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Abstract
In this paper, the Lipschitz clustering property of a metric space refers to the existence
of Lipschitz retractions between its finite subset spaces. Obstructions to this property
can be either topological or geometric features of the space. We prove that uniformly
disconnected spaces have the Lipschitz clustering property, while for some connected
spaces, the lack of sufficiently short connecting curves turns out to be an obstruction.
This property is shown to be invariant under quasihomogeneous maps, but not under
quasisymmetric ones.
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1 Introduction

A metric space X can be viewed as the first member of an infinite sequence of nested
metric spaces (X(n),�), n = 1, 2, . . . where the elements of X(n) are subsets of X
with at most n elements, and� is the Hausdorff metric. The topology and geometry of
X(n) can be difficult to grasp even for simple spaces X , e.g., [4, 7, 8, 26]. This paper
will show how the relations between the finite subset spaces X(n) reflect the cluster
tendency of X .

The detection of clusters in a finite subset of a metric space is an important part of
statistical data analysis, and its solution is usually sought in the form of an algorithm.
Our approach is different in that we treat the problem as a purely mathematical one,
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focusing on the existence of a Lipschitz continuous map R : X(n) → X(k), k < n,
such that R acts as the identity on X(k). If such R exists, the elements of R(A) can
be interpreted as centers of (at most k) clusters of a set A ∈ X(n). Each point x ∈ A
can be assigned to a cluster based on which point ofR(A) is nearest to x . Among all
metric spaces, those that satisfy the ultrametric inequality (4) are exceptionally well
suited for clustering [12, 25]. The first of our main results, Theorem 1, shows that
the same holds when cluster tendency of X is quantified by the Lipschitz constants of
retractions R : X(n) → X(k).

Section 4 concerns the existence of Lipschitz or Hölder continuous retractions for
subsets of R. It simplifies and extends some of the results in [20]. Every additive
subgroup G ⊂ R supports Lipschitz retractions of G(n) (Corollary 2). On the other
hand, there exist subsets ofRwith Hölder continuous retractions only (Proposition 3).
In Corollary 3 we will see that a Lipschitz retraction X(n) → X(k) does not always
factor through retractions between intermediate finite subset spaces.

A metric space X that supports Lipschitz retractions X(n) → X(k) for all n >

k ≥ 1 is said to have the Lipschitz Clustering Property (LCP). Section 5 relates the
LCP to a better understood class of metric spaces: quasiconvex ones, where any two
points x, y can be joined by a curve of length comparable to the distance between x
and y. Our second main result, Theorem 3, shows that an LCP space that contains a
bi-Lipschitz image of a line segment must be locally quasiconvex. On the other hand,
it is possible for a metric space to have the LCP without containing any rectifiable
curves (Example 4).

Section 6 concerns the invariance of theLCPunder certain transformations ofmetric
spaces: quasisymmetric and quasihomogeneous maps, products, disjoint unions, etc.
The paper concludes with a list of open questions in Sect. 7.

2 Definitions and Preliminary Results

When A is a finite set, |A| denotes its number of elements. Given a metric space X
and a positive integer n, let X(n) = {A ⊂ X : 1 ≤ |A| ≤ n}. The space X(n) is called
the nth finite subset space of X (other names, such as “symmetric product”, appear in
the literature). It is a metric space with respect to the Hausdorff metric

�(A, B) = max

(
sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)

)
. (1)

Sometimeswewrite�X instead of� to disambiguate the underlyingmetric space. The
notation dist means the infimal distance dist(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.

The natural embeddings X = X(1) ⊂ X(2) ⊂ · · · are isometric with respect to �,
which allows us to consider X(k) as a subset of X(n) when k < n.

If Y ⊂ X , a map R : X → Y is a retraction if its restriction to Y is the identity
map. A set Y for which such R exists is a retract of X . In the context of geometric
embeddings of metric spaces, it is desirable for the range of an embedding to be a
Lipschitz retract of the ambient space [23].
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A map f : X → Y is called Lipschitz if there is a number L ≥ 0 such that
dY ( f (x), f (x ′)) ≤ LdX (x, x ′) for all x, x ′ ∈ X . We sometimes emphasize the value
of L by saying that f is L-Lipschitz. The least of such numbers L is denoted by
Lip( f ) and is called the Lipschitz constant of f . A map f is called L-bi-Lipschitz if
L−1dX (x, x ′) ≤ dY ( f (x), f (x ′)) ≤ LdX (x, x ′) for all x, x ′ ∈ X .

Definition 1 Ametric space X has the Lipschitz Clustering Property (LCP) if for every
n there exists a Lipschitz retractionRn from X(n) onto X(n − 1).

Definition 1 implies, via composition of mapsRn , the existence of Lipschitz retrac-

tions X(n)
onto−−→ X(k) for any n > k ≥ 1. The class of LCP spaces includes Euclidean

and Hilbert spaces [21] and, more generally, Hadamard spaces [6]. It does not include
the circle S1 [3,Proposition 2.2] or any space that retracts onto a circle.

Definition 2 A metric space (X , d) is quasiconvex if there exists a constant C such
that any two points x, y ∈ X can be joined by a curve of length at most C d(x, y).

Although Definitions 1 and 2 do not look similar, they have something in common:
both properties are inherited by Lipschitz retracts of the space. A stronger connection
between them will be established in §5.

