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Abstract
In this paper, we study the oscillating spectral multipliers associated with the sub-
Laplacian L on an arbitrary stratified Lie group G. We prove the boundedness of the
operatorsmα,β,t (L) = ψ(L)L−β/2eit L

α/2
on Hardy spaces H p(G) for all p ∈ (0,∞)

and β/α ≥ Q|1/p − 1/2|, where ψ is a smooth function on [0,∞) vanishing on
[0, a] and equal to 1 on [b,∞) for some 0 < a < b < ∞, and Q is the homogeneous
dimension of G. This extends the existing results and can be applied to obtain L p

estimates for Riesz means of the Schrödinger operators associated with the fractional
powers of L .

Keywords Stratified Lie group · Sub-Laplacian · Oscillating multiplier · Hardy space

Mathematics Subject Classification 42B15 · 42B30 · 43A22

1 Introduction and Statement of Main Results

Given a nonnegative self-adjoint operator L , the oscillating spectral multiplier opera-
tors associated with L are operators of the form

mα,β(L) = ψ(L)L−β/2ei L
α/2

. (1.1)
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where α, β > 0 and ψ is a smooth function on [0,∞) which vanishes on [0, a] and
is equal to 1 on [b,∞) for some 0 < a < b < ∞. These operators has a strong
connection with the Cauchy problem for Schrödinger and wave equations associated
with fractional powers of L . In many situations, they also provide examples of the
so-called strongly singular integral operators.

Oscillating multipliers in the context of Rn have been studied extensively; see [18,
19, 32–34]. Then some of the results have been extended to more abstract settings
such as Lie groups, Riemannian manifolds, symmetric spaces and metric measure
spaces. We refer to [1, 3, 5, 12, 13, 15, 17, 22, 27, 31, 35, 36] and the references
therein. We now give a brief discussion on the work [15] which is closely related to
our paper. In [15], the endpoint estimates of the oscillating multipliers on an arbitrary
stratified Lie group G were investigated. More precisely, they introduced a class of
spectral multipliers on G, which covers not only the Mihlin-Hörmander-type spectral
multipliers studied by Folland, Hulanicki and Stein [20], Mauceri and Meda [31] and
Christ [14], but also the oscillating multipliers of the form (1.1). Their main result
implies that, if α > 0 and β/α ≥ Q/2, then

‖mα,β(L) f ‖L1(G) ≤ C‖ f ‖H1(G), (1.2)

where L is the sub-Laplacian on G, and Q is the homogeneous dimension of G. By
using the complex interpolation theorem they also proved that for p ∈ (1,∞), α > 0
and β/α ≥ Q|1/p − 1/2|,

‖mα,β(L) f ‖L p(G) ≤ C‖ f ‖L p(G). (1.3)

It is worth pointing out that the estimate above improves the those in (see [1, 31]), in
which it was proved that (1.3) holds true if β/α > Q|1/p − 1/2|. In the special case
of the Heisenberg type groups, sharp estimates of oscillating multipliers with minimal
smoothness (depending on the topological dimensions rather than the homogeneous
ones) were obtained recently in [3, 36].

In the present paper, we consider oscillating multipliers on general stratified Lie
groups. Our main aim is to extend the estimates (1.2) and (1.3) to the full range
p ∈ (0,∞). Before stating our results, let us briefly recall some basic concepts
concerning stratified Lie groups. For more details, we refer to the monographs [2,
20]. A Lie group G is said to be stratified if it is connected and simply connected,
and its Lie algebra g can be decomposed as a direct sum g = V1 ⊕ · · · ⊕ Vτ , with
[V1, Vk] = Vk+1 for 1 ≤ k ≤ τ − 1 and [V1, Vτ ] = 0. Such a group G is necessarily
nilpotent, and the exponential map exp : g → G is a diffeomorphism which takes the
Lebesgue measure on g to a bi-invariant Haar measure μ on G. The number

Q =
τ∑

j=1

dim(Vj )

is called the homogeneous dimension of G. One can define, in a canonical (natural)
way, a family of dilations {Dt }t>0 on G that adapted to the stratification. A homoge-
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neous quasi-norm on G is a function x 	→ |x | from G to [0,∞) which vanishes only
at the group identity e and satisfies that |x−1| = |x | and |Dt x | = t |x | for all x ∈ G
and t > 0. Note that there exits at least one homogeneous quasi-norm onG; moreover,
any two homogeneous quasi-norms on G are equivalent (see [20]). Henceforth we fix
a homogeneous quasi-norm on G. It satisfies a quasi-triangle inequality: there exists
a constant γ ≥ 1 such that

|xy| ≤ γ (|x | + |y|) (1.4)

for all x, y ∈ G.
Let n1 = dim(V1), and fix a basis X1, · · · , Xn1 for V1. Identifying each X j with a

left-invariant vector field on G, we consider the sub-Laplacian

L = −
n1∑

j=1

X2
j .

For any bounded Borel measurable function m on R+ := [0,∞), we can define the
spectral multiplier operator

m(L) =
∫ ∞

0
m(λ)dEλ,

where {Eλ}λ≥0 is the spectral resolution of L . The operatorm(L) is bounded on L2(G)

with operator norm bounded by ‖m‖L∞(R+).
For any α, β > 0 and t ∈ R, we defined the functions mα,β,t and m̃α,β,t on R+ by

mα,β,t (λ) : = ψ(λ)λ−β/2eitλ
α/2

,

m̃α,β,t (λ) : = (1 + λ)−β/2eitλ
α/2

,

respectively, where, as before, ψ is a smooth function on [0,∞) which vanishes on
[0, a] and is equal to 1 on [b,∞) for some 0 < a < b < ∞.

