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Abstract
We deal with the following critical Choquard equation

—?Au+ Vx)u = Px)|ulP%u
T

)o@l e

where ¢ > 0 is a small parameter, 0 < u < 3, p € (4, 6). Under some conditions
on the potential functions V (x), P(x), and Q(x), we obtain the existence of multiple
solutions and their asymptotical behavior as ¢ — 0.
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1 Introduction and Main Results

In this paper, we consider the following critical Choquard equation
—2Au+Vxu = P)|ulP%u

i3 ( Q) |u(y)[o~

B raTr dy)Q(x)|u|4_“u, xeR3, (L)
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where ¢ > 0 is a parameter, 0 < pu < 3, p € (4,6). The potential functions
V(x), P(x), and Q(x) are three bounded and continuous functions in R3 satisfying
inf V(x) > 0, mf P(x) > 0and 1nf Qx) > 0.

xeR3
The Choquard equatlon

2
—Au—l—u:(/ u ) dy)u, xeRS,
R3 |x —yl

was used by Pekar [17] to describe the quantum theory of polaron at rest. Then it
was introduced by Choquard [10] as an approximation to Hartree—Fock theory of one-
component plasma. Penrose [18] also derived it as a model of self-gravitating matter,
in which quantum state reduction is understood as a gravitational phenomenon. Lieb
[10] proved the existence and uniqueness (up to translations) of solutions by using
symmetric decreasing rearrangement inequalities. Lions [11] obtained the existence of
infinitely many spherically symmetric solutions. Ma and Zhao [14] showed the positive
solutions of this equation must be radially symmetric and monotone decreasing about
some fixed point by the method of moving planes. Moroz and Van Schaftingen [15]
studied the generalized Choquard equation

—Au+u= g *u”)uP>u, xeR>,

where [, is a Riesz potential and p > 1. For an optimal range of parameters, they
showed the regularity, positivity, and radial symmetry of the ground states and derived
decay property at infinity as well.

Gao and Yang [6] studied the Brezis—Nirenberg type problem of the nonlinear
Choquard equation

2; .
—Au — Au = (/ Mdy)lmzlfzu, X € ]R3,
Q

lx — y|#
where €2 is a bounded domain and X is a parameter, N > 3 and 2:; = 211\,\/—__2“ is
the critical exponent under the sense of Hardy-Littlewood—Sobolev inequality. They
established some existence results for this equation. Shen, Gao, and Yang [19] inves-
tigated the critical Choquard equation with potential well

—Au+ V&) = Bu = (x| * |ul>)u>2u, xeRV,

where A, 8 > 0,0 < u < N, N > 4, 271 is the critical exponent. They proved the
existence of ground state solutions which localize near the potential well inf V~!(0)
and also characterize the asymptotic behavior as . — oo. Furthermore, the multiple
solutions were also established by Lusternik—Schnirelmann category theory.

For the semiclassical problem, Liu and Tang [12] studied the following subcritical
equation

—2Aw+ Vx)w =e W)Uy x (W|w|P)|w|” 2w, we H'®RY),
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wheree > 0, N > 2,60 € [2.%). The potential functions V (x), W (x) are bounded

positive functions. By using pseudo-index theory, they established the multiplicity of
solutions. Alves et al. [1] studied the following critical equation

O (u(W)*F + Fu(y))) q
)

RR3 lx — y[»

1
(el u+ ——fwy), xR,
6—u

—2Au+ V(ou = e“—3(

where ¢ > 0 is a parameter, 0 < u < 3. The potential functions V(x) and Q(x)
are two bounded and continuous functions in R? satisfying inf, g3 V(x) > 0 and
inf . cp3 O(x) > 0. When Q(x) = 1 and V (x) satisfies

min V(x) < liminf V (x),
xeR3 [x|—00
they proved the existence of ground state solution and multiple solutions. Moreover,

the concentration phenomenon was also considered. Zhang and Zhang [29] considered
the following critical Choquard equation

6_
—e2Au+ V(xu = e 7 / I + Q) F () )
R lx — yI*

(=" u + #me(u)), x € R,
6—u

where ¢ > 0 is a parameter, 0 < u < 3. The potential functions V (x) and Q(x) are
two bounded and continuous functions. Under the condition,

0(x) > lim Q(x), x € R%,
|x]—o00
and

VNQ={xeR: V(x) = Viin, Q(x) = Omax} # 9,

they established a relationship between the category of the set )V N Q and the number
of solutions by employing the Lusternik—Schnirelmann category theory.

On the other hand, the reduction methods are also used to study the Choquard
equation. Wei and Winter [22] considered

2 1 1 2 3
—e“Au+Vxu=——(—xu“)u, xeR’,
8mwe? x|

where ¢ > 0, V e C*(R?) and inf ver3 V(x) > 0. They proved that for any given
positive integer K, if Py, Ps, ..., Px € R3 were given nondegenerate critical points of
V (x), then for ¢ sufficiently small, there existed a positive solution for the equation and
this solution had exactly K local maximum points Qf (i = 1, 2, ..., K) with QY — P;
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as ¢ — 0. Luo, Peng and Wang [13] also investigated the above problem. For ¢
small enough, by using a local Pohozaev type of identity, blow-up analysis, and the
maximum principle, they showed the uniqueness of positive solutions concentrating at
the nondegenerate critical points of V (x). For more results about Choquard equations,
we refer to [5, 7-9, 16, 23, 26, 28, 31] and the references therein.

Motivated by the above works, we are concerned with the existence and concentra-
tion behavior of positive solutions for (1.1). We note that (1.1) involves three different
potentials. This brings a competition between the potentials V, P, and Q: each one
would like to attract ground states to their minimum or maximum points, respectively.
It makes difficulties in determining the concentration position of solutions. This kind
of problem can be traced back to [20, 21] for the semilinear Schrodinger equation.
See also [24, 25, 27, 30] for other related results. We first recall the following famous
Hardy-Littlewood—Sobolev inequality.

Proposition 1.1 (Hardy-Littlewood—Sobolev inequality). Lett,r > 1and0 < pu < 3
with % + % + % =2 f e LR and h € L"(R?). There exists a sharp constant
C(t, i, r), independent of f, h, such that

[ [ Lo
R

dxdy < C(t, w, V)| flelhl,.
3JR3 |x — y#

Remark 1.2 By Proposition 1.1, the term

// [ue ()" Iu(y)lrdxdy
Rr3JR3  [x — y[#

is well defined if |u|" € L*(R?) satisfies 2 + 4 = 2. Therefore, for u € H'(R?),
we will require sr € [2, 6]. Then (’_T“ <r < 6 — u. Here, (’_T“ is called the lower
critical exponent and 6 — p is called the upper critical exponent in the sense of Hardy—

Littlewood—Sobolev inequality.

