiction. �
Lemma 4.3 Suppose that the condition (H2) holds. Then Iε satisfies the (PS)c con-
dition at any level c < m∞.

Proof Let {un} be a (PS)c sequence. By Lemma 2.10, {un} is bounded in E . Then
there exists u ∈ E such that un⇀u in E . By standard argument, I ′

ε(u) = 0 and
Iε(u) ≥ 0. Set wn = un − u. It follows from Lemma 2.4 and Brezis–Lieb’ Lemma
that {wn} is a (PS)c−Iε(u) sequence. Since c− Iε(u) < m∞, by Lemma 4.2, wn → 0
in E . Therefore, un → u in E . �
Lemma 4.4 Suppose that the condition (H2) holds. Let {un} be a (PS)c sequence
restricted onNε and assume c < m∞. Then {un} has a convergent subsequence in E.

Proof Let {un} be a (PS)c sequence restricted onNε. Then, there exist {θn} ⊂ R such
that

I ′
ε(un) = θn J

′
ε(un) + on(1)

where Jε(u) = 〈I ′
ε(u), u〉.

It follows from un ∈ Nε and Lemma 2.5 that

〈J ′
ε(un), un〉 = 2‖un‖2ε − p

∫

R3
P(εx)|un |pdx − 2(6 − μ)F(un)

= (2 − p)‖un‖2ε + (p − 2(6 − μ))F(un)

< (2 − p)‖un‖2ε ≤ (2 − p)C2
0 .

From 0 = 〈I ′
ε(un), un〉 and the above inequality, we have θn = on(1). Therefore,

I ′
ε(un) = on(1). Thus, by Lemma 4.3, the proof is completed. �
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5 The Existence of Multiple Solutions

We assume that the conditions (H1), (H2), and (H3) hold in this section. Let us
consider a cut-off function η ∈ C∞

0 (R3, [0, 1]) such that η(x) = 1 if |x | < 1,
η(x) = 0 if |x | > 2 and |∇η| ≤ C . Choose w ∈ E with I ′

VminPmaxQmax
(w) = 0 and

IVminPmaxQmax(w) = mVminPmaxQmax . For each ξ ∈ V ∩ P ∩ Q, let

�ε,ξ (x) = η(|εx − ξ |)w(εx − ξ

ε

)
.

Then, there exists a unique tε > 0 such that tε�ε,y ∈ Nε. Define�ε : V∩P∩Q → Nε

by setting �ε(ξ) = tε�ε,ξ .

Lemma 5.1 lim
ε→0

Iε(�ε(ξ)) = mVminPmaxQmax uniformly in ξ ∈ V ∩ P ∩ Q.

Proof Suppose that the result is false. Then, there exists some α > 0, {ξn} ⊂ V∩P∩Q
and εn → 0 such that

|Iεn (�εn (ξn)) − mVminPmaxQmax | ≥ α.

The compactness of V ∩ P ∩ Q implies that there exists ξ ∈ V ∩ P ∩ Q such that
ξn → ξ , up to a subsequence if necessary. Now we claim that lim

n→∞ tεn = 1. Indeed,

from tεn�εn ,ξn ∈ Nεn , we have

t2εn‖�εn ,ξn‖2εn = t pεn

∫

R3
P(εnx)|�εn ,ξn |pdx + t2(6−μ)

εn
F(�εn ,ξn ).

By using a change of variables and Lebesgue Dominated Convergence Theorem, we
can obtain

‖�εn ,ξn‖2εn =
∫

R3
(|∇w|2 + V (ξ)w2)dx + on(1),

∫

R3
P(εnx)|�εn ,ξn |pdx =

∫

R3
P(ξ)|w|pdx + on(1)

and

F(�εn ,ξn ) = Q2(ξ)F̃(w) + on(1).

Then tn is bounded from above. Thus we can obtain

t2εn

∫

R3
(|∇w|2 + V (ξ)w2)dx = t pεn

∫

R3
P(ξ)|w|pdx + t2(6−μ)

εn
Q2(ξ)F̃(w) + on(1).

It follows from Lemma 2.5 that tn is has a positive lower bound. Without loss of
generality, we assume that tεn → T > 0. Letting n → ∞ in the above expression, we
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can get

T 2
∫

R3
(|∇w|2 + V (ξ)w2)dx = T p

∫

R3
P(ξ)|w|pdx + T 2(6−μ)Q2(ξ)F̃(w).