The main results of the present paper are the following two theorems.

Theorem 1.1 Let G be a stratified Lie group and let L be the sub-Laplacian on G.
Then for p ∈ (0, 1), α ∈ (0,∞) and β/α ≥ Q(1/p − 1/2),

∥∥m̃α,β,t (L) f
∥∥
H p(G)

≤ C(1 + |t |)Q(1/p−1/2)‖ f ‖H p(G), ∀t ∈ R, (1.5)

where H p(G) are the Hardy spaces on G, and C is a constant independent of t .

Theorem 1.2 Let G be a stratified Lie group and let L be the sub-Laplacian on G.
Then for p ∈ (0,∞), α ∈ (0,∞) and β/α ≥ Q|1/p − 1/2|, we have

∥∥mα,β,t (L) f
∥∥
H p(G)

≤ C(1 + |t |)Q|1/p−1/2|‖ f ‖H p(G), ∀t ∈ R, (1.6)

where C is a constant independent of t .
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Some comments on Theorems 1.1 and 1.2 are in order.

(i) In the context of Rn , the estimates (1.5) and (1.6) were proved by Miyachi [32].
By using the complex interpolation theorem of Calderón and Torchinsky [9], he
showed that (1.5) also holds for p ∈ [1,∞). However, it is unclear to us whether
such a complex interpolation theorem is valid for Hardy spaces on stratified Lie
groups. Thus, we do not know whether (1.5) holds for p ∈ [1,∞).

(ii) In contrast with the work [15], we consider time-dependent oscillating multi-
pliers, and derive the bound (1 + |t |)Q|1/p−1/2| for the operators mα,β,t (L) in
Theorem 1.2. It is worth pointing out that the approach in [15] along with a
homogeneity argument can only give the bound (1 + t)Q|1/p−1/2|+ε (where ε

is any positive number) for mα,β,t (L). Thus, our results can be applied to get a
better estimate for the Riesz means associated with the fractional powers of L
(see Corollary 1.3 below).

(iii) Letting t = 1 and p = 1 in (1.6), we have H1(G) → H1(G) estimate for
mα,β(L), which is stronger than the H1(G) → L1(G) estimate in (1.2) due to
the fact that H1(G) ↪→ L1(G). Moreover, Theorem 1.2 completes the scale of
the estimates of mα,β,t (L) for all p ∈ (0,∞) and t ∈ R, while (1.2) and (1.3)
only provide estimates of mα,β(L) for p ∈ [1,∞).

We now discuss an application of Theorem 1.2 to the study of Riesz means associ-
ated with the fractional powers of L . For k, α, t > 0, defined the operators

Ik,α,t (L) = kt−k
∫ t

0
(t − s)−k−1e−isLα/2

ds.

We extend the definition of Ik,α,t (L) to t < 0 by setting

Ik,α,t (L) = Īk,α,−t (L), t < 0.

See [33, 38] for the studyof these operators onRn and [1, 8, 30] for their generalizations
to more general contexts.

By using Theorem 1.2, the spectral theorem for H p(G) (see, e.g., [31]), and a
standard argument from [38], we can derive the following result.

Corollary 1.3 For p ∈ (0,∞) and k ≥ Q|1/p − 1/2|, there exists a constant C such
that

∥∥Ik,α,t (L) f
∥∥
H p(G)

≤ C‖ f ‖H p(G)

for all t �= 0.

Remark 1.4 In the context of general Lie groups of polynomial growth, the best known
result concerning boundedness of Ik,α,t (L) so far is that for p ∈ [1,∞)

∥∥Ik,α,t (L) f
∥∥
L p(G)

≤ C‖ f ‖L p(G) (1.7)
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provided (i) 0 < α ≤ 1 and k > d|1/p − 1/2|, or (ii) α > 1 and k >

max(d, D)|1/p − 1/2|, where d and D are the local dimension and dimension at
infinity of G, respectively (see [1,Theorem 3]). In the particular case of stratified Lie
groups, Corollary 1.3 not only sharpens (1.7) by allowing k = Q|1/p−1/2|, but also
extends it to all p ∈ (0,∞).

A few words about our proofs are in order. The proofs of our main results are
inspired by the ideas and techniques developed in [8, 10, 11]. Note that in [8, 10, 11],
the boundedness of the Schrödinger group corresponding to the multipliers m̃α,β,t (L)

with α = 2. However, it is not clear if the approaches in [8, 10, 11] can be applicable
to the general case α > 0. To deal with the general case of α, we shall employ an inter-
esting weighted L2 estimate on stratified groups due to Sikora [37]. In order to derive
the H p(G) → H p(G) boundedness of m̃α,β,t (L) for 0 < p < 1, we will utilize sev-
eral equivalent characterizations of Hardy spaces on stratified Lie groups, including
the characterizations via the radial maximal function, the Littlewood–Paley square
function, the Lusin function and the atomic decomposition. The H p(G) → H p(G)

boundedness of mα,β,t (L) for 0 < p < 1 then follows from that of m̃α,β,t (L) and
a spectral multiplier theorem for H p(G). Finally, to prove the H p(G) → H p(G)

boundedness ofmα,β,t (L) for 1 ≤ p < ∞, we will identify H p(G) with the homoge-
neous Triebel-Lizorkin spaces Ḟ0

p,2(G), and use complex interpolation of the spaces

Ḟ s
p,q(G). Similar ideas were also used in [7] to prove the boundedness of Schrödinger

groups associated with fractional powers of the Hermite operators on Rn .
The organization of this paper is as follows. In Sect. 2, we recall the definition of the