Proposition 1.3 (Optimizers for Sy 1). [6] Define

- Jgs IVul*dx
S = f R3 '
"t u6D1~1212R3>\{0} i () [0~ u () |0~ # =
(fRz fR3 Wd)cdy)6 m

Then Sy .1, is achieved if and only if

b 3
=c(— ,
" b2+|x—a|2>

where C > 0 is a fixed constant, a € R> and b > 0 are parameters.

Remark 1.4 [6] In fact,

=

3

Ux) = ———
1+ |x|*)2
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is a minimizer for S, the best Sobolev constant, and is also the minimizer for Sy r.
Moreover,

S

S =—""
C@3, wyo-—r

’

where C (3, 1) is the sharp constant in Proposition 1.1.

To state our main results, some hypotheses about the potential functions are needed
as follows:

(H1) Voo > Vmin O Prax > Poo,
(Hy) Q(x) < Q% forx € R3,
(H3) VNPNQ={x €R®: V(x) = Vinin. P(x) = Prmax. Q(x) = Omax} # 2.

where
Vimin := min V(x), V:={x € R3: V(x) = Vmin}, Voo := liminf V(x),
xeR3 [x|—>00

Pmax = max P(x), P:={x € R®: P(x) = Ppa}, P> :=limsup P(x),

xeR3 |x|—00
Omax = max O(x), Qi={x € R*: 0(x) = Oumax}, 0 = limsup O(x).
xe |x|]—00

Obviously, under the assumptions (Hj), the set V NP N Q is bounded.
Our main results are as follows:

Theorem 1.5 Suppose that the potentials V (x), P(x), Q(x) satisfy conditions (Hy),
(H3) and (H3). Then

(i) For any 6 > O, there exists es > 0 such that problem (1.1) has at least
catynpng); V NP N Q) solutions for ¢ € (0, es), where V NP N Q)s =
{x e R} : dist(x, VNP NQ) <35).

(ii) Fore, — Oasn — 00, up to a subsequence, there exists y, such that ug, (x + yp),
where ug, is a solution in (i), converges in H! (R3) to a ground state solution u of

02 Ju(y)[0—+

— A + Vijinut = Pmax|u|p72u + (
R X =y

dy>|u|47“u, x € R3,
(1.2)

The proof of our main results is based on the variational method. The main diffi-
culties lie in two aspects: (i) The unboundedness of the domain R3 and the critical
exponent under the sense of Hardy—Littlewood—Sobolev inequality lead to the lack of
compactness. Some arguments developed by Brezis and Nirenberg [3] can be applied
to prove that the functional associated with (1.1) satisfies the Palais-Smale (PS) con-
dition under some energy level. (ii) When the critical term has a potential Q(x), the
proof of the existence of multiple solutions become more complicated. As far as we
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know, there are no results about this problem. By using Lusternik—Schnirelmann the-
ory, we establish the relationship between the category of the set V NP N Q and the
number of solutions.

This paper is organized as follows. In the forthcoming section, we collect some
necessary preliminary lemmas which will be used later. In Sect. 3, we are devoted to
the energy functional with constant coefficients. In Sect. 4, the PS condition is given.
In Sect. 5, the Lusternik—Schnirelmann theory is applied to prove the existence of
multiple solutions.

Notation. In this paper, we make use of the following notations.

e Forany R > 0 and x € R3, Bg(x) denotes the open ball of radius R centered at
X.

e The letter C stands for positive constants (possibly different from line to line).

e ’—” denotes the strong convergence and "—" denotes the weak convergence.

1
o |uly = (fgs [u|?dx) 7 denotes the norm of u in L (R?) for 2 < g < 6.

2 Preliminaries

The standard norm of E := H'(R?) is given by

172
| = (/R3(|W|2 +uddx)

Since V (x) is bounded and inf , .3 V (x) > 0, we have the following equivalent norm
172
fulle = ([ 4vuP + Viexniar) "
]R;

For f € L! (R?), define

loc

_ F )
I#*f(X)_[l‘@ md)’,

and this integral converges in the classical Lebesgue sense for a.e. x € R? if and only
if f e LY(R3, (1+ |x|)~*dx).

Remark 2.1 By Hardy-Littlewood—Sobolev inequality, /,, defines a linear continuous
6 6
map from L&+ (R3) to L= (R3).

Define F : E — R by

F = / Q(ex) QW) * " u(y)*~" dxdy.
R3 JR3

lx — y|#

To prove the properties about F (-), for simplicity, we assume that Q(x) = 1 in the
following three Lemmas.
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Lemma2.2 Let u,—u in E and u, — u, a.e. in R3. Then

I, * un|®H — I, * [u|®", ae inR3, asn — oo.

6

Proof By Hardy-Littlewood—Sobolev inequality, 7,, * lun|®~* € L= (R3). Choose a
6

function v € L& 7% (R?) satisfying v > 0 in R3. Then

/z ‘IM * |un|07H — I, * |u|6_“‘vdx
R‘

6—p 6—1
S/R/R a0 lu(y)| |v<x>dxdy

lx — y|*

= /R L v ()7 = ()~ |dy.
6 6
Since I, v € L (R%), and ’|un(y)|6_“— |u(y)|6_“’—\0inLW(R3),we can obtain

/3 ‘I,L s | — I % |u|6_“‘vdx 0, asn — oo.
R

It follows from v > 0 that the result holds. |

Lemma 2.3 Let u,—u in E and u, — u, a.e. in R3. Then
_ —us 8 .
/ Ly * |uy — ulMuP")sdx — 0, ae inR?, asn — oo,
R3
and
6
f Iy = [l lup — uP")5dx — 0, a.e. inR>, asn — .
R3
Proof Let v, = u,, — u, then

6(5

_ .0 _,. 6 — /L)
/ (L Yt — 1l u)stZ/ (L # Jonl ) ) 5™ dx.
R3 R3

5
By Hardy-Littlewood—Sobolev inequality, (1, *|v, |6’“)g € L#(R3), and is bounded
5
in L* (R3). From Lemma 2.2, I, * |v,|®7# — 0, ae.in R?, as n — oc. Then, we
5 — 5
have (I, * |vn|6_“)%—\() in L# (R3). It follows from |u|6Ls B e L5 (R3) that the
first result holds. Similarly, the second limit can be obtained. O

Lemma224 Letu,—uin E and u,, — u, a.e. in R3. Then

(i) Fuy —u) = F(uy) — Fu) + 0,(1);
(ii) F'(uy —u) = F'(up) — F'(u) + 0,(1), in (H'(R3))~.
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Proof The first part (i) has been proved in [6]. We just prove the second part (ii). In
fact, for any ¢ € H'(R?),

[(F/ = ), §) = (F'(n). ) + (F' (). 9)

