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Abstract
In this paper, we start a detailed study of a new notion of rectifiability in Carnot
groups: we say that a Radon measure is Ph-rectifiable, for h ∈ N, if it has positive
h-lower density and finite h-upper density almost everywhere, and, at almost every
point, it admits a unique tangent measure up to multiples. First, we compare Ph-
rectifiability with other notions of rectifiability previously known in the literature
in the setting of Carnot groups, and we prove that it is strictly weaker than them.
Second, we prove several structure properties of Ph-rectifiable measures. Namely,
we prove that the support of a Ph-rectifiable measure is almost everywhere covered
by sets satisfying a cone-like property, and in the particular case of Ph-rectifiable
measures with complemented tangents, we show that they are supported on the union
of intrinsically Lipschitz and differentiable graphs. Such a covering property is used
to prove the main result of this paper: we show that a Ph-rectifiable measure has
almost everywhere positive and finite h-density whenever the tangents admit at least
one complementary subgroup.

Keywords Carnot groups, Rectifiability · Rectifiable measure · Density · Intrinsic
Lipschitz graph · Intrinsic differentiable graph

Mathematics Subject Classification 53C17 · 22E25 · 28A75 · 49Q15 · 26A16

1 Introduction

In Euclidean spaces, a Radon measure φ is said to be k-rectifiable if it is absolutely
continuous with respect to the k-dimensional Hausdorff measure Hk and it is sup-
ported on a countable union of k-dimensional Lipschitz surfaces, for a reference see
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[13,§3.2.14]. This notion of regularity for a measure is an established, thoroughly
studied, and well-understood concept and its versatility is twofold. On the one hand,
it can be effortlessly extended to general metric spaces. On the other hand, it can be
shown, at least in Euclidean spaces, that the global regularity properties arise as a
consequence of the local structure of the measure, as it is clear from the following
classical proposition, see, e.g., [36,Theorem 16.7].

Proposition 1.1 Assume φ is a Radon measure on R
n and k is a natural number such

that 1 ≤ k ≤ n. Then, φ is a k-rectifiable measure if and only if for φ-almost every
x ∈ R

n we have

(i) 0 < �k∗(φ, x) ≤ �k,∗(φ, x) < +∞,
(ii) Tank(φ, x) ⊆ {λHk�V : λ > 0, and V is a k-dimensional vector subspace},
where �k∗(φ, x) and �k,∗(φ, x) are, respectively, the lower and the upper k-density
of φ at x, see Definition 2.8, and Tank(φ, x) is the set of k-tangent measures to φ at
x, see Definition 2.7, while Hk is the Hausdorff measure.

Asmentioned above, one can define rectifiable measures in arbitrary metric spaces:
however, one quickly understands that there are some limitations to what the classical
rectifiability can achieve.

The first example of this is the curve in L1([0, 1]) that at each t ∈ [0, 1] assigns the
indicator function of the interval [0, t]. This curve is Lipschitz continuous; however, it
fails to be Fréchet differentiable at every point of [0, 1], thus not admitting a tangent.
This shows that we cannot expect anything like Proposition 1.1 to hold in infinite
dimension.

For the second example, we need to briefly introduce Carnot groups, see Sect. 2
for details. A Carnot group G is a simply connected nilpotent Lie group, whose Lie
algebra is stratified and generated by its first layer. Carnot groups are a generalization
of Euclidean spaces, and we remark that (quotients of) Carnot groups arise as the
infinitesimal models of sub-Riemannian manifolds and their geometry, even at an
infinitesimal scale, might be very different from the Euclidean one. We endow G with
an arbitrary left-invariant homogeneous distance d, and we recall that any two of them
are bi-Lipschitz equivalent. These groups have finite Hausdorff dimension, that is
commonly denoted by Q, and any Lipschitz map f : R

Q−1 → (G, d) hasHQ−1-null
image, unlessG is an Euclidean space, see for instance [2] and [35,Theorem 1.1]. This
from an Euclidean perspective means that there are no Lipschitz-regular parametrized
one-codimensional surfaces inside (G, d), unless G is an Euclidean space. However,
as shown in the foundational papers [19, 20], in Carnot groups there is a well-defined
notion of finite perimeter set and in Carnot groups of step 2 their reduced boundary
can be covered up to HQ−1-negligible sets by countably many intrinsic C1-regular
hypersurfaces, C1

H hypersurfaces from now on, see [20,Definition 6.4]. The success
of the approach attempted in [20] has started an effort to study Geometric Measure
Theory in sub-Riemannian Carnot groups, and in particular to study various notion(s)
of rectifiability, see, e.g., [10, 11, 14, 17–19, 21, 22, 24–26, 31, 32, 39–41]. The big
effort represented by the aforementioned papers in trying to understand rectifiability
in Carnot groups has given rise to a multiplication of definitions, each one suiting
some particular cases.
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As we shall see in the subsequent paragraphs, not only one could consider our
approach reversed with respect to the ones known in the literature but it also has a
twofold advantage. On the one hand, the definition ofP-rectifiable measure is natural
and intrinsic with respect to the (homogeneous) structure of Carnot groups and it is
equivalent to the usual one in the Euclidean setting; on the other hand, we do not have
to handle the problemof distinguishing, in the definition, between the low-dimensional
and the low-codimensional rectifiability.

Nevertheless, for arbitrary Carnot groups, we prove non-trivial structure results for
rectifiable measures, see Sect. 1.2. These structure results will be used to prove the
main Theorem of this paper, see Theorem 1.3. Moreover, the study of the structure
properties proved in Sect. 1.2 is completed in the subsequent paper [6].

In a companion paper [5], which roughly corresponds to an elaboration of Sect. 5
of the second version in the arXiv submission of the Preprint [7], we shall prove a
Marstrand–Mattila type rectifiability criterion forP-rectifiable measures that in turn
will lead to the proof of the one-dimensional Preiss’s theorem for the first Heisenberg
group H

1 endowed with the Koranyi distance.
Additional remark. The present work consists of an elaboration of Sects. 2, 3, 4,

and 6 of the second version in the arXiv submission of the Preprint [7]. This is the
first of two companion papers derived from [7]. The second one is an elaboration of
Sects. 2, and 5 of [7]. We stress that the results in Sects. 2, 3, 4, and 6 of [7] do not use
the results in Sect. 5 of [7]. As a result this paper can be read fully and independently
from its companion paper.

1.1 P-Rectifiable Measures

In this paper, we study structure results in the class ofP-rectifiable measures, which
have been introduced in [41,Definition 3.1 & Definition 3.2]. Let G be a Carnot group
of Hausdorff dimension Q.

Definition 1.1 (P-rectifiablemeasures) Let 1 ≤ h ≤ Q be a natural number. ARadon
measure φ on G is said to be Ph-rectifiable if for φ-almost every x ∈ G we have

(i) 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < +∞,
(ii) Tanh(φ, x) ⊆ {λSh�V(x) : λ ≥ 0}, where V(x) is a homogeneous subgroup of

G of Hausdorff dimension h,

where �h∗(φ, x) and �h,∗(φ, x) are, respectively, the lower and the upper h-density
of φ at x , see Definition 2.8, Tanh(φ, x) is the set of h-tangent measures to φ at x ,
see Definition 2.7, and Sh is the spherical Hausdorff measure of dimension h, see
Definition 2.4. Furthermore, we say that φ isP∗

h -rectifiable if (ii) is replaced with the
weaker

(ii)∗ Tanh(φ, x) ⊆ {λSh�V : λ ≥ 0,V is a homogeneous subgroup of

G of Hausdorff dimension h}.

If we impose more regularity on the tangents, we can define different subclasses of
P-rectifiable or P∗-rectifiable measures, see Definition 2.19 for details. We notice
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that, a posteriori, in the aforementioned definitions, we can and will restrict to λ > 0,
see Remark 2.5.

The definition of P-rectifiable measure is natural in the setting of Carnot groups.
Indeed, we have on G a family of dilations {δλ}λ>0, see Sect. 2, that we can use to
give a good definition of blow-up of a measure. Hence we ask, for a measure to be
rectifiable, that the tangents are flat. The natural class of flat spaces, i.e., the analogous
of vector subspaces of the Euclidean space, seems to be the class of homogeneous
subgroups of G. This latter assertion is suggested also from the result in [37,Theorem
3.2] according to which on every locally compact groupG endowed with dilations and
isometric left translations, if a Radon measure μ has a unique (up to multiplicative
constants) tangent μ-almost everywhere then this tangent is μ-almost everywhere
(up to multiplicative constants), the left Haar measure on a closed dilation-invariant
subgroup of G. As a consequence, in the definition ofPh-rectifiable measure, we can
equivalently substitute item (ii) of Definition 1.1 with the weaker requirement

(ii)′ Tanh(φ, x) ⊆ {λνx : λ > 0}, whereνx is a Radon measure onG.

Moreover, we stress that if a metric group is locally compact, isometrically homo-
geneous and admits one dilation, as it is for the class of metric group studied in
[37], and moreover the distance is geodesic, then it is a sub-Finsler Carnot group, see
[28,Theorem 1.1].

As already mentioned, according to one of the approaches to rectifiability in Carnot
groups, the good parametrizing objects for the notion of rectifiability are C1

H-regular
surfaces with complemented tangents in G, i.e., sets that are locally the zero-level
sets of C1

H functions f - see Definition 5.1 - with surjective Pansu differential d f , and
such that Ker(d f ) admits a complementary subgroup in G. This approach has been
taken to its utmost level of generality through the works [25, 32, 34]. In particular,
in [25,Definition 2.18], the authors give the most general, and available up to now,
definition of (G,G′)-rectifiable sets, see Definition 5.2 and Definition 5.3, and they
prove area and coarea formulae within this class of rectifiable sets. We stress that an
improvement of the area formula in [25] is obtained by the two authors of this work
in [6,Theorem 1.3]. Related results are in [8].

We remark that our definition of rectifiability is strictly weaker than the one in
[25], see Proposition 5.2 and Remark 5.2. Moreover for discussions on the converse
of the following Proposition 1.2 we refer the reader to Remark 5.3. We stress that, as
a result of the subsequent work [6,Corollary 5.3], at least in the co-horizontal setting,
the notion of P-rectifiable measure and the notion of rectifiability given in terms of
(G,G′)-rectifiable sets coincide.
Proposition 1.2 Let us fix G and G

′ two arbitrary Carnot groups of homogeneous
dimensions Q and Q′, respectively. Let us take� ⊆ G a (G,G′)-rectifiable set. Then
SQ−Q′�� is a PQ−Q′ -rectifiable measure with complemented tangents. Moreover,
there exists G a Carnot group, � ⊆ G, and 1 ≤ h ≤ Q such that Sh�� is a Ph-
rectifiable measure and, for every Carnot group G

′, � is not (G,G′)-rectifiable.
Let us stress that the second part of Proposition 1.2 is not surprising. Indeed, the

approach to rectifiability described above and used in [25] is selecting rectifiable sets
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whose tangents are complemented normal subgroups of G, see [25,Sect. 2.5] for a
more detailed discussion. This can be easily understood if one thinks that, according to
this approach to rectifiability, the parametrizing class of objects is given byC1

H-regular
surfaces� with complemented tangents Ker(d f p) at p ∈ �, which are complemented
(and normal) subgroups.

In some sense, we could say that the approach of [25] is covering, in the utmost
generality known up to now, the case of low-codimensional rectifiable sets in a Carnot
group G. It has been clear since the works [22, 39] that, already in the Heisenberg
groups H

n , one should approach the low-dimensional rectifiability in a different way
with respect to the low-codimensional one. Indeed, in the low-dimensional case in
H

n , the authors in [22, 39] choose as a parametrizing class of objects the images of
C1
H-regular (or Lipschitz-regular) functions from subsets ofR

d toH
n , with 1 ≤ d ≤ n,

see [22,Definition 3.1 & Definition 3.2], and [39,Definition 2.10 and Definition 3.13].
The bridge between the definition ofP-rectifiability and the ones discussed above

is done in [39] in the setting of Heisenberg groups and in [24] in arbitrary homoge-
neous groups but in the case of horizontal tangents. Let us stress that the result in
[39,(i)⇔(iv) ofTheorem3.15] shows that in theHeisenberggroups theP-rectifiability
with tangents that are vertical subgroups is equivalent to the rectifiability given in terms
of C1

H-regular surfaces. Moreover [39,(i)⇔(iv) of Theorem 3.14] shows that in the
Heisenberg groups, theP-rectifiability with tangents that are horizontal subgroups is
equivalent to the rectifiability given in terms of Lipschitz-regular images.

Moreover, very recently, in [24,Theorem 1.1], the authors prove a generalization
of [39,Theorem 3.14] in arbitrary homogeneous groups. Namely they prove that in a
homogeneous group the k-rectifiability of a set in the sense of Federer can be charac-
terized with the fact that the tangent measures to the set are horizontal subgroups, or
equivalently with the fact that there exists an approximate tangent plane that is a hori-
zontal subgroup almost everywhere. In our setting this implies that theP-rectifiability
with tangents that are horizontal subgroups is equivalent to the rectifiability given in
terms of Lipschitz-regular images, which is Federer’s one. We observe that in the
subsequent paper [6] we shall exploit the results proved in this paper and we shall
further develop the theory of P-rectifiable measures thus obtaining generalizations
of [39,Theorem 3.14 and 3.15] in arbitrary Carnot groups and in all dimensions. See
the introduction of [6], and [6,Theorem 1.1]. For results similar to the ones of [6, 24,
39] but in the different setting of the parabolic R

n and in all the codimensions, we
point out the recent [38].

We stress that the previous results leave open the challenging question of under-
standing what is the precise structure of a measure φ on H

1 such that the tangents are
φ-almost everywhere the vertical line.

1.2 Results

Themain contribution of this paper is the proof of the fact that aPh-rectifiablemeasure
with complemented tangents has density, see Corollary 4.14, and Proposition 2.20 for
the last part of the following statement.We recall that whenwe say that a homogeneous
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subgroup V of a Carnot group G admits a complementary subgroup, we mean that
there exists a homogeneous subgroup L such that G = V · L and V ∩ L = {0}.
Theorem 1.3 (Existence of the density) Let φ be aPh-rectifiable measure with com-
plemented tangents on G, and assume d is a homogeneous left-invariant metric on
G. Let B(x, r) be the closed metric ball relative to d of center x and radius r . Then,
for φ-almost every x ∈ G we have

0 < lim inf
r→0

φ(B(x, r))

rh
= lim sup

r→0

φ(B(x, r))

rh
< +∞.

Moreover, for φ-almost every x ∈ G we have

r−hTx,rφ⇀�h(φ, x)Ch�V(x), as r goes to 0,

where the map Tx,r is defined in Definition 2.7, the convergence is understood in the
duality with the continuous functions with compact support on G, �h(φ, x) is the
h-density with respect to the distance d, and Ch�V(x) is the h-dimensional centered
Hausdorff measure, with respect to the distance d, restricted to V(x), see Definition
2.4.

A way of reading the previous theorem is the following: we prove that whenever
a Radon measure on a Carnot group has strictly positive h-lower density and finite
h-upper density, and at almost every point, all the blow-up measures are supported
on the same (depending on the point) h-dimensional homogeneous complemented
subgroup, then the measure has h-density.

We observe here that, as a non-trivial consequence of the results that will be devel-
oped in [6], see [6,Theorem 1.1], we have that whenever 	 ⊆ G is a Borel set such
that 0 < Sh(	) < +∞, and Ch�	 is Ph-rectifiable with complemented tangents,
then �h(Ch�	, x) = 1 for Ch-almost every x ∈ 	. See Remark 4.1. We remark that
the fact that Ch�	 has density one is not a straightforward consequence of Corollary
1.3, and it requires additional work, cf. [6,Proposition 3.9].

Let us remark that the previous Theorem 1.3 solves the implication (ii)⇒(i) of the
density problem formulated in [41,page 50] in the setting ofPh-rectifiable measures
with complemented tangents. In Euclidean spaces, the proof of Theorem 1.3 is an
almost immediate consequence of the fact that projections on linear spaces are 1-
Lipschitz in conjunction with the area formula. In our context, we do not have at our
disposal the Lipschitz property of projections and an area formula for Ph-rectifiable
measureswith complemented tangents is obtained in [6,Theorem1.2] as a consequence
of a more refined study of such measures. So the proof requires new ideas. In order
to obtain Theorem 1.3, first of all one reduces to the case of the surface measure
on an intrinsically Lipschitz graph with very small Lipschitz constant thanks to the
structure result Theorem 1.5 below. Secondly, one needs to show that the surface
measures of the tangents and their push-forward on the graph are mutually absolutely
continuous. For this, last point to hold it will be crucial, on the one hand, that a Ph-
rectifiable measure with complemented tangents can be covered almost everywhere
with intrinsic graphs, see the forthcoming Theorem 1.5, and, on the other hand, that
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intrinsic Lipschitz graphs have big projections on their bases, see Proposition 4.6.
Third, one exploits the fact that the density exists for the surface measures on the
tangents to infer its existence for the original measure.

We remark that with the tools developed in the subsequent paper [6] and pushing
forward the study started in this paper,we shall showan area formula forPh-rectifiable
measures with complemented tangents, see [6,Theorem 1.2 and Theorem 1.3].

Other contributions of this paper are structure results for P-rectifiable measures.
Since they will be given in terms of sets that satisfy a cone property, let us clarify
which cones we are choosing. For any α > 0 and any homogeneous subgroup V of G,
the cone CV(α) is the set of pointsw ∈ G such that dist(w,V) ≤ α‖w‖, where ‖ · ‖ is
the homogeneous norm relative to the fixed distance d on G. Moreover a set E ⊆ G is
a CV(α)-set if E ⊆ pCV(α) for every p ∈ E . We refer the reader to Sect. 2.4 for such
definitions and some properties of them. We stress that the cones CV(α) are used to
give the definition of intrinsically Lispchitz graphs and functions, see [15,Definition
11 and Proposition 3.1]. The first result reads as follows, see Theorem 3.5.

Theorem 1.4 LetG be a Carnot group endowed with an arbitrary left-invariant homo-
geneous distance. Let φ be a Ph-rectifiable measure on G. Then G can be covered
φ-almost everywhere with countably many compact sets with the cone property with
arbitrarily small opening. In other words for every α > 0, we have

φ

(
G \

+∞⋃
i=1

	i

)
= 0,

where 	i are compact CVi (α)-sets, where Vi are homogeneous subgroups of G of
Hausdorff dimension h.

If we ask that the tangents are complemented subgroups, we can improve the previous
result. In particular we can take the	i ’s to be intrinsic Lipschitz graphs, see Theorem
3.4 and Proposition 2.17. For the definition of intrinsically Lipschitz function, we refer
the reader to Definition 2.16. Let us remark that the fact that the 	i ’s can be taken
to be graphs will be crucial for the proof of the existence of the density in Theorem
1.3. Actually, by pushing a little bit further the information about the fact that the
tangentmeasures atφ-almost every x are constant multiples ofSh�V(x), we can give a
structure resultwithin the class of intrinsically differentiable graphs. Roughly speaking
we say that the graph of a function between complementary subgroups ϕ : U ⊆
V → L is intrinsically differentiable at a0 · ϕ(a0) if graph(ϕ) admits a homogeneous
subgroup as Hausdorff tangent at a0 · ϕ(a0), see Definition 5.5 for details. For the
forthcoming theorem, see Corollary 5.5.

Theorem 1.5 Let G be a Carnot group of homogeneous dimension Q endowed with
an arbitrary left-invariant homogeneous distance. Let h ∈ {1, . . . , Q}, and let φ be
aPc

h-rectifiable, i.e., aPh-rectifiable measure with tangents that are complemented
almost everywhere.

Then G can be covered φ-almost everywhere with countably many compact graphs
that are simultaneously intrinsically Lipschitz with arbitrarily small constant, and
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intrinsically differentiable almost everywhere. In other words, for every α > 0, we
can write

φ

(
G \

+∞⋃
i=1

	i

)
= 0,

where 	i = graph(ϕi ) are compact sets, with ϕi : Ai ⊆ Vi → Li being a function
between a compact subset Ai of Vi , which is a homogeneous subgroup of G of homo-
geneous dimension h, and Li , which is a subgroup complementary to Vi ; in addition
graph(ϕi ) is a CVi (α)-set, and it is an intrinsically differentiable graph at a · ϕi (a)
for Sh�Ai -almost every a ∈ Vi , see Definition 5.5.

Let us briefly remark thatwhen aRademacher-type theoremholds, i.e., if an intrinsi-
cally Lipschitz function is intrinsically differentiable almost everywhere, the full result
in Theorem 1.5 would simply be deduced by the analogous result but only requiring
a covering with intrinsic Lipschitz graphs. We remark that a Rademacher-type theo-
rem at such level of generality, i.e., between arbitrary complementary subgroups of a
Carnot group, is now known to be false, see the counterexample in [27]. On the other
hand, some positive results in particular cases have been provided in [4, 14, 17] for
intrinsically Lipschitz functions with one-dimensional target in groups in which De
Giorgi C1

H-rectifiability for finite perimeter sets holds, and for functions with normal
targets in arbitrary Carnot groups. We stress that very recently in [44], the author
proves the Rademacher theorem at any codimension in the Heisenberg groups H

n .
We stress that, as a consequence of the result [6,Theorem 1.1], we get that the

Ph-rectifiability of measures of the type Sh�	 is equivalent to the fact that Sh-
almost every 	 is covered by countably many intrinsic differentiable graphs. Thus,
the negative result of [27] gives as a consequence that we cannot substitute intrinsic
differentiable with intrinsic Lipschitz in the latter sentence. Ultimately, the general
notion of rectifiability by means of coverings with countably many intrinsic Lipschitz
graphs is not equivalent to the infinitesimal notion of rectifiability (namely, the P-
rectifiability) that one can give by asking that the tangents are almost everywhere
unique (and then, as a consequence, homogeneous subgroups).