Hardy spaces H p(G), and collect some of their equivalent characterizations, which
will be needed in establishing the H p(G) → H p(G) boundedness of m̃α,β,t (L). In
particular, the Littlewood–Paley characterization of H p(G) implies that H p(G) can
be identified with the homogeneous Triebel-Lizorkin space Ḟ0

p,2(G). The proofs of
our main results Theorems 1.1 and 1.2 will be given in Sects. 3 and 4, respectively.
Notation Throughout this paper, N0 denotes the set of all nonnegative integers, while
N denotes the set of all positive integers.We always useC to denote positive constants,
which are independent of the main parameters involved and whose values may vary
at every occurrence. By writing f � g, we mean that f ≤ Cg. We also use f ∼ g to
denote that C−1g ≤ f ≤ Cg.

2 Hardy Spaces on Stratified Lie Groups and Their Characterizations

Throughout this section, G is a stratified Lie group and L is the sub-Laplacian on G.
Our purpose in this section is to recall the definition of Hardy spaces H p(G) and give
several equivalent characterizations of these spaces.

2.1 Definition of Hp(G)Via Radial Maximal Function

Hardy spaces on general homogeneous groups were introduced and studied by Folland
and Stein in [20]. They proved several equivalent characterizations of these spaces,
including the radial maximal function characterization, the nontangential maximal
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function characterization, the grand maximal function characterization and atomic
decomposition. For the sake of simplicity, we take the radial maximal function char-
acterization as the definition of H p(G). Following [20, p.140], a Schwartz function

 on G is said to be a commutative approximate identity, if

∫
G 
(x)dμ(x) = 1 and


t ∗ 
s = 
s ∗ 
t holds for all t, s > 0, where 
t (x) := t−Q
(t−1x).

Definition 2.1 ([20]) Let
 ∈ S(G) be a commutative approximate identity on G. For
0 < p < ∞, the Hardy space H p(G) is defined as the set of all f ∈ S ′(G) such that

‖ f ‖H p(G) := ∥∥M0

 f

∥∥
L p(X)

< ∞,

where M0

 f is the radial maximal function defined by

M0

 f (x) = sup

t>0
| f ∗ 
t f (x)|.

Remark 2.2 The definition of H p(G) is independent of the choice of the commutative
approximate identity 
. Moreover, the spaces H p(G) are also characterized in terms
of the nontangential and grand maximal functions. For these results, see [20,Corollary
4.17].

In the context of stratified Lie groups, it is convenient to construct commutative
approximate identity via sub-Laplacians. Indeed, Hulanicki’s theorem says that if
φ ∈ S(R+), then the convolution kernel of φ(L), denoted by 
, is in S(G) (see [26]).
Furthermore, since the convolution kernel of φ(t2L) is
t and since φ(s2L)φ(t2L) =
φ(t2L)φ(s2L), we have
t ∗
s = 
s ∗
t . Hence, if φ ∈ S(R+) such that φ(0) = 1,
then for p ∈ (0,∞),

f ∈ H p(G) ⇐⇒ M0
φ,L f ∈ L p(G), (2.1)

where

M0
φ,L f (x) := sup

t>0
|φ(t2L) f (x)|.

Remark 2.3 For 1 < p < ∞, we have H p(G) = L p(G); see [20, p. 75].

2.2 Characterization of Hp(G)Via the Lusin Functions

The theory of Hardy spaces associated with nonnegative self-adjoint operators satis-
fying Davies-Gaffney estimates were studied in [23] (for p ≥ 1) and [16, 28] (for
0 < p < 1). The Hardy space theory developed in these works can be applied to our
setting. Given a function f ∈ L2(G), consider the following Lusin function associated
with the sub-Laplacian L

SL f (x) :=
(∫ ∞

0

∫

|y−1x |<t

∣∣t2Le−t2L f (y)
∣∣2 dμ(y)dt

t Q+1

)1/2

. (2.2)
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Definition 2.4 ([23, 28]) For p ∈ (0,∞), the Hardy space H p
L (G) associated with L

is defined as the completion of { f ∈ L2(G) : SL f ∈ L p(G)} with (quasi-)norm

‖ f ‖H p
L (G) := ‖SL f ‖L p(G).

In [39], Song and Yan proved that, if (X , d, μ) is a metric measure space satisfying
volume doubling condition, and L is a nonnegative self-adjoint operator whose heat
kernel satisfies the Gaussian upper bound, then the Hardy spaces defined via the radial
maximal function coincide with those defined via the Lusin function. It is well known
that the heat kernel of a sub-Laplacian L on a stratified Lie group G satisfies the
Gaussian upper bound (see, e.g., [40,Theorem in VIII.2.7]). Hence, combining (2.1)
and [39,Theorem 1.3] (see also the final remark in [39]), we deduce the following
result.

Proposition 2.5 For p ∈ (0,∞), H p(G) = H p
L (G) with equivalent (quasi-)norms.

2.3 Characterization of Hp(G)Via Littlewood–Paley Functions

In this subsection we give the Littlewood–Paley characterization of H p(G). More
precisely we will identify H p(G) with the homogeneous Triebel-Lizorkin spaces
Ḟ0
p,2(G). Homogeneous Triebel-Lizorkin spaces on stratified Lie groups were studied

in [25]. Recently, there have been also some important developments on Triebel-
Lizorkin spaces associated with abstract nonnegative self-adjoint operators which
cover the case of sub-Laplacians on stratifiedLie groups; see, e.g., [4, 21, 29]. Based on
these works, the definition of Triebel-Lizorkin spaces associated with sub-Laplacians
on stratified Lie groups becomes natural.