< ] [ (s =1y = 1 0 = L b
1, |u|6_“|u|4_“u)¢‘

< Ol =l ity = 7y = ) = L | ey

+ 1, * 0w u

I6lo
3

6— 4- 6— 4-
< Ol g — ul® Pty — a7 = 0) = L g

6—piy, 14—
+ Ly [u "  ul "

o 121l

5

Next, we prove that

Ly g — |8 My — ul* ™ (i — ) — Ly || |un | uy

o el | = 0n(1).
5
Let v, = u,, — u. Then, for any small § > 0,

[ bt = 17y = ¥ty = 0) = Lt

= ‘I * [0 |0 un | v, — I, * v, + u|O M, + ul* (v, + u)‘
= ‘ / I * v + tulHvp + tu) (v, + tu))dt‘
Cl L+ Qoal ™ Jul + 1l (ualP~ + [uP74) + L+ (o
1l Qo+ 5]

[ 6—1 6—1 5—n 5—n
< C| (81, # |va]®™" + COY L 5 S H) (v P + [u~H)

o (a7 4 1l )Gl S T+ CO) )]

IA

I 6— 5— 6—11,,15— 6— 5—
S(I;L*|Un| M|Un| M+Iu*|vn| M|u| M+Iu*|u| M|Un| )

c
o+ COO Uy 1l 0l 4 Ly 0 ) 4+ C@) Ly il
C

8 fu+ C(E)gn + CO [l Jul™"],
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where
Fo = L 10 1O 0 P 4 Ly 1o 187 H (uPH + Ly |u S, P,
and
gn = Ty # [l o P 4 Ly o O w5

Therefore,

wiloy

R P A PR T e P e PR 1

= C[800% +COE? + CEOU a3 .

Define

wioy

6— 4— 6— 4— 6—11),, 14—
A o A N e T e PR L P "

—~C3(f)% = CC®)(gn*. 0},
It is easy to see that
0 < G5, (x) < CEOY Uy * lulHlulP )3 e L' ®).
By Lemma 2.2, we can obtain

fan— 0, ae. in]R3, asn — 00,

gn — 0, ae.in R3, asn — 00,
and

Ly % | S 0 |4 — Ly |87 |* Py + Ly 5 || u*Hu| — 0,

a.e. in R3, asn — 00.
Thus,
Gsp(x) = 0, ae.in R3, asn — 00.

Then, we have
/ Gsn(x) = 0, asn — oo. 2.1
R3

@ Springer



238 Page 10 of 34 Y. Chen, Z. Yang

By the definition of G5 ,(r) and the boundedness of f;, in L% (RY),

6

6y, 4— 61y, 4= 6y d—p |3
/3)I;L*|Un| Hlup] Mvn_lu*|“n| Hluy| uun+1u*|u| Flul™ P u| dx
R

=cfs [ lar+co [ @bar]+ [ Guatoan
]R3 R3 R3
< C[C8+C(5)/ (g,,)%dx] +/ Gon(x)dx
]R3 ]R3

Thus, by Lemma 2.2 and (2.1),

6
limsup/ ‘IM O L e N T Ty |u\67"\u|47“u‘5dx < Cs.
n—oo JR3

It follows from the arbitrariness of § that

[ O 00 = L a7 a[* a0 L l a

. =on(D).
5

O

Making the change of variable x — ex, we can rewrite problem (1.1) as

O(ey)|u(y)|s—+

— Au+ V(ex)u = Pex)|ul?2u + (
R3 lx — y[*

dy)Q(ex)|u|4*“u, x e R3.

(2.2)

Thus, the corresponding energy functional is

_ 1 2 1 1
I (u) = §||M||g - ;/1&3 P(ex)|ulPdx — 2(6——,u)F(u)'

Itis easy to check that I, is well defined on £ and I, € C L(E,R). Then we can define
the Nehari manifold

Ne = {u € E\{0} | (I;(w), u) = 0}.
Lemma 2.5 There exists Co > O which is independent of e such that

-2
P Cg, forallu € N;.
4

lulle > Co and Ic(u) >
Proof For any u € N, we have
llu? = /3 P(ex)|u|Pdx + F(u).
R

@ Springer



Existence and Asymptotical Behavior of Multiple Solutions... Page 110f34 238

It follows from the Hardy—Littlewood—Sobolev inequality and Sobolev embedding
theorem that

6—1 6—1
Hm=/ QR QENIWIT W™ | 260 oy 26w
R3 JR3 lx — y|*

Without loss of generality, we assume that ||u|| < 1. Then
2 2(6—
lullz < Clull? + NulZ7) < Cllull?.

Thus, the first desired result follows. On the other hand, we have

() = ~ul’? ljim )|ul”d L raw
u) = —|Uu —_ — EX)|U X - — u
’ 27 p e 2(6 — )
1o, 1 1
> ~|lull} = = | P(ex)ulPdx — —F(u)
2 p Jr3 p
1 1
=§wﬁ——qimmmWM+Fw>
P JR3
| B
z (5 = Il
-2
ZPZp cl.

O

Lemma 2.6 Foranyu € E\{0}, there exists aunique t (u) > 0 suchthatt(u)u € (N,
and

I, (t(u)u) = max I, (tu).
t>0

Proof For any u € E \ {0}, define g(¢) = I.(tu), t € [0, +00). Then

2 2(6—p)

m—LWW—ﬁwamWM—L——JM
S =T Jes 26—

It is easy to see that g(#) > O for t > 0 small and g(¢) < O for r > 0 large enough, so
there exists #o > 0 such that

g () =0 and g(to) = max gt) = max I (tu).
> >

It follows from g’(tp) = O that fou € N.
If there exist 0 < #; < t such that fju € N; and rou € N,. Then

1 2(6—u)—
ﬁ||u||§=/ P(ex)|ulPdx + 17O P F(u),
4 R3
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and

1 2(6— 1) —
ﬁHqu =/ P(ex)|ulPdx +t2( WP E ().
2y R3

It follows that

1 1 2(6—10)— 2(6—1)—

(—p_z - _,,_2> lu))? = (tl( W=p _ 26w p) Flu,

t t
1 2

which is a contradiction. O
Lemma 2.7 For any ¢ > 0, let

ce = inf I (u), c¢f= inf max I (tu), c* = inf sup I.(y(2)),

ueN; & ueE\[0) 1=0 © yel o

where
Fe={y(@®) € C(0,1], E) | y(0) =0, I(y(1)) < O0}.
Then, c; = ¢} = cf*.

Proof We divide the proof into three steps.
Stepl. ¢} = c.. By Lemma 2.6, we have

*= inf I.(tu) = inf I.(¢ = inf I = Cs.
e = R0 0 e(t) W B\ (0) (1) VN, elu) =ce

Step2. ¢} > c¢}*. For any u € E \ {0}, there exists T large enough, such that
I.(Tu) < 0. Define y(t) = tTu,t € [0, 1]. Then we have y (¢) € I'; and, therefore,

c;"=inf sup L(y(®) < sup L(y(t)) < max [ (tu).