It follows from w ∈ NVminPmaxQmax that T = 1. Then, we have

lim
n→∞ Iεn (�εn (ξn)) = IVminPmaxQmax(w) = mVminPmaxQmax ,

which is a contradiction. �
For any δ > 0, let ρ = ρ(δ) > 0 such that (V ∩ P ∩ Q)δ ⊂ Bρ(0). Consider

χ : R
3 → R

3 defined as χ(x) = x for |x | ≤ ρ and χ(x) = ρx
|x | for |x | ≥ ρ. Define

βε : Nε → R
3 given by

βε(u) =
∫
R3 χ(εx)u2(x)dx∫

R3 u2(x)dx
.

Lemma 5.2 lim
ε→0

βε(�ε(ξ)) = ξ uniformly in ξ ∈ V ∩ P ∩ Q.

Proof Suppose by contradiction that there exist δ0 > 0, {ξn} ⊂ V∩P∩Q and εn → 0
such that

|βεn (�εn (ξn)) − ξn| ≥ δ0. (5.1)

By the definition of βε, we have

βεn (�εn (ξn)) = ξn +
∫
R3(χ(εnx + ξn) − ξn)|η(εnx)w(x)|2dx∫

R3 |η(εnx)w(x)|2dx .

Since {ξn} ⊂ V ∩ P ∩ Q ⊂ Bρ(0) and χ
∣∣
Bρ

≡ id, we conclude that

|βεn (�εn (ξn)) − ξn| = on(1),

which contradicts (5.1) and the desired conclusion holds. �
Define the set

Ñε = {u ∈ Nε : Iε(u) ≤ mVminPmaxQmax + h(ε)}.

where h(ε) = sup
ξ∈V∩P∩Q

|Iε(�ε(ξ)) −mVminPmaxQmax |. We conclude from Lemma 5.1

that h(ε) → 0 as ε → 0. By the definition of h(ε), for any ξ ∈ V ∩P ∩Q and ε > 0,
�ε(ξ) ∈ Ñε and Ñε 	= ∅.
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Lemma 5.3 Let εn → 0 and un ∈ Nεn such that Iεn (un) → mVminPmaxQmax .Then there
exists {yn} ⊂ R

N such that the sequence un (x + yn) has a convergent subsequence
in E. Moreover, up to a subsequence, εn yn → ξ ∈ V ∩ P ∩ Q.

Proof Since

mVminPmaxQmax = Iεn (un) − 1

p

〈
I ′
εn

(un) , un
〉 + on(1)

=
(
1

2
− 1

2(6 − μ)

)
‖un‖2εn +

(
1

p
− 1

2(6 − μ)

)
F(un) + on(1)

≥
(
1

2
− 1

2(6 − μ)

)
‖un‖2εn + on(1),

then {un} is bounded in E . We can have a sequence {yn} ⊂ R
3 and positive constants

R, β such that

∫

BR(yn)
|un|2 ≥ β > 0.

If not, for any R > 0, one has

lim
n→∞ sup

y∈R3

∫

BR(y)
|un|2dx = 0.

Then, we have

un → u in Lq(R3), for 2 < q < 6.

Noting 0 = 〈I ′
ε(un), un〉, we can obtain

‖un‖2εn = F(un) + on(1).

Up to a subsequence, assume that

‖un‖2εn → l and F(un) → l.

It follows from Lemma 2.5 that l > 0. From condition (H2),

F(un) ≤ (Q∞)2 F̃(un).

By the definition of SH ,L , we can get

F(un) ≤ (Q∞)2S−(6−μ)
H ,L ‖un‖2(6−μ)

ε .
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It follows that

l ≥ S
6−μ
5−μ

H ,L (Q∞)
−2
5−μ .

Since Iεn (un) = mVminPmaxQmax + on(1), we can deduce that

mVminPmaxQmax ≥ 5 − μ

2(6 − μ)
S

6−μ
5−μ

H ,L (Q∞)
−2
5−μ ,

which is a contradiction with Lemma 2.9. Therefore, the conclusion follows. Denote
ũn(x) = un (x + yn), going if necessary to a subsequence, we can assume that

ũn⇀ũ 	= 0 in E .