Let us briefly comment on the results listed above. Theorem1.3 extends the implica-
tion in [39,(iv)⇒(ii) of Theorem 3.15] to the setting ofPh-rectifiable measures whose
tangents are complemented in arbitraryCarnot groups. Indeed, in [39,(iv)⇒(ii) of The-
orem 3.15], the authors prove that if n + 1 ≤ h ≤ 2n, and Sh�	 is a Ph-rectifiable
measure with tangents that are vertical subgroups in the Heisenberg groupH

n , then the
h-density of Sh�	 exists almost everywhere and the tangent is unique almost every-
where. The analogous property inH

n , but withPh-rectifiable measures with tangents
that are horizontal subgroups, is obtained in [39,(iv)⇒(ii) of Theorem 3.14], and in
arbitrary homogeneous groups in the recent [24,(iii)⇒(ii) of Theorem 1.1]. However,
in this special horizontal case treated in [39,Theorem 3.14] and [24,Theorem 1.1],
the authors do not assume �h∗(Sh�	, x) > 0 since it comes from the existence of
an approximate tangent, see [39,Theorem 3.10], while the authors in [24] are able to
overcome this issue by adapting [13,Lemma 3.3.6] in [24,Theorem 4.4]. We do not
address in this paper the question of obtaining the same general results as in Theorem
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1.4, Theorem 1.3, and Theorem 1.5 removing the hypothesis on the strictly positive
lower density in item (i) of Definition 1.1 when the tangent is unique (up to a multi-
plicative constant). Nevertheless, we stress that the results obtained in [24, 39] are for
sets, while our results hold for arbitrary Radon measures.

We finally mention that, as a consequence of the machinery developed in the
subsequent paper [6], the covering property with intrinsically differentiable graphs
proved in Theorem 1.5 actually characterizes thePh-rectifiabilitywith complemented
tangents, see [6,3. ⇒ 1. of Theorem 1.1]. The previous characterization is in fact
obtained through a delicate rectifiability results for intrinsically differentiable graphs,
see [6,Theorem 1.3], and more precisely [6,Lemma 3.9 and Lemma 3.10]. Moreover,
as a consequence of [6,Theorem 1.1], the Ph-rectifiability with complemented tan-
gents is equivalent to asking that Preiss’s tangents are complemented homogeneous
subgroups without any requirement on the h-lower and upper densities. We refer the
reader to [6] for details.

2 Preliminaries

2.1 Carnot Groups

In this subsection, we briefly introduce some notations on Carnot groups that we will
extensively use throughout the paper. For a detailed account on Carnot groups, we
refer to [29].

A Carnot group G of step κ is a simply connected Lie group whose Lie algebra g
admits a stratification g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ . We say that V1 ⊕ V2 ⊕ · · · ⊕ Vκ
is a stratification of g if g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ ,

[V1, Vi ] = Vi+1, for anyi = 1, . . . , κ − 1, [V1, Vκ ] = {0}, and Vκ �= {0},

where [A, B] := span{[a, b] : a ∈ A, b ∈ B}. We call V1 the horizontal layer of G.
We denote by n the topological dimension of g, by n j the dimension of Vj for every
j = 1, . . . , κ . Furthermore, we define πi : G → Vi to be the projection maps on the
i-th strata. We will often shorten the notation to vi := πiv.

For a Carnot groupG, the exponentialmap exp : g → G is a global diffeomorphism
from g to G. Hence, if we choose a basis {X1, . . . , Xn} of g, any p ∈ G can be written
in a unique way as p = exp(p1X1 + · · · + pn Xn). This means that we can identify
p ∈ G with the n-tuple (p1, . . . , pn) ∈ R

n and the group G itself with R
n endowed

with the group operation · determined by the Baker–Campbell–Hausdorff formula.
From now on, we will always assume that G = (Rn, ·) and, as a consequence, that
the exponential map exp acts as the identity.

For any p ∈ G, we define the left translation τp : G → G as

q �→ τpq := p · q.

As already remarked above, the group operation · is determined by the Campbell–
Hausdorff formula, and it has the form (see [19,Proposition 2.1])
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p · q = p + q + Q(p, q), for all p, q ∈ R
n,

where Q = (Q1, . . . ,Qκ ) : R
n × R

n → V1 ⊕ · · · ⊕ Vκ , and the Qi ’s have the
following properties. For any i = 1, . . . κ and any p, q ∈ G we have

(i) Qi (δλ p, δλq) = λiQi (p, q),
(ii) Qi (p, q) = −Qi (−q,−p),
(iii) Q1 = 0 and Qi (p, q) = Qi (p1, . . . , pi−1, q1, . . . , qi−1).

Thus, we can represent the product · as

p · q = (p1 + q1, p2 + q2 + Q2(p1, q1), . . . , pκ + qκ
+Qκ(p1, . . . , pκ−1, q1, . . . , qκ−1)). (1)

The stratification of g carries with it a natural family of dilations δλ : g → g, that
are Lie algebra automorphisms of g and are defined by

δλ(v1, . . . , vκ) := (λv1, λ
2v2, . . . , λ

κvκ), for anyλ > 0,

where vi ∈ Vi . The stratification of the Lie algebra g naturally induces a gradation
on each of its homogeneous Lie sub-algebras h, i.e., sub-algebras that are δλ-invariant
for any λ > 0, that is

h = V1 ∩ h ⊕ · · · ⊕ Vκ ∩ h. (2)

We say that h = W1 ⊕ · · · ⊕ Wκ is a gradation of h if [Wi ,Wj ] ⊆ Wi+ j for every
1 ≤ i, j ≤ κ , where we mean that W� := {0} for every � > κ . Since the exponential
map acts as the identity, the Lie algebra automorphisms δλ can be read also as group
automorphisms of G.

Definition 2.1 (Homogeneous subgroups) A subgroup V of G is said to be homoge-
neous if it is a Lie subgroup of G that is invariant under the dilations δλ.

We recall the following basic terminology: a horizontal subgroup of a Carnot group
G is a homogeneous subgroup of it that is contained in exp(V1); a Carnot subgroup
W = exp(h) of a Carnot group G is a homogeneous subgroup of it such that the first
layer V1 ∩ h of the grading of h inherited from the stratification of g is the first layer
of a stratification of h.

Homogeneous Lie subgroups ofG are in bijective correspondence through expwith
the Lie sub-algebras of g that are invariant under the dilations δλ. For any Lie algebra
h with gradation h = W1 ⊕ · · · ⊕ Wκ , we define its homogeneous dimension as

dimhom(h) :=
κ∑

i=1

i · dim(Wi ).

Thanks to (2) we infer that, if h is a homogeneous Lie sub-algebra of g, we have
dimhom(h) :=∑κ

i=1 i · dim(h∩ Vi ). We introduce now the class of homogeneous and
left-invariant distances.
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Definition 2.2 (Homogeneous left-invariant distance) A metric d : G × G → R is
said to be homogeneous and left invariant if for any x, y ∈ G, we have

(i) d(δλx, δλy) = λd(x, y) for any λ > 0,
(ii) d(τz x, τz y) = d(x, y) for any z ∈ G.

We remark that two homogeneous left-invariant distances on a Carnot group are
always bi-Lipschitz equivalent. It is well known that the Hausdorff dimension (for a
definition of Hausdorff dimension see for instance [36,Definition 4.8]) of a graded Lie
group G with respect to an arbitrary left-invariant homogeneous distance coincides
with the homogeneous dimension of its Lie algebra. For a reference for the latter
statement, see [30,Theorem 4.4]. From now on, if not otherwise stated, G will be
a fixed Carnot group. We recall that a homogeneous norm ‖ · ‖ on G is a function
‖ · ‖ : G → [0,+∞) such that ‖δλx‖ = λ‖x‖ for every λ > 0 and x ∈ G;
‖x · y‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ G; and ‖x‖ = 0 if and only if x = 0. We
introduce now a distinguished homogeneous norm on G.

Definition 2.3 (Smooth-box metric) For any g ∈ G, we let

‖g‖ := max{ε1|g1|, ε2|g2|1/2, . . . , εκ |gκ |1/κ},

where ε1 = 1 and ε2, . . . εκ are suitably small parameters depending only on the group
G. For the proof of the fact that we can choose the εi ’s in such a way that ‖·‖ is a
homogeneous norm onG that induces a left-invariant homogeneous distance, we refer
to [19,Sect. 5].

Given an arbitrary homogeneous norm ‖ · ‖ on G, the distance d induced by ‖ · ‖ is
defined as follows:

d(x, y) := ‖x−1 · y‖.

Vice-versa, given a homogeneous left-invariant distance d, it induces a homogeneous
norm through the equality ‖x‖ := d(x, e) for every x ∈ G, where e is the identity
element of G.

Given a homogeneous left-invariant distance d, we let U (x, r) := {z ∈ G :
d(x, z) < r} be the open metric ball relative to the distance d centered at x
and with radius r > 0. The closed ball will be denoted with B(x, r) := {z ∈
G : d(x, z) ≤ r}. Moreover, for a subset E ⊆ G and r > 0, we denote with
B(E, r) := {z ∈ G : dist(z, E) ≤ r} the closed r-tubular neighborhood of E and
with U (E, r) := {z ∈ G : dist(z, E) < r} the open r-tubular neighborhood of E .

The following estimate on the norm of the conjugate will be useful later on. It
appears in [34,Lemma 3.6].

Lemma 2.1 For any homogeneous norm ‖ · ‖ and any � > 0, there exists a constant
C1(�) > 1 such that for every x, y ∈ B(0, �), we have

‖y−1 · x · y‖ ≤ C1‖x‖1/κ .
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Definition 2.4 (Hausdorff Measures) Throughout the paper, we define the h-
dimensional spherical Hausdorff measure relative to a left-invariant homogeneous
metric d as

Sh(A) := sup
δ>0

inf

{ ∞∑
j=1

rhj : A ⊆
∞⋃
j=1

B(x j , r j ), r j ≤ δ

}
,

for every A ⊆ G. We define the h-dimensional Hausdorff measure relative to d as

Hh(A) := sup
δ>0

inf

⎧⎨
⎩

∞∑
j=1

2−h(diam E j )
h : A ⊆

∞⋃
j=1

E j , diam E j ≤ δ

⎫⎬
⎭ ,

for every A ⊆ G. We define the h-dimensional centered Hausdorff measure relative
to d as

Ch(A) := sup
E⊆A

Ch0 (E),

for every A ⊆ G, where

Ch0 (E) := sup
δ>0

inf

{ ∞∑
j=1

rhj : E ⊆
∞⋃
j=1

B(x j , r j ), x j ∈ E, r j ≤ δ

}
,

for every E ⊆ G. We stress that Ch is an outer measure, and thus, it defines a Borel
regular measure, see [12,Proposition 4.1], and that the measures Sh,Hh, Ch are all
equivalent measures, see [13,Sect. 2.10.2] and [12,Proposition 4.2].

Definition 2.5 (Hausdorff distance) Given a left-invariant homogeneous distance d on
G, for any couple of sets A, B ⊆ G, we define theHausdorff distance of A from B as

dH ,G(A, B) := max
{
sup
x∈A

dist(x, B), sup
y∈B

dist(A, y)
}
,

where

dist(x, A) := inf
y∈A

d(x, y),

for every x ∈ G and A ⊆ G.

2.2 Densities and Tangents of RadonMeasures

Throughout the rest of the paper, we will always assume that G is a fixed Carnot
group endowed with an arbitrary left-invariant homogeneous distance d. Some of the
forthcoming results will be proved in the particular case in which d is the distance
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induced by the distinguished homogeneous norm defined in Definition 2.3, and we
will stress this when it will be the case.

The homogeneous, and thus Hausdorff, dimension with respect to d will be denoted
with Q. Furthermore, as discussed in the previous subsection, we will assume without
loss of generality that G coincides with R

n endowed with the product induced by the
Baker–Campbell–Hausdorff formula relative to Lie(G).

Definition 2.6 (Weak convergence of measures) Given a family {φi }i∈N of Radonmea-
sures onG,we say thatφi weakly converges to aRadonmeasureφ, andwewriteφi⇀φ,
if

∫
f dφi →

∫
f dφ, for any f ∈ Cc(G).

Definition 2.7 (Tangent measures) Let φ be a Radon measure on G. For any x ∈ G

and any r > 0 we define the measure

Tx,rφ(E) := φ(x · δr (E)), for any Borel set E .

Furthermore, we define Tanh(φ, x), the h-dimensional tangents to φ at x , to be the
collection of the Radonmeasures ν for which there is an infinitesimal sequence {ri }i∈N
such that

r−h
i Tx,riφ⇀ν.

Remark 2.1 (Zero as a tangent measure) We remark that our definition potentially
admits the zero measure as a tangent measure, as in [9], while the definitions in [42]
and [39] do not.

Definition 2.8 (Lower and upper densities) If φ is a Radon measure on G, and h > 0,
we define

�h∗(φ, x) := lim inf
r→0

φ(B(x, r))

rh
, and �h,∗(φ, x) := lim sup

r→0

φ(B(x, r))

rh
,

and we say that �h∗(φ, x) and �h,∗(φ, x) are the lower and upper h-density of φ at
the point x ∈ G, respectively. Furthermore, we say that measure φ has h-density if

0 < �h∗(φ, x) = �h,∗(φ, x) < ∞, for φ-almost any x ∈ G.

Lebesgue theorem holds for measures with positive lower density and finite upper
density, and thus, local properties are stable under restriction to Borel subsets.

Proposition 2.2 Suppose φ is a Radon measure on G with 0 < �h∗(φ, x) ≤
�h,∗(φ, x) < ∞ for φ-almost every x ∈ G. Then, for any Borel set B ⊆ G and
for φ-almost every x ∈ B, we have

�h∗(φ�B, x) = �h∗(φ, x), and �h,∗(φ�B, x) = �h,∗(φ, x).
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Proof This is a direct consequence of Lebesgue differentiation Theorem of [23,page
77] that can be applied since (G, d, φ) is a Vitali metric measure space due to
[23,Theorem 3.4.3]. ��

We stress that whenever the h-lower density of φ is strictly positive and the h-
upper density of φ is finite φ-almost everywhere, the set Tanh(φ, x) is nonempty for
φ-almost every x ∈ G, see [41,Proposition 1.12]. The following proposition has been
proved in [41,Proposition 1.13].

Proposition 2.3 (Locality of tangents) Let h > 0, and let φ be a Radon measure such
that for φ-almost every x ∈ G we have

0 < �h∗(φ, x) ≤ �h,∗(φ, x) < ∞.

Then for every ρ ∈ L1(φ) that is nonnegative φ-almost everywhere we have
Tanh(ρφ, x) = ρ(x)Tanh(φ, x) for φ-almost every x ∈ G. More precisely, the fol-
lowing holds: for φ-almost every x ∈ G, then

if ri → 0 is such that r−h
i Tx,riφ⇀ν then r−h

i Tx,ri (ρφ)⇀ρ(x)ν. (3)

Let us introduce a useful split of the support of a Radon measure φ on G.

Definition 2.9 Let φ be a Radon measure on G that is supported on the compact set
K . For any ϑ, γ ∈ N we define

E(ϑ, γ ) := {x ∈ K : ϑ−1rh ≤ φ(B(x, r)) ≤ ϑrh for any 0 < r < 1/γ
}
. (4)

Let us stress that Definition 2.9 does not only depend on ϑ, γ but obviously also on
h. Anyway throughout the proofs of this paper, we always assume h to be fixed, and
hence, we will not stress this dependence in the notation E(ϑ, γ ).

Proposition 2.4 For anyϑ, γ ∈ N, the set E(ϑ, γ ) defined inDefinition 2.9 is compact.

Proof This is [41,Proposition 1.14]. ��
Proposition 2.5 Assume φ is a Radon measure supported on the compact set K such
that 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < ∞ for φ-almost every x ∈ G. Then φ(G \⋃

ϑ,γ∈N E(ϑ, γ )) = 0.

Proof Let w ∈ K \⋃ϑ,γ E(ϑ, γ ) and note that this implies that either �h∗(φ, x) = 0

or �h,∗(φ, x) = ∞. Since 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < ∞ for φ-almost every
x ∈ G, this concludes the proof. ��

We recall here a useful proposition about the structure of Radon measures.

Proposition 2.6 ( [41,Proposition 1.17 and Corollary 1.18]) Let φ be a Radonmeasure
supported on a compact set on G such that 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < ∞ for
φ-almost every x ∈ G. For every ϑ, γ ∈ N, we have that φ�E(ϑ, γ ) is mutually
absolutely continuous with respect to Sh�E(ϑ, γ ).

123



On Rectifiable Measures in Carnot Groups:… Page 15 of 67 239

2.3 Intrinsic Grassmannian in Carnot Groups

Let us recall the definition of the Euclidean Grassmannian, along with some of its
properties.

Definition 2.10 (Euclidean Grassmannian) Given k ≤ n we let Gr(n, k) to be the set
of the k-vector subspaces of R

n . We endow Gr(n, k) with the following distance

deu(V1, V2) := dH ,eu (V1 ∩ Beu(0, 1), V2 ∩ Beu(0, 1)) ,

where Beu(0, 1) is the (closed) Euclidean unit ball, and dH ,eu is the Hausdorff distance
between sets induced by the Euclidean distance on R

n .

Remark 2.2 (Euclidean Grassmannian and convergence) It is well known that the met-
ric space (Gr(n, k), dH ,eu) is compact. Moreover, the following hold

(i) if Vn → V , then for every v ∈ V there exist vn ∈ Vn such that vn → v;
(ii) if Vn → V and there is a sequence vn ∈ Vn such that vn → v, then v ∈ V .

The proof of the two items above is left to the reader as an exercise.

We now give the definition of the intrinsic Grassmannian on Carnot groups and
introduce the class of complemented homogeneous subgroups.

Definition 2.11 (Intrinsic Grassmannian on Carnot groups) For any 1 ≤ h ≤ Q, we
define Gr(h) to be the family of homogeneous subgroups V of G that have Hausdorff
dimension h.

Let us recall that if V is a homogeneous subgroup of G, any other homogeneous
subgroup L such that

V · L = G and V ∩ L = {0}.

is said to be a complement of G. We let Grc(h) to be the subfamily of those V ∈
Gr(h) that have a complement and we will refer to Grc(h) as the h-dimensional
complemented Grassmannian.

Let us introduce the stratification vector of a homogeneous subgroup.

Definition 2.12 (Stratification vector) Let h ∈ {1, . . . , Q} and for any V ∈ Gr(h) we
denote with s(V) the vector

s(V) := (dim(V1 ∩ V), . . . , dim(Vκ ∩ V)),

that with abuse of language we call the stratification, or the stratification vector, of V.
Furthermore, we define

S(h) := {s(V) ∈ N
κ : V ∈ Gr(h)}.

We remark that the cardinality of S(h) is bounded by
∏κ

i=1(dim Vi + 1) for any
h ∈ {1, . . . , Q}.

123



239 Page 16 of 67 G. Antonelli, A. Merlo

We now collect in the following result some topological properties of the Grass-
mannians introduced above.

Proposition 2.7 (Compactness of the Grassmannian) For any 1 ≤ h ≤ Q the function

dG(W1,W2) := dH ,G(W1 ∩ B(0, 1),W2 ∩ B(0, 1)),

with W1,W2 ∈ Gr(h), is a distance on Gr(h). Moreover (Gr(h), dG) is a compact
metric space.

Proof The fact thatdG is a distance comes fromwell-knownproperties of theHausdorff
distance. Let us consider a sequence {W j } j∈N ⊆ Gr(h),withW j = Wj,1⊕· · ·⊕Wj,κ ,
whereWj,i := Vi ∩W j for any j ∈ N and 1 ≤ i ≤ κ . By extracting a (non-re-labeled)
subsequence, we can suppose that there exist {ki }i=1,...,κ natural numbers such that
the topological dimension is dimWj,i = ki for all j ∈ N, and for all 1 ≤ i ≤ κ . In
particular, the topological dimension of W j is constant. Exploiting the compactness
of the Euclidean Grassmannian, see Remark 2.2, we get that up to a (non-re-labeled)
subsequence,

Wj,i → Wi , i.e. deu(Wj,i ,Wi ) → 0 for any 1 ≤ i ≤ κ, (5)

where the convergence is meant in the Euclidean Grassmannian Gr(ki , Vi ). As a
consequence

Wj = Wj,1 ⊕ · · · ⊕ Wj,κ → W = W1 ⊕ · · · ⊕ Wκ , i.e., dH ,eu(Wj ,W ) → 0,

(6)

where the convergence is meant in the Euclidean Grassmannian Gr(
∑κ

i=1 ki , n). The
previous equality is a consequence of (5) and the following observation: if V and W
are two orthogonal linear subspaces such that R

n = V ⊕ W , and A, B are vector
subspaces of V , and C, D are vector subspaces of W , then

deu(A ⊕ C, B ⊕ D) ≤ deu(A, B)+ deu(C, D),

where the direct sums above are orthogonal too. Let us notice that, from (6) it follows
that

dH ,eu(Wj ∩ B(0, 1),W ∩ B(0, 1)) → 0, (7)

where we stress that B(0, 1) is the closed unit ball in the homogeneous left-invariant
metric d. The proof of (7) can be reached by contradiction exploiting (6) and the fact
that B(0, 1) is compact. We leave the routine details to the reader.

In order to conclude the proof, we need to show that

dG(Wj ∩ B(0, 1),W ∩ B(0, 1)) → 0. (8)
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Indeed, on the compact set B(0, 1), one has d ≤ Cd1/κeu for some constant C > 0, see
for instance [43,Proposition 2.15]. This means that for subsets contained in B(0, 1)
one has dH ≤ Cd1/sH ,eu. This last inequality with (7) gives (8). Finally from (8) we get,
by the very definition of dG,

dG(W j ,W) → 0.

If we show that W is a homogeneous subgroup of homogeneous dimension h we are
done. The homogeneity comes from the fact that W admits a stratification (6), while
the homogeneous dimension is fixed because it depends on the dimensions of Wi that
are all equal to ki . Let us prove W is a subgroup. First of all W is inverse-closed,
because W = expW , and W is a vector space. Now take a, b ∈ W. By the first
point of Remark 2.2 we find an, bn ∈ Wn such that an → a, and bn → b. Then, by
continuity of the operation, an · bn → a · b, and an · bn ∈ Wn . Then from the second
point of Remark 2.2 we get that a · b ∈ W. ��
Proposition 2.8 There exists a constant �G > 0, depending only on G, such that if
W,V ∈ Gr(h) and dG(V,W) ≤ �G, then s(V) = s(W).

