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Abstract
We introduce the submersion between two spray structures andpropose the submersion
technique in spray geometry. Using this technique, as well as global invariant frames
on a Lie group, we setup the general theoretical framework for homogeneous spray
geometry. We define the spray vector field η and the connection operator N for a
homogeneous spray manifold (G/H ,G) with a linear decomposition g = h + m.
These notions generalize their counter parts in homogeneous Finsler geometry. We
prove the correspondence betweenG and ηwhen the given decomposition is reductive,
and that between geodesics on (G/H ,G) and integral curves of −η. We find the
ordinary differential equations on m describing parallel translations on (G/H ,G),
and we calculate the S-curvature and Riemann curvature of (G/H ,G), generalizing
L. Huang’s curvature formulae for homogeneous Finsler manifolds.

Keywords Homogeneous Finsler metric · Homogeneous spray manifold · Invariant
frame · Parallel translation · Submersion · Spray structure

Mathematics Subject Classification 53B40 · 53C30 · 53C60

1 Introduction

1.1 Background Knowledge

In spray geometry, we concern the spray structureG on a smooth manifold M , which
is a smooth tangent vector field on T M\0 with the standard local coordinate repre-
sentationG = yi∂xi −2Gi∂yi , whereG

i = Gi (x, y) is positively 2-homogeneous for
its y-entry [34]. Many geometric notions, geodesic, (linearly and nonlinearly) parallel
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translations, Riemann curvature, S-curvature, etc., can be defined for a spray structure
[1, 34].

Spray geometry generalizes Finsler geometry. For a Finsler metric F : T M →
[0,∞) (see [2, 35] or Sect. 2.4), the induced spray structure, i.e., the geodesic spray
of F , has the coefficients

Gi = 1
4g

il([F2]xk yl yk − [F2]xl ). (1.1)

The inverse problem concerns those spray structures which can not be induced by
Finsler metrics, because they may exhibit interesting new geometric or dynamic phe-
nomena. Recently, many important examples have been found for this project [25–27,
48].

In this paper, Lie method is added to the research of spray geometry. Our goal is
to setup a general theoretical framework for homogeneous spray geometry. A spray
structure G on a smooth manifold M is called homogeneous if M admits the smooth
transitive action of a Lie groupG which preservesG, i.e., allG-actions map geodesics
to geodesics (see Sect. 5.1 formore details). Homogeneous spray geometry generalizes
homogeneous Finsler geometry [6], because the geodesic spray for a homogeneous
Finsler metric is automatically homogeneous.

Naturally a homogeneous spray manifold can be presented as (G/H ,G), in which
H is the isotropy subgroup at the origin o = eH ∈ G/H . We choose a linear decom-
position g = h + m for G/H , i.e., we have g = Lie(G) and h = Lie(H), and the
tangent space To(G/H) at o is identified with m.

1.2 Motivation and Hints

The general philosophy of homogeneous geometry is that all notions and properties
can be reduced to To(G/H) = m by G-actions. Guided by this thought, we ask

Question 1.1 Given the decomposition g = h + m, how can we use m to describe
the geodesic, parallel translations and curvatures for a homogeneous spray manifold
(G/H ,G)?

The hints for answering Question 1.1 arise from two sources.
One hint is from L. Huang’s curvature formulae in homogeneous Finsler geometry

[11–13], which need the spray vector field η : m\{0} → m and the connection operator
N : m\{0} ×m → m that he defined for a homogeneous Finsler manifold (G/H , F)

with a reductive decomposition (i.e., an Ad(H)-invariant decomposition) g = h+m.
So we see that

spray vector field and connection operator play themain roles.

If these notions can be generalized to homogeneous spray geometry, then some of L.
Huang’s homogeneous curvature formulae follow naturally.

The other hint is from the recent progress in the study of a left invariant spray
structure G on a Lie group G [39, 40]. Here the Lie group G is viewed as the coset
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space G/H = G/{e} with the unique linear decomposition g = h + m = 0 + g,
which is obviously reductive. In this context, the left invariant frame {˜Ui , ∂ui ,∀i} and
the right invariant frame {˜Vi , ∂vi ,∀i} can be defined on TG (see Sect. 2.1 in [39] or
Sect. 4.1). Using these frames, the spray vector field η and connection operator N
can be defined for (G,G), and the S-curvature formula, the Riemann curvature for-
mula, etc., for (G,G), can be globally presented. If we use η and N to translate these
curvature formulae, we see again L. Huang’s formulae in [11]. By left translations,
geodesics and parallel translations along smooth curves on (G,G) are corresponded
to integral curves of −η and some ordinary differential equations (i.e., ODEs in short)
on TeG = g respectively. See [39, 40] or Sect. 4 for the precise statements. To sum-
marize, Question 1.1 can be answered for a left invariant spray structure, using the
technique of global invariant frames. Moreover, it has the byproduct of exhibiting
many intrinsic differences between left invariant spray geometry and left invariant
Finsler geometry, which were independently captured in [15] and [39]. So we see
that,

the global invariant frames on TGprovide a useful tool.

1.3 Submersion in Spray Geometry

Consider Question 1.1 for a homogeneous spray manifold (G/H , G) with nontrival
H , we face with several obstacles.

Firstly, generally speaking, there are no global invariant frames on G/H or
T (G/H). In [11], L. Huang has used a local invariant frame and the Nomizu con-
nection [22, 29]. So his calculation can only provide precise information at the
origin o = eH ∈ G/H . Though his method is enough for calculating the homoge-
neous curvatures, it is not sufficient for the tasks of describing geodesics and parallel
translations.