Let tn > 0 be such that tnũn ∈ NVminPmaxQmax . By the definition of IVminPmaxQmax and
mVminPmaxQmax , we obtain

mVminPmaxQmax ≤ IVminPmaxQmax (tnũn)

= IVminPmaxQmax (tnun)

≤ Iεn (tnun) ≤ Iεn (un) = mVminPmaxQmax + on(1),

so IVminPmaxQmax (tnũn) → mVminPmaxQmax . Then {tnũn} is bounded in E . Since tnũn ∈
NVminPmaxQmax , it follows from Lemma 2.5 that ‖tnũn‖ ≥ C0. Noting un is bounded in
E , then there exists C > 0 such that tnC ≥ ‖tnũn‖ ≥ C0. Thus tn has a positive lower
bound. On the other hand, ũn does not converge to 0 in E , so there exists a δ′ > 0
such that ‖ũn‖ ≥ δ′. Therefore, tnδ′ ≤ ‖tnũn‖ ≤ C . Thus {tn} is bounded from above.
Then, up to a subsequence, tn → t0 > 0.

Denote ûn := tnũn, û := t0ũ, we have

IVminPmaxQmax

(
ûn

) → mVminPmaxQmax , ûn⇀û in E .

By the Ekeland’s Variational Principle, there exists a sequence
{
ŵn

} ⊂ NVminPmaxQmax

satisfying

ŵn − ûn → 0 in E, IVminPmaxQmax

(
ŵn

) → mVminPmaxQmax , I
′
VminPmaxQmax

(
ŵn

) → 0.

Therefore,

ŵn⇀û in E

and û = t0ũ is a nontrivial critical point of IVminPmaxQmax . Then

mVminPmaxQmax

≤ IVminPmaxQmax (û) − 1

p

〈
I ′
VminPmaxQmax

(û), û
〉
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=
(
1

2
− 1

p

) ∫

RN
(|∇û|2 + Vmin|û|2)dx +

(
1

p
− 1

2(6 − μ)

)
Q2

max F̃(û)

≤ lim inf
n→∞

((
1

2
− 1

p

) ∫

RN

(|∇ŵn |2 + Vmin|ŵn |2
)
dx +

(
1

p
− 1

2(6 − μ)

)
Q2

max F̃(ŵn)

)

= lim inf
n→∞

(
IVminPmaxQmax (ŵn) − 1

p

〈
I ′
VminPmaxQmax

(
ŵn

)
, ŵn

〉)

= mVminPmaxQmax .

Thus

ũn → ũ in E . (5.2)

Now, we are going to prove that εn yn → ξ ∈ V ∩P ∩Q. We first claim that {εn yn}
must be bounded. Otherwise, |εn yn| → ∞ as n → ∞. For any small δ > 0, there
exists ρ = ρ(δ) > 0, such that, for |x | ≥ ρ,

V (x) > V∞ − δ, P(x) < P∞ + δ and Q(x) < Q∞ + δ. (5.3)

For u ∈ E , define

Iδ(u) = 1

2

∫

R3

(
|∇u|2 + (V∞ − δ)|u|2

)
dx

− 1

p

∫

R3
(P∞ + δ)|u|pdx − 1

2(6 − μ)
(Q∞ + δ)2 F̃(u).

Then, we can introduce

mδ = inf
u∈Nδ

Iδ(u),

where Nδ = {u ∈ E : 〈I ′
δ(u), u〉 = 0}.

By Lemma 3.2 and condition (H1), we have mVminPmaxQmax < m∞. Noting the
continuity ofmδ about δ, we can obtainmVminPmaxQmax < mδ for δ small. For un , there
exists t̃n > 0 such that t̃nun ∈ Nδ . It is easy to see that {t̃n} is bounded. For any small
σ > 0, from (5.2), there exists R > 0 and N big enough, such that

∫

Bc
R(0)

(|∇un(x + yn)|2 + u2n(x + yn))dx < σ, for any n ≥ N .