In what follows, by a “partition of unity” we will mean a function a function
ϕ ∈ S(R+) such that suppϕ ⊂ [1/4, 4], ∫ ϕ(λ) dλ

λ
�= 0 and

∑


∈Z
ϕ(2−2
λ) = 1 ∀λ ∈ (0,∞).

Definition 2.6 Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. The homogeneous Triebel-
Lizorkin space Ḟ s

p,q(G) is defined as the collection of all f ∈ S ′(G)/P such that

‖ f ‖Ḟs
p,q (G) :=

∥∥∥∥∥∥

(
∑


∈Z

(
2
s |ϕ(2−2
L) f |)q

)1/q
∥∥∥∥∥∥
L p(G)

< ∞,

with the usual modification when q = ∞. Here P denotes the space of polynomials
on G.

Remark 2.7 In Definition 2.6, ϕ(2−2
L) f is well defined for f ∈ S ′(G)/P , since
the convolution kernel of ϕ(2−2
L) is a Schwartz function on G having all vanishing
moments (see [25]).
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Remark 2.8 It is proved in [25] that the scale of Ḟ s
p,q(G) is independent of choice

of the sub-Laplacian L and the “partition of unity” function ϕ. This indicates that
these spaces reflect properties of the group G, not of the sub-Laplacian used for the
construction of the Littlewood–Paley decomposition.

Note that the spaces Ḟ s
p,q(G) fall into the scope of general theory of Triebel-

Lizorkin spaces associated with nonnegative self-adjoint operators. In particular, from
[4,Corollary 3.15] we see that, for p ∈ (0,∞),

f ∈ Ḟ0
p,2(G) ⇐⇒ SL f ∈ L p(G).

This, in combination with Proposition 2.5, yields the following result.

Proposition 2.9 For p ∈ (0,∞), H p(G) = Ḟ0
p,2(G) with equivalent (quasi-)norms.

2.4 Atomic Decomposition of Hp(G)

Folland and Stein [20] established an atomic decomposition of H p(G). Their atoms
are defined in a similar manner as the classical H p atoms in R

n . However, in the
present paper, since we are concerned with oscillating spectral multipliers, it is more
convenient to use a version of atoms associated with the sub-Laplacian L .

Definition 2.10 ([16, 23, 28]) Let p ∈ (0, 1] and M ∈ N. A measurable function
a on G is called a (p, M, L)-atom, if there exist a function b ∈ D(LM ) and a ball
B = B(xB, rB) ⊂ G such that

(i) a = LMb;
(ii) supp Lkb ⊂ B, k = 0, 1, · · · , M ;
(iii) ‖Lkb‖L2(G) ≤ r2(M−k)

B μ(B)1/2−1/p, k = 0, 1, · · · , M .

The atomic Hardy space H p
L,at,M (G) is then defined to be set of all f ∈ S ′(G) of the

form

f =
∞∑

j=1

λ j a j

with convergence in S ′(G), where {λ j }∞j=1 ∈ 
p and each a j is a (p, M, L)-atom.

Finally, the quasi-norm of f ∈ H p
L,at,M (G) is given by

‖ f ‖H p
L,at,M (G)

:= inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=1

|λ j |p
⎞

⎠
1/p

: f =
∞∑

j=1

λ j a j , each a j is a (p, M, L)-atom

⎫
⎪⎬

⎪⎭
.

In [16, 23, 28], the atomic decomposition of the Hardy spaces H p
L(X) associated

with an abstract nonnegative self-adjoint operator L on a doubling metric measure
space X was established. Recall that H p

L(X) are defined via the Lusin function (2.2).
The result in [16, 23, 28] together with Proposition 2.5 implies the following result.
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Proposition 2.11 Let p ∈ (0, 1] and M >
Q(2−p)

4p . Then H p(G) = H p
L,at,M (G) with

equivalent (quasi-)norms.

2.5 A Complex Interpolation Theorem for Ḟsp,q(G)

We record a complex interpolation theorem for homogeneous Triebel-Lizorkin spaces
on G, which will be needed in the proof of Theorem 1.2.

Proposition 2.12 (see [6,Proposition 3.18]). Let s0, s1 ∈ R, 0 < p0, p1, q0, q1 < ∞,
and 0 < θ < 1. If

s = (1 − θ)s0 + θs1,
1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
,

then [
Ḟ s0
p0,q0(G), Ḟ s1

p1,q1(G)
]
θ

= Ḟ s
p,q(G),

where [·, ·]θ stands for the complex interpolation brackets.

3 Proof of Theorem 1.1

Our proof will rely on the following weighted L2 estimate due to A. Sikora.

Lemma 3.1 ([37]) Let G be a stratified Lie group and let L be the sub-Laplacian on
G. Then for any s > 0, there exists a constant C such that

∫

G
|KF(L)(x)|2(1 + |x |)2sdμ(x) ≤ C‖F‖2L2

s (R)

for all Borel functions F : [0,∞) → R with the property supp F ⊂ [1/4, 4], where
KF(L) is the convolution kernel of the operator F(L), and L2

s (R) denotes the Sobolev
space with norm given by ‖F‖L2

s (R) = ∥∥(I − d2/dλ2)s/2F
∥∥
L2(R)

.