Proof Let us fix 1 ≤ h ≤ Q. Let us suppose by contradiction that there exist Vi

and Wi in Gr(h) such that, for every i ∈ N, the stratification of Vi is different from
Wi and such that dG(Vi ,Wi ) → 0. Up to extract two (non-re-labeled) subsequences
we can assume that the Vi ’s have the same stratification for every i ∈ N, as well as
the Wi ’s. Then, by compactness, see the proof of Proposition 2.7, we can assume up
to passing to a (non re-labeled) subsequence that Wi → W where W has the same
stratification of the Wi ’s, and Vi → V where V has the same stratification of the Vi ’s.
Since dG(Vi ,Wi ) → 0, we get that dG(V,W) = 0 and then V = W but this is a
contradiction since they have different stratifications. This proves the existence of a
constant � that depends both on G and h. However, taking the minimum over h of
such �’s, the dependence on h is eliminated. ��
Proposition 2.9 Suppose V ∈ Gr(h) is a homogeneous subgroup of topological
dimension d. Then Sh�V, Hh�V, Ch�V and Hd

eu�V are Haar measures of V. Fur-
thermore, any Haar measure λ of V is h-homogeneous in the sense that

λ(δr (E)) = rhλ(E), for any Borel set E ⊆ V.

Proof This follows from the fact that the Hausdorff, the spherical Hasudorff, and
the centered Hausdorff measures introduced in Definition 2.5 are invariant under left
translations and thus on the one hand, they are Haar measures of V. Furthermore, one
can show by an explicit computation that the Lebesgue measure Ld restricted to the
vector space exp−1(V) is a Haar measure. Indeed, this last assertion comes from the
fact that for every v ∈ V the map p → v · p has unitary Jacobian determinant when
seen as amap fromV toV, see [15,Lemma 2.20]. Thus sincewhen seenV as immersed
in R

n we have that the Lebesgue measure of V coincides with Hd
eu�V, we conclude

thatHd
eu�V is a Haar measure ofV as well. The last part of the proposition comes from
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the fact that the property is obvious by definition for the spherical Hausdorff measure,
and the fact that all the Haar measures are the same up to a constant. ��

We now introduce the projections related to a splitting G = V · L of the group.

Definition 2.13 (Projections related to a splitting) For any V ∈ Grc(h) with a homo-
geneous complement L, we can find two unique elements gV := PVg ∈ V and
gL := PLg ∈ L such that

g = PV(g) · PL(g) = gV · gL.

We will refer to PV(g) and PL(g) as the splitting projections, or simply projections,
of g onto V and L, respectively.

We recall here below a very useful fact on splitting projections.

Proposition 2.10 Let us fix V ∈ Grc(h) and L two complementary homogeneous
subgroups of a Carnot group G. Then, for any x ∈ G, the map � : V → V defined
as �(z) := PV(xz) is invertible and it has unitary Jacobian. As a consequence
Sh(PV(E)) = Sh(PV(x PV(E))) = Sh(PV(xE)) for every x ∈ G and E ⊆ G Borel.

Proof The first part is a direct consequence of [15,Proof of Lemma 2.20]. For the
second part it is sufficient to use the first part and the fact that for every x, y ∈ G we
have PV(xy) = PV(x PVy). ��
The following proposition holds for the distance d induced by the norm introduced in
Definition 2.3.

Proposition 2.11 Let G be a Carnot group endowed with the homogeneous norm ‖ · ‖
introduced inDefinition 2.3. LetW ∈ Gr(h) be a homogeneous subgroup ofHausdorff
dimension h and of topological dimension d. Then

(i) there exists a constant C2 := C2(s(W)) such that for any p ∈ W and any r > 0
we have

Hd
eu (B(p, r) ∩ W) = C2r

h, (9)

(ii) there exists a constant β(W) such that Ch�W = β(W)Hd
eu�W,

(iii) β(W) = Hd
eu�W(B(0, 1))−1 and in particular β(W) = β(s(W)).

Proof Thanks to Proposition 2.9, we have

Hd
eu(B(p, r) ∩ W) = Hd

eu(B(0, r) ∩ W) = Hd
eu(δr (B(0, 1) ∩ W))

= rhHd
eu(B(0, 1) ∩ W).

Furthermore, if V is another homogeneous subgroup such that s(W) = s(V), we can
find a linear map T that acts as an orthogonal transformation on each of the Vi ’s and
that mapsW toV. Since we are endowingGwith the boxmetric Definition 2.3, we get
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that T (B(0, 1) ∩ W) = B(0, 1) ∩ V. Since T is an orthogonal transformation itself,
it is an isometry of R

n and this implies that

Hd
eu(B(0, 1) ∩ W) = Hd

eu(T (B(0, 1) ∩ W)) = Hd
eu(B(0, 1) ∩ V).

Concerning (ii) thanks to Proposition 2.9, we have that both Ch�W and Hd
eu�W

are Haar measures of W. This implies that there must exist a constant β(W) such that
β(W)Hd

eu�W = Ch�W.
Finally, in order to prove (iii), we prove the following. For every left-invariant

homogeneous distance d onG and every homogeneous subgroupW ⊆ G ofHausdorff
dimension h, we have that

Ch(W ∩ B(0, 1)) = 1, (10)

where Ch is the centered Hausdorff measure relative to the distance d and B(0, 1) is
the closed ball relative to the distance d.

Indeed, let us fix an ε > 0, let us take A ⊆ W ∩ B(0, 1) such that Ch0 (A) ≥
Ch(W∩B(0, 1))−ε, δ > 0 and a covering of Awith closed balls Bi := {B(xi , ri )}i∈N
centered on A ⊆ W and with radii ri ≤ δ such that

∑
i∈N

rhi ≤ Ch0 (A)+ ε.

This implies that

Ch(B(0, 1) ∩ W)
(Ch(B(0, 1) ∩ W)+ ε

) ≥ Ch(B(0, 1) ∩ W)
(Ch0 (A)+ ε

)
≥
∑
i∈N

Ch(B(0, 1) ∩ W)rhi =
∑
i∈N

Ch(B(xi , ri ) ∩ W) ≥ Ch(A)

≥ Ch0 (A) ≥ Ch(W ∩ B(0, 1))− ε,

where the first inequality is true since Ch(B(0, 1) ∩ W) ≥ Ch(A) ≥ Ch0 (A), and the
third equality is true since xi ∈ W and Ch�W is a Haar measure on W. Thanks to the
arbitrariness of ε, we finally infer that Ch(W ∩ B(0, 1)) ≥ 1.

On the other hand, thanks to [16,item (ii) of Theorem 2.13 and Remark 2.14],
we have that, calling Bt := {x ∈ W ∩ B(0, 1) : �∗,h(Ch�W, x) > t} for every
t > 0, we infer that Ch(Bt ) ≥ tCh(Bt ) for every t > 0. Thus, for every t > 1 we
conclude Ch(Bt ) = 0 and hence for Ch�W-almost every x ∈ W ∩ B(0, 1) we have
that �∗,h(Ch�W, x) ≤ 1. For one of such x ∈ W ∩ B(0, 1) we can write

Ch(B(0, 1) ∩ W) = lim sup
r→0

Ch(B(x, r) ∩ W)

rh
= �∗,h(Ch�W, x) ≤ 1,

where the first equality comes from Proposition 2.9. Thus Ch(W ∩ B(0, 1)) = 1 and
this concludes the proof of the first part of (iii) thanks to item (ii). The fact that β(W)

depends only on s(W) follows from item (i) ��
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Remark 2.3 The above proposition can be proved whenever the distance is a multira-
dial distance, see [33,Definition 8.5].

Remark 2.4 We stress here for future references that in the proof of item (iii) of Propo-
sition 2.11 we proved that whenever G is endowed with an arbitrary left-invariant
homogeneous distance d, then for every homogeneous subgroup W ⊆ G of Haus-
dorff dimension h, we have that

Ch(W ∩ B(0, 1)) = 1. (11)

We conclude this subsection with two Propositions.

Proposition 2.12 (Corollary 2.15 of [15]) Let ‖ · ‖ be a homogeneous norm on G and
let V and L be two complementary subgroups. Then there exists a constant C3(V,L)

such that for any g ∈ G we have

C3(V,L)‖PL(g)‖ ≤ dist(g,V) ≤ ‖PL(g)‖, for any g ∈ G. (12)

In the following, whenever we write C3(V,L), we are choosing the supremum of all
the constants such that inequality (12) is satisfied.

Proposition 2.13 For any V ∈ Grc(h) with complement L, there is a constant
C4(V,L) > 0 such that for any p ∈ G and any r > 0 we have

Sh�V
(
PV(B(p, r))

) = C4(V,L)r
h .

Furthermore, for any Borel set A ⊆ G for which Sh(A) < ∞, we have

Sh�V(PV(A)) ≤ 2C4(V,L)Sh(A). (13)

Proof The existence of such C4(V,L) is yielded by [15,Lemma 2.20]. Suppose
{B(xi , ri )}i∈N is a countable covering of A with closed balls for which

∑
i∈N rhi ≤

2Sh(A). Then

Sh(PV(A)) ≤ Sh
(
PV
(⋃
i∈N

B(xi , ri )
))

≤ C4(V,L)
∑
i∈N

rhi ≤ 2C4(V,L)Sh(A).

��

2.4 Cones Over Homogeneous Subgroups

In this subsection, we introduce the intrinsic cone CW(α) and the notion of CW(α)-
set, and prove some of their properties. In this subsection, G will be a fixed Carnot
group endowed with an arbitrary homogeneous norm ‖ · ‖ that induces a left-invariant
homogeneous distance d.
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Definition 2.14 (Intrinsic cone) For any α > 0 and W ∈ Gr(h), we define the cone
CW(α) as

CW(α) := {w ∈ G : dist(w,W) ≤ α‖w‖}.

Definition 2.15 (CW(α)-set) Given W ∈ Gr(h), and α > 0, we say that a set E ⊆ G

is a CW(α)-set if

E ⊆ p · CW(α), for any p ∈ E .

Lemma 2.14 For any W1,W2 ∈ Gr(h), ε > 0 and α > 0 if dG(W1,W2) < ε/4,
then

CW1(α) ⊆ CW2(α + ε).

Proof We prove that any z ∈ CW1(α) is contained in the cone CW2(α+ ε). Thanks to
the triangle inequality, we infer

dist(z,W2) ≤ d(z, b)+ inf
w∈W2

d(b, w), for any b ∈ W1.

Thus, choosing b∗ ∈ W1 in such a way that d(z, b∗) = dist(z,W1), and evaluating
the previous inequality at b∗, we get

dist(z,W2) ≤ dist(z,W1)+ dist(b∗,W2) ≤ α‖z‖ + dist(b∗,W2), (14)

where in the second inequality, we used z ∈ CW1(α).
Let us notice that, given W an arbitrary homogeneous subgroup of G, p ∈ G an

arbitrary point such that p∗ ∈ W is one of the points at minimum distance from W to
p, then the following inequality holds

‖p∗‖ ≤ 2‖p‖. (15)

Indeed,

‖p∗‖ − ‖p‖ ≤ ‖(p∗)−1 · p‖ = d(p,W) ≤ ‖p‖ ⇒ ‖p∗‖ ≤ 2‖p‖.

Now, by homogeneity, since b∗ ∈ W1 is the point at minimum distance from W1
of z, we get that D1/‖z‖(b∗) is the point at minimum distance from W1 of D1/‖z‖(z).
Thus, since ‖D1/‖z‖(z)‖ = 1, from (15), we get that ‖D1/‖z‖(b∗)‖ ≤ 2. Finally we
obtain

dist(b∗,W2) = ‖z‖dist(D1/‖z‖(b∗),W2
) = ‖z‖dist(D1/‖z‖(b∗),W2 ∩ B(0, 4)

) ≤
≤ ‖z‖dH (W1 ∩ B(0, 4),W2 ∩ B(0, 4))

= 4‖z‖dH (W1 ∩ B(0, 1),W2 ∩ B(0, 1)) < ε‖z‖,
(16)
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where the first equality follows from the homogeneity of the distance; the second is
a consequence of the fact that ‖D1/‖z‖(b∗)‖ ≤ 2, and thus, from (15), the point at
minimum distance of D1/‖z‖(b∗) from W2 has norm bounded above by 4; the third
inequality comes from the definition of Hausdorff distance; the fourth equality is true
by homogeneity; and the last inequality comes from the hypothesis dG(W1,W2) <

ε/4. Joining (14), and (16), we get z ∈ CW2(α + ε), that was what we wanted. ��
Lemma 2.15 Let V ∈ Grc(h), and let L be a complementary subgroup of V. There
exists ε1 := ε1(V,L) > 0 such that

L ∩ CV(ε1) = {0}.

Moreover, we can, and will, choose ε1(V,L) := C3(V,L)/2.

Proof We prove that it suffices to take ε1(V,L) := C3(V,L)/2. Let us suppose the
statement is false. Thus there exists 0 �= v ∈ L ∩ CV(ε1). From Proposition 2.12 and
from the very definition of the cone CV(ε1) we have

C3(V,L)‖v‖ ≤ dist(v,V) ≤ ε1‖v‖ = C3(V,L)‖v‖/2,

which is a contradiction with the fact that v �= 0. ��
We will not use the following proposition in the paper, but it is worth mentioning

it.

Proposition 2.16 The family of the complemented subgroups Grc(h) is an open subset
of Gr(h).

Proof Fix a W ∈ Grc(h) and let L be one complementary subgroup of W and set
ε < min{ε1(V,L), �G}. Then, if W

′ ∈ Gr(h) is such that dG(W,W′) < ε/4, Lemma
2.14 implies that W

′ ⊆ CW(ε) and in particular

L ∩ W
′ ⊆ L ∩ CW(ε) = {0}.

Moreover, since ε < �G fromProposition 2.8,weget thatW′ has the same stratification
ofW and thus the same topological dimension. This, jointly with the previous equality
and the Grassmann formula, means that (W′ ∩ Vi ) + (L ∩ Vi ) = Vi for every i =
1, . . . , κ . This, jointly with the fact that L ∩ W

′ = {0}, implies that L and W
′ are

complementary subgroups in G due to the triangular structure of the product · on
G, see (1). For an alternative proof of the fact that L and W

′ are complementary
subgroups, see also [25,Lemma 2.7]. ��

The following definition of intrinsically Lipschitz functions is equivalent to the
classical one in [15,Definition 11] because the cones in [15,Definition 11] and the
cones CV(α) are equivalent whenever V admits a complementary subgroup, see
[15,Proposition 3.1].
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Definition 2.16 (Intrinsically Lipschitz functions) Let W ∈ Grc(h) and assume L is a
complement of W and let E ⊆ W be a subset of V. Let α > 0. A function f : E → L

is said to be an α-intrinsically Lipschitz function if graph( f ) := {v · f (v) : v ∈ E} is
a CW(α)-set. A function f : E → L is said to be an intrinsically Lipschitz function if
there exists α > 0 such that f is an α-intrinsically Lipschitz function.

Proposition 2.17 Let us fix W ∈ Grc(h) with complement L. If 	 ⊂ G is a CW(α)-set
for some α ≤ ε1(W,L), then the map PW : 	 → W is injective. As a consequence,
	 is the intrinsic graph of an intrinsically Lipschitz map defined on PW(	).

Proof Suppose by contradiction that PW : 	 → W is not injective. Then, there exist
p �= q with p, q ∈ 	 such that PW(p) = PW(q). Thus p−1 · q ∈ L. Moreover, since
	 is a CW(α)-set, we have that p−1 · q ∈ CW(α). Eventually we get

p−1 · q ∈ L ∩ CW(α) ⊆ L ∩ CW(ε1(W,L)),

where the last inclusion follows since α ≤ ε1(W,L). The above inclusion, jointly
with Lemma 2.15, gives that p−1 · q = 0 and this is a contradiction. Concerning the
last part of the statement, let us notice that the map PL ◦ ((PW)|	 )−1 is well defined
from PW(	) to L and its intrinsic graph is 	 by definition. Moreover, since 	 is a
CW(α)-set, the latter map is intrinsically Lipschitz by Definition 2.16. ��

The following two lemmata will play a fundamental role in the proof that Pc
h-

rectifiable measures have h-density.

Lemma 2.18 Let V ∈ Grc(h) and L be one of its complementary subgroups. For any
0 < α < C3(V,L)/2, let

c(α) := α/(C3(V,L)− α). (17)

Then we have

B(0, 1) ∩ V ⊆ PV(B(0, 1) ∩ CV(α)) ⊆ B(0, 1/(1 − c(α))) ∩ V. (18)

Proof The first inclusion comes directly from the definition of projections and cones.
Concerning the second, if v ∈ B(0, 1) ∩CV(α), thanks to Proposition 2.12, we have

C3(V,L)‖PL(v)‖ ≤ dist(v,V) ≤ α‖v‖ ≤ α(‖PL(v)‖ + ‖PV(v)‖). (19)

This implies in particular that ‖PL(v)‖ ≤ c(α)‖PV(v)‖ and thus

1 ≥ ‖PV(v)PL(v)‖ ≥ ‖PV(v)‖ − ‖PL(v)‖ ≥ (1 − c(α))‖PV(v)‖.

This concludes the proof of the lemma. ��
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Lemma 2.19 Let V ∈ Grc(h) and L be one of its complementary subgroups. Suppose
	 is a CV(α)-set with α < C3(V,L)/2, and let

C(α) := 1 − c(α)

1 + c(α)
, (20)

where c(α) is defined in (17). Then

Sh(PV(B(x, r) ∩ 	)) ≥ Sh
(
PV
(
B(x,C(α)r) ∩ xCV(α)

) ∩ PV(	)
)
, for anyx ∈ 	.

The same inequality above holds if we substitute Sh with any other Haar measure on
V, see Proposition 2.9, because all of them are equal up to a constant.

Proof First of all, let us note that we have

Sh(PV(B(x, r) ∩ 	)
) = Sh

(
PV
(
B(0, r) ∩ x−1	

))
, (21)

where the last equality is true sinceSh(PV(E)) = Sh(PV(x−1E)) for anyBorelE ⊆ G,
see Proposition 2.10. We wish now to prove the following inclusion

PV
(
B(0,C(α)r) ∩ CV(α)

) ∩ PV(x
−1	) ⊆ PV(B(0, r) ∩ x−1	). (22)

Indeed, fix an element y of PV(B(0,C(α)r) ∩ CV(α)) ∩ PV(x−1	). Thanks to our
choice of y, there are a w1 ∈ x−1	 and a w2 ∈ B(0,C(α)r) ∩ CV(α) such that

PV(w1) = y = PV(w2).

Furthermore, since 	 is aCV(α)-set, we infer thatw1 ∈ CV(α) and thus with the same
computations as in (19), we obtain that ‖PL(w1)‖ ≤ c(α)‖PV(w1)‖ and thus

‖w1‖ ≤ (1 + c(α))‖PVw1‖ ≤ (1 + c(α))‖y‖. (23)

Furthermore, since by assumption w2 ∈ B(0,C(α)r) ∩ CV(α), Lemma 2.18 yields

‖y‖ = ‖PV(w2)‖ ≤ C(α)r/(1 − c(α)) = r/(1 + c(α)). (24)

The bounds (23) and (24) together imply that ‖w1‖ ≤ r , and thusw1 ∈ B(0, r)∩x−1	

and this concludes the proof of the inclusion (22). Finally (21), (22) imply

Sh(PV(B(x, r) ∩ 	)) ≥ Sh
(
PV(B(0,C(α)r) ∩ CV(α)) ∩ PV(x

−1	)
)
. (25)

Furthermore, for any Borel subset E of G, we have PV(xE) = PV(x PV(E)), since for
every g ∈ E we have the following simple equality PV(xg) = PV(x PVg). Therefore,
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by using the latter observation and Proposition 2.10, we get, denoting with� the map
�(v) = PV(x−1v) for every v ∈ V, that

Sh
(
PV
(
B(0,C(α)r) ∩ CV(α)

) ∩ PV
(
x−1	

))

= Sh
(
PV
(
x−1PV(B(x,C(α)r) ∩ xCV(α))

) ∩ PV
(
x−1PV(	)

))

= Sh
(
�
(
PV(B(x,C(α)r) ∩ xCV(α))

) ∩�
(
PV(	)

))

= Sh
(
PV(B(x,C(α)r) ∩ xCV(α)) ∩ PV(	)

)
. (26)

Joining together (25) and (26) gives the sought conclusion. ��

2.5 Rectifiable Measures in Carnot Groups

Inwhat followsweare going todefine the class ofh-flatmeasures on aCarnot group and
then we will give proper definitions of rectifiable measures on Carnot groups. Again
we recall that throughout this subsection Gwill be a fixed Carnot group endowed with
an arbitrary left-invariant homogeneous distance.

Definition 2.17 (Flat measures) For any h ∈ {1, . . . , Q} we letM(h) to be the family
of flat h-dimensional measures in G, i.e.,

M(h) := {λSh�W : for some λ > 0 and W ∈ Gr(h)}.

Furthermore, if G is a subset of the h-dimensional Grassmannian Gr(h), we let
M(h,G) to be the set

M(h,G) := {λSh�W : for some λ > 0 and W ∈ G}. (27)

We stress that in the previous definitions we can use any of the Haar measures on W,
see Proposition 2.9, since they are the same up to a constant.

Definition 2.18 (Ph andP∗
h -rectifiable measures) Let h ∈ {1, . . . , Q}. A Radon

measure φ on G is said to be a Ph-rectifiable measure if for φ-almost every x ∈ G

we have

(i) 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < +∞,
(ii) there exists a V(x) ∈ Gr(h) such that Tanh(φ, x) ⊆ {λSh�V(x) : λ ≥ 0}.
Furthermore, we say that φ isP∗

h -rectifiable if (ii) is replaced with the weaker

(ii)∗ Tanh(φ, x) ⊆ {λSh�V : λ ≥ 0 and V ∈ Gr(h)}.
Remark 2.5 (About λ = 0 in Definition 2.18) It is readily noticed that, since in Def-
inition 2.18 we are asking �h∗(φ, x) > 0 for φ-almost every x , we can not have the
zero measure as a tangent measure. As a consequence, a posteriori, we have that in
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item (ii) and item (ii)* above, we can restrict to λ > 0. We will tacitly work in this
restriction from now on.