Secondly, the methods in [11], including the formulae for the spray vector field and
the connection operator (see (5.4) and (5.5)), and the usage of the Nomizu connection,
heavily rely on a reductive decomposition. In homogeneous Finsler geometry, without
loss of generality, we may assume the G-action on the homogeneous Finsler manifold
(G/H , F) is effect, then the existence of reductive decompositions is awell known fact
(see Lemma 2.2 in [47], which is valid in homogeneous Finsler geometry). However,
we do not know a similar result in homogeneous spray geometry.

To overcome these difficulties, we let the submersion technique step in. Submersion
technique in Riemannian geometry has a relatively long history [21, 30] and plays an
important role in the study of sectional curvature [4, 10]. Finslerian submersion was
introduced and studied by J.C.Á. Paiva and C.E. Durán [31] and applied to homo-
geneous Finsler geometry for defining the normal homogeneity [43] and proving a
homogeneous flag curvature formula [46].

In this paper, we define the submersion in spray geometry as a pair (π,L), in which
π : (M,G) → (M,G) is a smooth submersion between two spray manifolds, and
L, which is called the horizonal bundle for this submersion, is a distribution on M
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(i.e., a smooth linear sub-bundle of T M), such thatG is tangent to L\0 ⊂ T M\0, and
geodesics c(t) on (M,G) which are tangent to L are related to geodesics on (M,G)

by π . See Sect. 3.1 for the precise definition.
Though the requirements for a submersion between two spray structures are rela-

tively weak, it is enough for us to lift the geometric notions on (M,G), for example,
geodesics, parallel translations, Riemann curvature, etc, to L and describe them on
M . See Lemma 3.5, Lemma 3.6 and Lemma 3.7 for the precise statements. These
lemmas provide the submersion technique in spray geometry. To apply this technique
to the study of a homogeneous spray manifold (G/H ,G), we only need to find the
suitable submersion (π,L) between a left invariant spray structure G on G and the
homogeneous spray structure G, so that we can lift everything from (G/H ,G) to L,
and then use the global invariant frames on TG to study them.

The submersion pair (π,L) generalizes Riemannian submersion, but not all Fins-
lerian submersion. The reason is that, for a Finslerian submersion π : (M, F) →
(M, F), the fiber Lp with π(p) = p, of the horizonal bundle L, i.e.,

Lp = {v | F(p, v) = F(p, π∗(v))} ⊂ TpM,

may not be a linear subspace. We may alter the definition in Sect. 3.1, permitting
the sub-bundle L to be nonlinear, so that all Finslerian submersions can be included.
However, this generalization seems not practically useful because (2) in Lemma 3.4
(as well as Lemma 3.6 and Lemma 3.7) may lose their validity.

The submersion pair (π,L) can also produce a Ehresmann connection which is
useful for studying foliations [9, 50]. In later discussion, we avoid this terminology
and concentrate on spray geometry.

1.4 Main Results

Firstly, we define and study the spray vector field η and the connection operator N ,
and construct the wanted submersion for a homogeneous spray manifold (G/H ,G)

with a linear decomposition g = h + m.
The following observation is fundamental and useful. Any smooth curve c(t) on

G/H with c(0) = g · o for some g ∈ G and nowhere-vanishing ċ(t) can be uniquely
lifted to a smooth curve c(t) on G, which is defined at least around t = 0, satisfying
c(0) = g, c(t) = c(t) · o and (Lc(t)−1)∗(ċ(t)) = (c(t)−1)∗(ċ(t)) ∈ m\0 everywhere,
and this c(t) can exist more globally, when the decomposition g = h+m is reductive
or H is compact (see Lemma 5.1).

Let c(t) be a geodesic on (G/H ,G) with c(0) = o and ċ(0) = y ∈ m\{0},
c(t) the smooth curve on G provided by Lemma 5.1 for c(t), satisfying c(0) = e,
c(t) = c(t) · o and y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0} everywhere. Then the spray

vector field is η(y) = − d
dt |t=0y(t). It is a positively 2-homogeneous smooth map

from m\{0} to m (see Lemma 5.2), so we can further define the connection operator
N : m\{0} × m → m by N (y, u) = 1

2Dη(y, u) − 1
2 [y, u]m, in which Dη(y, u) =

d
dt |t=0η(y + tu).
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The following correspondence between geodesics on (G/H ,G) and integral curves
of −η on m\{0} follows naturally (see Theorem 5.3).

Theorem A Let (G/H ,G) be a homogeneous spraymanifoldwith a linear decomposi-
tion g = h+m and η the spray vector field. Thenwe have a one-to-one correspondence
between the following two sets:

1. the set of all geodesics c(t) on (G/H ,G), which is defined around t = 0 and
satisfies c(0) = o;

2. the set of all integral curves y(t) of −η on m\{0}, which is defined around t = 0.

The correspondence is from c(t) to y(t) = (Lc(t)−1)∗(ċ(t)), in which c(t) is the smooth
curve on G satisfying c(0) = e, c(t) = c(t) · o and (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for all
possible values of t . The range for the parameter t in this correspondence can be
changed to an arbitrary interval (a, b) with a < 0 < b when g = h + m is reductive
or H is compact.

The submersion for a homogeneous spray structure can be constructed as following.