Definition 3 The minimum separation function δn : X(n) → [0,∞) is defined as
follows: δn(A) = 0 if |A| < n, and δn(A) = min{dX (a, b) : a, b ∈ A, a 	= b} if
|A| = n.

It is easy to see that δn is a 2-Lipschitz functionwhichvanishes precisely on X(n−1).
Moreover, we have [3,Lemma 3.1]:

1

2
δn(A) ≤ inf{�(A, B) : B ∈ X(n − 1)} ≤ δn(A). (2)

The relevance of δn to Lipschitz clustering is indicated by the following facts.

Lemma 1 [3,Lemma 3.2] IfR : X(n) → X(n − 1) is an L-Lipschitz retraction, then
for every A ∈ X(n) we have

�(R(A), A) ≤ (L + 1)δn(A). (3)

Lemma 2 [2,Lemma 2.5] If A, B ∈ X(n) and max(δn(A), δn(B)) > 2�(A, B), then
there exists a bijection φ : A → B such that dX (a, φ(a)) ≤ �(A, B) for all a ∈ A.

3 Ultrametrics and Uniformly Disconnected Spaces

A metric space (X , d) is ultrametric if

d(x, y) ≤ max(d(x, z), d(y, z)) for all x, y, z ∈ X . (4)
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A metric space (X , d) is uniformly disconnected if there exists a constant c > 0
such that any finite sequence x0, . . . , xn in X satisfies

max
1≤k≤n

d(xk, xk−1) ≥ c d(x0, xn). (5)

Uniformly disconnected spaces were introduced by David and Semmes in
[10,Chapter 15] with a different but equivalent definition; see also Section 14.24 in
[16]. A metric space (X , d) is uniformly disconnected if and only if there exists an
ultrametric ρ on X such that the ratio d/ρ is bounded between two positive constants
[10,Proposition 15.7].

Theorem 1 Let (X , d) be an ultrametric space. For any n > m ≥ 1 and any L > 1
there exists a retraction R : X(n) → X(m) with Lip(R) ≤ L. If X is compact, one
can take L = 1.

The proof of Theorem 1 is based on a proposition that covers a wider class of metric
spaces.

Proposition 1 Let (X , d) be a metric space. Suppose there exist constants L ≥ 1 and
b ∈ (0, 1) and a family of L-Lipschitz maps τk : X → X, k ∈ Z, such that for every
x, y ∈ X and every k ∈ Z we have:

d(τk(x), x) ≤ Lbk; (6)

either τk(x) = τk(y) or d(τk(x), τk(y)) ≥ L−1bk . (7)

Then for any n > m ≥ 1 there exists a retraction R : X(n) → X(m) with Lip(R) ≤
2L3b−1 + 1.

Proof Using (7) and the L-Lipschitz property of τk we obtain

d(x, y) < L−2bk 
⇒ τk(x) = τk(y). (8)

Hence for any bounded set A ⊂ X there exists k ∈ Z such that τk(A) consists of a
single point. On the other hand, (6) implies that |τk(A)| = |A| for all sufficiently large
k.

Define R : X(n) → X(m) as follows: if |A| ≤ m, then R(A) = A. Otherwise let
μ(A) = max{k : |τk(A)| ≤ m} and define R(A) = τμ(A)(A). By definition, R is a
retraction onto X(m), so it remains to check its Lipschitz property. It is convenient to
let μ(A) = ∞ when A ∈ X(m).

Given A, B ∈ X(n), consider three cases.
Case 1: μ(A) = μ(B) = ∞. This case is trivial: �(R(A),R(B)) = �(A, B).
Case 2: μ(A) = μ(B) < ∞. Let k = μ(A) and use the Lipschitz property of τk

to obtain

�(R(A),R(B)) = �(τk(A), τk(B)) ≤ L�(A, B)
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Case 3: μ(A) 	= μ(B). We may assume μ(A) < μ(B). Let k = μ(A) + 1. Since
|τk(A)| > m ≥ |τk(B)|, there exists a point a0 ∈ A such that τk(a0) /∈ τk(B). By
virtue of (8) we have d(a0, b) ≥ L−2bk for all b ∈ B. Hence

�(A, B) ≥ L−2bμ(A)+1. (9)

The assumption (6) implies that�(R(A), A) and�(R(B), B) are boundedby Lbμ(A).
Therefore,

�(R(A),R(B)) ≤ �(R(A), A) + �(R(B), B) + �(A, B)

≤ 2Lbμ(A) + �(A, B)

≤ (2L3b−1 + 1)�(A, B)

where the last step uses (9). �
Proof of Theorem 1 For k ∈ Z consider the set of all open balls B(x, 2−k) with radius
2−k and arbitrary center x ∈ X . By the ultrametric inequality (4), for any x, y ∈ X
we have either B(x, 2−k) = B(x, 2−k) or dist(B(x, 2−k), B(y, 2−k)) ≥ 2−k . Choose
a set of centers Ck such that the balls B(p, 2−k), p ∈ Ck , are disjoint and cover X .
Define τk : X → X so that τk(x) = p when x ∈ B(p, 2−k) with p ∈ Ck .