On the contrary, if we only know that for φ-almost every x ∈ G we have

�h,∗(φ, x) < +∞, and Tanh(φ, x) ⊆ {λSh�V(x) : λ > 0}, (28)

for someV(x) ∈ Gr(h), hence�h∗(φ, x) > 0 for φ-almost every x ∈ G, and the same
property holds with the item (ii)* above. Indeed, if at some x for which (28) holds we
have �h∗(φ, x) = 0, then there exists ri → 0 such that r−h

i φ(B(x, ri )) = 0. Since
�h,∗(φ, x) < +∞, up to subsequences (see [1,Theorem 1.60]), we have r−h

i Tx,riφ →
λSh�V(x), for some λ > 0. Hence, by applying [1,Proposition 1.62(b)] we conclude
that r−h

i Tx,riφ(B(0, 1)) → λSh�V(x)(B(0, 1)) > 0, that is a contradiction.

Throughout the paper, it will be often convenient to restrict our attention to the
subclass of Ph- and P∗

h -rectifiable measures, given by the measures that have com-
plemented tangents. More precisely, we give the following definition.

Definition 2.19 (Pc
h-rectifiable measures) Let h ∈ {1, . . . , Q}. In the following we

denote by Pc
h the family of those Ph-rectifiable measures such that for φ-almost

every x ∈ G we have

Tanh(φ, x) ⊆ M(h,Grc(h)).

Remark 2.6 As explained in the introduction, the bridge between the notion of Pc
h-

rectifiable measures and the other notions of rectifiability in the Heisenberg groupsH
n

is nowadays very well understood after the results in [39,Theorem 3.14 and Theorem
3.15] and [44]. Let us now discuss some examples of flat rectifiable measures in a
different setting, i.e., in the Engel group, which we denote by E.

The Engel group E is the Carnot group whose Lie algebra e admits a basis
{X1, X2, X3, X4} such that [X1, X2] = X3, and [X1, X3] = X4. Hence it is a step-
3 Carnot group of topological dimension 4 and homogeneous dimension 7 where
V1 = span{X1, X2}, V2 = span{X3}, and V3 = span{X4). In exponential coordinates
associated with the basis (X1, X2, X3, X4), the law product can be explicitly written
as in [15,Example 2.6]. As explicitly computed in [15,Example 2.6], in E we have
two families of homogeneous complementary subgroups. The first family is given by
Mα,β · Nγ,δ where α, β, γ, δ ∈ R satisfy αδ − βγ �= 0, and

Mα,β := {(αt, βt, 0, 0) : t ∈ R}, Nγ,δ := {(γ t, δt, x3, x4) : t, x3, x4 ∈ R}.

In this case notice that, by homogeneity,S1�Mα,β andS6�Nγ,δ are bothPc
h -rectifiable

measures. Notice, moreover, that Nγ,δ is normal and it is also a C1
H-hypersurface, thus

being rectifiable in the sense of Definition 5.3. The same does not hold for Mα,β since
it is not normal, compare with Remark 5.2.

The second family of homogeneous subgroups is given byK·Hα,β , where α, β ∈ R

satisfy α + β �= 0, and

K := {(x1,−x1, x3, 0) : x1, x3 ∈ R}, Hα,β := {(αt, βt, 0, x4) : t, x4 ∈ R}.
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Notice that S3�K and S4�Hα,β are bothPc
h-rectifiable measures. Nevertheless, since

both K and Hα,β are not normal, none of them can be a C1
H(E; G

′) for any Carnot
group G

′ because otherwise the tangent, which coincides everywhere with the same
subgroup by homogeneity, would be normal, compare with Remark 5.2.

Proposition 2.20 Let h ∈ {1, . . . , Q} and assume φ is a Radon measure on G. If
{ri }i∈N is an infinitesimal sequence such that r−h

i Tx,riφ⇀λCh�V for some λ > 0 and
V ∈ Gr(h) then

lim
i→∞φ(B(x, ri ))/r

h
i = λ.

Proof Since Ch�V(x)(∂B(0, 1)) = 0, see e.g., [25,Lemma 3.5], thanks to Remark 2.4
and to [1,Proposition 1.62(b)] we have

λ = λCh�V(x)(B(0, 1)) = lim
i→∞

Tx,riφ(B(0, 1))

rhi
= lim

i→∞
φ(B(x, ri ))

rhi
,

and this concludes the proof. ��
The above proposition has the following immediate consequence.

Corollary 2.21 Let h ∈ {1, . . . , Q} and assume φ is a P∗
h -rectifiable. Then for φ-

almost every x ∈ G, we have

Tanh(φ, x) ⊆ {λCh�W : λ ∈ [�h∗(φ, x),�h,∗(φ, x)] and W ∈ Gr(h)}.

We introduce now a way to estimate how far two measures are.

Definition 2.20 Given φ and ψ two Radon measures on G, and given K ⊆ G a
compact set, we define

FK (φ,ψ) := sup

{∣∣∣∣
∫

f dφ −
∫

f dψ

∣∣∣∣ : f ∈ Lip+
1 (K )

}
. (29)

We also write Fx,r for FB(x,r).

Remark 2.7 With few computations that we omit, it is easy to see that Fx,r (φ,ψ) =
r F0,1(Tx,rφ, Tx,rψ). Furthermore, FK enjoys the triangle inequality, indeed if
φ1, φ2, φ3 are Radon measures and f ∈ Lip+

1 (K ), then

∣∣∣
∫

f dφ1 −
∫

f dφ2
∣∣∣ ≤ ∣∣∣

∫
f dφ1 −

∫
f dφ3

∣∣∣+ ∣∣∣
∫

f dφ3 −
∫

f dφ2
∣∣∣

≤ FK (φ1, φ2)+ FK (φ2, φ3).

The arbitrariness of f concludes that FK (φ1, φ2) ≤ FK (φ1, φ3)+ FK (φ3, φ2).

The proof of the following criterion is contained in [41,Proposition 1.10] and we
omit the proof.
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Proposition 2.22 Let {μi } be a sequence of Radon measures on G. Let μ be a Radon
measure on G. The following are equivalent

1. μi⇀μ;
2. FK (μi , μ) → 0, for every K ⊆ G compact.

Now,we are going to define a functional that in some sense tells how far is ameasure
from being flat around a point x ∈ G and at a certain scale r > 0.

Definition 2.21 For any x ∈ G, any h ∈ {1, . . . , Q}, and any r > 0, we define the
functional:

dx,r (φ,M(h)) := inf
�>0,

V∈Gr(h)

Fx,r (φ,�Sh�xV)

rh+1 . (30)

Furthermore, if G is a subset of the h-dimensional Grassmannian Gr(h), we also
define

dx,r (φ,M(h,G)) := inf
�>0,
V∈G

Fx,r (φ,�Sh�xV)

rh+1 .

Remark 2.8 It is a routine computation to prove that, whenever h ∈ N and r > 0 are
fixed, the function x �→ dx,r (φ,M(h,G)) is a continuous function. The proof can be
reached as in [41,Item (ii) of Proposition 2.2]. Moreover, from the invariance property
in Remark 2.7 and Proposition 2.9, if in (30) we use the measure Ch�xV, we obtain
the same functional.

Proposition 2.23 Let φ be a Radon measure onG satisfying item (i) in Definition 2.18.
Further, let G be a subfamily of Gr(h) and letM(h,G) be the set defined in (27). If,
for φ-almost every x ∈ G, we have Tanh(φ, x) ⊆ M(h,G), then, for φ-almost every
x ∈ G, we have

lim
r→0

dx,r (φ,M(h,G)) = 0.

Proof Let us fix x ∈ G a point for which Tanh(φ, x) ⊆ M(h,G) and let us assume
by contradiction that there exist ri → 0 such that, for some ε > 0 we have

dx,ri (φ,M(h,G)) > ε. (31)

Since φ satisfies item (i) in Definition 2.18, we can use [1,Proposition 1.62(b)] and
then, up to subsequences, there are �∗ > 0 and V

∗ ∈ G such that

r−h
i Tx,riφ⇀�∗Sh�V

∗. (32)

Thus,

dx,ri (φ,M(h,G)) = d0,1(r
−h
i Tx,riφ,M(h,G)) ≤ F0,1(r

−h
i Tx,riφ,�

∗Sh�V
∗) → 0,
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where the first equality follows from the first part of Remark 2.7, and the last con-
vergence follows from (32), and Proposition 2.22. This is in contradiction with (31).

��

3 Structure ofPh-Rectifiable Measures

In what follows we let G be a Carnot group of homogeneous dimension Q and
we fix 1 ≤ h ≤ Q.We endow G with a fixed homogeneous left-invariant distance.
We also assume that φ is a fixed Radon measure on G and we suppose that it is
supported on a compact set K . Moreover we fix ϑ, γ ∈ N and we freely use the
notation E(ϑ, γ ) introduced in Definition 2.9.

In this section, we prove Theorem 1.4 and an important step toward the proof of
Corollary 1.5, see the statements in Theorem 3.4 and Theorem 3.5, respectively.

The first step in order to prove Theorem 1.4 is to observe the following general
property that can be made quantitative at arbitrary points x ∈ E(ϑ, γ ): if the measure
Sh�xV, withV ∈ Gr(h), is sufficiently near to φ in a preciseMeasure Theoretic sense
at the scale r around x , then in some ball of center x and with radius comparable with
r , the points in the set E(ϑ, γ ) are not too distant from xV. Roughly speaking, if we
denote with Fx,r the functional that measures the distance between measures on the
ball B(x, r), see Definition 2.20, we prove that the following implication holds

if there exist a �, δ > 0 such that Fx,r (φ,�Sh�xV) ≤ δrh+1,

then E(ϑ, γ ) ∩ B(x, r) ⊆ B(xV, ω(δ)r) where ω is continuous and ω(0) = 0.
(33)

For the precise statement of (33), see Proposition 3.1. Let us remark that when φ

is a Ph-rectifiable measure, then for φ-almost every x ∈ G the bound on Fx,r in
the premise of (33) is satisfied with V(x) ∈ Gr(h), for arbitrarily small δ > 0
whenever r < r0(x, δ). Thus, forPh-rectifiablemeasures, we deduce that the estimate
in the conclusion of (33) holds for arbitrarily small δ, and with r < r0(x, δ). This
latter estimate easily implies, by a very general geometric argument, that E(ϑ, γ ) ∩
B(x, r) ⊆ xCV(x)(α) for arbitrarily small α and for all r < r0(x, α). For the latter
assertion, we refer the reader to Proposition 3.2. The proof of Theorem 1.4 is thus
concluded by joining together the previous observations and by the general cone-
rectifiability criterion in Proposition 3.3.

There is a difference between the Euclidean case and the Carnot case that we
discuss now. In the Euclidean case, it is easy to see that whenever we are given a
vector subspace V , an arbitrary CV (α)-set, with α sufficiently small, is actually the
graph of a (Lipschitz) map f : A ⊆ V → V⊥. The main reason behind this latter
statement is the following: we have a canonical choice of a complementary subgroup
V⊥ of V , and moreover V⊥ ∩ CV (α) = {0} for α small enough. Already in the first
Heisenberg group H

1 if we take the vertical line VH1 , we notice that there is no choice
of a complementary subgroup of VH1 in H

1. One could try to bypass this problem
by defining properly some coset projections that would play the role of the projection
over a splitting, see Definition 2.13. This will be the topic of further investigations.
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Nevertheless, if wework in an arbitraryCarnot groupG and one of its homogeneous
subgroupsV admits a complementary subgroupL, we already proved that there exists a
constant ε1 := ε1(V,L) such that every CV(ε1)-set is the intrinsic graph of a function
f : A ⊆ V → L. This last statement is precisely the analogous of the Euclidean
property that we discussed above, see Proposition 2.17. As a consequence, in order
to start to prove Theorem 1.5 we follow the path of the proof of Theorem 1.4, which
we discussed above, but we have to pay attention to one technical detail. We have to
split the subset of the Grassmannian Gr(h) made by the homogeneous subgroups V

that admit at least one complementary subgroup L into countable subsets according
to the value of ε1(V,L). Then we have to write the proof of Theorem 1.4 by paying
attention to the fact that we want to control the opening of the final CVi (αi )-sets
with αi < ε1(Vi ,Li ). This is what we do in Theorem 3.4: we prove a refinement of
Theorem 3.5 in which we further ask that the opening of the cones is controlled above
also by some a priori defined function F(V,L).

Definition 3.1 Let us fix x ∈ G, r > 0 and φ a Radon measure on G. We define
�δ(x, r) to be the subset of planes V ∈ Gr(h) for which there exists� > 0 such that

Fx,r (φ,�Sh�xV) ≤ 2δrh+1. (34)

Definition 3.2 For any ϑ ∈ N, we define δG = δG(h, ϑ) := ϑ−12−(4h+5).

In the following proposition, we prove that if φ is sufficiently dx,r -near to M(h),
see Definition 2.21 for the definition of dx,r , then E(ϑ, γ ) is at a controlled distance
from a plane V.

Proposition 3.1 Let x ∈ E(ϑ, γ ), fix δ < δG, where δG is defined in Definition 3.2,
and set 0 < r < 1/γ . Then for every V ∈ �δ(x, r), see Definition 3.1, we have

sup
w∈E(ϑ,γ )∩B(x,r/4)

dist
(
w, xV

)
r

≤ 21+1/(h+1)ϑ1/(h+1)δ1/(h+1) =: C4(ϑ, h)δ
1/(h+1).

(35)

Proof Let V be any element of �δ(x, r) and suppose � > 0 is such that

∣∣∣∣
∫

f dφ −�

∫
f dSh�xV

∣∣∣∣ ≤ 2δrh+1, for any f ∈ Lip+
1 (B(x, r)).

Since the function g(w) := min{dist(w,U (x, r)c), dist(w, xV)} belongs to
Lip+

1 (B(x, r)), we deduce that

2δrh+1 ≥
∫

g(w)dφ(w)−�

∫
g(w)dSh�xV

=
∫

g(w)dφ(w) ≥
∫
B(x,r/2)

min{r/2, dist(w, xV)}dφ(w).
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Suppose that y is a point in B(x, r/4) ∩ E(ϑ, γ ) furthest from xV and let D :=
dist(y, xV). If D ≥ r/8, this would imply that

2δrh+1 ≥
∫
B(x,r/2)

min{r/2, dist(w, xV)}dφ(w)

≥
∫
B(y,r/16)

min{r/2, dist(w, xV)}dφ(w) ≥ r

16
φ(B(y, r/16)) ≥ rh+1

ϑ16h+1 ,

where the last inequality follows from the definition of E(ϑ, γ ) and the fact that
0 < r < 1/γ . The previous inequality would imply δ ≥ ϑ−12−(4h+5), which is not
possible since δ < δG = ϑ−12−(4h+5), see Definition 3.2. This implies that D ≤ r/8
and as a consequence, we have

2δrh+1 ≥
∫
B(x,r/2)

min{r/2, dist(w, xV)}dφ(w)

≥
∫
B(y,D/2)

min{r/2, dist(w, xV)}dφ(w) ≥ Dφ(B(y, D/2))

2

≥ ϑ−1
(
D

2

)h+1

,

(36)

where the second inequality comes from the fact that B(y, D/2) ⊆ B(x, r/2). This
implies thanks to (36), that

sup
w∈E(ϑ,γ )∩B(x,r/4)

dist(w, xV)

r
≤ D

r
≤ 21+1/(h+1)ϑ1/(h+1)δ1/(h+1)

= C5(ϑ, h)δ
1/(h+1).

��
Remark 3.1 Notice that a priori �δ(x, r) in the statement of Proposition 3.1 may be
empty.Nevertheless, it is easy to notice, by using the definitions, that if dx,r (φ,M) ≤ δ

then �δ(x, r) is nonempty.

In the following proposition, we show that if we are at a point x ∈ E(ϑ, γ ) forwhich
the h-tangents are flat, then locally around x the set E(ϑ, γ ) enjoys an appropriate
cone property with arbitrarily small opening.

Proposition 3.2 For any α > 0 and any x ∈ E(ϑ, γ ) for which Tanh(φ, x) ⊆
{λSh�V(x) : λ > 0} for some V(x) ∈ Gr(h), there exists a ρ(α, x) > 0 such
that whenever 0 < r < ρ we have

E(ϑ, γ ) ∩ B(x, r) ⊆ xCV(x)(α).
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Proof By using Proposition 2.23, we conclude that

lim
r→0

inf
�>0

Fx,r (φ,�Sh�xV(x))

rh+1 = 0.

From the previous equality, it follows that for every ε > 0 there exists 1/γ > r0(ε) > 0
such that

inf
�>0

Fx,r (φ,�Sh�xV(x)) ≤ εrh+1, whenever 0 < r ≤ r0(ε). (37)

Now we aim at proving that, for ε > 0 small enough, E(ϑ, γ ) ∩ B(x, r0(ε)/4) ⊆
xCV(x)(α). In order to prove this, we notice that (37) and Proposition 3.1 imply that,
for ε > 0 sufficiently small, the following inequality holds

sup
p∈E(ϑ,γ )∩B(x,r/4)

dist(p, xV(x)) ≤ C5(h, ϑ)ε
1/(h+1)r , whenever 0 < r ≤ r0(ε).

(38)

Indeed, from (37), it follows thatV(x) ∈ �ε(x, r) for every 0 < r ≤ r0, seeDefinition
3.1; so that it suffices to choose ε < δG = ϑ−12−(4h+5), see Definition 3.2, in order
to apply Proposition 3.1 and conclude (38).

Now let us take ε < δG so small that the inequality 8C5(h, ϑ)ε1/(h+1) < α holds.
We finally prove E(ϑ, γ ) ∩ B(x, r0(ε)/4) ⊆ xCV(x)(α). Indeed, let p ∈ E(ϑ, γ ) ∩
B(x, r0(ε)/4), and k ≥ 3 be such that r02−k < ‖x−1 · p‖ ≤ r02−k+1. Since p ∈
E(ϑ, γ ) ∩ B(x, (r02−k+3)/4), from (38), we get

d(p, xV(x)) ≤ C5(h, ϑ)ε
1/(h+1)r02

−k+3 ≤ 8C5(h, ϑ)ε
1/(h+1)‖x−1 · p‖ ≤ α‖x−1 · p‖,

thus showing the claim. ��
We now prove a cone-type rectifiability criterion that will be useful in combination

with the previous results in order to split the support of a Ph or a Pc
h-rectifiable

measures with sets that have the cone property.

Proposition 3.3 (Cone-rectifiability criterion) Suppose that E is a closed subset of G

for which there exists a countable familyF ⊆ Gr(h) and a function α : F → (0, 1)
such that for every x ∈ E, there exist ρ(x) > 0, and V(x) ∈ F for which

B(x, r) ∩ E ⊆ xCV(x)(α(V(x))), (39)

whenever 0 < r < ρ(x). Then, there are countably many compact CVi (3βi )-sets 	i

such that Vi ∈ F , and α(Vi ) < βi < 2α(Vi ) for which

E =
⋃
i∈N

	i . (40)
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Proof Let us split E in the following way. Let G(i, j, k) be the subset of those x ∈
E ∩ B(0, k) for which

B(x, r) ∩ E ⊆ xCVi (α(Vi )),

for any 0 < r < 1/ j . Then, from the hypothesis, it follows E = ∪i, j,k∈NG(i, j, k).
Since E is closed, it is not difficult to see that G(i, j, k) is closed too. Let us fix
i, j, k ∈ N, some βi < 1 with α(Vi ) < βi < 2α(Vi ), and let us prove that G(i, j, k)
can be covered with countably many compact CVi (3βi )-sets. Since i, j, k ∈ N are
fixed from now on, we assume without loss of generality that G(i, j, k) = E so that
we can drop the indexes.

Let us take {q�} a dense subset of E , and let us define the closed tubular neighbor-
hood of q�V

S(�) := B(q�V, 2
−κ j−κC1(14k)

−κβκ), (41)

where we recall that κ is the step of the group, and where C1 is defined in (2.1). We
will now prove that S(�)∩E is aCV(3β)-set, or equivalently that for any p ∈ S(�)∩E
we have

S(�) ∩ E ⊆ p · CV(3β). (42)

If q ∈ S(�) ∩ E ∩ B(p, 1/(2 j)), the inclusion (42) holds thanks to our assumptions
on E . If on the other hand q ∈ S(�) ∩ E \ B(p, 1/(3 j)), let p∗, q∗ ∈ V be such
that d(p, q�V) = ‖(p∗)−1q−1

� p‖, and d(q, q�V) = ‖(q∗)−1q−1
� q‖. Let us prove that

‖q∗‖ ≤ 4k and ‖p∗‖ ≤ 4k. This is due to the fact that

‖q∗‖ − ‖q�‖ − ‖q‖ ≤ ‖(q∗)−1q−1
� q‖ = d(q, q�V) ≤ 1,

where the last inequality follows from the definition of S(�), see (41). From the pre-
vious inequality, it follows that ‖q∗‖ ≤ 2k + 1, since q, q� ∈ B(0, k). A similar
computation proves the bound for ‖p∗‖ and this implies that

‖p−1 · q� · p∗‖ + ‖(p∗)−1 · q∗‖ ≤ ‖p−1‖ + ‖q�‖ + 2‖p∗‖ + ‖q∗‖ ≤ 14k.

The application of Lemma 2.1 and the fact that (q∗)−1 p∗ and p−1q� p∗ are in
B(0, 14k), due to the previous inequality, imply that

d(p−1q,V) ≤ ‖(q∗)−1 p∗ · p−1q‖ = ‖(q∗)−1 p∗ · p−1 · q� p∗(p∗)−1q∗(q∗)−1q−1
� · q‖

≤ ‖(q∗)−1 p∗ · p−1q� p
∗ · (p∗)−1q∗‖ + ‖(q∗)−1q−1

� q‖
≤ C1(14k)‖p−1q� p

∗‖1/κ + d(q, q�V)

= C1(14k)d(p, q�V)
1/κ + d(q, q�V). (43)

Finally, thanks to (41) and (43) we infer

d(p−1q,V) ≤ C1(14k)+ 1

2 jC1(14k)
β ≤ β j−1 ≤ 3β‖p−1q‖,
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thus showing (42) in the remaining case. In conclusion, we have proved that for any
i, j, k, � ∈ N, the sets G(i, j, k) ∩ S(�) are CVi (3βi )-sets. This concludes the proof
since

E ⊆
⋃

i, j,k,�∈N
G(i, j, k) ∩ S(�),

and on the other hand, every G(i, j, k)∩ S(�) is a bounded and closed, thus compact,
CVi (3βi )-set. The fact that the sets G(i, j, k) ∩ S(�) are contained in E follows by
definition, thus concluding the proof of the equality. ��

In the following,with the symbol Sub(h), we denote the subset ofGrc(h)×Grc(Q−
h) defined by

{(V,L) : V ∈ Grc(h) and L is a homogeneous subgroup complementary toV},(44)

we fix a function F : Sub(h) → (0, 1), and for every � ∈ N with � ≥ 2 let us define

GrFc (h, �) := {V ∈ Grc(h) : ∃ L complement of V s.t. 1/� < F(V,L) ≤ 1/(�− 1)}.