Theorem B Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h + m and η : m\{0} → m the spray vector field. Let G be a left
invariant spray structure on G such that its spray vector field η : g\{0} → g satisfies
η = η|m\{0}. Denote π : G → G/H the smooth map π(g) = g · o for all g ∈ G, and
L = ∪g∈G(Lg)∗(m) ⊂ TG a distribution on G. Then (π,L) is a submersion from
(G,G) to (G/H ,G).

Generally speaking the relation between a homogeneous spray structure and its
spray vector field might be very complicated. However, when we have a reductive
decomposition, it can be easily understood.

Using the submersion technique, we prove a one-to-one correspondence between
the following two sets, with respect to a given reductive decomposition g = h+m for
G/H :

1. the set of all G-invariant spray structures G on G/H ;
2. the set of all Ad(H)-invariant smooth maps η : m\{0} → m.

The correspondence is from G to its spray vector field (see Theorem 5.5).
As a byproduct, we see that any homogeneous spray structure G on G/H with a

reductive decomposition g = h + m can be uniquely presented as G = G0 − H, in
whichG0 is the spray structure for the Nomizu connection, with the spray vector field
η = 0, and H is the G-invariant smooth tangent vector field on T (G/H)\{0} which
is tangent to each Tx (G/H) and H|To(G/H) provides the spray vector field.

Further more, we assume that G is the geodesic spray of a homogeneous Finsler
metric onG/H . Using the submersion technique again, we prove the spray vector field
and the connection operator of G, with respect to the given reductive decomposition,
coincide with those in [11] defined for F respectively (see Theorem 5.6).

Nextly, we study the parallel translations on (G/H ,G).
Because of Theorem B, the submersion technique can be applied. Practically, We

fix the G in Theorem B, such that its spray vector field η satisfies η(y) = η(ym) in
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a conic open neighborhood of m\{0}. This technical assumption helps simplify some
calculation.

WeuseLemma3.5 andLemma3.6 to lift parallel translations toL, anduse theglobal
invariant frame on TG to find the ODEs onm. For the linearly and nonlinearly parallel
translations, we have the following two theorems respectively (see Theorem 6.1 and
Theorem 6.2).

Theorem C Let (G/H ,G) be a homogeneous spraymanifoldwith a linear decomposi-
tion g = h+m, c(t) any smooth curve on G/H with c(0) = o and nowhere-vanishing
ċ(t), and c(t) the smooth curve on G satisfying c(0) = e, c(t) = c(t) · o and
y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for each t. Then for any smooth vector field
W (t) = (c(t))∗(w(t)) along c(t), we have

Dċ(t)W (t) = (c(t))∗( d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m).

In particular, W (t) is linearly parallel along c(t) if and only if w(t) satisfies

d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m = 0

everywhere.

Theorem D Let (G/H ,G) be a homogeneous spray manifold with a linear decompo-
sition g = h+m, c(t) any smooth curve onG/H with c(0) = o and nowhere-vanishing
ċ(t), and c(t) the smooth curve on G satisfying c(0) = e, c(t) = c(t) · o and
w(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for each t. Suppose Y (t) = (c(t))∗(y(t)) is a
nowhere-vanishing smooth vector field along c(t). Then Y (t) is nonlinearly parallel
along c(t) if and only if y(t) ∈ m\0 satisfies

d
dt y(t) + N (y(t), w(t)) = 0

everywhere.

Theorem C is applied later to calculating or interpreting homogeneous curvature
formulae. Theorem D is useful for studying the restricted holonomy group [16, 24]
of a homogeneous spray manifold and the Landsberg problem for a homogeneous
Finsler manifold [45].

Finally, we show that homogeneous curvature formulae can be derived using the
techniques and results previously mentioned, including the submersion technique, the
global invariant frame, descriptions for the parallel translations, etc. Here we take the
S-curvature, Landsberg curvature and Riemann curvature for example. See [14, 17,
18, 28, 33, 44, 46] for some usage of these curvatures in general and homogeneous
Finsler geometry.

The homogeneous S-curvature and Landsberg curvature formulae are immediate
corollary of Theorem C. For the S-curvature of a homogeneous spray manifold, we
have (see Theorem 6.5).

Theorem E Let (G/H ,G) be a homogeneous spray structure with a linear decompo-
sition g = h + m. Suppose that the Ad(H)-action on g/h is unimodular. Then for G
and any G-invariant smooth measure dμ on G/H, the S-curvature satisfies
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S(o, y) = TrR(N (y, ·) + adm(y)),

for any y ∈ m\{0} = To(G/H)\{0}. Here adm(y) : m → m is the linear map
w 	→ [y, w]m.

For the Landsberg curvature of a homogeneous Finsler manifold, we re-prove L.
Huang’s formula in [11] (seeTheorem6.6),with the slight refinement that the reductive
decomposition is no longer needed.

The calculation for the Riemann curvature of a homogeneous spray manifold
(G/H ,G) is much harder. However, after lifted toL ⊂ TG where the global invariant
frames are available, by Lemma 3.7, the calculation is almost the same as that in [39],
proving Theorem C for the Riemann curvature of a left invariant spray structure.

We not only generalize L. Huang’s Riemann curvature formula [11–13] to homo-
geneous spray geometry, but also provide an interesting new interpretation for it.
Summarizing Theorem 6.8 and Corollary 6.10, we have

Theorem F Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h + m. Then for any y ∈ m\{0} = To(G/H), the Riemann curvature
operator Ry : m → m satisfies

Ry(w) = [y, [w, y]h]m + DN (η(y), y, w) − N (y, N (y, w))

+N (y, [y, w]m) − [y, N (y, w)]m,

in which DN (η(y), y, w) = d
ds |s=0N (y + sη(y), w).