By construction, (6) and (7) hold with L = 1 and b = 1/2. To check the Lipschitz
property of τk , suppose that x ∈ B(p, 2−k) and y ∈ B(q, 2−k) where p, q ∈ Ck are
distinct. By the ultrametric inequality

d(τk(x), τk(y)) = d(p, q) ≤ max(2−k, d(x, y)) = d(x, y),

which shows that τk is 1-Lipschitz.
Proposition 1 provides a retraction R : X(n) → X(m) with Lip(R) ≤ 5. This

estimate can be improved with a metric transform as follows.
Given L > 1, choose α > 1 large enough so that Lα ≥ 5. Since the function dα

satisfies the ultrametric inequality, we can apply the preceding argument to the space
(X , dα) and obtain a retraction R : (X(n),�α) → (X(m),�α) with

�(R(A),R(B))α ≤ 5�(A, B)α for all A, B ∈ X(n).

In terms of the original metric �, we have Lip(R) ≤ 51/α ≤ L as claimed.
It remains to consider the case of compact X . For each j ∈ N we have a retraction

R j : X(n) → X(m) with Lip(R j ) ≤ 1 + 1/ j . By the Arzelà-Ascoli theorem, a
subsequence of {R j } converges to a map R : X(n) → X(m), which is easily seen to
be a 1-Lipschitz retraction. �
Corollary 1 Let (X , d) be an uniformly disconnected metric space. There is a constant
L ≥ 1 such that for any n > m ≥ 1 there exists an L-Lipschitz retractionR : X(n) →
X(m).
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Proof By [10,Proposition 15.7] the space X supports an ultrametric ρ such that
C−1d ≤ ρ ≤ d for some C ≥ 1. By Theorem 1 the finite subset spaces of (X , ρ)

admit 2-Lipschitz retractions. In terms of the original metric d these retractions are
L-Lipschitz with L = 2C2. �

4 Linear Sets

The availability of total order on R allows for a more precise version of Lemma 2.

Lemma 3 If A, B ∈ R(n) and max(δn(A), δn(B)) > 2�(A, B), then there exists
an order-preserving (i.e., increasing) bijection φ : A → B such that |a − φ(a)| ≤
�(A, B) for all a ∈ A. Moreover,

�(A \ {min A}, B \ {min B}) ≤ �(A, B). (10)

Proof Without loss of generality δn(A) > 2�(A, B). Let φ be as in Lemma 2. Given
a1, a2 ∈ A with a1 < a2, let bk = φ(ak) for k = 1, 2. By the triangle inequality we
have

b2 − b1 ≥ (a2 − a1) − |a1 − b1| − |a2 − b2| ≥ δn(A) − 2�(A, B) > 0.

proving that φ is order-preserving. Hence the restriction of φ to A \ {min A} is a
bijection onto B \ {min B}, which implies (10). �

The fact that the real lineR has theLCP is known [20,Lemma4.2]. But Proposition 2
also gives a simple explicit formula for Lipschitz retractions on the line, which we
will use later.

Proposition 2 Given a set A ∈ R(n), n ≥ 2, define sA(x) = |A∩(−∞, x)| for x ∈ R.
The map R, defined by

R(A) = {x − δn(A)sA(x) : x ∈ A}, (11)

is a (4n − 3)-Lipschitz retraction of R(n) onto R(n − 1).

Proof If A ∈ R(n − 1), then δn(A) = 0 and therefore R(A) = A. If A ∈ R(n) has n
elements a1 < · · · < an , then ak+1 − ak = δn(A) for some k ∈ {1, . . . , n − 1}. This
implies ak+1 − δn(A)sA(ak+1) = ak − δn(A)sA(ak), henceR(A) ∈ R(n − 1). Thus,
R is a retraction onto R(n − 1).

By the definition of sA we have sA(x) ≤ n − 1 for all x ∈ A, and therefore

�(R(A), A) ≤ (n − 1)δn(A). (12)

By the triangle inequality, for all A, B ∈ R(n) we have

�(R(A),R(B)) ≤ �(A, B) + (n − 1)(δn(A) + δn(B)). (13)
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If δn(A)+δn(B) ≤ 4�(A, B), then (13) implies�(R(A),R(B)) ≤ (4n−3)�(A, B)

as claimed.
Suppose δn(A)+δn(B) > 4�(A, B). By Lemma 3 there exists an order-preserving

bijection φ : A → B. Note that sB(φ(x)) = sA(x) for all x ∈ A.
Given a point z ∈ R(A), write it as z = x − δn(A)sA(x) for some x ∈ A, and let

w = φ(x) − δn(B)sB(φ(x)) ∈ R(B). Then

|z − w| ≤ |x − φ(x)| + |δn(A) − δn(B)|sA(x) ≤ �(A, B) + 2(n − 1)�(A, B),

where the last step uses Lip(δn) ≤ 2. As z runs through the points of R(A), the
corresponding point w runs through all points of R(B) because φ is a bijection. It
follows that �(R(A),R(B)) ≤ (2n − 1)�(A, B) in this case. �

Corollary 2 Every additive subgroupG ofRhas theLCP.Furthermore, the intersection
of G with any interval has the LCP as well.

Proof LetR be as in (11). If A ∈ G(n), then δn(A) ∈ G, henceR(A) ⊂ G. Moreover,
minR(A) = min A and maxR(A) ≤ max A, which means that the subsets of any
interval do not move out of the interval under R. �

Remark 1 The retraction (11) moves the points of A toward min A. One could replace
sA with the sign-counting function σA(x) = 1

2

∑
y∈A sign(y − x) which results in a

retraction that moves the points of A toward the median of A. However, this map does
not preserve additive subgroups because σA is not integer-valued.