&
v€Te t€[0,1] 1€[0,1] 20

It follows that ¢} > c¢}*.
Step3. c;* > c,. Forany u € E \ {0} with |lu| ¢ small, we know

llu |2 >/ P(ex)|u|Pdx + F (u). (2.3)
R3
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We claim that every y () € T, has to cross N;. Otherwise, by the continuity of y (¢),
(2.3) still holds when u is replaced by y (1). Then, we can obtain

_ l 2 _ l PAdy — —1
Ly (1) = S lly D pA;P(sx)wn dx = 35— P
1 1 1
> Sy I - —/ P(ex)|y (D)[Pdx — = F(y (1))
p Jr3 p
1 1
> Sy IE = —lly (DI
p
> 0,

which contradicts the definition of y (1). It follows from the claim that ¢}* > ¢,. O

One can easily check that the functional /, satisfies the mountain-pass geometry
that is the following lemma holds ( [26]).

Lemma 2.8 I, has the mountain geometry structure.

(i) There exist ag, ro > 0 independent of ¢, such that I,(u) > ao, for all u € E with
lulle = ro.
(ii) Foranyu € E \ {0}, lim;_ o I (tu) = —

Lemma 2.9 Forany e > 0 and Q(x) = g, we have ¢, < S;{‘iqﬁ, where

q Is a positive constant.

Proof For any € > 0, define
1 X
Ue) = —2U () el) = 60U, v e R

where ¢ (x) € CgO(R3) is such that ¢ = 1 on B1(0) and ¢ = 0 on B5(0). From
Lemma 2.6 in [1], we know that

3 3
/ |Vue)?dx = CG3, )0 S7 | + O(e), (2.4)

6—p 6—u 6-u »
[1;3 '/1;3 |ME(X)|X_|I;€|IE)])| dx dy > C(3 M)zs 2 _ 0(667‘), (25)

and

0€T), 1e(3,6),
/3 lucl'dx = { O(e? |lne]), 1 =3, (2.6)
® 0(eh). te2.3).
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Then, fort > 0,

12 P
2 2
I (tue) :—/ (|Vuel +V(£x)u€)dx——/ P(ex)|uce|Pdx
P JR3

226-1) e ()| Jue ()5
dxdy
2(6 W) Jr3 Jr3 lx — yl#

q2t2(67u.) 6—p
m(c(-” .U«)ZSHL—O(E ))

£ CE20() — PO ) == h(r).

_—(C(3 e “)52 T 0@€©) —

It is easy to see that h(¢) — —oo ast — +o00, h(0) = 0 and A(r) > 0 as ¢ is small.
Therefore, there exists f, > 0 such that A (¢) attains its maximum. Then, differentiating
h at t., we can obtain

6—p1

(CO,WTTS] , + 0) — 126M202(C3, isy, — 06T
— —C(0(e) — 1P720("T)).

When € is small enough, it follows from the above expression that there exist 1, t, > 0
independent of € such that #; < ¢, < . Noting

12 33 G2126=m) o

E(C(3,M)2(6"‘> S+ 0(€) — W(C(S M)2S - 0(6 “)

attains its maximum at

3 3
camw%WL+0@

1
26-m)—2

g*(C(@3, M)2SH L~ 0 7))

Then, we have

3 3
5-u 2, CEWTmSE, +0() & 6=p
h(fe)52(6_ )q“*“ T H.L P o C<t€20(6)7t€”0(€ 7 ))
" (CG. WIS, — 0@ 7)o
3 3
S—pn 2, COWTNSE, +0() o
S A e )5“ c<t§O(e)—zf0(e 2’))
" (C<3,M)ESH?L — 0@ T )Fr
3
5—u C(3,M)w5 L) s,z 2 P o=p
<565 u( 1 +0 +C(F0E - o).

3 oo 1
(CB, W28y )&n
Since p € (4, 6), then 0 < 6_Tp < 1. Thus, as € is small enough, we have
2 P 5
O()+Ct;0(e) —t; O(e72)) < 0.
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Then, we can get

3 3

5—u 2 CG NSy )\ & 5-u 2
h(t, 5- :
(€)<2(6—,u,)q M( )

- =4Sy
Oop _ H,L
CG.wisfper 0T

=

By Lemma 2.7, the proof is completed.

Lemma 2.10 Any (PS). sequence {u,} for I, is bounded, and

. 2p
lim sup [[un e <
n— oo P — 2

Proof Suppose that {u,} is a (PS). sequence of I, we have

L (up) = ¢, I[(uy) — 0.
Thus

1
¢+ on(D) +onMluplle = I (un) — ;(lg/(un), Up)

= (l - l) i 17+ (1 - ;) F(u)
N2 p) T e 26— '

It follows that

1
(E _ _) N2 < ¢ + 0u (1) + 00 (D) itn s
p

Then {u,} is bounded in E, and the second result holds. O
Lemma 2.11 Ifu is a critical point of I, on N, then u is a critical point of I in E.

Proof Since u is a critical point of I. on N, there exists & € R such that

Il(u) = 0J.(u),

where J; (1) = (I[(u), u).
It follows from u € N that

(JL(u), u) =2|lu)? = p /R P(ex)|ulPdx —2(6 — w) F (u)
= Q2= p)llull?+ (p —2(6 — W) Fu) < 0.

Then, by 0 = (I[(u), u) = 6(J/(u), u), we have 1/ (u) = 0. O
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3 The Energy Functional with Constant Coefficients

We need some results about Eq. (2.2) with constant coefficients. Consider the following
problem

6—p
— Au+ku = tu|P?u + vz(/ Mdy)|u|4*“u, xeR (3.1

R3S |x = y#
where k, T, and v are positive constants. The associated energy functional is

2

1 4 v ~
I = —ful? - = Py — ——F
kev ) = S lul} p/RS uldx = e Faw.

where

172
Jule = (/R3(|Vu|2 +kydx)

6— 6—
f(u):/ / | Q)P |u(y)] dedy.
R3 JR3

[x — y|#

By Lemma 2.7, we have

Mgy = el,}\l/f Liry(u) = ueig\f{()} rtn>a(§( Iyry (tu),
u ktv =

where Nypy = {u € E\{0} [{1},,(u), u) = 0}. Especially, Ioo(1t), Mmoo, and Ny
mean [y, poo goo (1), my,, peogoo, and Nvoopoo o, respectively.

Lemma 3.1 Problem (3.1) has at least one ground state solution.

Proof By Lemma 2.7 and Lemma 2.8, there exits a sequence {u,, } whichisa (P S),,,
sequence of Ix;,. By Lemma 2.10, we know that {u,} is bounded in E. Hence, up to
a subsequence, we have

u,—u in E,
U, — u a.e.in R3,

Up,—u in Lq(R3), for 2 <gq <6.