Let c(t) be a geodesic on (G/H ,G), which is defined around t = 0 and satisfies
c(0) = o, c(t) the smooth curve on G provided by Lemma 5.1 for c(t), satisfying
c(0) = e, c(t) = c(t) · o and y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0} everywhere, and
W (t) = (c(t))∗(w(t))a linearly parallel vector field along c(t), wherew(t) = wi (t)ei
is viewed as a smooth vector field along the smooth curve y(t) inm\{0}. Then N (t) =
N (y(t), w(t)) and R(t) = Ry(t)(w(t)) satisfy

N (t) = [w(t), η] and R(t) = [y(t), [w(t), y(t)]h]m + [η, N (t)]

when they are viewed as smooth vector fields along y(t).

Notice that the second statement in Theorem F was firstly proved in [40] for a left
invariant spray structure, where a slight generalization for the bracket between smooth
vector fields is needed (see Remark 1.3 in [40] or Remark 6.11).

1.5 Conclusion Remarks

By the theorems listed in Sect. 1.4, we have set up a general theoretical framework
for homogeneous spray geometry, and answered Question 1.1 simultaneously. In one
hand, this project can be continued by generalizingmore notions, Clifford-Wolf homo-
geneity [3, 41], weak symmetry [8, 32, 37], homogeneous geodesic and geodesic orbit
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property [5, 23, 49], etc, to homogeneous spray geometry. In the other hand, it can be
applied to some special cases.

For example, those theorems in Sect. 1.4 can be applied to homogeneous Finsler
geometry. Some known results or formulae can be re-proved without using a reduc-
tive decomposition, and more interesting new results are expected. Besides the Lie
algebraic information from G/H and g = h+m, and the dynamic system induced by
the spray vector field η and the connection operator N on m\{0}, we have one more
ingredient, the Hessian geometry [36, 38] for the Ad(H)-invariant Minkowski norm
F onmwhich determines a homogeneous Finsler metric. The interaction among these
three will make a good story in homogeneous Finsler geometry.

Another application is in homogeneous pseudo-Finsler geometry. The geodesic
spray of a pseudo-Finsler metric can be defined by the same coefficient formula (1.1).
Usually, a pseudo-Finsler metric F on M is conic, i.e., it is only defined on a conic
open subset A in T M\0, i.e., each Ax = A ∩ TxM is conic in TxM\{0} [19, 20].
Based on this observation, we can define a conic spray structure G on M , which is
then a smooth tangent vector field on the conic open subset A ⊂ T M\0 satisfying
similar requirements as in Sect. 2.1. The G-invariancy for a conic spray structure can
also be defined. All discussions and results in this paper, after someminor changes, are
valid for conic spray structures, so they can be applied to homogeneous pseudo-Finsler
geometry.

This paper is organized as following. In Sect. 2, we summarize some basic knowl-
edge in spray geometry and Finsler geometry. In Sect. 3, we define the submersion
between two spray structures and prove some lemmas for the submersion technique. In
Sect. 4, we introduce the tool of global invariant frames on a Lie group and its tangent
bundle, and recall some known results for a left invariant spray structure on aLie group.
In Sect. 5, we generalize the spray vector field and the connection operator to homoge-
neous spray geometry, and construct the wanted submersion for a homogeneous spray
manifold. Moreover, we discuss the correspondence between a homogeneous spray
structure G and its spray vector field η, and that between geodesics on (G/H ,G)

and integral curves of −η. In Sect. 6, we use the submersion technique to describe
the parallel translations and calculate some curvature formulae in homogeneous spray
and Finsler geometries.

2 Preliminaries in Spray Geometry

In this section, we summarize some basic knowledge on spray and Finsler geometries.
See [2, 34, 35] for more details.

2.1 Spray Structure and Geodesic

Let Mn be an n-dimensional smooth manifold. Then a spray structure on M is a
smooth tangent vector field G on the slit tangent bundle T M\0, which can be locally
presented as
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G = yi∂xi − 2Gi∂yi (2.1)

for any standard local coordinate (xi , y j ) (i.e., x = (xi ) ∈ M and y = y j∂x j ∈ TxM),
where Gi = Gi (x, y) is positively 2-homogeneous for its y-entry (i.e., Gi (x, λy) =
λ2Gi (x, y), ∀λ > 0). A spray structure G is called affine, if every coefficient Gi is
quadratic for its y-entry.

In one hand, geodesics can be defined for a spray structure. A smooth curve c(t)
on (M,G) with nowhere-vanishing ċ(t) is called a geodesic if its lifting (c(t), ċ(t))
in T M\0 is an integral curve ofG. Locally, a geodesic c(t) = (ci (t)) is characterized
by the following ODE for any standard local coordinate (xi , y j ),

c̈(t) + 2Gi (c(t), ċ(t)) = 0, ∀i .

In the other hand, the set of all geodesics on (M,G) completely determines G.

2.2 Covariant Derivative and Parallel Translation

Following (2.1) for the spray structure G on M , we denote

Ni
j = ∂

∂ y j G
i and δxi = ∂xi − N j

i ∂y j , (2.2)

which are functions and tangent vector fields locally defined on M and T M\0
respectively.