In the rest of this section, we always assume 0 < p < 1.We note that, for any δ > 0,
by the spectralmultiplier theorems for H p(G) (see, e.g., [20, 31]), (I+L)−δ is bounded
on H p(G). Hence it suffices to consider the critical case β/α = Q(1/p − 1/2).

Let ϕ be a partition of unity (see Sect. 2 for definition). By Propositions 2.9 and
2.11, it suffices to show that there exists C > 0 such that for any (p, M, L)-atom a,

∥∥GL,ϕ

(
m̃α,β,t (L)a

)∥∥
L p(G)

≤ C(1 + |t |)Q(1/p−1/2),

where GL,ϕ is the Littlewood–Paley operator defined by

GL,ϕ f :=
(

∑


∈Z
|ϕ(2−2
L) f |2

)1/2

.
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Choose a positive integer M such that

2M > max {Q/p − Q/2, Q/p − Q + 1} . (3.1)

Let a be an arbitrary (p, M, L)-atom associated with some ball B = B(xB, rB), and
let b be the corresponding function such that a = LMb. Define P by setting

P(λ) =
M∑

k=1

(−1)k+1CM
k e−kλ, λ ∈ R+.

Since 1 ≡ (1 − e−r2Bλ)M + P(r2Bλ), by the spectral theory, we have

I = (I − e−r2B L)M + P(r2B L).

Using the above identity, we write

∥∥GL,ϕ

(
m̃α,β,t (L)a

)∥∥p
L p ≤

∥∥∥GL,ϕ

[
(I − e−r2B L)Mm̃α,β,t (L)a

]∥∥∥
p

L p

+
∥∥∥GL,ϕ

[
(r2B L)M P(r2B L)m̃α,β,t (L)r−2M

B b
]∥∥∥

p

L p

=: �1 + �2.

Therefore it suffices to show that

�1 + �2 � (1 + |t |)Q(1−p/2). (3.2)

3.1 Estimate of31

Set Bt = (1 + |t |)B = B(xB, (1 + |t |)rB), and split �1 into

�1 =
∥∥∥GL,ϕ

[
(I − e−r2B L)Mm̃α,β,t (L)a

]∥∥∥
p

L p(4γ Bt )

+
∥∥∥GL,ϕ

[
(I − e−r2B L)Mm̃α,β,t (L)a

]∥∥∥
p

L p(G\4γ Bt )

=: �11 + �12.

here, γ is the constant from (1.4), and 4γ Bt denotes the ball with the same center as
Bt and with radius 4γ times of that of Bt . By Hölder’s inequality, the L2 boundedness
of GL,ϕ and the properties of atoms, we have
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�11 � μ
(
(1 + |t |)B)1−p/2∥∥GL,ϕ(I − e−r2B L)Mm̃α,β,t (L)a

∥∥p
L2(4Bt )

� μ
(
(1 + |t |)B)1−p/2‖a‖p

L2

� μ
(
(1 + |t |)B)1−p/2

μ(B)p/2−1

= (1 + |t |)Q(1−p/2).

(3.3)

Now we estimate �12. Setting

F
,rB (λ) := ϕ(2−2
λ)(1 − e−r2Bλ)Mm̃α,β,t (λ),

we have by Minkowski’s inequality

�12 =
∥∥∥∥∥∥

(
∑


∈Z

∣∣F
,rB (L)a
∣∣2

)1/2
∥∥∥∥∥∥

p

L p(G\4γ Bt )

=
∥∥∥∥∥∥

(
∑


∈Z

∣∣F
,rB (L)a
∣∣2

)p/2
∥∥∥∥∥∥
L1(G\4γ Bt )

≤
∥∥∥∥∥
∑


∈Z

∣∣F
,rB (L)a
∣∣p

∥∥∥∥∥
L1(G\4γ Bt )

≤
∑


∈Z

∥∥F
,rB (L)a
∥∥p
L p(G\4γ Bt )

�
∑

(α−1)
≥
0

∥∥F
,rB (L)a
∥∥p
L p(G\4γ Bt )

+
∑

(α−1)
<
0

∥∥F
,rB (L)a
∥∥p
L p(G\4γ Bt )

=: �121 + �122,

(3.4)
where 
0 is the (unique) integer such that 2
0 ≤ rB < 2
0+1.

Note that for every 
 with (α − 1)
 ≥ 
0, we have

X = B
(
xB, 2(α−1)
(1 + |t |))

⋃
⎛

⎝
⋃

j≥(α−1)
−
0

S j (Bt )

⎞

⎠ , (3.5)

where S0(Bt ) := Bt and S j (Bt ) := 2 j Bt\2 j−1Bt for j ∈ N. Let j0 be the (unique)
integer such that

2γ ≤ 2 j0−1 < 4γ. (3.6)

Then j0 ≥ 2 and

X\4γ Bt ⊂ X\2 j0−1Bt =
⋃

j≥ j0

S j (Bt ). (3.7)

Combining (3.5) and (3.7) we have

123



222 Page 12 of 20 T. A. Bui et al.

X\4γ Bt = X ∩ (X\4γ Bt ) ⊆ B
(
xB, 2(α−1)
(1 + |t |))

⋃
⎛

⎝
⋃

j≥max{(α−1)
−
0, j0}
S j (Bt )

⎞

⎠ .