It is easy to verify that I/ (1) =0.
Casel. u # 0.
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For this case, we have u € Njy,. Therefore, Iir, (1) > mycy. Then we get

. . 1
Migy = lim Lipy(u,) = lim I:Ikw(un) - _<I]£w(un), un>:|
n—00 n—00 p

lim

1 1
2

i+ (5 - 5t ) 2 Fw
p) T \p 26—

1
= lkrv(u) — _<Il£rv(u)’ u)

p

= Iizp(u) = Mgy

Thus, Iy () = mgz,. Moreover, we have u, — u in E.
Case2.u = 0.
Since {u,} is a (PS)m,,, sequence of I;;,, we have

0n(1) = (L (). ) = a1} = 7 f utnlPdx = V2 F ().
R;
Assume that

lunll? — 1 and r/ lun|Pdx + V2 F (uy) — 1.
]R3

b1 2 (Lo e
(3 )+ (- 3557

It is easy to see that [ # 0. If fR3 |u,|Pdx — 0, then vzf(un) — [. By the definition

of Sy 1, we can get
V2 F () < 2S5 a7
Letting n — oo, we have
1< v2s, e,

Then,

(3.2)
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Thus,
5—n §:—ﬁ =2 .
- 5= —
2(6—M)SH’LU > Migy nli)ngolkrv(un)
1 2 ~
= Jim [t =5 [ punlrax = 5 F)]
w0 L2 P Js 26— 1)
1 1
Sy R —
2 26—
5— 1 g%ﬁ =2

> S, v,
206 — )t

which is a contradiction. Therefore, fR; lup,|Pdx — b > 0 as n — o0. Thus, by
Lions’s Lemma, there exists {y,} C R3, 0, n > 0 such that

/ 0 Pl = . (33)
B, (yn)

Let i, (x) = u,(x + y,). Then ||, || < C in E. This implies that there exists ¥ € E
such that #,— in E and i, — % a.e. in R?. By (3.3), we get # # 0. It is easy to
prove that

Iirv (Uy) — My, and I]éw(lAjn) — 0.

Thus, we have 1 ,:w (@) = 0 and & € N¢y. Then the proof follows from the argument
used in the case of u # 0. O

Lemma3.2 Fork; > 0,1t >0andv; >0,i =1,2. If
min {kp — k1, 71 — 12, V1 — 12} > 0,

then my v, < Miyry,. Additionally, if max {ko — k1, 11 — 72, v1 — w2} > 0, then

Miyrivy < Miyryv,-

Proof By Lemma 3.1, there exists u € E satisfying Ii,r,0, (V) = Miyron,
maé( Ityrov, (tu). By Lemma 2.6, there exists fp > 0 such that Iy, (fou) =
>

max Iy, 7, (tu). Then
>0
M g0 = r:]f-é( Iklrlvl (tv) = Iklrlvl (tov) < Ikzrzvz (tov) < Ikzrzvz(v) = Miyov,-
Lemma3.3 Foranyé& € R3, limsupce < my e peE)oe)-
e—0
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Proof Forany £ € R3, by Lemma 3.1, we assume that u is a ground state solution to the
equation corresponding to the functional Iy ¢ p ) o). Setue (x) = go(ex—é)u(x—%),
where ¢ € CSO(R3, [0, 1]) is a cut-off function satisfying ¢ = 1, |x| < 1 and
¢ = 0, |x] > 2. Then, there exists T large enough, such that /.(Tu,) < 0. Define
ye(t) = tTu,, t € [0, 1]. It is easy to see that y.(¢) € ['¢ in Lemma 2.7. By direct
computation, we have

/ (Vie? + V() lus Pdx = / (Vul® + VEulP)dx + 0s (1),
R3 R3

/P(EX)IuaIPdX=/ P(&)|ul?dx + 0e(1)
R3 R3

F(ue) = Q*(E)Fu) + 0:(1),

Therefore,
_ a7)? , ()P b (tT)2 6=
IS(VS(I)) - 2 ”ué‘“s - - P(Sx)lugl dx mF(Mé\)
_ary (tT)26=1

T)P ~
——luly e — % /R} P(&)|u|"dx — Q%) F(w) + 0. (1)

2
=Ivepeoe ((Tu) +o:(1)
< Iy pe)oe W) +0:(1) =mye peoe + 0e(1)

26— )

Thus,

< <
ce < Or;ltaéil I (y: (1)) < my@ peE)oE) +oe(1).

It follows that lim sup ¢, < my E)PE)Q(E)- O

e—0

4 The Palais-Smale Condition

Lemma 4.1 Suppose that the condition (Hy) holds. Let {u,} C E bea (PS). sequence
5— = =2
for I, with ¢ < 2(6—M)S;‘Z(Q°°) 5-i and such that u,—0 in E. Then, one of the
— l’l’ ’
following conclusions holds.

(i) up, > 0in E;
(ii) There exists a sequence {y,} C R3 and constants R, B > 0 such that

liminff |up|*dx > B.
Br(yn)

n—oo
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Proof Suppose that (ii) does not occur. Then, for any R > 0, one has

lim supf |un|2dx =0.
Br(y)

70 yeR3
Then, we have
up, — u in LY9(R?), for 2 < q <6.
Noting 0, (1) = (I/(uy), u,), we can obtain
lin | = F(un) + 05 (1).
By Lemma 2.10, {u,} is bounded in E. Up to a subsequence, we can assume that
||un||§ — land F(u,) — 1.
Assume by contradiction that / > 0. From condition (H>),
Fun) < (Q®)Fun).
By the definition of Sy 1., we can get
Flun) < (Q%)? S5 un | 2671

It follows that

o—i 2
1= 8,7 (0%)5 .

Since I (u,) = ¢ + 0,(1), we can deduce that

which is a contradiction with our assumption. Therefore, / = 0 and the conclusion
follows. O

Lemma 4.2 Suppose that the condition (Hy) holds. Let {u,} C E bea (PS). sequence
for I, with ¢ < mso and u,—0in E. Then u,, — 0 in E.

Proof Assume that u, - 0 in E. Let {t,} C (0, +00) be a sequence such that
{tyun} C Noo. Then, we claim that the sequence {t,} satisfies that lim supz, < 1.

n— o0
Assume by contradiction that there exists § > 0 and a subsequence still denoted by
{t,}, such that, for all n € N,

t, > 1+6.
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Since (I (un), uy) = 0,(1), we get
”un”gZ/R3P(Sx)|”n|pdx+F(un)+0n(1)~ 4.1)
Using t,u, € N, we have
a3 = 17 P /R Nl Pdx + 107 Q%) F ().

Then, we can obtain

1 v,
— -1 / |Vu,|*dx +/ —2 — V(ex) | |u,[*dx
tf R3 r3 \ 1}

=/ [P — P(ex)]|un|Pdx
R3

6— 6—
[ [ - oengen O dxay + ou(h.

[x — y[*

By the definition of Vi, and P, for any o > 0, there exists R = R(c) > 0, such
that, for |[ex| > R,

Voo
V(ex) > Voo —0 > —— — 0 “4.2)
th~
and
P(ex) < P® +o. (4.3)

Moreover, ||uy||. is bounded and u,, — 0 in L;IOC(R3), for 2 < ¢ < 6. Then, we can
obtain

v,
/ (% - V(sx)) lun|2dx < Co + op(1)
R\ P~

n

and
‘/Rz[POO — P(ex)]|uy|Pdx > —Co + 0,(1).
Therefore,
66— 6—u
[ i @2 - oenoem ™ 2 D Sy < co + 0,0,
R3 JR3 |x — y[#
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Since t, > 1 4§ and Q(ex) < Q°, it follows from the above inequality that

6—n 6—1
u,(x u
/R* ./R* Jun )||x _lyT;EyN dxdy < Co + 0,(1).