The linearly covariant derivative along a smooth curve c(t) on M with nowhere-
vanishing ċ(t) can be locally presented as

Dċ(t)X(t) = ( d
dt X

i (t) + Ni
j (c(t), ċ(t))X

j (t))∂xi |c(t),

inwhich X(t) = Xi (t)∂xi |c(t) is a smooth vector field along c(t). A smooth vector field
X(t) is called linearly parallel along c(t) if Dċ(t)X(t) = 0. Existence and uniqueness
theory for the solution of ODE provides the linearly parallel translation along the
curve c(t). For example, Plc;a,b : TpM → TqM from p = c(a) to q = c(b) is the

linear isomorphism defined by Plc(v) = X(b), in which X(t) is the unique linearly
parallel vector field along c(t) satisfying X(a) = v.

There is also a nonlinearly covariant derivative along c(t), i.e.,

˜Dċ(t)X(t) = ( d
dt X

i (t) + ċ j (t)Ni
j (c(t), X(t)))∂xi |c(t),

for any smooth vector field X(t) = Xi (t)∂xi |c(t) along c(t) which is nowhere-
vanishing. Using ˜D instead of D, nonlinearly parallel vector field and nonlinearly
parallel translation can be similarly defined.

Another equivalent description for the nonlinearly parallel translation is the follow-
ing. Suppose c(t) = (ci (t)) is a smooth curve in a standard local coordinate. Denote
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S = ∪t (Tc(t)M\{0}) a smooth submanifold in T M\0. The tangent vector field ċ(t) of
c(t) can be lifted to the smooth vector field

˜ċ(t)
H = ċi (t)δxi |Tc(t)M\{0} (2.3)

on S. Then nonlinearly parallel vector fields along c(t) are integral curves of˜ċ(t)
H
.

A nonlinearly parallel translation is denoted as Pnlc;a,b : TpM\{0} → TqM\{0} where
c(t) is a smooth curve on M with c(a) = p and c(b) = q.

2.3 Riemann Curvature and S-Curvature

The Riemann curvature for a spray structure G is the linear map Ry : TxM → TxM
for any y ∈ TxM\{0}, which naturally appears in the Jacobi equation for a smooth
variation of geodesics. In any standard local coordinate (xi , y j ), it can be presented
as Ry = Ri

k∂xi ⊗ dxk , with the Riemann curvature coefficients

Ri
k = 2 ∂Gi

∂xk
− y j ∂2Gi

∂x j ∂ yk
+ 2G j ∂2Gi

∂ y j ∂ yk
− ∂Gi

∂ y j
∂G j

∂ yk
.

Riemanncurvature canbe alternatively interpreted as following.Wefirst decompose
the tangent bundle T (T M\0) as the direct sumof two linear sub-bundles, the horizonal
distribution H and the vertical distribution V, which are linearly spanned by all δxi

and by all ∂y j respectively. For any fixed x ∈ M and y ∈ TxM\{0}, a tangent vector
v = ai∂xi ∈ TxM can be one-to-one corresponded to its horizonal lifting ṽH =
aiδxi ∈ H(x,y), and its vertical lifting ṽV = ai∂yi ∈ V(x,y) respectively. The notions
H, V, ·̃H and ·̃V are all irrelevant to the choice of standard local coordinate.

Direct calculation shows that

[G, δxk ] ≡ Ri
k∂yi (mod H),

and more generally,

[G, ak(x)δxk ] ≡ ak(x)Ri
k∂yi (mod H). (2.4)

Using the horizonal and vertical liftings, (2.4) can be interpreted as the following
lemma.

Lemma 2.1 For any smooth vector field X on M, we have

[G, ˜XH]|(x,y) = ˜Ry(X(x))
V

(mod H),

at each point (x, y) ∈ TxM\{0}.
To define the S-curvature, we need to specify a smooth measure dμ on M . Suppose

dμ can be presented as dμ = σ(x)dx1 · · · dxn in a standard local coordinate, in which

123



Submersion and Homogeneous Spray Geometry Page 11 of 43 172

σ(x) is a nowhere-vanishing smooth function σ(x). Then the S-curvature for G and
dμ is a smooth function S : T M\0 → R, satisfying

S(x, y) = Ni
i (x, y) − yi

σ(x)
∂

∂xi
σ(x), (2.5)

for any standard local coordinate. The equality (2.5) can be interpreted as following.

Lemma 2.2 Let c(t) be a geodesic on (M,G)with c(0) = x and ċ(0) = y ∈ TxM\{0},
{E1(t), · · · , En(t)} a smooth frame along c(t) such that dμ(E1(t), · · · , En(t)) is a
nonzero constant function. Denote A the linear map from anyw = (v1, · · · , vn) ∈ R

n

to − d
dt |t=0v(t), where v(t) = (v1(t), ·, vn(t)) is determined by the linearly parallel

vector field V (t) = vi (t)Ei (t) along c(t) with V (0) = vi Ei (0). Then for G and dμ,
the value of the S-curvature at (x, y) coincides with TrRA.

Proof Choose any standard local coordinate (xi , y j ) around x . Denote Ei (t) =
A j
i (t)∂x j and ∂x j = Bi

j (t)Ei (t) (so we have (B j
i (t)) = (A j

i (t))
−1, i.e., A j

i (t)B
k
j (t) =

δki ). Since we have assumed that dμ(E1(t), · · · , En(t)) = σ(c(t)) det(A j
i (t)) is a

nonzero constant function, the term yi

σ(x)
∂

∂xi
σ(x) in (2.5) equals

yi

σ(x)
∂

∂xi
σ(x) = det(Ai

j (0))
d
dt |t=0 det(B

i
j (t)) = A j

i (0)
d
dt B

i
j (0).