It follows that

�121 ≤
∑

(α−1)
≥
0

∥∥F
,rB (L)a
∥∥
L p(B(xB ,2(α−1)
(1+|t |)))

+
∑

(α−1)
≥
0

∑

j≥max{(α−1)
−
0, j0}

∥∥F
,rB (L)a
∥∥p
L p(S j (Bt ))

=: �1211 + �1212,

The estimate of �1211 is easy. Indeed, by Hölder’s inequality and the properties of
atoms, we have

�1211 �
∑

(α−1)
≥
0

μ
(
B(xB, 2(α−1)
(1+|t |)))1−p/2∥∥F
,rB (L)a

∥∥p
L2(B(xB ,2(α−1)
(1+|t |)))

�
∑

(α−1)
≥
0

μ
(
B(xB, 2(α−1)
(1 + |t |)))1−p/2‖F
,rB‖p

L∞(R+)
‖a‖p

L2(G)

�
∑

(α−1)
≥
0

μ
(
B(xB, 2(α−1)
(1 + |t |)))1−p/2

μ(B)p/2−1
∥∥F
,rB

∥∥p
L∞(R+)

∼ (1 + |t |)Q(1−p/2)
∑

(α−1)
≥
0

(2
rB)−Q(1−p/2)2
αQ(1−p/2)
∥∥F
,rB

∥∥p
L∞(R+)

.

(3.8)
Since

∥∥F
,rB

∥∥
L∞(R+)

� min{1, (2
rB)2M }2−
β = min{1, (2
rB)2M }2−
αQ(1/p−1/2),

(3.9)

it follows from (3.8) and (3.1) that

�1211 � (1 + |t |)Q(1−p/2)
∑

(α−1)
≥
0

(2
rB)−(Q/p−Q/2)p min{1, (2
rB)2Mp}

� (1 + |t |)Q(1−p/2).

To estimate�1212, first note that by Hölder’s inequality and the properties of atoms,

�1212 �
∑

(α−1)
≥
0

∑

j≥max{(α−1)
−
0, j0}

[
2 j (1 + |t |)]Q(1−p/2)∥∥F
,rB (L)

∥∥p
L2(B)→L2(S j (Bt ))

.

(3.10)
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We then claim that for any s > Q/2 and j ≥ j0, there holds

‖F
,rB (L)‖L2(B)→L2(S j (Bt ))

� 2− js(2
rB)−(s−Q/2) min{1, (2
rB)2M }max{1, 2−
β2
αs}. (3.11)

Let us prove the claim. For any h ∈ L2(B), by Minkowski’s and Hölder’s inequal-
ities, we have

∥∥F
,rB (L)h
∥∥
L2(S j (Bt ))

=
∥∥∥∥x 	→

∫

B
KF
,rB (L)(y

−1x)h(y)dμ(y)

∥∥∥∥
L2(S j (Bt ))

≤
∫

B

∥∥x 	→ KF
,rB (L)(y
−1x)

∥∥
L2(S j (Bt ))

|h(y)|dμ(y)

≤ sup
y∈B

∥∥x 	→ KF
,rB (L)(y
−1x)

∥∥
L2(S j (Bt ))

∫

B
|h(y)|dμ(y)

≤ sup
y∈B

∥∥x 	→ KF
,rB (L)(y
−1x)

∥∥
L2(S j (Bt ))

μ(B)1/2‖h‖L2(B),

where KF
,rB (L) is the convolution kernel of the operator FrB ,
(L). Hence

∥∥F
,rB (L)
∥∥
L2(B)→L2(S j (Bt ))

≤ sup
y∈B

∥∥x 	→ KF
,rB (L)(y
−1x)

∥∥
L2(S j (Bt ))

μ(B)1/2.

(3.12)

Note that for any y ∈ B and x ∈ S j (Bt )with j ≥ j0, we have |y−1x | ∼ 2 j (1+|t |)rB .
Indeed, on the one hand, by (1.4), we have |y−1x | ≤ γ (|x | + |y|) ≤ γ

[
2 j (1 +

|t |)rB + rB
]

� 2 j (1+|t |)rB ; on the other hand, by (1.4) and (3.6), we have |y−1x | ≥
γ −1|y| − |x | ≥ γ −12 j0−1rB − rB ≥ 2rB − rB = rB . Thus, for every y ∈ B, applying
Lemma 3.1,

∥∥x 	→ KF
,rB (L)(y
−1x)

∥∥2
L2(S j (Bt ))

=
∫

S j (Bt )

∣∣KF
,rB (L)(y
−1x)

∣∣2dμ(x)

∼ [
2 j (1 + |t |)rB

]−2s
∫

S j (Bt )
|y−1x |2s∣∣KF
,rB (L)(y

−1x)
∣∣2dμ(x)

≤ [
2 j (1 + |t |)rB

]−2s
∫

G
|x |2s∣∣KF
,rB (L)(x)

∣∣2dμ(x)

= [
2 j (1 + |t |)rB

]−2s
∫

G
|x |2s∣∣2
QKF̃
,rB (L)(2


x)
∣∣2dμ(x)

= [
2 j (1 + |t |)rB

]−2s2
Q2−2
s
∫

G
|x |2s∣∣KF̃
,rB (L)(x)

∣∣2dμ(x)

�
[
2 j (1 + |t |)rB

]−2s2
Q2−2
s
∥∥F̃
,rB

∥∥2
L2
s (R)

,

(3.13)
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where

F̃
,rB (λ) := F
,rB (22
λ) = ϕ(λ)
(
1 − e−(2
rB )2λ

)M
m̃α,β,t (2

2
λ).