So far we saw that the LCP holds both for connected subsets ofR and for uniformly
disconnected ones. The following result shows that it also holds for compact subsets
with finitely many components.

Theorem 2 Suppose that X ⊂ R is a union of disjoint compact intervals Ik , k =
1, . . . ,m, some of which may degenerate into points. Then, X has the LCP.

Proof Let M = max1≤k≤m diam Ik . Fix n ≥ 2 and letR : R(n) → R(n − 1) be as in
Proposition 2.

After applying a suitable bi-Lipschitz transformation F : R → R, we can achieve
dist(Ik, I j ) ≥ 3nM whenever j 	= k. To be specific, F could be a piecewise-linear
function that does not change the diameter of any interval Ik but increases the distances
between them.

Let X̃ = {x ∈ R : dist(x, X) ≤ nM}. Each gap between the components of X̃ is
at least a third of the corresponding gap between the components of X . Therefore, the
nearest-point projection ρ : X̃ → X , which sends each point of X̃ to the nearest point
of X , is 3-Lipschitz.

We partition X(n) as X(n) = U ∪ V whereU consists of all A ∈ X(n) \ X(n − 1)
such that |A ∩ Ik | ≤ 1 for all k = 1, . . . ,m, and V = X(n) \ U . In other words,
we have A ∈ U if and only if A intersects n of the intervals I1, . . . , Im . The set U is
empty when n > m.
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Define RX : X(n) → X(n − 1) as follows.

RX (A) =
{
A \ {min A} if A ∈ U

ρ(R(A)) if A ∈ V ,
(14)

Since ρ is only defined on X̃ , we must show that R(A) ⊂ X̃ for A ∈ V . Such
sets have δn(A) ≤ M since either |A| < n or two of the points of A lie in the same
component of X . From (12) we have �(R(A), A) ≤ (n − 1)M , hence R(A) ⊂ X̃ .
The Lipschitz continuity of ρ and R implies that RX is Lipschitz on V .

The setU consists of
(m
n

)
connected components, based on which n of the intervals

I1, . . . , Im contain a point of A. The distance (in the metric �) between any two
components of U is at least 3nM , because of the gaps between the intervals Ik . For
the same reason, �(A, B) ≥ 3nM whenever A ∈ U and B ∈ V .

Let A and B be two sets in the same connected component of U , which means
they intersect the same collection of intervals Ik . Since the length of each interval is
bounded by M , we have �(A, B) ≤ M . Furthermore, the gaps between the intervals
force δn(A) ≥ 3nM . Inequality (10) shows thatRX is 1-Lipschitz on each connected
component of U . This completes the proof. �

The map A �→ A \ {min A} merits further consideration. It is not continuous on
R(n)when n ≥ 3, as the example of sets {0, ε, 1} and {0, 1, 1+ε} shows: theHausdorff
distance between these sets is ε, but it increases to 1 − ε when the minimal elements
are removed. However, it provides continuous retractions of X(n) for some linear sets
X to which Theorem 2 does not apply. One such example is given below.

Proposition 3 Let X = {0} ∪ {k−1 : k ∈ N}. Fix n ≥ 2. For A ∈ X(n) let R(A) =
A \ {min A} if |A| = n and R(A) = A if |A| < n. Then:

(a) R is a Hölder continuous retraction of X(n) onto X(n−1), with Hölder exponent
1/2;

(b) X does not have the LCP.

Proof (a) Consider a set A ∈ X(n) of the form A = {a1, . . . , an} where a1 < a2 <

· · · < an . We have �(R(A), A) = a2 − a1. Also,

δn(A) = min{ak+1 − ak : k = 1, . . . , n − 1} ≥ min(a2 − a1, a
2
2),

because |a − b| ≥ ab for any two points a, b ∈ X . Thus

�(R(A), A) ≤ √
δn(A). (15)

Recalling (2) we conclude that

�(R(A),R(B)) ≤ �(A, B) + √
2�(A, B) ≤ 3

√
�(A, B) if |A| = n and |B| < n.

It remains to consider the case of two sets A, B ∈ X(n) \ X(n − 1). If
max(δn(A), δn(B)) > 2�(A, B), then �(R(A),R(B)) ≤ �(A, B) by Lemma 3.
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Assume max(δn(A), δn(B)) ≤ 2�(A, B). By (15) we have

�(R(A),R(B)) ≤ �(A, B) + √
δn(A) + √

δn(B)

≤ �(A, B) + 2
√
2�(A, B) ≤ 4

√
�(A, B).

This completes the proof of (a).
(b) If t ∈ X \ {0, 1}, then the neighbors of t in X are t/(1 + t) and t/(1 − t). The

distances from t to its neighbors are t2/(1 + t) and t2/(1 − t), respectively. Hence

�(A, B) ≥ t2/2 if t ∈ A � B, (16)

where A, B ∈ X(n) and A � B = (A \ B) ∪ (B \ A).
Suppose that R : X(4) → X(3) is an L-Lipschitz retraction. Choose x, y, z ∈ X

such that

0 < 2x < y < z, 2Lx2 < y2, and 2(L + 1)(z − y) < x . (17)

For example, one can take x = 1/k3, y = 1/(k2 + 1), and z = 1/k2 where k ∈ N is
large enough that (17) is satisfied.