By the arbitrariness of o, we can obtain

6—u 6—n
. / / GO O @
R3 JR3

n—00 |x_y|u

Since u, - 01in E, by Lemma 4.1, we know that there exists a sequence {y,} C R3
and constants R, 8 > 0 such that

/ |un|*dx > B. (4.5)
BR(y;l)

Set v, (x) = u, (x + y,). Then {v, (x)} is a bounded sequence in E. Therefore, there
exists v € E such that

v, — v, a.e. in R3.

By (4.5), v # 0 in E. Then, it follows from Fatou Lemma and (4.4) that

6—n 6—u 6—n1 6—u
0</ / @) " v(y)] dxdy < lim/ / [V ()17 vn ()] dxdy
R3 JR3 R3 JR3

|x_y|/4 n— 00 |x_y|14
i 14 () |8~ 1 () [0 dedy — 0
o0 Jp3 3 lx — y|# e

which is a contradiction.
We next distinguish the following two cases.

Case I: limsupt, = 1.
. n—oo ) .
In this case, there exists a subsequence, still denoted by {#,} such that ¢, — 1 as

n — o0. Then,

Too (thuyn)
2 5 5 If 3(6710 )~
= i/ (IVup|” + Voolun|")dx — */ P up|Pdx — (Q) F(up)
2 Jgs p Jr3 26— )

1 1 1 ~
= 5/ (Vi |* + Voolun [*)dx — —f P®uy|Pdx — ————(0%)?F () + o (1).
R3 p Jr3 — 1)

2(6
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Therefore,

Ie(up) — Ioo(tpun) = %/RS(V(EX) — Voo)lun|dx + % /ﬂ@}(f’oo — P(ex))|un|Pdx

it (00) | fut (1) [~

o00N2
+ 26— 1) Jus R3[(Q )7 = Q(ex) O (ey)] g dxdy
+ on(1).
By (4.2) and u, — 0in L3 (R3),

f (V(ex) — Voo)|un|?dx > —Co + 0,(1).
]R3
Similarly,
/ (P — P(ex))|up|Pdx = —=Co + on(1).
]R3

Then, noting Q(ex) < Q°°, we can obtain
c>me — Co + 0,(1).

By the arbitrariness of o, we have ¢ > m,, which is a contradiction.

Case 2: limsupt, < 1.
n—oo
In this case, we may suppose that t, < 1 for all » € N. From (4.1), we can deduce

that

2 P 2(6—p)

Teattn) =2 a2 %/R Penlun dx — S Flun)
2 t2(6 ) t2(6 "
& — el + (e - )/ Pex)litn"dx + 0,(1)
<G~ sl + G )/ Pex)litn|"dx + 0,(1)
1 /
=1 (uy) — m(lg(un)a up) + 0,(1)

=1 (u,) + 0, (1).
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Using this result, we have

Moo < loo(tytn)

[2
= I (tyuy) + 2 / (Voo — V(ex)|uy|*dx
2 ]R3

7 t2(6ﬂt)
- i/ (P — P(ex))|up|Pdx — == [(0™)? = Q(ex) Q(ey)]
P Jr3 26 — ) Jr3 Jr3

1t (0) 1O~ 1y () [0~
|x — y[#

dxdy

12 tf
< L (tyun) + l/ (Voo = V(ex)|up[Pdx — == | (P = P(ex))|uy|Pdx
2 Jgr3 p Jr3

< I:(tau,) + Co + 0,(1)
< I (uy) + Co +0,(1),

which means that ¢ > m o, a contradiction. O

Lemma 4.3 Suppose that the condition (Hy) holds. Then I satisfies the (PS). con-
dition at any level ¢ < mqo.

Proof Let {u,} be a (PS), sequence. By Lemma 2.10, {u,} is bounded in E. Then
there exists # € E such that u,—u in E. By standard argument, //(u) = 0 and
I.(u) > 0. Set w,, = u, — u. It follows from Lemma 2.4 and Brezis—Lieb’ Lemma
that {w,} is a (PS)¢_.() sequence. Since ¢ — I;(u) < my, by Lemma 4.2, w, — 0
in E. Therefore, u,, — u in E. O

Lemma 4.4 Suppose that the condition (H>) holds. Let {u,} be a (PS). sequence
restricted on N and assume ¢ < moo. Then {u,} has a convergent subsequence in E.

Proof Let {u,}bea (PS). sequence restricted on ;. Then, there exist {#,} C R such
that

I,g/(un) = enjg/(un) + 0, (1)

where Je () = (I[(u), u).
It follows from u,, € N, and Lemma 2.5 that

(L), wn) = 2unlly — wa P(ex)|un|Pdx —2(6 — w) F (un)

= Q2= pllunl?+ (p — 2(6 — ) F ()
< Q2= plual? < 2—-p)C3.

From 0 = (I/(up), u,) and the above inequality, we have 6, = 0,(1). Therefore,
I/ (un) = on(1). Thus, by Lemma 4.3, the proof is completed. m]
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5 The Existence of Multiple Solutions

We assume that the conditions (Hj), (H>), and (H3) hold in this section. Let us
consider a cut-off function n € Cgo(]R3, [0, 1]) such that n(x) = 1 if |x| < 1,
n(x) = 0if |x| > 2 and |Vn| < C. Choose w € E with I\’/mummeax(w) =0 and
1V, Prax Omax (W) = My P Onax- FOr€ach & e VNP N 0, let

W, e (x) = nlex — s|>w(€x8_ 5).

Then, there exists aunique #; > Osuchthatz, ¥, , € N;.Define @, : VNPNQ — N,
by setting @ (§) =t W .

Lemma 5.1 lin%) I (D (8)) = My, Poax Omax URIfOrmly in& € VAP N Q.
E—>

Proof Suppose that the result is false. Then, there exists some ¢ > 0, {§,} C VNPNQ
and &;, — 0 such that

|I‘9n ((Dgn (S”)) - meianameax| = .

The compactness of ¥V NP N Q implies that there exists £ € V NP N Q such that
&, — &, up to a subsequence if necessary. Now we claim that lim #,, = 1. Indeed,
n—oo

from ., ¥, &, € Ne,, we have
21 We, 6,12 =12 [% P(enx)|We, 6, 17dx + 1207 F (W, ¢).
R;

By using a change of variables and Lebesgue Dominated Convergence Theorem, we
can obtain

196, 617, = /w(IVwIZ + V(©uhdx + 0, (1).
[ P, gira = [ P@wra o)
R3 R3

and

F(We,5,) = Q*(E)F(w) + 0, (1).