Observe that Proposition 2.7 implies that GrFc (h, �) is separable for any � ∈ N, since
GrFc (h, �) ⊆ Gr(h) and (Gr(h), dG) is a compact metric space, see Proposition 2.7.
Let

D� := {Vi,�}i∈N, (45)

be a countable dense subset of GrFc (h, �) and

for all i ∈ N, choose a complement Li,� of Vi,� s.t. 1/� < F(Vi,�,Li,�) ≤ 1/(�− 1).

(46)

Let us now prove the following theorem which will be of fundamental importance
to prove Corollary 1.5.

Theorem 3.4 Let F : Sub(h) → (0, 1) be a function, where Sub(h) is defined in (44),
and for every � ∈ N define D� as in (45), setF := {Vi,�}i,�∈N, and choose Li,� as in
(46). Furthermore, let β : N → (0, 1) and define β(Vi,�) := β(�) for every i, � ∈ N.
For the ease of notation we rename F := {Vk}k∈N. Then the following holds.

Let φ be aPc
h-rectifiable measure. There are countably many compact sets 	k that

are CVk (min{F(Vk,Lk), β(Vk)})-sets for some Vk ∈ F , and such that

φ
(
G \

+∞⋃
k=1

	k

)
= 0.

Proof Let us notice that without loss of generality, by restricting the measure on balls
with integer radius, we can suppose that φ has a compact support. Fix ϑ, γ ∈ N and
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let E(ϑ, γ ) be the set introduced in Definition 2.9 with respect to φ. Furthermore, for
any �, i, j ∈ N, we let

F�(i, j) := {x ∈ E(ϑ, γ ) : B(x, r) ∩ E(ϑ, γ )

⊆ xCVi,� (6
−1 min{F(Vi,�,Li,�), β(Vi,�)for any 0 < r < 1/ j}. (47)

It is not hard to prove, since E(ϑ, γ ) is compact, see Proposition 2.4, that for every
�, i, j , the sets F�(i, j) are compact. We claim that

φ
(
E(ϑ, γ ) \

⋃
�,i, j∈N

F�(i, j)
)

= 0. (48)

Indeed, let w ∈ E(ϑ, γ ) be such that Tanh(φ,w) ⊆ {λSh�V(w) : λ > 0} for
some V(w) ∈ Grc(h); this can be done for φ-almost every point w in E(ϑ, γ ) since
φ is Pc

h-rectifiable. Let �(w) ∈ N be the smallest natural number for which there
exists L complementary to V(w) with 1/�(w) < F(V(w),L) ≤ 1/(�(w)− 1). Then
by definition, we have V(w) ∈ GrFc (h, �(w)). By density of the family D�(w) in
GrFc (h, �(w)), there exists a plane Vi,�(w) ∈ D�(w) such that

dG(Vi,�(w),V(w)) < 30−1 min{1/�(w), β(Vi,�(w))};

for this last observation to hold it is important that β only depends on �(w), as it is by
construction. The previous inequality, jointly with Lemma 2.14, imply that

CV(w)(30
−1 min{1/�(w), β(Vi,�(w))})

⊆ CVi,�(w) (6
−1 min{1/�(w), β(Vi,�(w))})

⊆ CVi,�(w) (6
−1 min{F(Vi,�(w),Li,�(w)), β(Vi,�(w))}), (49)

where the last inclusion follows from the fact that by definition of the family D�(w) it
holds F(Vi,�(w),Li,�(w)) > 1/�(w). Thanks to Proposition 3.2, we can find a ρ(w) >
0 such that for any 0 < r < ρ(w), we have

B(w, r) ∩ E(ϑ, γ ) ⊆ wCV(w)(30
−1 min{1/�(w), β(Vi,�(w))}). (50)

In particular, putting together (49) and (50), we infer that for φ-almost every w ∈
E(ϑ, γ ), there are an i = i(w) > 0, an �(w) ∈ N, and a ρ(w) > 0 such that whenever
0 < r < ρ(w), we have

B(w, r) ∩ E(ϑ, γ ) ⊆ wCVi,�(w)(6
−1 min{F(Vi,�(w),Li,�(w)), β(Vi,�(w))}).

This concludes the proof of (48).
Now, if we fix �, i, j ∈ N, we can apply Proposition 3.3 to the set F�(i, j). It

suffices to take the family F in the statement of Proposition 3.3 to be the single-
ton {Vi,�} and the function α in the statement of Proposition 3.3 to be α(Vi,�) :=
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6−1 min{F(Vi,�,Li,�), β(Vi,�)}. As a consequence we can write each F�(i, j) as the
union of countably many compact CVi,� (min{F(Vi,�,Li,�), β(Vi,�)})-sets. Thus, the
same holds φ-almost everywhere for E(ϑ, γ ), allowing i, � to vary in N, since (48)
holds. Finally, we have

φ(G \ ∪ϑ,γ∈NE(ϑ, γ )) = 0,

due to Proposition 2.5.
Thus, we can cover φ-almost all of G with compact CVi,� (min{F(Vi,�,Li,�),

β(Vi,�)})-sets for i, � that vary in N, concluding the proof of the proposition. ��
The following theorem is a more detailed version of Theorem 1.4.

Theorem 3.5 There exists a countable subfamily F := {Vk}k∈N of Gr(h) such that
the following holds. Let φ be aPh-rectifiable measure. For any 0 < β < 1, there are
countably many compact sets 	k that are CVk (β)-sets for some Vk ∈ F , and such
that

φ
(
G \

+∞⋃
k=1

	k

)
= 0.

Proof The proof is similar to the one of Theorem 3.4. It suffices to choose, as a family
F , an arbitrary countable dense subset of Gr(h) and then one can argue as in the
proof of Theorem 3.4 without the technical effort of introducing the parameter �. We
skip the details. ��

4 Bounds for the Densities ofSh on CV(˛)-Sets

Throughout this subsection, we assume that V ∈ Grc(h) and that V · L = G.
In this chapter whenever we deal with CV(α)-sets we are always assuming that
α < ε1(V,L), where ε1 is defined in Lemma 2.15.

This section is devoted to the proof of Theorem 1.3, that is obtained through three
different steps. Let 	 be a compact CV(ε1(V,L)) set, and recall that by Proposition
2.17 we can write	 = graph(ϕ)with ϕ : PV(	) → L. Let us denote�(v) := v ·ϕ(v)
for every v ∈ PV(	).

We first show that if we assume that �h∗(Sh�	, x) > 0 at Sh�	-almost every
point x , then the push-forward measure (�)∗(Sh�V) is mutually absolutely contin-
uous with respect to Sh�	, see Proposition 4.7. In other words we are proving that
whenever an intrinsically Lipschitz graph over a subset of an h-dimensional subgroup
has strictly positive lower density almost everywhere, then the push-forward of the
measure Sh on the subgroup bymeans of the graph map is mutually absolutely contin-
uous with respect to the measure Sh on the graph. We stress that we do not address the
issue of removing the hypothesis on the strict positivity of the lower density in Propo-
sition 4.7 as it is out of the aims of this paper. We remark that in the Euclidean case
the analogous statement holds true without this assumption: this is true because in the
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Euclidean case every Lipschitz graph over a subset of a vector subspace of dimension
h has strictly positive lower h-density almost everywhere. We also stress that every
intrinsically Lipschitz graph over a open subset of a h-dimensional homogeneous
subgroups has strictly positive lower h-density almost everywhere, see [15,Theorem
3.9].

As a second step in order to obtain the proof of Theorem 1.3, we prove the following
statement that can be made quantitative: if V ∈ Grc(h), 	 is a compact CV(α)-set
with α sufficiently small, and Sh�	 is a Ph-rectifiable measure with complemented
tangents, which we calledPc

h-rectifiable, then we can give an explicit lower bound of
the ratio of the lower and upper h-densities ofSh�	.We refer the reader to Proposition
4.11 for a more precise statement and the proof of the following proposition.

Proposition 4.1 (Bounds on the ratio of the densities) LetV be in Grc(h). There exists
C := C(V) such that the following holds. Suppose 	 is a compact CV(α)-set with
α < C(V) and such that Sh�	 is a Pc

h-rectifiable measure. Then there exists a
continuous function ω := ω(V) of α, with ω(0) = 0, such that for Sh-almost every
x ∈ 	 we have

1 − ω(α) ≤ �h∗(Sh�	, x)
�h,∗(Sh�	, x) ≤ 1. (51)

The previous result is obtained through a blow-up analysis and a careful use of the
mutually absolute continuity property that we discussed above, and which is contained
in Proposition 4.7. We stress that in order to differentiate in the proof of Proposition
4.1, we need to use proper Sh�PV(	) and Sh�V-Vitali relations, see Proposition 4.9,
and Proposition 4.10, respectively.

As a last step of the proof of Theorem 1.3, we first use the result in Proposition 4.1 in
order to prove that Theorem1.3 holds true for measures of the typeSh�	, see Theorem
4.13. Then, we conclude the proof for arbitrary measures by reducing ourselves to the
sets E(ϑ, γ ), see Corollary 4.14. The last part about the convergence in Theorem1.3
readily comes from the first part and Proposition 2.20.

We start this chapter with some lemmata.

Lemma 4.2 There exists an A := A(V,L) > 1 such that for any w ∈ B(0, 1/5A),
any y ∈ ∂B(0, 1) ∩ CV(ε1(V,L)) and any z ∈ B(y, 1/5A), we have w−1z /∈ L.

Proof By contradiction let us assume that we can find sequences {wn}, {yn} ⊆
∂B(0, 1)∩CV(ε1) and zn ∈ B(yn, 1/n) such that wn converges to 0 and w−1

n zn ∈ L.
By compactness without loss of generality we can assume that the sequence yn con-
verges to some y ∈ ∂B(0, 1) ∩ CV(ε1). Furthermore, by construction we also have
that zn must converge to y. This implies that w−1

n zn converges to y and since by
hypothesis w−1

n zn ∈ L, thanks to the fact that L is closed we infer that y ∈ L. This,
however, is a contradiction since y has unit norm and at the same time we should have
y ∈ CV(ε1) ∩ L = {0} by Lemma 2.15. ��
Proposition 4.3 Let α < ε1(V,L) and suppose 	 is a compact CV(α)-set. For any
x ∈ 	 let ρ(x) to be the biggest number satisfying the following condition. For any

123



239 Page 38 of 67 G. Antonelli, A. Merlo

y ∈ B(x, ρ(x)) ∩ 	 we have

PV(B(x, r)) ∩ PV(B(y, s)) = ∅ for any r , s < d(x, y)/5A,

where A = A(V,L) is the constant yielded by Lemma 4.2. Then, the function x �→
ρ(x) is positive everywhere on 	 and upper semicontinuous.

Proof Let x ∈ 	 and suppose by contradiction that there is a sequence of points
{yi }i∈N ⊆ 	 converging to x and

PV(B(x, ri )) ∩ PV(B(yi , si )) �= ∅, (52)

for some ri , si < d(x, yi )/5A. We note that (52) is equivalent to assuming that there
are zi ∈ B(x, ri ) and wi ∈ B(yi , si ) such that

PV(wi ) = PV(zi ). (53)

Identity (53) implies in particular that for any i ∈ N, we have w−1
i zi ∈ L and let us

denote ρi := d(x, yi ). Thanks to the assumptions on yi , zi and wi , we have that

(1) d(0, δ1/ρi (x
−1yi )) = 1 and thus we can assume without loss of generality that

there exists a y ∈ ∂B(0, 1) such that

lim
i→∞ δ1/ρi (x

−1yi ) = y,

(2) d(0, δ1/ρi (x
−1zi )) ≤ 1/5A and thus up to passing to a non-re-labeled subse-

quence, we can assume that there exists a z ∈ B(0, 1/5A) such that

lim
i→∞ δ1/ρi (x

−1zi ) = z,

(3) d(δ1/ρi (x
−1yi ), δ1/ρi (x

−1wi )) ≤ 1/5A and thus, up to passing to a non-re-labeled
subsequence, we can suppose that there exists a w ∈ B(y, 1/5A) such that

lim
i→∞ δ1/ρi (x

−1wi ) = w.

Since 	 is supposed to be a CV(α)-set, we have that for any i ∈ N the point x−1yi
is contained in the cone CV(α) and, since CV(α) is closed, we infer that y ∈ CV(α).
Since we assumed α < ε1(V,L), we have y ∈ ∂B(0, 1) ∩ CV(ε1(V,L)). Since
δ1/ρi (x

−1zi ) and δ1/ρi (x
−1wi ) converge to z and w, respectively, we have

lim
i→∞ δ1/ρi (w

−1
i zi ) = lim

i→∞ δ1/ρi (w
−1
i x)δ1/ρi (x

−1zi ) = w−1z.

Furthermore sincew−1
i zi ∈ L for any i ∈ N, we infer thatw−1z ∈ L sinceL is closed.

Applying Lemma 4.2 to y, z, w, we see that the fact that w−1z ∈ L, z ∈ B(0, 1/5A)
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and w ∈ B(y, 1/5A) results in a contradiction. This concludes the proof of the first
part of the proposition.

In order to show that ρ is upper semicontinuous, we fix an x ∈ 	 and we assume
by contradiction that there exists a sequence {xi }i∈N ⊆ 	 converging to x such that

lim sup
i→∞

ρ(xi ) > (1 + τ)ρ(x), (54)

for some τ > 0. Fix an y ∈ B(x, (1+ τ/2)ρ(x))∩	 and assume s, r < d(x, y)/5A.
Thus, thanks to (54) and the fact that the xi converge to x , we infer that there exists a
i0 ∈ N such that, up to non-re-labeled subsequences, for any i ≥ i0, we have ρ(xi ) >
(1 + τ)ρ(x), d(xi , x) < τρ(x)/4 and s, r + d(xi , x) < d(xi , y)/5A. Therefore, for
any i ≥ i0, we have

y ∈ B(xi , (1 + 3τ/4)ρ(x)) ⊆ B(xi , ρ(xi )), and s, r + d(xi , x) < d(xi , y)/5A.

This, however, thanks to the definition of ρ(xi ), implies that

PV(B(x, r)) ∩ PV(B(y, s)) ⊆ PV(B(xi , r + d(xi , x))) ∩ PV(B(y, s)) = ∅.

Summing up, we have proved that for any y ∈ B(x, (1 + τ/2)ρ(x)) ∩ 	 whenever
r , s < d(x, y)/5A we have

PV(B(x, r)) ∩ PV(B(y, s)) = ∅,

and this contradicts the maximality of ρ(x). This concludes the proof. ��
Corollary 4.4 Let us fix α < ε1(V,L) and suppose that 	 is a compact CV(α)-set. Let
us fix x ∈ 	 and choose ρ(x) > 0 as in the statement of Proposition 4.3. Then there
is a 0 < r(x) < 1/2 such that the following holds

if0 < r < r(x)andy ∈ 	are such that PV(B(x, 2r)) ∩ PV(B(y, 10r)) �= ∅,
theny ∈ B(x, ρ(x))andd(x, y) ≤ 50Ar ,

(55)

where A = A(V,L) is the constant yielded by Lemma 4.2.

Proof Let us first prove that there exists α̃ := α̃(α, x) such that whenever y ∈ 	 is
such that d(x, y) ≥ ρ(x) then d(PV(x), PV(y)) ≥ α̃. Indeed if it is not the case,
we have a sequence {yi }i∈N ⊆ 	 such that d(x, yi ) ≥ ρ(x) for every i ∈ N and
d(PV(x), PV(yi )) → 0 as i → +∞. Since 	 is compact, we can suppose, up to
passing to a non-re-labeled subsequence, that yi → y ∈ 	.Moreover, since d(x, yi ) ≥
ρ(x) and d(PV(x), PV(yi )) → 0, we conclude that d(x, y) ≥ ρ(x), and hence x �= y,
and moreover PV(x) = PV(y). Then y−1 · x ∈ L ∩CV(α) that is a contradiction with
Lemma 2.15 because y �= x and α < ε1.

Since PV is uniformly continuous on the closed tubular neighborhood B(	, 1),
there exists a r(x) > 0 depending on α̃ = α̃(α, x) such that for any y ∈ 	 and any
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r < r(x), we have

PV(B(y, 10r)) ⊆ B(PV(y), α̃/10). (56)

Let us show the first part of the statement. It is sufficient to prove that if r < r(x) and
y ∈ 	 is such that d(x, y) ≥ ρ(x), then PV(B(x, 2r)) ∩ PV(B(y, 10r)) = ∅. Indeed
if d(x, y) ≥ ρ(x) then d(PV(x), PV(y)) ≥ α̃. Moreover, from (56), we deduce that
PV(B(x, 10r)) ⊆ B(PV(x), α̃/10) and PV(B(y, 10r)) ⊆ B(PV(y), α̃/10). Since
d(PV(x), PV(y)) ≥ α̃, we conclude that B(PV(x), α̃/10) ∩ B(PV(y), α̃/10) = ∅
and then also PV(B(x, 10r)) ∩ PV(B(y, 10r)) = ∅, from which the sought conclu-
sion follows. In order to prove d(x, y) ≤ 50Ar , once we have y ∈ B(x, ρ(x)), the
conclusion follows thanks to Proposition 4.3. ��
Lemma 4.5 Fix some N ∈ N and assume thatF is a family of closed balls of G with
uniformly bounded radii. Then we can find a countable disjoint subfamily G of F
such that

(i) if B, B ′ ∈ G then 5N B and 5N B ′ are disjoint,
(ii)

⋃
B∈F B ⊆⋃B∈G 5N+1B.

Proof If N = 0, there is nothing to prove, since it is the classical 5-Vitali’s covering
Lemma.

Let us assume by inductive hypothesis that the claim holds for N = k and let us
prove that it holds for k+1. LetGk be the family of balls satisfying (i) and (ii) for N = k,
and apply the 5-Vitali’s covering Lemma to the family of balls F̃ := {5k+1B : B ∈
Gk}. We obtain a countable subfamily G̃ of F̃ such that if 5k+1B, 5k+1B ′ ∈ G̃ then
5k+1B and 5k+1B ′ are disjoint and that satisfies

⋃
B∈F̃ B ⊆⋃B∈G̃ 5B. Therefore, if

we define

Gk+1 := {B ∈ Gk : 5k+1B ∈ G̃ },

point (i) directly follows and thanks to the inductive hypothesis we have

⋃
B∈F

B ⊆
⋃
B∈Gk

5k+1B ⊆
⋃

B∈Gk+1

5k+2B,

proving the second point of the statement. ��
Proposition 4.6 Let α < ε1(V,L) and suppose 	 is a compact CV(α)-set of finite
Sh-measure such that

�h∗(Sh�	, x) > 0,

for Sh-almost every x ∈ 	. Then, there exists a constant C6 > 0 depending on V,
L, and the left-invariant homogeneous distance on G, such that for Sh-almost every
x ∈ 	 there exists an R := R(x) > 0 such that for any 0 < � ≤ R we have

Sh(PV(	 ∩ B(x, �))) ≥ C6�
h∗(Sh�	, x)2�h . (57)
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Proof First of all, let us recall that two homogeneous left-invariant distances are always
bi-Lipschitz equivalent on G. Therefore if dc is a Carnot-Carathéodory distance on G,
which is in particular geodesic, see [29,Sect. 3.3] there exists a constant L(d, dc) ≥ 1
such that

L(d, dc)
−1dc(x, y) ≤ d(x, y) ≤ L(d, dc)dc(x, y) for any x, y ∈ G.

We claim that if for any ϑ, γ ∈ N for which Sh(E(ϑ, γ )) > 0 we have that for
Sh-almost any w ∈ E(ϑ, γ ) there exists a R(w) > 0 such that

Sh(PV(	 ∩ B(w, �))) ≥ C4(V,L)�
h

8 · 53h AhL(d, dc)2hϑ2 , (58)

whenever 0 < � < R(w), then the proposition is proved. This is due to the fol-
lowing reasoning. First of all, thanks to [13,Proposition 2.10.19(5)], we know that
�h,∗(Sh�	, x) ≤ 1. Secondly, if we set, for any k ∈ N, 	k := {w ∈ 	 : 1/(k + 1) <
�h∗(Sh�	, x) ≤ 1/k}, we have that

Sh(	 \
⋃
k∈N

	k) = 0. (59)

We observe now that if Sh(	k) > 0, then Sh-almost every w ∈ 	k belongs to some
E(k + 1, γ ) provided γ is big enough, or in other words

Sh(	k \
⋃
γ∈N

E(k + 1, γ )
) = 0. (60)

If our claim (58) holds true,wheneverSh(E(k+1, γ )) > 0,we have that forSh�E(k+
1, γ )-almost every w there exists R(w) such that whenever 0 < � < R(w) the
following chain of inequalities holds

Sh(PV(	 ∩ B(w, �))) ≥ C4(V,L)�
h

8 · 53h AhL(d, dc)2h(k + 1)2

≥ C4(V,L)�
h

25 · 53h AhL(d, dc)2hk2
≥ C4(V,L)�

h∗(Sh�	, x)2�h
25 · 53h AhL(d, dc)2h

= C6�
h∗(Sh�	, x)2�h . (61)

Identities (59) and (60) together with (61) imply that our claim suffices to prove the
proposition. Therefore, in the following we will assume that ϑ, γ ∈ N are fixed and
such that Sh(E(ϑ, γ )) > 0, and we want to prove (58).