Let A = {0, y, z} and B = {0, x, y, z}. Since the distance between consecutive
elements of X ∩ [0, x] is less than x2, there is a finite sequence of sets A j ∈ X(4)
that begins with A1 = A and ends with AJ = B, such that �(A j , A j+1) ≤ x2 for
all j = 1, . . . , J − 1. It follows that �(R(A j ),R(A j+1)) ≤ Lx2 < y2/2 for all j .
SinceR(A1) = A contains y, inequality (16) implies y ∈ R(A j ) for all j . The same
argument shows that z ∈ R(A j ) for all j . Thus, we have R(B) = {u, y, z} for some
u ∈ X .

The setR(B)∩[0, 2x] has at most one point because z > y > 2x . Since B contains
both 0 and x , it follows that �(R(B), B) ≥ x/2. On the other hand, Lemma 1 yields

�(R(B), B) ≤ (L + 1)δ4(B) ≤ (L + 1)(z − y) < x/2,

where the last step uses (17). This contradiction completes the proof. �
The proof of Proposition 3 shows the non-existence of a Lipschitz retraction from

X(4) to X(3). In contrast, for every subset X ⊂ R and any n ≥ 2 one has 1-Lipschitz
retractions A �→ {max(A)} from X(n) to X(1), and A �→ {min(A),max(A)} from
X(n) to X(2). The exceptional nature of retractions onto X(1) and X(2) was also
observed in [9] in the context of finite subsets of trees.

Corollary 3 A Lipschitz retraction X(n) → X(k) does not necessarily factor into a
chain of retractions

X(n) → X(n − 1) → · · · → X(k + 1) → X(k).

Proof Let X be the set in Proposition 3. The map X(4) → X(2) sending every set A
to {min A,max A} does not factor through a retraction onto X(3), since none exist. �
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Proposition 3 demonstrates that Hölder continuous clustering may be possible in
some settingswhereLipschitz clustering is unavailable.As another possible instance of
this phenomenon, Akofor [2] proved that for every normed space X there are locally
Hölder retractions X(n) → X(n − 1), while the existence of Lipschitz retractions
remains unknown [21,Question 3.4].

5 Quasiconvexity of LCP Spaces

The main result of this section gives a strong necessary condition for the Lipschitz
Clustering Property. It exhibits a dichotomy for LCP spaces: they are either well
connected by rectifiable curves, or do not admit any bi-Lipschitzmaps froman interval.
This result will be used to show that the LCP is not inherited by products or disjoint
unions.

Theorem 3 Suppose that a metric space (X , d) supports an L-Lipschitz retraction
R : X(4) → X(3) and the interval [0, 1] admits an L-bi-Lipschitz embedding into
X. Then there exist positive constants r and M, depending only on L, such that any
two points p, q ∈ X with d(p, q) ≤ r can be connected by a curve of length at most
Md(p, q).

The proof of Theorem 3 is preceded by several lemmas.

Lemma 4 [20,Lemma 4.3] Let Z and X be metric spaces with D := diam Z < ∞.
Suppose that f : Z → X(n) is an L-Lipschitz function such that

diam f (z0) > 3(n − 1)LD for some z0 ∈ Z . (18)

Then, there are L-Lipschitz functions g, h : Z → X(n−1) such that f (z) = g(z)∪h(z)
for all z ∈ Z. Specifically, one can let

g(z) = {x ∈ f (z) : dist(x, E) ≤ LD};
h(z) = {x ∈ f (z) : dist(x, f (z0) \ E) ≤ LD} = f (z) \ g(z),

(19)

where E can be any subset of f (z0) that satisfies diam E ≤ 3LD(|E | − 1) and is a
maximal such subset with respect to containment.

Lemma 4 can be refined when the domain Z is an interval and the cardinality of
f (z) does not depend on z.

Lemma 5 Let X be a metric space. Let I ⊂ R be an interval, possibly unbounded.
Any L-Lipschitz map f : I → X(n) \ X(n − 1) can be decomposed as

f (t) = { f1(t), . . . , fn(t)}, (20)

where each function fk : I → X is L-Lipschitz.
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Proof The minimal separation function δn( f (t)) is continuous and positive on I .
Therefore, for every compact subinterval J there exists δ > 0 such that δn( f (t)) ≥ δ

for all t ∈ J . Let ε = δ/(3L(n − 1)). On any subinterval S ⊂ J with diam S < ε one
can apply Lemma 4 repeatedly to obtain a decomposition of the form (20), because
any subset of f (t) with more than one element has diameter at least δ.

Let J = ⋃N
i=1[ti−1, ti ] be a partition of J into subintervals of length less than ε.

We have an L-Lipschitz decomposition for each i ,

f (t) = { f i1 (t), . . . , f in (t)}, t ∈ [ti−1, ti ].

Since { f i1 (ti ), . . . , f in (ti )} = { f i+1
1 (ti ), . . . , f i+1

n (ti )}, we can relabel the functions to
achieve f ik (ti ) = f i+1

k (ti ) for all k = 1, . . . , n and all i = 1, . . . N −1. This produces
an L-Lipschitz decomposition of f on J .

Since I can be partitioned into countably many compact subintervals, the above
process of concatenation produces an L-Lipschitz decomposition of f on all of I . �
Lemma 6 If a set {p, q} ⊂ X is connected to some singleton {c} by a curve of length

 in X(2), then the points p and q are connected in X by a curve of length at most 2
.