Letψ ∈ C∞
0 (0,∞) such that suppψ ⊂ [1/8, 8] andψ(λ) = 1 for λ ∈ [1/4, 4]. Then

ψ(λ)ϕ(λ) = ϕ(λ), and hence by the algebra property of L2
s (R),

∥∥F̃
,rB

∥∥
L2
s (R)

= ∥∥λ 	→ ϕ(λ)
(
1 − e−(2
rB )2λ

)M
m̃α,β,t (2

2
λ)
∥∥
L2
s (R)

≤ ∥∥λ 	→ ψ(λ)
(
1 − e−(2
rB )2λ

)M∥∥
L2
s (R)

∥∥λ 	→ ϕ(λ)m̃α,β,t (2
2
λ)

∥∥
L2
s (R)

� min{1, (2
rB)2M }(1 + |t |)s max{1, 2−
β2
αs}.
(3.14)

Combining (3.12), (3.13) and (3.14) we have

∥∥F
,rB (L)
∥∥
L2(B)→L2(S j (Bt ))

�
[
2 j (1 + |t |)rB

]−s2
Q/22−
s min{1, (2
rB)2M }(1 + |t |)s max{1, 2−
β2
αs}μ(B)1/2

= 2− js(2
rB)−(s−Q/2) min{1, (2
rB)2M }max{1, 2−
β2
αs},

as claimed.
From (3.10) and (3.11), it follows that

�1212 �
∑

(α−1)
≥
0

∑

j≥max{(α−1)
−
0, j0}
[2 j (1 + |t |)]Q(1−p/2)2− jsp(2
rB)−(s−Q/2)p

× min{1, (2
rB)2Mp}max{1, 2
α(s−β/α)p}.
(3.15)

Letting s = β/α + ε = Q(1/p − 1/2) + ε for some ε ∈ (0, 1), we rewrite (3.15) as

�1212 �
∑

(α−1)
≥
0

∑

j≥max{(α−1)
−
0, j0}
2− j pε(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q+ε)p

(3.16)

× min{1, (2
rB)2Mp}max{1, 2
αεp}
=

∑

(α−1)
≥
0

<0

∑

j≥max{(α−1)
−
0, j0}
· · · +

∑

(α−1)
≥
0

≥0

∑

j≥max{(α−1)
−
0, j0}
· · ·

=: �12121 + �12122.

For the term �12111, since 2M ≥ Q/p− Q + 1 > Q/p− Q + ε (see (3.1)), we have

�12121 �
∑

(α−1)
≥
0

<0

2− j0 pε(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q+ε)p min{1, (2
rB)2Mp}

� (1 + |t |)Q(1−p/2).

123



On Boundedness of Oscillating Multipliers on Stratified Lie Groups Page 15 of 20 222

For the term �12112, using that rB ∼ 2
0 , we have

�12122 �
∑

(α−1)
≥
0

≥0

2−[(α−1)
−
0]pε(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q+ε)p min{1, (2
rB)2Mp}2
αεp

∼
∑

(α−1)
≥
0

≥0

(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q)p min{1, (2
rB)2Mp}

� (1 + |t |)Q(1−p/2).

Thus we have proved �1212 � (1 + |t |)Q(1−p/2).
Combining the estimates of �1211 and �1212, we obtain

�121 � (1 + |t |)Q(1−p/2).

We now estimate �122. Indeed, by (3.7) we have

�122 =
∑

(α−1)
<
0

∥∥F
,rB (L)a
∥∥p
L p(G\4γ Bt )

≤
∑

(α−1)
<
0

∑

j≥ j0

∥∥F
,rB (L)a
∥∥p
L p(S j (Bt ))

.

An argument similar to that used in the estimate of �1212 [see (3.16)] yields

�122 �
∑

(α−1)
<
0

∑

j≥ j0

2− j pε(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q+ε)p

× min{1, (2
rB)2Mp}max{1, 2
αεp}
�

∑

(α−1)
<
0

(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q+ε)p

× min{1, (2
rB)2Mp}max{1, 2
αεp}
=

∑

(α−1)
<
0

<0

· · · +
∑

(α−1)
<
0

≥0

· · ·

=: �1221 + �1222.

The estimate of �1221 is easy. Indeed, since 2M > Q/p − p + ε, we have

�1221 ≤
∑

(α−1)
≤0

<0

(1 + |t |)Q(1−p/2)(2
rB)−(Q−Q/p+ε)p min{1, (2
rB)2Mp}

� (1 + |t |)Q(1−p/2).
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To estimate the term �1222, note that if (α − 1)
 < 
0 then 2(α−1)
r−1
B ∼

2(α−1)
2−
0 < 1. Hence

�1222 �
∑

(α−1)
<
0

≥0

(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q+ε)p min{1, (2
rB)2Mp}2
αεp

�
∑

(α−1)
<
0

≥0

(1 + |t |)Q(1−p/2)[2(α−1)
r−1
B

]−εp
(2
rB)−(Q/p−Q+ε)p min{1, (2
rB)2Mp}2
αεp

=
∑

(α−1)
<
0

≥0

(1 + |t |)Q(1−p/2)(2
rB)−(Q/p−Q)p min{1, (2
rB)2Mp}

� (1 + |t |)Q(1−p/2).

Therefore we have proved

�122 � (1 + |t |)Q(1−p/2).

Collecting the estimates for �121 and �122 we have

�12 � 2−kpε(1 + |t |)Q(1−p/2),

which along with (3.3) yields

�1 � (1 + |t |)Q(1−p/2).