Let N ∈ N be the unique natural number for which 5N−2 ≤ AL(d, dc)2 < 5N−1

and for any k ∈ N and 0 < δ < 1/2 we define the following sets, where ρ(x) is
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defined in Proposition 4.3,

Aϑ,γ (k) :={x ∈ E(ϑ, γ ) : ρ(x) > 1/k},

Dϑ,γ (k) :=
{
x ∈ Aϑ,γ (k) : lim

r→0

Sh(B(x, r) ∩ Aϑ,γ (k))

Sh(B(x, r) ∩ E(ϑ, γ ))
= 1

}
,

Fδ(k) :=
{
B(x, r) : x ∈ Dϑ,γ (k) and r ≤ min{ϑ−1, γ−1, k−1, δ}

1000AL(d, dc)2

}
.

For any ϑ, γ ∈ N the sets Aϑ,γ (k) are Borel since thanks to Proposition
4.3, the function ρ is upper semicontinuous. Before going on, we observe that
Sh�E(ϑ, γ )(Aϑ,γ (k) \ Dϑ,γ (k)) = 0. This comes from the fact that the points
of Dϑ,γ (k) are exactly the points of density one of Aϑ,γ (k) with respect to the
measure Sh�E(ϑ, γ ), that is asymptotically doubling at Sh�E(ϑ, γ )-almost every
point because it has positive lower density and finite upper density at Sh�E(ϑ, γ )-
almost every point, see Proposition 2.2. Moreover observe that from Proposition 4.3
Sh(E(ϑ, γ ) \ ∪+∞

k=1Aϑ,γ (k)) = 0. Let us apply Lemma 4.5 to N andFδ(k), and thus
we infer that there exists a subfamily Gδ(k) such that

(α) for any B, B ′ ∈ Gδ(k) we have that 5N B ∩ 5N B ′ = ∅,
(β)

⋃
B∈Fδ(k) B ⊆⋃B∈Gδ(k) 5

N+1B.

The point (α) above implies in particular that whenever B(x, r), B(y, s) ∈ Gδ(k), we
have d(x, y) > L(d, dc)−25N (r + s), since d is L(d, dc)-Lipschitz equivalent to the
geodesic distance dc, and thanks to the choice of N , we deduce that

r + s <
d(x, y)

5A
.

Throughout the rest of the proof, we fix a w ∈ Dϑ,γ (k) and a

0 < R(w) < min{ϑ−1, γ−1, k−1}/8,

such that

Sh�	(B(w, �))
�h

≥ 1

2ϑ
, and

Sh�Dϑ,γ (k)(B(w, �))

Sh�	(B(w, �)) ≥ 1

2
, for any 0 < � ≤ R(w).

(62)

For the ease of notation, we continue the proof fixing the radius � = R(w) = R.
We stress that the forthcoming estimates are verified, mutatis mutandis, also for any
0 < � < R. The first inequality above comes from the definition of E(ϑ, γ ), see Def-
inition 2.9, while the second is true, up to choose a sufficiently small R(w), because
Sh�	-almost every point of Dϑ,γ (k) has density one with respect to the asymptot-
ically doubling measure Sh�	. Let us stress that if we prove our initial claim for
such w and R(w) we are done since Sh�	-every point of Dϑ,γ (k) satisfies (62),
Sh�E(ϑ, γ )(Aϑ,γ (k) \ Dϑ,γ (k)) = 0, and Sh(E(ϑ, γ ) \ ∪+∞

k=1Aϑ,γ (k)) = 0.
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Let us notice that the definition of Fδ(k) implies that there must exist a ball
B ∈ Gδ(k) such that w ∈ 5N+1B. We now prove that for any couple of closed
balls B(x, r), B(y, s) ∈ Gδ(k) such that B(w, R) intersects both B(x, 5N+1r) and
B(y, 5N+1s), we have

PV(B(x, r)) ∩ PV(B(y, s)) = ∅. (63)

Indeed, Suppose that p ∈ B(x, 5N+1r) ∩ B(w, R) and note that

d(x, w) ≤ d(x, p)+ d(p, w) ≤ R + 5N+1r

≤
(1
8

+ 5N+1

1000AL(d, dc)2

)
min{ϑ−1, γ−1, k−1} ≤ min{ϑ−1, γ−1, k−1}

4
,

(64)

where the last inequality comes from the choice of N . The bound (64) shows in
particular that

d(x, y) ≤ d(x, w)+ d(w, y) ≤ min{ϑ−1, γ−1, k−1}
2

< ρ(x),

where the last inequality comes from the fact that by construction x is supposed to be
inDϑ,γ (k). Thanks to the fact that r+s < d(x, y)/5A and y ∈ B(x, ρ(x))∩E(ϑ, γ ),
we have that Proposition 4.3 implies that (63) holds.

In order to proceed with the conclusion of the proof, let us define

Fδ(w, R) :={B ∈ Fδ(k) : 5N+1B ∩ B(w, R) ∩ Dϑ,γ (k) �= ∅},
Gδ(w, R) :={B ∈ Gδ(k) : 5N+1B ∩ B(w, R) ∩ Dϑ,γ (k) �= ∅},

Thanks to our choice of R, see (62), and the definition of Gδ(w, R) we have

Rh

2ϑ
≤ Sh�	(B(w, R)) ≤ 2Sh�Dϑ,γ (k)(B(w, R))

≤ 2Sh�Dϑ,γ (k)

( ⋃
B∈Gδ(w,R)

5N+1B

)
.
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Let Gδ(w, R) = {B(xi , ri )}i∈N and recall that xi ∈ Dϑ,γ (k) and that 5N+1ri ≤ 1/γ .
This implies, thanks to Proposition 2.13, that

Sh�Dϑ,γ (k)

( ⋃
B∈G δ(w,R)

5N+1B

)
≤ 2ϑ5h(N+1)

∑
i∈N

rhi

= 2ϑ5h(N+1)C4(V,L)
−1
∑
i∈N

Sh(PV(B(xi , ri )))

= 2ϑ5h(N+1)C4(V,L)
−1Sh

(
PV

(⋃
i∈N

B(xi , ri )

))

≤ 2ϑ5h(N+1)C4(V,L)
−1Sh

(
PV

( ⋃
B∈F δ(w,R)

B

))
,

where the first inequality comes from the subadditivity and the upper estimate that we
have in the definition of E(ϑ, γ ), see Definition 2.9, while identity in the third line
above comes from (63). Summing up, for any δ > 0 we have

C4(V,L)Rh

8 · 5h(N+1)ϑ2
≤ Sh

(
PV

( ⋃
B∈Fδ(w,R)

B

))
.

We now prove that the projection under PV of the closure of
⋃

B∈Fδ(w,R) B con-

verges in the Hausdorff sense to PV(Dϑ,γ (k) ∩ B(w, R)) as δ goes to 0. Since the set⋃
B∈Fδ(w,R) B is a covering of Dϑ,γ (k) ∩ B(w, R) we have that

Dϑ,γ (k) ∩ B(w, R) �
⋃

B∈Fδ(w,R)

B. (65)

On the other hand, since by definition the balls of Fδ(w, R) have radii smaller than
δ/4 and center in Dϑ,γ (k), we also have

⋃
B∈Fδ(w,R)

B � B(Dϑ,γ (k) ∩ B(w, R), 5N+2δ). (66)

Putting together (65) and (66), we infer that the closure of
⋃

B∈Fδ(w,R) B converges
in the Hausdorff metric to the closure of B(w, R) ∩ Dϑ,γ (k). Furthermore, since PV
restricted to the ball B(w, R + 1) is uniformly continuous, we infer that

PV

( ⋃
B∈Fδ(w,R)

B

)
−→
H

PV

(
Dϑ,γ (k) ∩ B(w, R)

)
.
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Thanks to the upper semicontinuity of the Lebesgue measure with respect to the
Hausdorff convergence we eventually infer that

C4(V,L)Rh

8 · 5h(N+1)ϑ2
≤ lim sup

δ→0
Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))

≤ Sh(PV(Dϑ,γ (k) ∩ B(w, R))) ≤ Sh(PV(E(ϑ, γ ) ∩ B(w, R))),

where the last inequality above comes from the fact that by construction Dϑ,γ (k) ⊆
E(ϑ, γ ) and the compactness of E(ϑ, γ ). Finally, sinceC6 = 2−55−3h A−hL(d, dc)−2h

C4(V,L), we infer

Sh(PV(E(ϑ, γ ) ∩ B(w, R))) ≥ C4(V,L)Rh

8 · 5h(N+1)ϑ2
≥ 4C6Rh

ϑ2 ,

thus showing the claim (58) and then the proof. ��
Proposition 4.7 Let us fix α < ε1(V,L) and suppose 	 is a compact CV(α)-set of
finite Sh-measure such that

�h∗(Sh�	, x) > 0,

for Sh-almost every x ∈ 	. Let us set ϕ : PV(	) → L the map whose graph is 	,
see Proposition 2.17, and set � : PV(	) → G to be the graph map of ϕ. Let us
define �∗Sh�V to be the measure on 	 such that for every measurable A ⊆ 	 we
have �∗Sh�V(A) := Sh�V(�−1(A)) = Sh�V(PV(A)). Then �∗Sh�V is mutually
absolutely continuous with respect to Sh�	.

Proof The fact that �∗Sh�V is absolutely continuous with respect to Sh�	 is an
immediate consequence of Proposition 2.13. Vice-versa, suppose by contradiction
that there exists a compact subset C of 	 of positive Sh-measure such that

0 = �∗Sh�V(C) = Sh(PV(C)). (67)

Since by assumption�h∗(Sh�C, x) > 0 forSh-almost every x ∈ C , by Proposition 2.2
and the fact that C has positive and finite Sh-measure, we infer thanks to Proposition
4.6 that it must have a projection of positive Sh-measure. This, however, comes in
contradiction with (67). ��

In the following propositions,we are going to introduce twofine coverings of PV(	)
and V, respectively, that will be used in the proof of Proposition 4.1 to differentiate
with respect to the measure Sh�PV(	).

Definition 4.1 (φ-Vitali relation) Let (X , d) be a metric space with a Borel measure
φ on it and let B(X) be the family of Borel sets of X . We say that S ⊆ X ×B(X) is a
covering relation if

S = {(x, B) : x ∈ B ⊆ X}.
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Furthermore for any Z ⊆ X we let

S(Z) := {B : (x, B) ∈ S for some x ∈ Z}. (68)

Finally a covering S is said to be fine at x ∈ X if and only if

inf{diam(B) : (x, B) ∈ S} = 0.

By a φ-Vitali relation, we mean a covering relation that is fine at every point of X and
the following condition holds

If C is a subset of S and Z is a subset of X such that C is fine at each point of Z ,
then C(Z) has a countable disjoint subfamily covering φ-almost all of Z .

If δ is a nonnegative function on S(X), for any B ∈ S(X) we define its δ-enlargement
as

B̂ :=
⋃

{B ′ : B ′ ∈ S(X), B ′ ∩ B �= ∅ and δ(B ′) ≤ 5δ(B)}. (69)

In the remaining part of this section, we use the following general result due to Federer:
it contains a criterion to show that a fine covering relation is a φ-Vitali relation, and a
Lebesgue theorem for φ-Vitali relations.

Proposition 4.8 ( [13,Theorem 2.8.17, Corollary 2.9.9 and Theorem 2.9.11]) Let X
be a metric space, and let φ be a Borel regular measure on X that is finite on bounded
sets. Let S be a covering relation such that S(X) is a family of bounded closed sets, S
is fine at each point of X, and let δ be a nonnegative function on S(X) such that

lim
ε→0+ sup

{
δ(B)+ φ(B̂)

φ(B)
: (x, B) ∈ S, diam B < ε

}
< +∞,

for φ-almost every x ∈ X. Then S is a φ-Vitali relation.
Moreover, if S is a φ-Vitali relation on X, and f is a φ-measurable real-valued

function with
∫
K | f |dφ < +∞ on every bounded φ-measurable K , we have

lim
ε→0+ sup

{∫
B | f (z)− f (x)|dφ(z)

φ(B)
: (x, B) ∈ S, diam B < ε

}
= 0,

for φ-almost every x ∈ X. In addition, given A ⊆ X, if we define

P :=
{
x ∈ X : lim

ε→0+ inf

{
φ(B ∩ A)

φ(B)
: (x, B) ∈ S, diam B < ε

}
= 1

}
,

then P is φ-measurable and φ(A \ P) = 0.
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Proposition 4.9 Let α < ε1(V,L) and suppose that 	 is a compact CV(α)-set of finite
Sh-measure such that

�h∗(Sh�	, x) > 0,

for Sh-almost every x ∈ 	. As in the statement of Proposition 4.7, let us denote with
� : PV(	) → G the graph map of ϕ : PV(	) → L whose intrinsic graph is 	. Then
the covering relation

S1 :=
{(
z, PV(B(�(z), r) ∩ 	)

) : z ∈ PV(	) and 0 < r < min{1, R(�(z))}
}
,

is a Sh�PV(	)-Vitali relation, where R(�(z)) is defined as in Proposition 4.6 for
Sh�PV(	)-almost every z ∈ V and it is +∞ on the remaining null set where Propo-
sition 4.6 eventually does not hold.

Proof First of all, it is readily noticed that S1 is a fine covering of PV(	) sine PV
is continuous. Let us prove that S1 is a Sh�PV(	)-Vitali relation in (PV(	), d) with
the distance d induced form G. For x ∈ PV(	) and r > 0, define G(x, r) :=
PV(B(�(x), r) ∩ 	). Notice that an arbitrary element of S1(PV(	)), see (68), is of
the form G(x, r) for some x ∈ PV(	) and some 0 < r < min{1, R(�(x))}. Let
δ
(
G(x, r)

) := r and note that the δ-enlargement, see (69), of G(x, r) is

Ĝ(x, r) :=
⋃

{G(y, s) : y ∈ PV(	), 0 < s < min{1, R(�(y))},
G(y, s) ∩ G(x, r) �= ∅ and δ(G(y, s)) ≤ 5δ(G(x, r))}

=
⋃

{G(y, s) : y ∈ PV(	), 0 < s < min{1, R(�(y))},
G(y, s) ∩ G(x, r) �= ∅ and s ≤ 5r}.

(70)

Whenever G(x, r) ∩ G(y, s) �= ∅ we have that d(�(x),�(y)) ≤ r + s: indeed,
since PV is injective on 	, see Proposition 2.17, we have PV(B(�(x), r) ∩ 	) ∩
PV(B(�(y), s)∩	) �= ∅ if and only if B(�(x), r)∩B(�(y), s)∩	 �= ∅. In particular,
since s ≤ 5r we have B(�(y), s) � B(�(x), 12r), and thus Ĝ(x, r) ⊆ G(x, 12r)
for every x ∈ PV(	) and 0 < r < min{1, R(�(x))}.

Finally, thanks to Proposition 4.6 and Proposition 4.7, for Sh-almost every x ∈
PV(	), we have

lim
ξ→0

sup

{
δ(G(x, r))+ Sh(Ĝ(x, r))

Sh(G(x, r))
: 0 < r < min{1, R(�(x))}, diam(G(x, r)) ≤ ξ

}

≤ 1 + lim
ξ→0

sup
Sh(G(x, 12r))

Sh(G(x, r))
≤ 1 + lim

ξ→0
sup

Sh(PV(B(�(x), 12r)))

Sh(PV(B(�(x), r) ∩ 	))

≤ 1 + (12r)hSh(PV(B(0, 1)))

C6�h∗(Sh�	,�(x))2rh = 1 + 12hSh(PV(B(0, 1)))

C6�h∗(Sh�	,�(x))2 ,

(71)

where we explicitly mentioned the set over which we take the supremum only in the
first line for the ease of notation, and where the first inequality in the third line follows

123



239 Page 48 of 67 G. Antonelli, A. Merlo

from the fact that Sh(PV(E)) = Sh(PV(xE)) for any x ∈ G and any Borel set E ⊆ G,
see Proposition 2.10. Thanks to (71), we can apply the first part of Proposition 4.8 and
thus we infer that S1 is a Sh�PV(	)-Vitali relation. ��
Proposition 4.10 Let α < ε1(V,L) and let 	 be a compact CV(α)-set of finite Sh-
measure. As in the statement of Proposition 4.7, let us denote with � : PV(	) → G

the graph map of ϕ : PV(	) → L whose intrinsic graph is 	. Then for Sh-almost
every w ∈ PV(	), we have

lim
r→0

Sh
(
PV
(
B(�(w), r) ∩�(w)CV(α)

) ∩ PV(	)
)

Sh
(
PV
(
B(�(w), r) ∩�(w)CV(α)

)) = 1. (72)

Proof For any w ∈ V \ PV(	), we let

ρ(w) := inf{r ≥ 0 : B(w, r) ∩ PV(B(	, r
1/κ )) �= ∅}.

It is immediate to see that ρ(w) ≤ dist(w, PV(	)) and that ρ(w) = 0 if and only if
w ∈ PV(	). Throughout the rest of the proof we let S be the fine covering of V given
by the couples (w,G(w, r)) for which

(α) if w ∈ V \ PV(	) then r ∈ (0,min{ρ(w)/2, 1}) and G(w, r) := B(w, r) ∩ V,
(β) if w ∈ PV(	) then r ∈ (0, 1) and G(w, r) := PV(B(�(w), r) ∩�(w)CV(α)).

Furthermore, for any w ∈ V, we define the function δ on S(V), see (68), as

δ
(
G(w, r)

) := r . (73)

If we prove that S is a Sh�V-Vitali relation, the second part of Proposition 4.8 directly
implies that (72) holds. If for Sh-almost every w ∈ V, we prove that

lim
ξ→0

sup
(w,G(w,r))∈S, diam(G(w,r))≤ξ

{
δ
(
G(w, r)

)+ Sh(Ĝ(w, r))

Sh(G(w, r))

}

≤ 1 + lim
ξ→0

sup
Sh(Ĝ(w, r))

Sh(G(w, r))
< ∞,

(74)

where we explicitly mentioned the set over which we take the supremum only the first
time for the ease of notation, and where Ĝ(w, r) is the δ-enlargement of G(w, r), see
(69); thus, thanks to the first part of Proposition 4.8 we would immediately infer that
S is a Sh�V-Vitali relation. In order to prove that (74) holds, we need to get a better
understanding of the geometric structure of the δ-enlargement of G(w, r).

If w ∈ V \ PV(	), we note that there must exist an 0 < r(w) < min{ρ(w)/2, 1}
such that for any 0 < r < r(w) we have

B(w, r) ∩ PV(B(	, 5r)) = ∅.
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Indeed, if this is not the case there would exist a sequence ri ↓ 0 and a sequence
{zi }i∈N such that

zi ∈ B(w, ri ) ∩ PV(B(	, 5ri )).

Since PV(	) is compact and PV is continuous on the closed tubular neighborhood
B(	, 1), up to passing to a non-re-labeled subsequence we have that the zi ’s converge
to some z ∈ PV(	) and, on the other hand, by construction the zi ’s converge to
w which is not contained in PV(	), and this is a contradiction. This implies that if
0 < r < r(w), we have

Ĝ(w, r) =
⋃

{G(y, s) : y ∈ V, s > 0, (y,G(y, s)) ∈ S, G(y, s) ∩ G(w, r)

�= ∅, and s ≤ 5r}
⊆
⋃

{B(y, s) ∩ V : B(y, s) ∩ B(w, r) ∩ V �= ∅ and s ≤ 5r}
⊆ B(w, 11r) ∩ V,

(75)

where in the inclusion we are using the fact that if y were in PV(	), and s ≤ 5r ,
then G(y, s) ⊆ PV(B(	, s)) ⊆ PV(B(	, 5r)) which would be in contradiction with
G(y, s)∩G(w, r) �= ∅, since we chose 0 < r < r(w). Summing up, ifw ∈ V\PV(	)
the bound (74) immediately follows thanks to (75) and the homogeneity of Sh .

If on the other handw ∈ PV(	), the situation ismore complicated. If y ∈ V\PV(	)
and s ≤ 5r are such that

G(y, s) ∩ PV(B(�(w), r)) = B(y, s) ∩ PV(B(�(w), r)) �= ∅, (76)

since by construction of the covering S we also assumed that 0 < s < ρ(y)/2, we
infer that we must have r ≥ s1/κ for (76) to be satisfied. This allows us to infer that,
for every w ∈ PV(	) and 0 < r < 1, we have

Ĝ(w, r)

=
⋃

{G(y, s) : y ∈ V, s > 0, (y,G(y, s)) ∈ S, G(y, s) ∩ G(w, r) �= ∅,
and s ≤ 5r}

⊆
⋃

{PV(B(�(y), s)) : y ∈ PV(	), PV(B(�(y), s)) ∩ PV(B(�(w), r)) �= ∅,
and s ≤ 5r}∪

∪
⋃

{B(y, s) ∩ V : y ∈ V \ PV(	), B(y, s) ∩ PV(B(�(w), r)) �= ∅,
and s ≤ min{5r , ρ(y)/2}}

⊆
⋃

{PV(B(�(y), s)) : y ∈ PV(	), PV(B(�(y), s)) ∩ PV(B(�(w), r)) �= ∅,
and s ≤ 5r}∪

∪ (B(PV(B(�(w), r)), 3rκ) ∩ V
)
,

(77)
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where in the last inclusion we are using the observation right after (76) according to
which s ≤ rκ . We now study independently each of the two terms of the union of the
last two lines above. Let us first note that if w, y ∈ PV(	), s ≤ 5r and

PV(B(�(y), s)) ∩ PV(B(�(w), r)) �= ∅,

then PV(B(�(y), 10r))∩ PV(B(�(w), 2r)) �= ∅. This observation and Corollary 4.4
imply that if 0 < r < r(w) is sufficiently small we have d(�(w),�(y)) ≤ 50Ar ,
where the constant A = A(V,L) is yielded by Lemma 4.2. In particular we deduce
that for every 0 < r < r(w) sufficiently small

⋃
{PV(B(�(y), s)) : y ∈ PV(	), PV(B(�(y), s)) ∩ PV(B(�(w), r)) �= ∅,
and s ≤ 5r} ⊆ PV(B(�(w), 50(A + 1)r)).