Proof We may assume p 	= q. Let � : [0, 
] → X(2) be a curve with �(0) =
{p, q} and �(
) = {c}, parametrized by arclength. Since δ2 : X(2) → [0,∞) is a
continuous function, the set S = {t ∈ [0, 
] : δ2(�(t)) = 0} is closed. Let t0 = inf S.
Since the restriction of � to [0, t0) takes values at X(2) \ X(1), Lemma 5 provides a
decomposition �(t) = {γ1(t), γ2(t)} where both γ1 and γ2 are 1-Lipschitz on [0, t0).
The curves γ1 and γ2 have the same limit as t → t0− because |�(t0)| = 1. Thus, their
concatenation is a curve from p to q of length at most 2t0 ≤ 2
. �
Proof of Theorem 3 Byassumption there exists an L-bi-Lipschitz embedding� : [0, 1] →
X . Let

r = 1

48(L + 1)5
. (21)

Fix distinct points p, q with d(p, q) ≤ r and let E = {p, q}. By the triangle
inequality there exists t0 ∈ {0, 1} such that d(�(t0), p) ≥ 1/(2L). We may assume
t0 = 0 (otherwise, reverse the parametrization of �). Let I = [0, D] where D =
1/(24L3). Observe that

1

24L4 ≤ diam �(I ) ≤ 1

24L2 , (22)

and therefore,

dist(�(I ), E) ≥ 1

2L
− 1

24L2 ≥ 11

24L
. (23)

Define f : I → X(3) by f (t) = R({�(t), �(0), p, q}). By construction, f is
L2-Lipschitz.
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Let us check that the assumptions of Lemma 4 are satisfied for the map f with
domain Z = I of diameter D = 1/(24L3), distinguished point z0 = 0, Lipschitz
constant L2, and with the choice E = {p, q} ⊂ f (0). Indeed,

diam f (0) = diam{�(0), p, q} ≥ 1

2L
= 12L2D,

while

diam E = d(p, q) ≤ r <
1

8L
= 3L2D.

The maximality assumption of Lemma 4 holds because E is a maximal proper subset
of f (0).

Lemma 4 provides L2-Lipschitzmaps g, h : I → X(2) such that f (t) = g(t)∪h(t)
for all t ∈ I , and, moreover,

g(t) = {x ∈ f (t) : dist(x, E) ≤ L2D}. (24)

In particular, g(0) = E = {p, q} because f (0) = {�(0), p, q}.
Claim: There exists T ∈ [0, D] such that

|g(T )| = 1 and T ≤ 2(L + 1)2d(p, q). (25)

Assuming this claim for now, let us show how it implies the statement of Theorem 3.
Since g is L2-Lipschitz, the set g(0) = {p, q} is connected to the singleton g(T ) by a
curve of length at most L2T in X(2). By Lemma 6 there is a curve of length at most
2L2T connecting p to q in X . By virtue of (25) the statement of Theorem 3 holds
with M = 4L2(L + 1)2.

It remains to prove (25). Fix t ∈ [0, D] such that g(t) contains more than one point.
Since g(t) and h(t) are disjoint and their union has at most three elements, it follows
that h(t) is a singleton.

Consider the set A := {�(t), �(0), p, q}. By Lemma 1, the Hausdorff distance
between A and f (t) = R(A) can be estimated as

�( f (t), A) ≤ (L + 1)δ4(A) ≤ (L + 1)d(p, q). (26)

But we can also estimate �( f (t), A) from below. Indeed, (23) and (24) imply that

dist(�(I ), g(t)) ≥ dist(�(I ), E) − L2D ≥ 11

24L
− 1

24L
= 5

12L
. (27)

The fact that h(t) is a singleton implies that for some s ∈ {0, t}

dist(�(s), h(t)) ≥ 1

2
d(�(0), �(t)) ≥ t

2L
. (28)
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Since A contains both �(0) and �(t), it follows from (27) and (28) that

�( f (t), A) ≥ dist( f (t), �(s)) ≥ min

(
5

12L
,

t

2L

)
= t

2L
, (29)

where the last step is based on t ≤ D ≤ 1/24.
From (26) and (29) we obtain

t

2L
≤ (L + 1)d(p, q). (30)

By (30), we have |g(T )| = 1 for any T such that 2L(L + 1)d(p, q) < T ≤ D. To see
that this interval is nonempty, recall (21) which implies

2L(L + 1)d(p, q) ≤ 2L(L + 1)

48(L + 1)5
<

1

24L3 = D.

This completes the proof of Claim (25) and of the theorem. �
Example 1 For every ε > 0 the set X = [−1, 0] ∪ [ε, 1] has the LCP by Theorem 2.
However, theLipschitz constant of any retraction of X(4)onto X(3) cannot be bounded
by a constant L independent of ε. Indeed, if this was possible, then by Theorem 3 we
would have r > 0, independent of ε, such that any twopoints p, q ∈ X with |p−q| ≤ r
can be connected by a curve in X . But this is false when ε ≤ r .

Under the stronger hypothesis of containing bi-Lipschitz images of long line seg-
ments, the conclusion of Theorem 3 can be strengthened to global quasiconvexity.