3.2 Estimate of32

The term �2 can be handled by an argument analogous to that we used in the
estimate of �1. Indeed, setting

G
,rB (λ) := ϕ(2−2
)(r2Bλ)M P(r2Bλ)m̃α,β,t (λ),

we have

‖G
,rB‖L∞(R+) � min{(2
rB)−2M , (2
rB)2M }2−
αQ(1/p−1/2).

Also, analogously to (3.14) we have

∥∥G̃
,rB

∥∥
L2
s (R)

� min{(2
rB)−2M , (2
rB)2M }(1 + |t |)s max{1, 2−
β2
αs},

where G̃
,rB (λ) := G
,rB (22
λ). We note that the function r−2M
B b has similar proper-

ties as the atom a; more precisely,

supp(r−2M
B b) ⊂ B and

∥∥r−2M
B b

∥∥
L2(G)

≤ μ(B)1/2−1/p.
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Using these facts and Lemma 3.1, and argue similarly as in estimate of �, we obtain

�2 � (1 + |t |)Q(1−p/2).

The proof of Theorem 1.1 is thus complete.

4 Proof of Theorem 1.2

We first prove the assertion of Theorem 1.2 in the case 0 < p < 1. Indeed, we set

ψ̃(λ) := ψ(λ)λ−β/2(1 + λ)β/2, λ ∈ R+,

so that

mα,β,t (L) = ψ̃(L)m̃α,β,t (L). (4.1)

Obviously, the multiplier function ψ̃ satisfies the Mihlin-Hörmander condition

∣∣∣∣
dk

dλk
ψ̃(λ)

∣∣∣∣ ≤ Ckλ
−k, ∀λ > 0, k ∈ N0.

Hence by the spectral multiplier theorem in [31] we see that ψ̃(L) is bounded on
H p(G) for all 0 < p < ∞. This along with (4.1) and Theorem 1.1 yields that for
0 < p < 1,

‖mα,β,t f ‖H p(G) ≤C(1 + |t |)Q(1/p−1/2)‖ f ‖H p(G), t ∈ R, β/α≥Q(1/p − 1/2).
(4.2)

We now use complex interpolation of Ḟ s
p,q(G) to prove the assertion of Theorem

1.2 in the case 1 ≤ p < ∞. Indeed, fix an arbitrary q ∈ (0, 1). Then (4.2) implies

∥∥ψ(L)eit L
α/2

f
∥∥
Hq (G)

≤ C(1 + |t |)Q(1/q−1/2)
∥∥Lβ/2 f

∥∥
Hq (G)

, β = αQ(1/q − 1/2).

In view of Proposition 2.9 and the lifting property of homogeneous Triebel-Lizorkin
spaces on G (see [25,Theorem 13]), this is equivalent to that

∥∥ψ(L)eit L
α/2

f
∥∥
Ḟ0
q,2(G)

≤ C(1 + |t |)Q(1/q−1/2)‖ f ‖
Ḟβ
q,2(G)

, β = αQ(1/q − 1/2).

(4.3)
On the other hand, by the spectral theory, we have

∥∥ψ(L)eit L
α/2

f
∥∥
L2(G)

≤ C‖ f ‖L2(G),

which implies, by Proposition 2.9 and Remark 2.3,

∥∥ψ(L)eit L
α/2

f
∥∥
Ḟ0
2,2(G)

≤ C‖ f ‖Ḟ0
2,2(G). (4.4)
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Let p ∈ (q, 2) and set θ = 2(p−q)
p(2−q)

∈ (0, 1). Then by Proposition 2.12, we have

[
Ḟ0
q,2(G), Ḟ0

2,2(G)
]
θ

= Ḟ0
p,2(G), and

[
Ḟβ
q,2(G), Ḟ0

2,2(G)]θ = Ḟ (1−θ)β
p,2 (G).

This, along with (4.3), (4.4) and the lifting property of the homogeneous Triebel-
Lizorkin spaces on G implies that

∥∥ψ(L)eit L
α/2

f
∥∥
Ḟ0
p,2(G)

≤ (1 + |t |)(1−θ)Q(1/q−1/2)‖ f ‖
Ḟ (1−θ)β
p,2 (G)

∼ (1 + |t |)(1−θ)Q(1/q−1/2)
∥∥L(1−θ)β/2 f

∥∥
Ḟ0
p,2(G)

= (1 + |t |)Q(1/p−1/2)
∥∥LαQ(1/p−1/2)/2 f

∥∥
Ḟ0
p,2(G)

.

Hence

∥∥ψ(L)L−αQ(1/p−1/2)/2eit L
α/2

f
∥∥
Ḟ0
p,2(G)

≤ (1 + |t |)Q(1/p−1/2)‖ f ‖Ḟ0
p,2(G), ∀p ∈ (q, 2).

In particular, by Proposition 2.9 and Remark 2.3, this implies

∥∥ψ(L)L−αQ/4eit L
α/2

f
∥∥
H1(G)

≤ (1 + |t |)Q/2‖ f ‖H1(G)

and

∥∥ψ(L)L−αQ(1/p−1/2)/2eit L
α/2

f
∥∥
L p(G)

≤ (1 + |t |)Q(1/p−1/2)‖ f ‖L p(G), 1 < p < 2.

By duality, we also have

∥∥ψ(L)L−αQ(1/2−1/p)/2eit L
α/2

f
∥∥
L p(G)

≤ (1+|t |)Q(1/2−1/p)‖ f ‖L p(G), 2< p< ∞.

This completes our proof of Theorem 1.2.
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