For any linearly parallel vector field W (t) = wi (t)∂xi |c(t) = vi (t)Ei (t) along c(t),
we have vi (t) = Bi

j (t)w
j (t), so

d
dt v

i (t) = w j (t) d
dt B

i
j (t) + Bi

j (t)
d
dt w

j (t)

= w j (t) d
dt B

i
j (t) − Bi

j (t)N
j
k (c(t), ċ(t))w

k(t)

= (A j
l (t)

d
dt B

i
j (t) − Bi

j (t)N
j
k (c(t), ċ(t))A

k
l (t))v

l(t).

So we have

TrRA = −A j
i (0)

d
dt B

i
j (0) + Bi

j (0)N
j
k (c(0), ċ(0))A

k
i (0)

= Ni
i (x, y) − yi

σ(x)
∂

∂xi
σ(x) = S(x, y),

which ends the proof. �

2.4 Finsler Metric and Its Curvatures

A Finsler metric on a smooth manifold Mn is a continuous Function F : T M →
[0,∞) satisfying the following properties:

1. positiveness and smoothness, i.e., the restriction of F to the slit tangent bundle
T M\0 is a positive smooth function;
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2. positive 1-homogeneity, i.e., F(x, λy) = λF(x, y) for any x ∈ M , y ∈ TxM and
λ ≥ 0;

3. strong convexity, i.e., with respect to any standard local coordinate, the Hessian
matrices (gi j (x, y)) = ([ 12 F2]yi y j ) is positive definite for any x ∈ M and y ∈
TxM\{0}.
The restriction of a Finsler metric F to each tangent space is a Minkowski norm.

Minkowski norm can be abstractly defined on any finite dimensional real vector space,
using similar requirements as (1)-(3) above. TheHessianmatrix (gi j ) in (3) is called the
fundamental tensor for a Finsler metric or aMinkowski norm.We use it and its inverse
matrix (gi j ) to move indices up and down. The fundamental tensor (gi j ) = (gi j (x, y))
induces inner products gy(·, ·) on TxM parametrized by y ∈ TxM\{0}, i.e.,

gy(u, v) = 1
2

∂2

∂s∂t |s=t=0F
2(y + su + tv) = uiv j gi j (x, y), (2.6)

for any u = ui∂xi and v = v j∂x j in TxM .
The Finsler metric F induces a spray structure, called the geodesic spray of F , with

the spray coefficientsGi = 1
4g

il([F2]xk yl yk−[F2]xl ) in any standard local coordinate.
So all geometric notions in spray geometry, parallel translations, S-curvature, Riemann
curvature, etc, are naturally inherited by Finsler geometry.

The Finsler metric F can provide more curvature notions than its geodesic sprayG.
For example, for any y ∈ TxM\{0}, the Cartan tensorCy : TxM ×TxM ×TxM → R

for F is

Cy(u, v, w) = Ci jku
iv jwk, ∀u = ui∂xi , v = v j∂x j , w = wk∂xk ∈ TxM,

in whichCi jk = [ 14 F2(x, y)]yi y j yk , and the Landsberg curvature Ly : TxM × TxM ×
TxM → R can be determined by

Lċ(t)(U (t), V (t),W (t)) = d
dtCċ(t)(U (t), V (t),W (t)), (2.7)

in which U (t), V (t) and W (t) are linearly parallel vector fields along the geodesic
c(t).

See [35] for more Riemannian and non-Riemannian curvatures in Finsler geometry.

3 Submersion and Submersion Technique in Spray Geometry

In this section, we define a submersion between two spray structures and prove some
lemmas for the submersion technique in spray geometry.

3.1 Submersion Between Two Spray Structure

Let π : M
m → Mn be a smooth submersion between two smooth manifolds, with

dim M = m ≥ dim M = n. It can be locally presented as π(x, z) = x by choosing
suitable local coordinates
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x = (x1, · · · , xn) ∈ M and (x, z) = (x1, · · · , xn, zn+1, · · · , zm) ∈ M . (3.1)

Suppose L = ∪(x,z)∈ML(x,z) is a distribution on M , such that each fiber

L(x,z) is a linear complement of ker(π∗|(x,z)) in T(x,z)M . Then L and L\0 =
∪(x,z)∈M (L(x,z)\{0}) are closed submanifolds of T M and T M\0 respectively.

Consider two spray structures,G on M andG on M respectively. We say (π,L) is
a submersion between the spray structures G and G, if the following two conditions
are satisfied:

1. G|L\0 is tangent to L\0 everywhere;
2. for any geodesic c(t) on (M,G), which lifting (c(t), ċ(t)) is contained in L\0,

c(t) = π(c(t)) is a geodesic on (M,G).

3.2 Standard Local Coordinate Representations

In this section, the following convention for indices is applied,

1 ≤ i, j, k, l, p, q, r ≤ n, n + 1 ≤ α, β, γ ≤ m. (3.2)

For a submersion (π,L) between (M,G) and (M,G), we use bars to distinguish
notations for M (or T M) and those for M (or T M respectively). For example, the
tangent vector fields in the frame for a standard local coordinate are denoted as ∂xi ,
∂ zα , etc, on M or T M , and denoted as ∂xi and ∂yi on M or T M . For a spray structure

G on M , we have G
i
and G

α
for its coefficients, N

i
j = ∂

∂ y j G
i
, · · · , Nα

β = ∂
∂wβ G

α
,

H and V for its horizonal and vertical distributions respectively, ˜v
H

and ˜v
V
for the

horizonal and vertical liftings of v ∈ T M respectively, etc.
We expand the local coordinates in (3.1) to standard local coordinates (x, y) =

(xi , y j ) ∈ T M and (x, z, y, w) = (xi , zα, y j , wβ) ∈ T M respectively, i.e.,

y = yi∂xi ∈ TxM or y = yi∂xi ∈ T(x,z)M, and w = wα∂ zα ∈ T(x,z)M .