Corollary 4 Suppose that a metric space X supports an L-Lipschitz retraction
R : X(4) → X(3) and for every T > 0 the interval [0, T ] admits an L-bi-Lipschitz
embedding into X. Then X is quasiconvex.

Proof Let Xε be the rescaling of metric space (X , d) by the factor ε > 0; that
is, the metric on Xε is εd. The retraction R : X(4) → X(3) induces a retraction
Xε(4) → Xε(3) with the same Lipschitz constant. Also, an L-bi-Lipschitz embed-
ding� : [0, ε−1] → X induces an L-bi-Lipschitz embedding of [0, 1] into Xε , namely
�ε(t) = �(ε−1t).

Applying Theorem 3 to Xε we find that there exist M and r , which depend only on
L , such that any two points p, q ∈ Xε with εd(p, q) ≤ r can be joined by a curve γ

of length at most Mεd(p, q) in Xε .
Given any two points p, q ∈ X , we can choose ε > 0 such that εd(p, q) ≤ r . The

previous paragraph provides a curve connecting p to q in X , the length of which is at
most Md(p, q) in the metric of X . �
Example 2 Let X = R × Z, considered as a subset of R2 with the restriction metric.
Since X contains lines but is not a connected space, by Corollary 4 it does not have
the LCP. Thus, additive subgroups of R2 do not have the LCP in general, in contrast
to Corollary 2.
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Example 3 Consider the parabola P = {(x, y) ∈ R
2 : y = x2} with the restriction

metric inherited fromR
2. The set P contains 2-bi-Lipschitz images of arbitrarily long

line segments. Since P is not quasiconvex, by Corollary 4 it does not have the LCP.

6 Transformations of Metric Spaces

This section concerns the invariance of the Lipschitz Clustering Property under certain

transformations of metric spaces. Since any bi-Lipschitz map f : X onto−−→ Y induces
a bi-Lipschitz map of X(n) onto Y (n), it follows that LCP is bi-Lipschitz invariant.
The following lemma extends this observation.

Lemma 7 [3,Lemma 3.3] Suppose that X and Y are metric spaces and there exist
Lipschitz maps f : X → Y and g : Y → X with f ◦ g = idY . If X has the LCP, then
so does Y .

For example, Lemma 7 applies when Y ⊂ X and g : Y → X is the inclusion map.
In this case, the existence of a Lipschitz map f with f ◦ g = idY means precisely that
Y is a Lipschitz retract of X .

The Lipschitz retracts of R
d have a transparent characterization when d = 2

[17,Theorem 2.11] and a less transparent one for d > 2 ( [19,Theorem 3.4] and
[17,Theorem 2.12]). All these retracts have the LCP by Lemma 7. Example 4 will
show that the converse is not true even for connected sets: a connected LCP subset of
R
d need not be a Lipschitz retract of Rd .
The class of quasisymmetric maps in metric spaces [16,Chapters 10–12] contains

bi-Lipschitz class as a proper subset.

Definition 4 A homeomorphism f : X
onto−−→ Y is quasisymmetric if there exists a

homeomorphism η : [0,∞) → [0,∞) such that for any three distinct points x, u, v

in X we have

dY ( f (x), f (u))

dY ( f (x), f (v))
≤ η

(
dX (x, u)

dX (x, v)

)
.

UsingTheorem3we can show that the Lipschitz Clustering Property is not invariant
under quasisymmetric maps. Indeed, a quasisymmetric image of R may be a curve
� that contains both a line segment and an unrectifiable arc such as the von Koch
snowflake. This follows from Ahlfors’ characterization of such images in terms of the
three-point “bounded turning” condition [1,§IV.D]. By Theorem 3, � does not have
the LCP.

The following lemma shows the LCP is preserved by certain transformations of the
metric d, such as the snowflake transform d �→ dα , 0 < α < 1. Note that the identity
map from (X , d) onto (X , dα) is quasisymmetric but not bi-Lipschitz.

Lemma 8 Suppose (X , d) is a metric space with the LCP, and ϕ : [0,∞) → [0,∞) is
a nondecreasing function such that ϕ ◦ d is a metric on X. If, in addition, there exists
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a constant M such that

ϕ(2t) ≤ Mϕ(t) for all t ∈ [0,∞), (31)

then (X , ϕ ◦ d) has the LCP.

Proof Consider a retraction R : X(n) → X(n − 1) that is L-Lipschitz with respect
to the Hausdorff metric � based on d. The doubling property (31) implies that there
is a constant L ′ such that ϕ(Lt) ≤ L ′ϕ(t) for all t ∈ [0,∞). Therefore, for any
A, B ∈ X(n) we have

ϕ(�(R(A),R(B))) ≤ ϕ(L�(A, B)) ≤ L ′ϕ(�(A, B)),

which proves the claim. �
Example 4 Fixα ∈ (1/2, 1). By [5,Proposition 4.4] there exists amap f : [0, 1] → R

2

such that

C−1|x − y|α ≤ | f (x) − f (y)| ≤ C |x − y|α, x, y ∈ [0, 1],

for some constant C . Lemma 8 shows that the snowflake-type curve � = f ([0, 1])
has the LCP. On the other hand, � contains no rectifiable curves and therefore is not
a quasiconvex set. Consequently, it is not a Lipschitz retract of R2.