In order to study the term in the last line of (77), we prove the following claim: for
every 0 < r < 1, every z ∈ PV(B(�(w), r)), and every � ∈ B(0, 3rκ) ∩ V we have
z� ∈ PV(B(�(w),C(	)r)), where C(	) is a constant depending only on 	. Indeed,
since 	 is compact and PL is continuous, there exists a constant K ′ := K ′(	) such
that whenever 0 < r < 1, and z ∈ PV(B(�(w), r)), there exists an � ∈ L such that
z� ∈ B(�(w), r) and ‖�‖ ≤ K ′. Thus there exists a constant K := K (	) > 0 such
that whenever 0 < r < 1, z ∈ PV(B(�(w), r)), and � ∈ B(0, 3rκ) ∩ V, there exists
� ∈ L with z� ∈ B(�(w), r) and ‖�‖ + ‖�‖ ≤ K . Thus, we can estimate

d(�(w), z��) ≤ d(�(w), z�)+ d(z�, z��) ≤ r + C1(K )‖�‖1/κ ≤ C(	)r ,

where the second inequality in the last equation comes from Lemma 2.1. Thus, z� ∈
PV(B(�(w),C(	)r)), and the claim is proved. Summing up, we have proved that
whenever w ∈ PV(	) and 0 < r < r(w) is sufficiently small we have

Ĝ(w, r) ⊆ PV(B(�(w), 50(A + 1)r)) ∪ PV(B(�(w),C(	)r)),

and thus (74) immediately follows by the homogeneity of Sh�V and the fact that
Sh(PV(xE)) = Sh(PV(E)) for every x ∈ G and E a Borel subset ofG, see Proposition
2.10. This concludes the proof of the proposition. ��

We prove below a more precise version of Proposition 4.1.

Proposition 4.11 Let us fix α < ε1(V,L). Suppose 	 is a compact CV(α)-set such
that Sh�	 is Pc

h-rectifiable. For Sh-almost every x ∈ 	 we have

(1 − c(α))2h(1 + c(α))−h ≤ �h∗(Sh�	, x)
�h,∗(Sh�	, x) ≤ 1, (78)

where c(α) is defined in Lemma 2.18.
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Proof Let us preliminarily observe that since Sh�V and Ch�V are both Haar measures
on V, they coincide up to a constant. Since for Sh-almost every x ∈ 	 we have
�h,∗(Sh�	, x) > 0, the upper bound is trivial. Let us proceed with the lower bound.
Thanks to Proposition 4.7 and the Radon–Nikodym Theorem, see [23,page 82], there
exists ρ ∈ L1(�∗Ch�V) such that

(i) ρ(x) > 0 for �∗Ch�V-almost every x ∈ 	,
(ii) Sh�	 = ρ�∗Ch�V.

We stress that the following reasoning holds for Sh�	-almost every x ∈ 	. Let
{ri }i∈N be an infinitesimal sequence such that r−h

i Tx,riSh�	⇀λCh�V(x) for some
λ > 0. First of all, we immediately see that Corollary 2.21 implies that λ ∈
[�h∗(Sh�	, x),�h,∗(Sh�	, x)] and that

1 = lim
i→∞

Sh�	(B(x, ri ))
Sh�	(B(x, ri ))

= lim
i→∞

∫
PV(B(x,ri )∩	) ρ(�(y))dCh�V(y)

Sh�	(B(x, ri ))

= ρ(x)

λ
lim
i→∞

Ch�V(PV(B(x, ri ) ∩ 	))

rhi
,

where the last identity comes from Proposition 4.9 that allows us to differentiate by
using the second part of Proposition 4.8, and Proposition 2.20. Thanks to Lemma 2.18,
Remark 2.4, and the fact that 	 is a CV(α)-set, we have

λ

ρ(x)
≤ lim

i→∞
Ch�V(PV(B(x, ri ) ∩ xCV(α)))

rhi
= Ch(PV(B(0, 1) ∩ CV(α)))

≤ Ch�V(B(0, 1))

(1 − c(α))h
= (1 − c(α))−h,

(79)

where in the second equality we are using the homogeneity of Ch and the fact that
Ch(PV(xE)) = Ch(PV(E)) for every x ∈ G and E a Borel subset ofG, see Proposition
2.10. On the other hand, thanks to Lemma 2.19 we have

λ

ρ(x)
= lim

i→∞
Ch�V(PV(B(x, ri ) ∩ 	))

rhi

≥ lim
i→∞

Ch(PV(B(x,C(α)ri ) ∩ xCV(α)
) ∩ PV(	)

)
Ch(PV(B(x,C(α)ri ) ∩ xCV(α)

)) Ch(PV(B(x,C(α)ri ) ∩ xCV(α)
))

rhi
= C(α)hCh(PV(B(0, 1) ∩ CV(α))

) ≥ C(α)h, (80)

where the first identity in the last line comes fromProposition 4.10 and the last inequal-
ity from Lemma 2.18, Remark 2.4, and C(α) is defined in (20). Putting together (79)
and (80), we have

(1 − c(α))h

(1 + c(α))h
≤ λ

ρ(x)
≤ 1

(1 − c(α))h
. (81)
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Thanks to the definition of�h∗(Sh�	, x) and�h,∗(Sh�	, x)wecanfind two sequences
{ri }i∈N and {si }i∈N such that

�h∗(Sh�	, x) = lim
i→∞

Sh�	(B(x, ri ))
rhi

, and �h,∗(Sh�	, x) = lim
i→∞

Sh�	(B(x, si ))
shi

,

and without loss of generality, taking Proposition 2.20 into account, we can assume
that

r−h
i Tx,riSh�	⇀�h∗(Sh�	, x)Ch�V(x), , s−h

i Tx,siSh�	⇀�h,∗(Sh�	, x)Ch�V(x).

The bounds (81) imply therefore that

(1 − c(α))h

(1 + c(α))h
≤ �h∗(Sh�	, x)

ρ(x)
≤ 1

(1 − c(α))h
,

(1 − c(α))h

(1 + c(α))h
≤ �h,∗(Sh�	, x)

ρ(x)
≤ 1

(1 − c(α))h
.

(82)

Finally the bounds in (82) yield

(1 − c(α))2h(1 + c(α))−h ≤ �h∗(Sh�	, x)
�h,∗(Sh�	, x) ≤ 1,

and this concludes the proof. ��
We prove now the existence of density of Pc

h-rectifiable measures, see Corollary
1.3. We first prove an algebraic lemma, then we prove the existence of the density for
measures of the type Sh�	, and then we conclude with the proof of the existence of
the density for arbitraryPc

h -rectifiable measures.

Lemma 4.12 Let us fix 0 < ε < 1 a real number, �, h ∈ N, and let f be the function
defined as follows

f : {(α,C) ∈ (0,+∞)2 : α < C} → (0,+∞), f (α,C) := α

C − α
.

Then, there exists α̃ := α̃(ε, �, h) > 0 such that the following implication holds

if 0 < α ≤ α̃ and C > 1/�, then α < C and (1 − f (α,C))2h(1 + f (α,C))−h ≥ 1 − ε.

Proof Let us choose 0 < ε̃ := ε̃(ε, h) < 1 such that

(1 − x)2h(1 + x)−h ≥ 1 − ε, for all0 ≤ x ≤ ε̃.

Let us show that the sought constant α̃(ε, �, h) is α̃ := ε̃/(�(1+ ε̃)). Indeed, if α ≤ α̃

and C > 1/� we infer that α < C and

α ≤ ε̃

�(1 + ε̃)
≤ C ε̃

1 + ε̃
, and then f (α,C) = α

C − α
≤ ε̃.
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This implies that if α ≤ α̃ and C > 1/�, then

(1 − f (α,C))2h(1 + f (α,C))−h ≥ 1 − ε,

where the last inequality above comes from the choice of ε̃. This concludes the proof.
��

Theorem 4.13 Let 	 be a compact subset of G such that Sh�	 is a Pc
h-rectifiable

measure. Then

0 < �h∗(Sh�	, x) = �∗,h(Sh�	, x) < +∞, forSh�	-almost everyx ∈ G.

Proof In the following, for any ε > 0, we will construct a measurable set Aε ⊆ 	

such that Sh(	 \ Aε) = 0 and

1 − ε ≤ �∗,h(Sh�	, x)
�h∗(Sh�	, x) ≤ 1, for every x ∈ Aε. (83)

If (83) holds then we are free to choose ε = 1/n for every n ∈ N and then the density
of Sh�	 exists on the set ∩+∞

n=1A1/n , that has full Sh�	-measure. So we are left to
construct Aε as in (83). Let us define the function

F(V,L) := ε1(V,L), for allV ∈ Grc(h)with complementL.

Let us take the familyF := {Vi }+∞
i=1 ⊆ Grc(h) and let us choose Li complementary

subgroups to Vi as in the statement of Theorem 3.4. We remark that the choices of the
family F and of the complementary subgroups depend on the function F previously
defined, see the discussion before Theorem 3.4. Let us define

β : N → (0, 1), β(�) := α̃(ε, �, h),

where α̃(ε, �, h) is the constant in Lemma 4.12, and with an abuse of notation let
us lift β to a function on F as we did in the statement of Theorem 3.4. From
Theorem 3.4 we conclude that there exist countably many 	i ’s that are compact
CVi (min{ε1(Vi ,Li ), β(Vi )})-sets contained in 	 such that

Sh (	 \ ∪+∞
i=1	i

) = 0. (84)

Let us write, for the ease of notation, αi := min{ε1(Vi ,Li ), β(Vi )} for every i ∈ N.
Since 	i ⊆ 	 and Sh�	 isPc

h-rectifiable, we conclude, by exploiting the locality of
tangents, see Proposition 2.3, and the Lebesgue differentiation theorem in Proposition
2.2, that the measures Sh�	i are Pc

h-rectifiable as well for every i ∈ N. Thus, since
αi ≤ ε1(Vi ,Li ), we can apply Proposition 4.11 and conclude that, for every i ∈ N,
we have

(1 − c(αi ))
2h(1 + c(αi ))

−h ≤ �∗,h(Sh�	i , x)

�h∗(Sh�	i , x)
≤ 1, forSh�	i -almost everyx ∈ G,
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where c(αi ) := αi/(C3(Vi ,Li ) − αi ). Since �∗,h(Sh�	i , x) = �∗,h(Sh�	, x) and
�h∗(Sh�	i , x) = �h∗(Sh�	, x) for Sh�	i -almost every x ∈ G, see Proposition 2.2,
for every i ∈ N we conclude that

(1 − c(αi ))
2h(1 + c(αi ))

−h ≤ �∗,h(Sh�	, x)
�h∗(Sh�	, x)

≤ 1, forSh�	i -almost everyx ∈ G. (85)

Let us now fix i ∈ N and note there exists a unique �(i) ∈ N such that

1/�(i) < ε1(Vi ,Li ) ≤ 1/(�(i)− 1).

Moreover, from the definition of β and F we see that β(Vi ) = β(ε, �(i), h). This
allows us to infer that

1. αi ≤ β(Vi ) = β(ε, �(i), h), since αi := min{ε1(Vi ,Li ), β(Vi )},
2. C3(Vi ,Li ) > 1/�(i), since 1/�(i) < ε1(Vi ,Li ) = C3(Vi ,Li )/2, see Lemma

2.15.

Thus we can apply Lemma 4.12 and conclude that

(1 − c(αi ))
2h(1 + c(αi ))

−h ≥ 1 − ε.

This shows, thanks to (85), that for any i ∈ N, we have

1 − ε ≤ �∗,h(Sh�	, x)
�h∗(Sh�	, x) ≤ 1, forSh�	i -almost everyx ∈ G.

Thus by taking into account (84) and the previous equation we conclude (83), that is
the sought claim. ��

Remark 4.1 It is a classical result that if E ⊆ R
n is a h-rectifiable set, with 1 ≤

h ≤ n, then �h(Sh�E, x) = 1 for Sh-almost every point x ∈ E , see [13,Theorem
3.2.19]. This is true also in the setting ofHeisenberg groups for arbitraryPc

h -rectifiable
measures, and it is a direct consequence of [39,(iv)⇒(ii) of Theorem 3.14 & Theorem
3.15].

We point out that as a consequence of the non-trivial results developed in the
subsequent paper [6], see [6,Theorem 1.1], we have that whenever 	 ⊆ G is a Borel
set such that 0 < Sh(	) < +∞, and Ch�	 is Pc

h-rectifiable, then �
h(Ch�	, x) = 1

for Ch-almost every x ∈ 	.

Corollary 4.14 Let φ be aPc
h-rectifiable measure on a Carnot group G. Then

0 < �h∗(φ, x) = �∗,h(φ, x) < +∞, forφ-almost everyx ∈ G.

123



On Rectifiable Measures in Carnot Groups:… Page 55 of 67 239

Proof We stress that by restricting ourselves on balls of integer radii, by using Propo-
sition 2.2 and Proposition 2.3, we can assume that φ has compact support. Let us first
recall that, by Proposition 2.5, we have

φ

⎛
⎝G \

⋃
ϑ,γ∈N

E(ϑ, γ )

⎞
⎠ = 0. (86)

Let us fix ϑ, γ ∈ N. From Lebesgue’s differentiation theorem, see Proposition
2.2, and the locality of tangents, see Proposition 2.3, we deduce that φ being Pc

h-
rectifiable implies that φ�E(ϑ, γ ) isPc

h-rectifiable. From Proposition 2.6 we deduce
that φ�E(ϑ, γ ) is mutually absolutely continuous with respect to Sh�E(ϑ, γ ), and
thus, by Radon–Nikodym theorem, see [23,page 82], there exists a positive func-
tion ρ ∈ L1(Sh�E(ϑ, γ )) such that φ�E(ϑ, γ ) = ρSh�E(ϑ, γ ). We stress that
we can apply Lebesgue–Radon–Nikodym theorem since φ�E(ϑ, γ ) is asymptoti-
cally doubling because it has positive h-lower density and finite h-upper density
almost everywhere. By Lebesgue–Radon–Nikodym theorem, see [23,page 82], and
the locality of tangents again, we deduce thatSh�E(ϑ, γ ) is aPc

h-rectifiable measure,
since φ�E(ϑ, γ ) is a Pc

h-rectifiable measure. Thus, we can apply Theorem 4.13 to
Sh�E(ϑ, γ ) and obtain that for every ϑ, γ ∈ N, we have that

0 < �h∗(Sh�E(ϑ, γ ), x) = �∗,h(Sh�E(ϑ, γ ), x) < +∞, forSh�E(ϑ, γ )-a.e.x ∈ G.

Since φ�E(ϑ, γ ) = ρSh�E(ϑ, γ ) we thus conclude from the previous equality and
by Lebesgue-Radon-Nikodym theorem that for every ϑ, γ ∈ N we have that

0 < �h∗(φ�E(ϑ, γ ), x) = �∗,h(φ�E(ϑ, γ ), x) < +∞, forφ�E(ϑ, γ )-a.e.x ∈ G.

The previous equality, jointly with Proposition 2.2 and together with (86) allows us to
conclude the proof. ��

5 Comparison with Other Notions of Rectifiability

In this section, we provide the proof of Proposition 1.2 and Corollary 1.5. The key step
for proving the rectifiability with intrinsically differentiable graphs is the following
proposition.

Proposition 5.1 (Hausdorff convergence to tangents) Let φ be a Ph-rectifiable mea-
sure. Let K be a compact set such that φ(K ) > 0. Then for φ-almost every point
x ∈ K there exists V(x) ∈ Gr(h) such that

δ1/r (x
−1 · K ) → V(x), as r goes to0,

in the sense of Hausdorff convergence on closed balls {B(0, k)}k>0.

First of all, by reducing the measure φ to have compact support, e.g., considering
the restriction on the balls with integer radii, and then by using Proposition 2.5, we
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can assume without loss of generality that K ⊆ E(ϑ, γ ) for some ϑ, γ ∈ N. In
order to prove the Hausdorff convergence to the plane V(x), we need to prove two
different things: first, around almost every point x of K , the point of the set K at
decreasingly small scales lies ever closer to the points of xV(x), and this is exactly
what comes from the implication (33), see Proposition 3.1. Secondly, we have to prove
the converse assertion with respect to the previous one, i.e., that the points of xV(x)
around x at decreasingly small scales are ever closer to the points of K . For this latter
assumption to hold we also need to add to the condition in (33) the additional control
Fx,r (φ�K ,�Sh�xV) ≤ δrh+1, see Proposition 5.3. As a consequence of Proposition
5.1, we can prove Corollary 1.5 for measures of the form Sh�	. Finally by the usual
reduction to E(ϑ, γ ), we can give the proof of Corollary 1.5 for arbitrary measures.

5.1 C1H(G,G
′)-Rectifiability

This subsection is devoted to the proof of Proposition 1.2, i.e., the fact that the spher-
ical Hausdorff measure restricted to a (G,G′)-rectifiable set is P-rectifiable. In [25]
the authors give the following definitions of C1

H-submanifold of a Carnot group and
rectifiable sets. We first recall the definition of C1

H-function.

Definition 5.1 (C1
H-function) Let G and G

′ be two Carnot groups endowed with left-
invariant homogeneous distances d and d ′, respectively. Let � ⊆ G be open and let
f : � → G

′ be a function. We say that f is Pansu differentiable at x ∈ � if there
exists a homogeneous homomorphism d fx : G → G

′ such that

lim
y→x

d ′( f (x)−1 · f (y), d fx (x−1 · y))
d(x, y)

= 0.

Moreover, we say that f is of class C1
H in � if the map x �→ d fx is continuous from

� to the space of homogeneous homomorphisms from G to G
′.

Definition 5.2 (C1
H-submanifold) Given an arbitrary Carnot groupG, we say that� ⊆

G is aC1
H-submanifold ofG if there exists a Carnot groupG

′ such that for every p ∈ �,
there exists an open neighborhood � of p and a function f ∈ C1

H(�; G
′) such that

� ∩� = {g ∈ � : f (g) = 0}, (87)

and d f p : G → G
′ is surjective with Ker(d f p) complemented. In this case we say

that � is a C1
H(G,G

′)-submanifold.
Definition 5.3 ((G,G′)-rectifiable set) Given two arbitrary Carnot groups G and G

′
of homogeneous dimension Q and Q′, respectively, we say that � ⊆ G is a (G,G′)-
rectifiable set if there exist countably many subsets �i of G that are C1

H(G,G
′)-

submanifolds, such that

HQ−Q′
(
� \

+∞⋃
i=1

�i

)
= 0.

Using the results of [25], we prove the following.
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Proposition 5.2 Let us fix G and G
′ two arbitrary Carnot groups of homogeneous

dimensions Q and Q′, respectively, and suppose � ⊆ G is a (G,G′)-rectifiable set.
Then the measure SQ−Q′�� isPc

Q−Q′ -rectifiable.

Proof By [25,Corollary 3.6] a (G,G′)-rectifiable set � has SQ−Q′��-almost every-
where positive and finite density. Thus, by the locality of tangents, see Proposition 2.3,
by Lebesgue differentiation theorem in Proposition 2.2, and by the very definitions of
(G,G′)-rectifiable set and C1

H(G,G
′)-submanifold, it suffices to prove the statement

when � is the zero-level set of a function f ∈ C1
H(�,G

′), with � ⊆ G open, and
such that for every p ∈ {g ∈ � : f (g) = 0} =: � the differential d f p : G → G

′ is
surjective with Ker(d f p) complemented.

Fix p ∈ � and note that the homogeneous subgroup Ker(d f p), where f is a
representation as in (87), is independent of the choice of f . This follows for instance
from [25,Lemma 2.14, (iii)]. We denote this homogeneous subgroup with W(p) and
we call it the tangent subgroup at p to �. We first prove that

TanQ−Q′
(SQ−Q′��, p

) ⊆ {λSQ−Q′�W(p) : λ > 0}, for every p ∈ �. (88)

Indeed, from [25,Lemma 3.4], denoting by �p,r the set δ1/r (p−1 ·�), we have

SQ−Q′��p,r⇀SQ−Q′�W(p), for everyp ∈ �and forr → 0. (89)

We claim that this last equality implies that

r−(Q−Q′)
i Tp,ri

(SQ−Q′��
)
⇀SQ−Q′�W(p), for every infinitesimal sequenceri ,

thus showing (88). Indeed, for every measurable set A ⊆ G, we have

Tp,ri

(SQ−Q′��
)
(A) = SQ−Q′��(p · δri (A)) = SQ−Q′�(p−1 ·�)(δri (A))

= r Q−Q′
i SQ−Q′��p,ri (A),

(90)

and thus the claim follows from (89). In order to conclude the proof, we have to prove
that item (i) of Definition 2.18 holds. This follows from [25,Corollary 3.6]. Indeed, it is
there proved that every (G,G′)-rectifiable set has density SQ−Q′

-almost everywhere,
that is stronger than item (i) of Definition 2.18. ��
Remark 5.1 We remark that the proof above is heavily based on [25,Lemma 3.4
& Corollary 3.6]. The two latter results in the reference are consequences of the
area formula [25,Theorem 1.1]. As a consequence the approach in [25] is, in some
sense, reversed with respect to our approach. The authors in [25] deal with the cat-
egory of C1

H(G,G
′)-regular submanifolds and prove the area formula relying upon

[25,Proposition 2.2], that ultimately tells that a Borel regular measure μ with posi-
tive and finite Federer’s density θ with respect to the spherical Hausdorff measure Sh

admits a representation μ = θSh . Then with this area formula, they are able to prove
the results that led to the proof of the above Proposition 5.2.

123



239 Page 58 of 67 G. Antonelli, A. Merlo

We stress that in the subsequent paper [6], we push forward the study of P-
rectifiable measures started here, and we prove an area formula for intrinsically
differentiable graphs, see [6,Theorem 1.3], that extends the result of [25,Theorem
1.1].

Remark 5.2 (P-rectifiability and (G,G′)-rectifiable sets) From Definition 5.2 and
Definition 5.3 it follows that the tangent subgroupW at a point of a (G,G′)-rectifiable
set is always normal and complemented. Moreover, from [25,Lemma 2.14, (iv)], every
complementary subgroup to W must be a Carnot subgroup of G that in addition is
isomorphic to G

′. This results in a lack of generality of this approach to rectifiability.
Let us give here an example where the previous phenomenon becomes clear. If we
take L a horizontal subgroup in the first Heisenberg group H

1, on the one hand, S1�L
isP1-rectifiable, on the other hand, L is not (H1,G′)-rectifiable for any Carnot group
G

′ since L is not normal.