Using above standard local coordinates, the submersion (π,L) from (M,G) to
(M,G) can be presented as following.

Firstly, we have π(x, z) = x . So its tangent map π∗ : T M → T M can be presented
as π∗(x, z, y, w) = (x, y). The tangent map of π∗, i.e., (π∗)∗ : T (T M) → T (T M),
satisfies

(π∗)∗(∂xi ) = ∂xi , (π∗)∗(∂ y j ) = ∂y j , and (π∗)∗(∂ zα ) = (π∗)∗(∂wβ ) = 0.

Nextly, the spray structures G and G have the representations

G = yi∂xi − 2Gi∂yi and (3.3)

G = yi∂xi + wα∂ zα − 2G
i
∂ yi − 2G

α
∂wα (3.4)

respectively.
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Finally, L can be presented as the graph of w = l(x, z, y), in which wβ =
lβ(x, z, y) for each β is a smooth function and it is homogeneously linear for its
y-entry.

Lemma 3.1 For the submersion (π,L) between (M,G) and (M,G), we have

1. G
j
(x, z, y, l(x, z, y)) = G j (x, y), ∀ j , and

2. N
j
i (x, z, y, l(x, z, y)) + ∂

∂ yi
lα(x, z)N

j
α(x, z, y, l(x, z, y)) = N j

i (x, y), ∀i, j ,
at each (x, z, y, l(x, z, y)) ∈ L\0 (i.e., y �= 0).

Proof Let c(t) = (x(t), z(t)) = (xi (t), zα(t)) with t ∈ (−ε, ε) be a geodesic on
(M,G), such that its lifting (x(t), z(t), ẋ(t), ż(t)) is contained in L. That means

żα(t) = lα(x(t), z(t), ẋ(t)), ∀α, (3.5)

ẍ j (t) + 2G
j
(x(t), z(t), ẋ(t), ż(t)) = 0, ∀i, (3.6)

z̈α(t) + 2G
α
(x(t), z(t), ẋ(t), ż(t)) = 0, ∀α. (3.7)

Since c(t) = π(c(t)) = x(t) is a geodesic on (M,G), we have

ẍ j (t) + 2G j (x(t), ẋ(t)) = 0. (3.8)

Comparing (3.6) and (3.8), we get

G
j
(x(t), z(t), ẋ(t), l(x(t), z(t), ẋ(t))) = G j (x(t), ẋ(t)). (3.9)

Since x = x(0), z = z(0) and y = ẋ(0) can be chosen arbitrarily, (1) in Lemma 3.1
follows immediately after (3.9). Differentiate the equality in (1) of Lemma 3.1 with
respect to yi , then we get (2) in Lemma 3.1. �
Remark 3.2 Because each lα(x, z, y) depends linearly on its y-entry, ∂

∂ yi
lα only

depends on x and z. So we may denote ∂
∂ yi

lα = ∂
∂ yi

lα(x, z). As a byproduct of
the proof for Lemma 3.1, we can also get

G
α
(x, z, y, l(x, z, y)) = − 1

2 y
i ∂
∂xi

lα(x, z, y) − 1
2 l

β(x, z, y) ∂
∂zβ

lα(x, z, y))

+ ∂
∂ yi

lα(x, z)Gi (x, y), ∀α, (3.10)

by differentiating (3.5) with respect to t and then Plugging (3.5)-(3.8) into it.

3.3 Some Bundle Maps Induced byL

For the submersion (π,L) : (M,G) → (M,G), we have the following smooth bundle
maps,which are distinguished by their superscripts and subscripts,marking the domain
and target bundles respectively:

123



Submersion and Homogeneous Spray Geometry Page 15 of 43 172

1. �T M
L : T M → L with (x, z, y, w) 	→ (x, z, y, l(x, z, y)),

2. �L
T M = π∗|L : L → T M with (x, z, y, l(x, z, y)) 	→ (x, y), and

3. �
T (T M)|L
TL : T (T M)|L → TL is the restriction of the tangent map (�T M

L )∗ :
T (T M) → TL to T (T M)|L.
Standard local coordinates are applied here to present these bundle maps, for the

convenience in calculation. But we need to notice that these bundle maps are in fact
canonically defined from the submersion, i.e., local coordinate representations are
inessential. This observation enable us to re-interpret these bundle maps in Section 6
by global invariant frame.

For example, the tangent map of �T M
L (x, z, y, w) = (x, z, y, l(x, z, y)) provides

�
T (T M)|L
TL (ai∂xi + b j∂ y j + cα∂ zα + dβ∂wβ )

= ai (∂xi + ∂
∂xi

lβ(x, z, y)∂wβ ) + b j (∂ y j + ∂
∂ y j l

β(x, z)∂wβ

+cα(∂ zα + ∂
∂zα l

β(x, z, y)∂wβ )

= ai∂xi + b j∂ y j + cα∂ zα (mod ∂wβ ,∀β). (3.11)

at each p = (x, z, y, l(x, z, y)) ∈ L. On the other hand, both �T M
L and �

T (T M)
TL can

be described by the following easy lemma, without using the local coordinates.