Then ¢, is bounded from above. Thus we can obtain

rﬁnf (IVwl* + VE)w)dx =t f P@®)|w|Pdx + 271 02 (£) F (w) + 0a(1).
R3 R

n

It follows from Lemma 2.5 that 7, is has a positive lower bound. Without loss of
generality, we assume that z;, — T > 0. Letting n — oo in the above expression, we
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can get
T? fIR3(|Vw|2 +VEwHdx = TP /RS P(&)|w|Pdx + T*M Q&) F (w).
It follows from w € Ny, ;. P Omex that 7 = 1. Then, we have
Jm L, (P, (82)) = 1Viin Prvas Ormax (W) = 1M Vi P Qi

which is a contradiction. O

For any § > 0, let p = p(§) > 0 such that W NP N Q)s C B,(0). Consider
x : R3 — R3 defined as x(x) = x for |x| < p and x(x) = 2% for |x| > p. Define

x|
Be : N — R3 given by

Jrs x (ex)u’ (x)dx
Jr3 u?(x)dx

Be(u) =

Lemma 5.2 lirr%) Be (D (&) = & uniformlyinE e VNP NQ.
E—>

Proof Suppose by contradiction that there exist §9 > 0, {&§,} C VNPNQandg, — 0
such that

|Be,, (P, (5n)) — &nl = do- (5.1
By the definition of §,, we have

Jr3 (X (Enx + &2) — Ex)n(enx)w(x)|?dx
Jr3 In(enx)w (x)|>dx '

.38,, (cba,, &n) = Sn +

Since {§,} CVNPNQ C B,(0)and x }B,, = id, we conclude that

|188n ((Dan &n) —&nl = 0n(1),
which contradicts (5.1) and the desired conclusion holds. O

Define the set

Ne ={u € No : Le(u) < my,;, P Omax. + 1(E)}-

where h(e) =  sup  [I(DPe(§)) — My, Prax Omax |- WE conclude from Lemma 5.1
EeVNPNQ
that 2(e) — 0 as ¢ — 0. By the definition of i(¢), forany & e VNP N Qande > 0,

Do (8) € Ny and N, # 0.
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Lemma 5.3 Lete, — Oandu, € N, suchthat Iy, (ity) — MV, Poax Omax - 1h€N there
exists {y,} C RN such that the sequence u, (x + y,) has a convergent subsequence
in E. Moreover, up to a subsequence, e,y, — & € VNP N Q.

Proof Since

1
meianameax = ]En (M") - ; <18/n (Mn) ’ M") + On(l)

—(1—;)uun2+(1—;)F<u)+o<1)
2 26—w) e T\ T 26— ) e

- (1 L) a2, + 0D
=\3 26— ) Unllg, T0n(l),

then {u,} is bounded in E. We can have a sequence {y,} C R3 and positive constants
R, B such that

/ 2 > B > 0.
Br(yn)

If not, for any R > 0, one has

lim Sup/ |up|>dx = 0.
Br(y)

"0 yeR3

Then, we have

up, — u in LY(RY), for 2 < q < 6.
Noting 0 = (I/(u,), un), we can obtain

litnllZ, = F(un) + 0n(1).
Up to a subsequence, assume that
lunllZ — 1 and F(un) — L.
It follows from Lemma 2.5 that / > 0. From condition (H5),
Fun) < (Q%)F(uy).

By the definition of Sy 1, we can get

Fun) < (Q%) S5 un 2671
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It follows that

66— 5
2857 (Q%)5.

Since Ig, (n) = My, Poax Omax + 01 (1), we can deduce that

5—p EB

-2
i > —557“ 00 5—;1.’
M Viin Prax Omax = 2(6 _ M) H,L(Q )

which is a contradiction with Lemma 2.9. Therefore, the conclusion follows. Denote
in(x) = u, (x + y,), going if necessary to a subsequence, we can assume that

up—i #0in E.

Let 7, > 0 be such that #,ii, € NV, PruxOma - BY the definition of 7 and

m Vinin Pmax Omax » we Obtain

Viin Pmax Omax

mvmin Prmax Omax = Ivmianameax (tnﬁn)
= IVmianax Omax (tnu”)
=< 18,1 (thuy) < Is,, (un) = M V,in Prnax Omax T o, (1),
SO 1,0 Poax Omax (Enfn) = MV Poax Omax - 10EN {2,101, } is bounded in E. Since t,ii, €
NV, i Poax O » 1t fOllows from Lemma 2.5 that ||7,i, || > Co. Noting u, is bounded in
E, then there exists C > 0 such that #,C > ||t,u,|| > Co. Thus ¢, has a positive lower
bound. On the other hand, i, does not converge to 0 in E, so there exists a 8’ > 0
such that ||ii,,|| > 8'. Therefore, 1,8 < ||t,ii,|| < C. Thus {t,} is bounded from above.
Then, up to a subsequence, t, — fp > 0.
Denote i, := t,il,, Ui := toit, we have

Ivmianax Omax (un) — My, Prmax Omax Up—u1m E.

By the Ekeland’s Variational Principle, there exists a sequence {, } C N, P Omax
satisfying

Wy — iy = 00 E, 1y, Py O (W) = MV P Oumas Varin P Omax (W) — 0.
Therefore,

wy—uin E
and @ = fpi is a nontrivial critical point of Iy, ;. P, Omax - Then

m Vimin Pmax Qmax

. 1 . n
= IVmin Pmax Cmax (u) - ; <I{/min Prmax Omax (u)’ l/l>
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= (1 — 1)/ (IVal* + Vinin|*)dx + (l - L) O F (@)
= 2 » - min p 2(6_/'L) max

o 1 . R 1 1 ~ .
< lim inf ((5 - ;) /}RN (It [ + Vinin| ) dx + (; - m) QﬁmF(wn))

L. N 1, . .
= 1 I\ Do Py Qons () = > (Vi P Qo (1) W)

=m Vimin Pmax Qmax *
Thus
iiy — iiin E. (5.2)

Now, we are going to prove that g, y, — & € VNP N Q. We first claim that {e,,y, }
must be bounded. Otherwise, |&,y,| — 00 as n — oo. For any small § > 0, there
exists p = p(8) > 0, such that, for |x| > p,

V(x) > Voo — 8, P(x) < P + 8 and Q(x) < Q™ +3. (5.3)

For u € E, define

1
Is(u) = E/M (|Vu|2 + (Voo —8)|u|2) dx

- 1/ (P + 8)|ulPdx — ;(QOO +8)2F(u).
P Jr3 2(6 — )

Then, we can introduce

mg = inf Is(u),
$ ue/\fag()

where Ns = {u € E : (I{(u), u) = 0}.