Since Lipschitz maps generally behave well with respect to Cartesian products,
one may expect the Lipschitz Clustering Property to be inherited by such products.
However, Rickman’s rug, one of standard examples of a fractal surface ([11, 14], or
[24,p. 65]), provides a counterexample. By definition, a Rickman’s rug is the Cartesian
product of a line segment I with the “snowflake” Iα which is the set I equipped with
the metric |x − y|α , 0 < α < 1. Both factors I and Iα have the LCP by Theorem 2
and Lemma 8. However, Theorem 3 will show that the product I × Iα does not have
the LCP, since it contains some line segments without being locally connected by
rectifiable curves.

The argument from the previous paragraph applies to the disjoint union X = I  Iα
as well. It follows that the disjoint union of two compact LCP spaces need not have
the LCP.

The Lipschitz Clustering Property is preserved by quasihomogeneous maps, which
form an intermediate class between bi-Lipschitz and quasisymmetric maps.

Definition 5 [13, 15, 18] A homeomorphism f : X onto−−→ Y is quasihomogeneous if
there exists a homeomorphism η : [0,∞) → [0,∞) such that for any four distinct
points x1, . . . , x4 in X we have

dY (y1, y2)

dY (y3, y4)
≤ η

(
dX (x1, x2)

dX (x3, x4)

)
(32)

where yk = f (xk), k = 1, . . . , 4.
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Proposition 4 If f : X onto−−→ Y is a quasihomogeneous map and X has the LCP, then
Y has the LCP as well.

Proof Property (32) can be equivalently stated as follows: if t > 0 and dX (x1, x2) ≤
tdX (x3, x4), then dY (y1, y2) ≤ η(t)dY (y3, y4).

Our first goal is to prove that if A1, . . . , A4 ∈ X(n) satisfy �X (A1, A2) ≤
t�X (A3, A4), then the sets Bk = f (Ak) satisfy

�Y (B1, B2) ≤ η(t)�Y (B3, B4). (33)

That is, the map X(n) → Y (n) defined by A �→ f (A) is η-quasihomogeneous. A
similar observation was made in [22,Theorem 3.4] but it was not quantified as in (33).

Because B1 and B2 are interchangeable, to prove (33) it suffices to show that
∀y1 ∈ B1 ∃y2 ∈ B2 such that

dY (y1, y2) ≤ η(t)�Y (B3, B4). (34)

Given y1 ∈ B1, let x1 = f −1(y1) and choose x2 ∈ A2 so that dX (x1, x2) ≤
�X (A1, A2). We claim that the point y2 := f (x2) satisfies (34).

After exchanging the roles of A3 and A4 if necessary, we can find x3 ∈ A3 such that
dX (x3, x4) ≥ �X (A3, A4) for all x4 ∈ A4. Thus, with the above choice of x1, x2, x3
we have

dX (x1, x2) ≤ tdX (x3, x4), ∀x4 ∈ A4.

The quasihomogeneity of f implies

dY (y1, y2) ≤ η(t)dY (y3, y4), ∀y4 ∈ B4,

where y3 = f (x3). Taking the minimum over y4 ∈ B4 we obtain (34). This completes
the proof of (33).

By assumption, there exists a Lipschitz retraction R : X(n) → X(n − 1). For any
sets A, A′ ∈ X(n) we have �X (R(A),R(A′)) ≤ L�X (A, A′) where L = Lip(R).
Inequality (33) yields

�Y ( f (R(A)), f (R(A′))) ≤ η(L)�Y ( f (A), f (A′)).

Therefore, the map R̃ : Y (n) → Y (n − 1), defined by R̃(B) = f (R( f −1(B))), is
η(L)-Lipschitz. It is easy to see that R̃ is a retraction onto Y (n − 1). �

For example, Proposition 4 shows that every quasihomogeneous image ofEuclidean
space Rd has the LCP. Freeman [13] proved that an unbounded Jordan curve � in the
plane is a quasihomogeneous image ofR if and only if� is bi-Lipschitz homogeneous,
meaning that there exists L such that for any two points x, y ∈ � there exists an L-
bi-Lipschitz self homeomorphism of � sending x to y. Quasihomogeneous images of
R
2 have been described in [14].
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7 Questions and Remarks

Question 1 Is the converse of Corollary 1 true? That is, does the existence of a uni-
formly Lipschitz family of retractions X(n) → X(m) for all n > m ≥ 1 imply that
X is uniformly disconnected?

Some evidence in favor of affirmative answer is provided by Corollary 5.2 in [3]
which states that if X contains a bi-Lipschitz image of a line segment as its Lipschitz
retract, then for any family of retractionsRn : X(n) → X(n−1) the ratio n−1 LipRn

is bounded below by a positive constant.

Question 2 Does the existence of a Lipschitz retraction X(n + 1) → X(n) imply the
existence of Lipschitz retraction X(n) → X(n− 1)? Here X is a general metric space
and n ≥ 2.

Question 3 If a homeomorphic image of Rd has the LCP, is it a space of bounded
turning [16,p. 120]? Note that quasihomogeneous images of Rd have the LCP by
Proposition 4 and they are spaces of bounded turning.

Question 4 Is there a geometric description of the LCP subsets of R? Some natural
examples that are not covered by §4 are: Cantor-type sets that are not uniformly
disconnected (e.g., those of positive measure), countable sets formed by convergent
sequences (such as the set in Proposition 3), and the set of irrational numbers R \ Q.
Example 1 suggests that Cantor-type sets of positive measure do not have the LCP.
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