Thus,

∫

Bc
R(yn)

(|∇un(x)|2 + u2n(x))dx < σ, for any n ≥ N . (5.4)
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From |εn yn| → ∞ as n → ∞, we can get BR(yn) ∩ B ρ
εn

(0) = ∅. Then, by using

(5.4), we have

∣∣∣
∫

B ρ
εn

(0)
(V (εnx) − V∞)|t̃nun|2dx

∣∣∣ < Cσ

and

∣∣∣
∫

B ρ
εn

(0)
(P(εnx) − P∞)|t̃nun|pdx

∣∣∣ < Cσ.

Thus, noting (5.3), we can get

Iεn (un) ≥ Iεn (t̃nun)

= Iδ(t̃nun) + 1

2

∫

R3
(V (εnx) − (V∞ − δ))|t̃nun |2dx

− 1

p

∫

R3
(P(εnx) − (P∞ + δ))|t̃nun |pdx

− 1

2(6 − μ)

∫

R3

∫

R3

(Q(εnx)Q(εn y) − (Q∞ + δ)2)|t̃nun(x)|6−μ|t̃nun(y)|6−μ

|x − y|μ dxdy

≥ Iδ(t̃nun) + 1

2

∫

R3
(V (εnx) − (V∞ − δ))|t̃nun |2dx

− 1

p

∫

R3
(P(εnx) − (P∞ + δ))|t̃nun |pdx

≥ Iδ(t̃nun) + 1

2

∫

B ρ
εn

(0)
(V (εnx) − (V∞ − δ))|t̃nun |2dx

− 1

p

∫

B ρ
εn

(0)
(P(εnx) − (P∞ + δ))|t̃nun |pdx

≥ mδ − Cσ.

Therefore, mVminPmaxQmax ≥ mδ , which is a contradiction.
Up to a subsequence, assume that εn yn → ξ . Hence, it suffices to show that

V (ξ) = Vmin, P(ξ) = Pmax and Q(ξ) = Qmax. Arguing by contradiction again, we
assume that V (ξ) > Vmin, P(ξ) < Pmax or Q(ξ) < Qmax. Since

lim
n→∞

∫

R3
V (εn yn + εnx) û

2
ndx =

∫

R3
V (ξ)û2dx,

lim
n→∞

∫

R3
P (εn yn + εnx) |ûn|pdx =

∫

R3
P(ξ)|û|pdx

and

lim
n→∞

∫

R3

∫

R3

Q(εnxn + εnx)Q(εn yn + εn y)|ûn(x)|6−μ|ûn(y)|6−μ

|x − y|μ dxdy
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= Q2(ξ)

∫

R3

∫

R3

|û(x)|6−μ|û(y)|6−μ

|x − y|μ dxdy,

we can obtain

mVminPmaxQmax ≤ IVminPmaxQmax (û)

<
1

2

∫

RN
|∇û|2 + 1

2

∫

RN
V (ξ)û2 − 1

p

∫

RN
P(ξ)|û|p − 1

2(6 − μ)
Q2(ξ)F̃(û)

= lim
n→∞ Iεn (tnun) ≤ lim

n→∞ Iεn (un) = mVminPmaxQmax ,

which is a contradiction. Therefore, V (ξ) = Vmin, P(ξ) = Pmax, and Q(ξ) = Qmax,
and the proof is completed. �
Lemma 5.4 For any δ > 0, there holds that

lim
ε→0

sup
u∈Ñε

dist(βε(u), (V ∩ P ∩ Q)δ) = 0.

Proof Let {εn} ⊂ (0,+∞) be such that εn → 0. By definition, there exists {un} ⊂ Ñεn

such that

dist(βεn (un), (V ∩ P ∩ Q)δ) = sup
u∈Ñεn

dist(βεn (u), (V ∩ P ∩ Q)δ) + on(1).

So, it suffices to find a sequence {ξn} ⊂ (V ∩ P ∩ Q)δ satisfying

lim
n→+∞ |βεn (un) − ξn| = 0. (5.5)

By Lemma 5.3, we can obtain ũ ∈ E such that un(x + yn) → ũ in E , and, up to a
subsequence, εn yn → ξ ∈ V ∩P ∩Q. Thus, εn yn ∈ (V ∩P ∩Q)δ for n large enough.
It is easy to see that

βεn (un) = εn yn +
∫
R3(χ(εnx + εn yn) − εn yn)|un(x + yn)|2dx∫

R3 |un(x + yn)|2dx .