By Lemma 3.2 and condition (Hj), we have my, . P Omae < Moo- Noting the
continuity of mg about 8, we can obtain my, ;. p... Omex < 7 for § small. For u,,, there
exists 7, > 0 such that 7,u,, € Nj. It is easy to see that {7,} is bounded. For any small
o > 0, from (5.2), there exists R > 0 and N big enough, such that

/ IV, (x + yo)|> + u2(x 4 yp))dx < o, foranyn > N.
B (0)
Thus,
/ (|Vun()c)|2 + u,% (x))dx < o, foranyn > N. 5.4
B (yn)
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From |g,y,| — o0 asn — oo, we can get Br(y,) N B (0) = @. Then, by using
(5.4), we have

‘/ (V(enx) — V°°)|f,,un|2dx‘ <Co
BEL(O)

and

(/ (P(epx) — P°°)|fnu,,|!’dx‘ < Co.
Bp ©)

Thus, noting (5.3), we can get

Is,, (uy) > Is,, (fnun)

= Iﬁ(fnun) + l‘/ (V(gpx) — (V° — 5))|t~nun|2dx
2 R3

- l/ (P(enx) — (P + 8))linun|”dx
pJR3

_ 1 (Q(enx)Q(eny) — (O + 8)2)|fnun(x)‘6iulfn”n(y)|6iﬂ
2(6 — ) Jrs Jr3 lx — y[*

- 1 -
> Is(thun) + E /];@(V(enx) - (V> - 5))|tnun|2d-x

dxdy

- i/ (P(enx) — (P + 8)|fqun|Pdx
P JRr3

- 1 -
> Is(taun) + 5/ (V(enx) — (V™ = 8)) iy |*dx
B%(O)

1 -
- f/ (P(enx) — (P + 8)|tyu,|Pdx
p B%(O)

>mgs — Co.

Therefore, my,;, Prux Oma = Ms> Which is a contradiction.

Up to a subsequence, assume that ¢,y, — &. Hence, it suffices to show that
V(&) = Vinin, P(§) = Pnax and Q (&) = QOmax. Arguing by contradiction again, we
assume that V(&) > Vinin, P(§) < Pmax or Q(€) < Qmax. Since

lim V(snyn+enx)ﬁidx=/ V(&)itdx,
3

n—00 Jp3 R

lim P (enyn + &nX) |itn|Pdx :/ P(&)la|Pdx
3 R3

n— 00 R

and

lim O(enxn + enx) Q(enyn + EnY)lﬁn(x)P_an (y)|6_“

dxdy
n—00 JR3 JR3 lx — y|#
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06— 06—
=0 (E)/ A;{? G2l MnalUIC]

|x — y[#

we can obtain

M Vinin Pax Omax = IVmin Prmax Qmax (M)

1 o 1 R
<5 [owares [ ver —;/RN PO’ — 5 O F (@)

= lim I, (tqup) < lim I, (Uy) = MV, Poax Omax >
00 &n (i’l I’l) = oo En( n) Vimin Pmax Omax

which is a contradiction. Therefore, V (§) = Viin, P(§) = Pmax, and Q(§) = Omax,
and the proof is completed. O

Lemma 5.4 For any § > 0, there holds that

Im}) sup dist(B:(w), VNPNQ)s) =0.
- ueN,

Proof Let{e,} C (0, 400) besuchthate, — 0.By definition, there exists {u,} C -/\75,1
such that

dist(Be, un), VNP NQ)s) = sup dist(Be, (), VNP NQ)s) + on(l).
ueNy,

So, it suffices to find a sequence {£,} C (VNP N Q);s satisfying

i 1B, () — &) = 0. (5.5)

By Lemma 5.3, we can obtain # € E such that u,(x + y,) — u in E, and, up to a
subsequence, ,y, — & € VN'PN Q. Thus, g,y, € (VNP NQ)s for n large enough.
It is easy to see that

Jrs (X (Enx + €0 V) — EnYn)lun (x + yn)|2dx
fRB [ (x + yn)|2dx

ﬂsn (un) = enyn +

Set &, = ¢,y,. We have that the sequence {&,} satisfies (5.5). This completes the
proof. O

Lemma 5.5 [4] Let I be a C' functional defined on a C' Finsler manifold M. If I
is bounded from below and satisfies the (PS) condition, then I has at least caty M
distinct critical points.

Lemma5.6 [2] Let T, Qt, Q™ be closed sets with Q= C Q. Let ® : Q~ — T,
B : T — QF be two continuous maps such that B o ® is homotopically equivalent to
the embedding Id : Q= — QV. Then catrT' > catg+ Q™.
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The proof of Theorem 1.1: (i) For a fixed § > 0, by Lemmas 5.1 and 5.4, we know that
there exists a €5 > 0 such that for any ¢ € (0, ¢5), the diagram

vaPrno 2 AL L vnrn o

is well deﬁned From Lemma 5.2, for ¢ small enough, there is a function A (&) with
L&) < umformly in& € VNPNQ, such that B, (P (&) = & + A(§) for all
& e VﬂPﬂ O.Define H(t, &) =&+ (1 —t)A(E). Then, H : [0, 1] x VNPNQ —
(VNP N Q)s is continuous. Obviously, H(0, &) = B.(D.(&)), H(1,&) = & for all
EeVNPNQ. Thatis, H(t, &) is homotopy between ; o @, and the inclusion map
id:YNPNAQ— (VNPN Q)s. By Lemma 5.6, we obtain

catNEﬂfs > catynpng); VNP N Q).

On the other hand, using the definition of N, and choosing &5 small if necessary,
we see that [, satisfies the (PS) condition in 1(78 recalling (H;) and Lemma 4.4. By
Lemma 5.5, we know that /, has at least cat (N ) critical points on N;. By Lemma
2.11, these points are critical points of I in E Consequently, we see that the problem
(1.1) has at least catynpng), (V NP N Q) solutions.

(ii) By the definition of ¢, and my,;, P Omax» WE have my, . p. o < c,. Then,

lim inf Cezm Viin Pmax Omax *
e—0
It follows from Lemma 3.3 that

lim ¢e = My, Poax Omax -
e—0

By Lemma 5.3, there exist {y,} C R and v € E such that
up(x +y,) = v, in E.
Now we prove that v is a ground state solution of equation 1.2. For any s € C° (R3),

since I; (uy) = 0, we have (I (u,(x)), ¥ (x — y,)) = 0. By direct computation, it is
easy to get

(1</minpmameax (U), w> = 0

On the other hand,

M Vi Prax Omax

= lim I, (uy)
n—00

Tim 1, ) (1L, ), )

_
2(6 — )
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. 1 1 1
nl‘l‘éo[(i T u))/ (Vin? + V(enx)u)dx — (;_m> /R} P(g,,x)\u,,lpdx}

_ (1 )[ (VP + VEWdx — (i - L)/ P(E)[ulPdx
2 2(6 5 p 20—/ Jre

- (1 7)/ (Vo[> + Viinv?)dx — <l,¥)/ P |07 dx
2 2(6 ,u) min P 2(6_#«) - max

= IVyyin Prax O (V) —

1
— Iy (v),v
2(6 — M’) < Vinin Pmax @max )

= IVmin Prax Omax ('U) N

Thus, v is a ground solution of Eq. (1.2). O
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