5.2 Rectifiability with Intrinsically Differentiable Graphs

This subsection is devoted to the proof of Proposition 5.1 and Corollary 1.5. Through-
out this subsection, we let G to be a Carnot group of homogeneous dimension Q and
h an arbitrary natural number with 1 ≤ h ≤ Q. Whenever φ is a Radon measure sup-
ported on a compact set we freely use the notation E(ϑ, γ ) introduced in Definition
2.9, for ϑ, γ ∈ N. We start with some useful definitions and facts.

Definition 5.4 For 1 ≤ h ≤ Q and ϑ ∈ N, let us set

η(h) := 1/(h + 1),

and then let us define the constant

C7 = C7(h, ϑ) :=
(
η(1 − η)h

32ϑ

)h+2

.

Proposition 5.3 Let φ be a Radon measure supported on a compact subset of G and
let K be a Borel subset of suppφ. Let ϑ, γ and 1 ≤ h ≤ Q be natural numbers. Let
x ∈ E(ϑ, γ ), 0 < r < 1/γ , and 0 < δ < C7. Assume further that there exist � > 0
and V ∈ Gr(h) such that

Fx,r (φ�K ,�Ch�xV)+ Fx,r (φ,�Ch�xV) ≤ 2δrh+1. (91)

Then for any w ∈ B(x, r/2) ∩ xV we have φ(K ∩ B(w, δ
1

h+2 r)) > 0, and thus in

particular K ∩ B(w, δ
1

h+2 r) �= ∅.

Proof From the hypothesis, we have that Fx,r (φ,�Ch�xV) ≤ 2δrh+1. Define g(x) :=
min{dist(x,U (0, 1)c), η},whereη is defined inDefinition 5.4. From the very definition
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of the function g and the choice of � above, we deduce that

ϑ−1(1 − η)hηrh+1 −�ηrh+1 ≤ ηrφ
(
B(x, (1 − η)r)

)− ηr�Ch�xV(B(x, r))

≤
∫

rg(δ1/r (x
−1z))dφ(z)

−�

∫
rg(δ1/r (x

−1z))dCh�xV(z) ≤ 2δrh+1,

where in the first inequality we are using that x ∈ E(ϑ, γ ) and Remark 2.4, and in the
last inequality, we are using that rg(δ1/r (x−1·)) ∈ Lip+

1 (B(x, r)). Simplifying and
rearranging the above chain of inequalities, we infer that

� ≥ ϑ−1(1 − η)h − 2δ/η ≥
(A)

(2ϑ)−1(1 − η)h =
(B)

(2ϑ)−1(1 − 1/(h + 1))h,

where (A) comes from the fact that δ < C7 < ((1 − η)hη)/(4ϑ), see Definition
5.4, and (B) comes from the definition of η, see Definition 5.4. Since the function
h �→ (1− 1/(h + 1))h is decreasing and bounded below by e−1, we deduce, from the
previous inequality, that � ≥ 1/(2ϑe).

We now claim that for every λ with δ1/(h+2) ≤ λ < 1/2 and every w ∈ xV ∩
B(x, r/2)we have φ

(
B(w, λr)∩ K

)
> 0. This will finish the proof. By contradiction

assume there is w ∈ xV ∩ B(x, r/2) such that φ
(
B(w, λr) ∩ K

) = 0. This would
imply that

�η(1 − η)hλh+1rh+1 = �ηλrCh�xV
(
B(w, (1 − η)λr)

)
≤ �

∫
λrg(δ1/(λr)(w

−1z))dCh�xV(z)

= �

∫
λrg(δ1/(λr)(w

−1z))dCh�xV(z)

−
∫
λrg(δ1/(λr)(w

−1z))dφ�K (z) ≤ 2δrh+1,

(92)

where the first equality comes from Remark 2.4, and the last inequality comes from
the choice of � as in the statement, and the fact that
λrg(δ1/(λr)(w−1·)) ∈ Lip+

1 (B(w, λr)) ⊆ Lip+
1 (B(x, r)) because λ < 1/2 and w ∈

B(x, r/2). Thanks to (92), the choice of λ, and the fact, proved some line above, that
1/(4eϑ) < �, we have that

δ
h+1
h+2

4eϑ
η(1 − η)h < �λh+1η(1 − η)h ≤ 2δ, and then δ1/(h+2) ≥ η(1 − η)h

8eϑ
,

which is a contradiction since δ < C7 = ((η(1− η)h)/(32ϑ))h+2, see Definition 5.4.
��

Proof of Proposition 5.1 First of all, by reducing the measure φ to have compact sup-
port, e.g., considering the restriction on the balls with integer radii, and then by using
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Proposition 2.5, we can assume without loss of generality that K ⊆ E(ϑ, γ ) for some
ϑ, γ ∈ N

Since φ is a Ph-rectifiable measure, by using the locality of tangents with the
density ρ ≡ χK , see Proposition 2.3, for φ-almost every x ∈ K we have that the
following three conditions hold

(i) Tanh(φ, x) ⊆ {λSh�V(x) : λ > 0}, where V(x) ∈ Gr(h),
(ii) 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < +∞.
(iii) if ri → 0 is such that there exists � > 0 with r−h

i Tx,riφ → �Ch�V(x), then
r−h
i Tx,ri (φ�K ) → �Ch�V(x).

From now on let us fix a point x ∈ K for which the three conditions above hold. If
we are able to prove the convergence in the statement for such a point then the proof
of the proposition is concluded.

Thus, we have to show that for every k > 0 the following holds

lim
r→0

dH ,G(δ1/r (x
−1 · K ) ∩ B(0, k),V(x) ∩ B(0, k)) = 0, (93)

where dH ,G is the Hausdorff distance between closed subsets in G. For some com-
patibility with the statements that we already proved, we are going to prove (93) for
k = 1/4. The proof of (93) for an arbitrary k > 0 can be achieved by changing accord-
ingly the constants in the statements of Proposition 3.1 and Proposition 5.3, that we
are going to crucially use in this proof. We leave this generalization to the reader, as
it will be clear from this proof.

Let us fix ε < min{δG,C7}, where δG is defined in Definition 3.2 and C7 in
Definition 5.4, and let us show that there exist an r0 = r0(ε) and a real function f1
such that

dH ,G
(
δ1/r (x

−1 · K ) ∩ B(0, 1/4),V(x) ∩ B(0, 1/4)
)

≤ f1(ε), for all 0 < r < r0(ε), (94)

where

f1(ε) := max{C5ε
1/(h+1) + f2(ε), 3ε

1/(h+2) + f3(ε)}, (95)

and where the constant C5 is defined in Proposition 3.1, and the functions f2, f3 are
introduced in (101) and (103), respectively. By the definition of f1, f2, f3, it follows
that f1(ε) → 0 as ε → 0 and thus, if we prove (94), we are done.

In order to reach the proof of (94) let us add an intermediate step. We claim that
there exists an r0 := r0(ε) < 1/γ such that the following holds

for every 0 < r < r0 there exists a � : = �(r) for which Fx,r (φ�K ,�Ch�xV)

+ Fx,r (φ,�Ch�xV) ≤ 2εrh+1.
(96)
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The conclusion in (96) follows if we prove that

lim
r→0

inf
�>0

Fx,r (φ�K ,�Ch�xV)+ Fx,r (φ,�Ch�xV)

rh+1 → 0. (97)

We prove (97) by contradiction. If (97) was not true, there would exist an ε̃ and an
infinitesimal sequence {ri }i∈N such that

inf
�>0

(
Fx,ri (φ�K ,�Ch�xV)+ Fx,ri (φ,�Ch�xV)

)
> ε̃rh+1

i , for everyi ∈ N.

(98)

Thus, from items (i) and (ii) above, and from [1,Corollary 1.60], we conclude that,
up to a non-re-labeled subsequence of ri , there exists a �∗ > 0 such that we have
r−h
i Tx,riφ → �∗Ch�V(x) as ri → 0. Then by exploiting the item (iii) above we
get also that r−h

i Tx,ri (φ�K ) → �∗Ch�V(x) as ri → 0. These two conclusions
immediately imply, by exploiting Remark 2.7 and (2.22), that

lim
i→+∞ r−(h+1)

i

(
Fx,ri (φ�K ,�∗Ch�xV)+ Fx,ri (φ,�Ch�xV)

)
→ 0,

which is a contradiction with (98). Thus, the conclusion in (96) holds. Let us continue
the proof of (94).

Taking into account the bound on ε and (96) we can apply Proposition 3.1, since
V(x) ∈ �ε(x, r) for all 0 < r < r0, and Proposition 5.3 to obtain, respectively, that
for all 0 < r < r0

sup
p∈K∩B(x,r/4)

dist(p, xV(x)) ≤ sup
p∈E(ϑ,γ )∩B(x,r/4)

dist(p, xV(x)) ≤ C5rε
1/(h+1),

for everyp ∈ B(x, r/2) ∩ xV(x)we haveB(p, ε1/(h+2)r) ∩ K �= ∅.
(99)

Let us proceed with the proof of (94). Fix 0 < r < r0 and note that for any w ∈
δ1/r (x−1 · K ) ∩ B(0, 1/4) there exists a point p ∈ K ∩ B(x, r/4) such that w =:
δ1/r (x−1 · p). From the first line of (99), we get that dist(x−1 · p,V(x)) ≤ C5rε1/(h+1)

and thus there exists a v ∈ V(x) such that d(x−1 · p, v) ≤ C5rε1/(h+1). This in
particular means that d(w, δ1/rv) ≤ C5ε

1/(h+1) and then, since w ∈ B(0, 1/4), we
get also that δ1/rv ∈ V(x) ∩ B(0, 1/4 + C5ε

1/(h+1)). Thus, we conclude that

dist(w,V(x) ∩ B(0, 1/4 + C5ε
1/(h+1))) ≤ C5ε

1/(h+1), (100)

for all w ∈ δ1/r (x−1 · K ) ∩ B(0, 1/4). Define the following function

f2(ε) := sup
u∈V(x)∩

(
B(0,1/4+C5ε

1/(h+1))\U (0,1/4)
) d(u, δ4−1‖u‖−1u), (101)
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and notice that by compactness it is easy to see that f2(ε) → 0 as ε → 0. With the
previous definition of f2 in hands, we can exploit (100) and conclude that

sup
w∈δ1/r (x−1·K )∩B(0,1/4)

dist(w,V(x) ∩ B(0, 1/4)) ≤ C5ε
1/(h+1) + f2(ε). (102)

The latter estimate is the first piece of information we need to prove (94). Let
us now estimate dist(δ1/r (x−1 · K ) ∩ B(0, 1/4), v) for any v ∈ V(x) ∩ B(0, 1/4). If
u ∈ V(x)∩(B(0, 1/4)\U (0, 1/4−ε1/(h+2))

)
, then there exists a uniqueμ = μ(u) > 0

such that δμ(u)u ∈ V(x) ∩ ∂B(0, 1/4 − ε1/(h+2)). Let us define

f3(ε) := sup
u∈V(x)∩

(
B(0,1/4)\U (0,1/4−ε1/(h+2))

) d(u, δμ(u)u), (103)

and by compactness it is easy to see that f3(ε) → 0 as ε → 0. Let us now fix
v ∈ V(x)∩B(0, 1/4). Then x ·δrv ∈ B(x, r/4)∩xV(x) ⊆ B(x, r/2)∩xV(x).We can
use the second line of (99) to conclude that there existsw ∈ B(x ·δrv, ε1/(h+2)r)∩K .
Thus w̃ := δ1/r (x−1 · w) ∈ B(v, ε1/(h+2)) ∩ δ1/r (x−1 · K ). Now we have two cases

• if v was in B(0, 1/4 − ε1/(h+2)) we would get w̃ ∈ B(0, 1/4) and then

dist(δ1/r (x
1 · K ) ∩ B(0, 1/4), v) ≤ ε1/(h+2); (104)

• if instead v ∈ V(x)∩ (B(0, 1/4) \U (0, 1/4− ε1/(h+2))
)
, we denote v′ := δμ(v)v

the point that we have defined above and then we still have x · δrv′ ∈ B(x, r/2)∩
xV(x). Thus we can again apply the second line of (99) to deduce the existence
of w′ ∈ B(x · δrv′, ε1/(h+2)r) ∩ K . Then we conclude w̃′ := δ1/r (x−1 · w′) ∈
B(v′, ε1/(h+2)) ∩ δ1/r (x−1 · K ). Now we can estimate

d(w̃, w̃′) = 1

r
d(w,w′) ≤ 1

r

(
d(w, x · δrv)+ d(x · δrv, x · δrv′)+ d(x · δrv′, w′)

)
≤ 2ε1/(h+2) + f3(ε). (105)

Moreover, since v′ ∈ ∂B(0, 1/4 − ε1/(h+2)) and w̃′ ∈ B(v′, ε1/(h+2)) we get that
w̃′ ∈ B(0, 1/4) ∩ δ1/r (x−1 · K ). Then by the triangle inequality and (105) we
conclude that, in this second case,

d(w̃′, v) ≤ 3ε1/(h+2) + f3(ε), (106)

and then

dist(δ1/r (x
1 · K ) ∩ B(0, 1/4), v) ≤ 3ε1/(h+2) + f3(ε). (107)

By joining together the conclusion of the two cases, see (104) and (107), we con-
clude that

sup
v∈V(x)∩B(0,1/4)

dist(δ1/r (x
1 · K ) ∩ B(0, 1/4), v) ≤ 3ε1/(h+2) + f3(ε). (108)
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The equations (102) and (108) imply (94) by the very definition of Hausdorff distance.
Thus the proof is concluded. ��
Let us now give the definition of intrinsically differentiable graph.

Definition 5.5 (Intrinsically differentiable graph) Let V and L be two complementary
subgroups of a Carnot group G. Let ϕ : K ⊆ V → L be a continuous function with
K compact in V. Let a0 ∈ K . We say that graph(ϕ) is an intrinsically differentiable
graph at a0 · ϕ(a0) if there exists a homogeneous subgroup V(a0) such that for all
k > 0

lim
λ→∞ dH ,G

(
δλ((a0 · ϕ(a0))−1 · graph(ϕ)) ∩ B(0, k),V(a0) ∩ B(0, k)

)
= 0,(109)

where dH ,G is the Hausdorff distance between closed subsets of G.

We prove now that the support of aPc
h-rectifiablemeasureSh�	, where	 is compact,

can be written as the countable union of almost everywhere intrinsically differentiable
graphs.

Theorem 5.4 For any 1 ≤ h ≤ Q, there exist a countable subfamily F := {Vk}+∞
k=1

of Grc(h), and Lk complementary subgroups of Vk such that the following holds.
Let 	 be a compact subset of G such that 0 < Sh(	) < +∞, and Sh�	 is a Pc

h-
rectifiable measure. Then for every α > 0, there are countably many compact	i ’s that
are intrinsic graphs of functionsϕi : PVi (	i ) → Li , and that satisfy the following three
conditions: 	i are CVi (α)-sets, 	i are intrinsically differentiable graphs at a · ϕi (a)
for Sh�PVi (	i )-almost every a ∈ PVi (	i ), and

Sh(	 \ ∪+∞
i=1	i ) = 0.

Proof First of all, let

F(V,L) := ε1(V,L), for all(V,L) ∈ Sub(h),

where Sub(h) is defined in (44). Given the above-defined function F, we construct
the family F := {Vk}+∞

k=1 and choose Lk complementary subgroups of Vk as in the
statement of Theorem 3.4. Notice that this choice is dependent on the function F that
we chose above. We claim that the family for which the statement holds is F .

Applying Theorem 3.4 with β ≡ min{1/2, α} to the measure Sh�	 we get count-
ably many compact sets 	i ⊆ 	 that are CVi (min{F(Vi ,Li ), α})-sets and such that

Sh(	 \ ∪+∞
i=1	i ) = 0.

Since F(Vi ,Li ) = ε1(Vi ,Li ), we conclude that each 	i is also the intrinsic graph of
a function ϕi : PVi (	i ) → Li , see Proposition 2.17. It is left to show that, for every
i ∈ N, graph(ϕi ) is an intrinsically differentiable graph at a · ϕi (a) for Sh�PV(	i )-
almost every a ∈ PVi (	i ).
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Indeed, since Sh�	 isPc
h-rectifiable, we can apply Proposition 5.1 and, for every

i ∈ N, we conclude that

δ1/r (x
−1 · 	i ) → V(x), as r goes to0, forSh�	i -almost everyx

∈ G,whereV(x) ∈ Gr(h), (110)

in the sense of Hausdorff convergence on closed balls {B(0, k)}k>0. Moreover, thanks
to Proposition 4.7 and to Lebesgue differentiation theorem in Proposition 2.2, we infer
that (�i )∗Sh�Vi is mutually absolutely continuous with respect to Sh�	i , where
�i is the graph map of ϕi . Furthermore, since every point x ∈ 	i can be written
as x = a · ϕi (a), with a ∈ PVi (	i ), we conclude, from (110) and latter absolute
continuity, that 	i = graph(ϕi ) is an intrinsically differentiable graph at a · ϕi (a) for
Sh�PV(	i )-almost every a ∈ PVi (	i ), and this concludes the proof. ��
In the following corollary we provide the proof of Corollary 1.5.

Corollary 5.5 For any 1 ≤ h ≤ Q, there exist a countable subfamily F := {Vk}+∞
k=1

of Grc(h), and Lk complementary subgroups of Vk such that the following holds.
For any Pc

h-rectifiable measure φ and for any α > 0, there exist countably
many compact sets 	i ’s that are CVi (α)-sets, that are intrinsic graphs of functions
ϕi : PVi (	i ) → Li , and that satisfy the following conditions: 	i are intrinsically
differentiable graphs at a · ϕi (a) for Sh�PVi (	i )-almost every a ∈ PVi (	i ), and

φ(G \ ∪+∞
i=1	i ) = 0.

Proof By restricting on closed balls of integer radii we can assume without loss of
generality that φ has compact support. Let us fix ϑ, γ ∈ N. We can infer this corollary
by working on φ�E(ϑ, γ ), that is mutually absolutely continuous with respect to
Sh�E(ϑ, γ ), see Proposition 2.6, and by using the previous Corollary 5.4 together
with Proposition 2.5. The resulting strategy is identical to the one in Corollary 4.14
so we omit the details. ��
Remark 5.3 (Uniformly intrinsically differentiable graphs and C1

H(G,G
′)-surfaces)

By the recent work of the second named author, see [41,Theorem 3], one can show that
in an arbitrary Carnot group of homogeneous dimension Q, the support of a P∗

Q−1-

rectifiable measure can be covered by countably many C1
H-regular hypersurfaces.

Moreover, it is known that a C1
H-regular hypersurface is characterized, locally, by

being the graph of a uniformly intrinsically differentiable function, see [3,Theorem
1.6]. This means that, in some particular cases, as it is the codimension-one case, we
can strengthen the conclusion inCorollary 5.5 by obtaining that themaps are uniformly
intrinsically differentiable.

This latter observation gives raise to two questions, that in the co-horizontal case
are the same thanks to [3,Theorem 1.6], but in general could be different: is it always
possible to improve the intrinsic differentiability in Corollary 5.5 to some kind of
uniform intrinsic differentiability? Is it possible to prove that when a Ph-rectifiable
measure, or even aP∗

h -rectifiable measure, onG admits only complemented normal
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subgroups that have only complementary subgroups that are Carnot subgroups,
thenwe canwrite its support as the countable union ofC1

H(G,G
′)-surfaces, seeDefini-

tion 5.2? Let us stress that if one answers positively to the second question, this would
mean, taking into account Proposition 5.2, that whenever they can agree, see Remark
5.2, the two notions of P-rectifiable measure and (G,G′)-rectifiable set agree.

We do not address these questions in this paper, but we stress that with the results
proved in [6], we show that, at least in the co-horizontal case, the notion of P-
rectifiable measure and the notion of rectifiability given in terms of (G,G′)-rectifiable
sets coincide, see [6,Corollary 5.3].

In the final part of this section, we briefly discuss how the notion of intrinsically
differentiable graph in Definition 5.5 is related to the already available notion of
intrinsic differentiability, see [14,Definition 3.2.1] and [4,Definition 2.5].Throughout
the rest of this sectionVandLare twofixedcomplementary subgroups inaCarnot
group G.

Definition 5.6 (Intrinsic translation of a function) Given a function ϕ : U ⊆ V → L,
we define, for every q ∈ G,

Uq := {a ∈ V : PV(q−1 · a) ∈ U },

and ϕq : Uq ⊆ V → L by setting

ϕq(a) := (PL(q−1 · a))−1 · ϕ(PV(q−1 · a)). (111)

Definition 5.7 (Intrinsically linear function) The map � : V → L is said to be intrin-
sically linear if graph(�) is a homogeneous subgroup of G.

Definition 5.8 (Intrinsically differentiable function) Letϕ : U ⊆ V → L be a function
with U Borel in V. Fix a density point a0 ∈ D(U ) of U , let p0 := ϕ(a0)−1 · a−1

0 and
denote with ϕp0 : Up0 ⊆ V → L the shifted function introduced in Definition 5.6.
We say that ϕ is intrinsically differentiable at a0 if there is an intrinsically linear map
dϕϕa0 : V → L such that

lim
b→e, b∈Up0

‖dϕϕa0 [b]−1 · ϕp0(b)‖
‖b‖ = 0. (112)

The function dϕϕa0 is called the intrinsic differential of ϕ at a0.

Let us fix ϕ : U ⊆ V → L with U open. Whenever the intrinsic differential
introduced in Definition 5.8 exists, it is unique: see [14,Theorem 3.2.8]. In [14] the
authors prove the following result: a function ϕ : U ⊆ V → L, with U open, is
intrinsically differentiable at a0 if and only if graph(ϕ) is an intrinsically differentiable
graph at a0 · ϕ(a0) with the tangent V(a0) complemented by L, see Definition 5.5,
and moreover V(a0) = graph(dϕϕa0). In the setting we are dealing with, i.e., with
maps ϕ : U ⊆ V → L with U compact, the above equivalence still holds at density
points of U . We do not give a proof of this last assertion since it follows by routine
modifications of the argument in [14], and moreover, we do not need it in this paper.
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