Set ξn = εn yn . We have that the sequence {ξn} satisfies (5.5). This completes the
proof. �
Lemma 5.5 [4] Let I be a C1 functional defined on a C1 Finsler manifold M . If I
is bounded from below and satisfies the (PS) condition, then I has at least catMM
distinct critical points.

Lemma 5.6 [2] Let �,�+,�− be closed sets with �− ⊂ �+. Let � : �− → �,

β : � → �+ be two continuous maps such that β ◦ � is homotopically equivalent to
the embedding Id : �− → �+. Then cat�� ≥ cat�+�−.
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The proof of Theorem 1.1: (i) For a fixed δ > 0, by Lemmas 5.1 and 5.4, we know that
there exists a εδ > 0 such that for any ε ∈ (0, εδ), the diagram

V ∩ P ∩ Q �ε−→ Ñε
βε−→ (V ∩ P ∩ Q)δ

is well defined. From Lemma 5.2, for ε small enough, there is a function λ(ξ) with
|λ(ξ)| < δ

2 uniformly in ξ ∈ V ∩ P ∩ Q, such that βε(�ε(ξ)) = ξ + λ(ξ) for all
ξ ∈ V ∩P ∩Q. Define H(t, ξ) = ξ + (1− t)λ(ξ). Then, H : [0, 1] ×V ∩P ∩Q →
(V ∩ P ∩ Q)δ is continuous. Obviously, H(0, ξ) = βε(�ε(ξ)), H(1, ξ) = ξ for all
ξ ∈ V ∩P ∩Q. That is, H(t, ξ) is homotopy between βε ◦ �ε and the inclusion map
id : V ∩ P ∩ Q → (V ∩ P ∩ Q)δ . By Lemma 5.6, we obtain

catÑε
Ñε ≥ cat(V∩P∩Q)δ (V ∩ P ∩ Q).

On the other hand, using the definition of Ñε and choosing εδ small if necessary,
we see that Iε satisfies the (PS) condition in Ñε recalling (H1) and Lemma 4.4. By
Lemma 5.5, we know that Iε has at least catÑε

(Ñε) critical points onNε. By Lemma
2.11, these points are critical points of Iε in E . Consequently, we see that the problem
(1.1) has at least cat(V∩P∩Q)δ (V ∩ P ∩ Q) solutions.

(i i) By the definition of cε and mVminPmaxQmax , we have mVminPmaxQmax ≤ cε. Then,

lim inf
ε→0

cε ≥ mVminPmaxQmax .

It follows from Lemma 3.3 that

lim
ε→0

cε = mVminPmaxQmax .

By Lemma 5.3, there exist {yn} ⊂ R
3 and v ∈ E such that

un(x + yn) → v, in E .

Now we prove that v is a ground state solution of equation 1.2. For any ψ ∈ C∞
0 (R3),

since I ′
εn

(un) = 0, we have 〈I ′
εn

(un(x)), ψ(x − yn)〉 = 0. By direct computation, it is
easy to get

〈I ′
VminPmaxQmax

(v), ψ〉 = 0.

On the other hand,

mVminPmaxQmax

= lim
n→∞ Iεn (un)

= lim
n→∞

[
Iεn (un) − 1

2(6 − μ)
〈I ′

εn
(un), un〉

]
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= lim
n→∞

[ (
1

2
− 1

2(6 − μ)

) ∫

R3
(|∇un |2 + V (εnx)u

2
n)dx −

(
1

p
− 1

2(6 − μ)

) ∫

R3
P(εnx)|un |pdx

]

=
(
1

2
− 1

2(6 − μ)

) ∫

R3
(|∇v|2 + V (ξ)v2)dx −

(
1

p
− 1

2(6 − μ)

) ∫

R3
P(ξ)|v|pdx

=
(
1

2
− 1

2(6 − μ)

) ∫

R3
(|∇v|2 + Vminv

2)dx −
(
1

p
− 1

2(6 − μ)

) ∫

R3
Pmax|v|pdx

= IVminPmaxQmax (v) − 1

2(6 − μ)
〈I ′

VminPmaxQmax
(v), v〉

= IVminPmaxQmax (v).

Thus, v is a ground solution of Eq. (1.2). �
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