Lemma 3.3 Denote ψ : T M → M the bundle map for T M over M, i.e., ψ(x, z,
y, w) = (x, z). Then we have

1. at each (x, z) ∈ M, �T M
L |(x,z) : T(x,z)M → L(x,z) is the linear projection with

the kernel span = {∂ zα ,∀α} = ker π∗ ∩ T(x,z)M;

2. at each p ∈ L, �
T (T M)|L
TL |p : Tp(T M) → TpL is the linear projection with the

kernel span{∂wβ ,∀β} = ker(π∗)∗ ∩ kerψ∗.

In later discussion, we will also use �
L\0
T M\0 = �L

T M |L\0, with the same local

representation (x, z, y, l(x, z, y)) 	→ (x, y) as �L
T M and the extra requirement that

y �= 0.

Lemma 3.4 (1)Denote (�
L\0
T M\0)∗ : T (L\0) → T (T M\0) the tangentmap of�L\0

T M\0,
then (�

L\0
T M\0)∗(G|L\0) = G. Thatmeans (�L\0

T M\0)∗(G(x, z, y, l(x, z, y))) = G(x, y)
at any point p = (x, z, y, l(x, z, y)) ∈ L\0.

(2) At each point p = (x, z, y, l(x, z, y)) ∈ L\0,

δxi + ∂
∂ yi

lα(x, z)δzα and ∂xi − N j
i (x, y)∂ y j + ∂

∂ yi
lα(x, z)∂ zα

have the same �
T (T M)|L
TL -image, which is mapped by (�

L\0
M\0)∗ to δxi = ∂xi − N j

i ∂y j

at (x, y).
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Proof (1) The tangentmap (�
L\0
T M\0)∗ maps any tangent vector ai∂xi +b j∂ y j +cα∂ zα +

dβ∂wβ ofL\0 at p = (x, z, y, l(x, z, y)) to the tangent vector ai∂xi +b j∂y j of T M\0
at (x, y). So (1) in Lemma 3.4 follows immediately after the local representations (3.3)
and (3.4), and (1) in Lemma 3.1.

(2) Recall that

δxi = ∂xi − N
j
i ∂ y j − N

β

i ∂wβ and δzα = ∂ zα − N
j
α∂ y j − N

β

α∂wβ

are the horizonal liftings for ∂xi and ∂ zα on M respectively. By (2) in Lemma 3.1, at
any p = (x, z, y, l(x, z, y)) ∈ L\0, we have

δxi + ∂
∂ yi

lα(x, z)δzα

= ∂xi − (N
j
i + ∂

∂ yi
lα(x, z)N

j
α)∂ y j + ∂

∂ yi
lα(x, z)∂ zα − (N

β

i + ∂
∂ yi

lα(x, z)N
β

α)∂wβ

= ∂xi − N j
i (x, y)∂ y j + ∂

∂ yi
lα(x, z)∂ zα , (mod ∂wβ ,∀β).

The first statement in (2) of Lemma 3.4 follows (3.11) immediately, and the second is
obvious by the previous description for (�

L\0
T M\0)∗. �

3.4 Liftings fromM toL

Besides the liftings provided by the horizonal and vertical distributions for G and G
(see Sect. 2.4), there are more involving L.

Firstly, we can use L to lift smooth tangent vector fields and smooth curves.
Let X be a smooth tangent vector field on M . Then there exists a unique smooth

tangent vector field X on M , such that at each (x, z) ∈ M , X(x, z) ∈ L(x,z) and
π∗(X(x, z)) = X(x). We call this X the lifting of X in L.

Denote c(t) and c(t) the smooth curves on M and M respectively, which is defined
when t is close to 0. We call c(t) a lifting of c(t) tangent to L if π(c(t)) = c(t) and
ċ(t) ∈ Lc(t) for all possible values of t . Given any smooth curve c(t) = (xi (t)), its
lifting c(t) = (xi (t), zα(t)) tangent to L is locally a solution of the ODE

żα(t) = lα(x(t), z(t), ẋ(t)) = ẋ j (t) · ∂
∂ y j l

α(x(t), z(t)), ∀α.

So for any (x0, z0) ∈ π−1(c(0)) ⊂ M , there exists a unique lifting c(t) of c(t) which
is defined around t = 0, tangent to L and satisfies c(0) = (x0, z0). By definition, c(t)
is a geodesic on (M,G) if and only if any lifting c(t) of c(t) tangent toL is a geodesic
on (M,G).

Nextly, we can use L to lift a smooth vector field along a curve.
Let c(t) be a smooth curve on M , X(t) a smooth vector field along c(t), c(t) the

smooth curve on M which is the lifting of c(t) tangent to L. Then we call the smooth
vector field X(t) along c(t) the lifting of X(t) along c(t) in L if X(t) ∈ Lc(t) and
�L

T M (X(t)) = π∗(X(t)) = X(t) for all values of t . Locally, for X(t) = Xi (t)∂xi along
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c(t), its lifting along c(t) inL can be presented as X(t) = Xi (t)(∂xi + ∂
∂ yi

lα(c(t))∂ zα ).

In particular, ċ(t) = ċi (t)(∂xi + ∂
∂ yi

lα(c(t)))∂ zα along c(t) is the lifting in L of ċ(t)
along c(t).

Lemma 3.5 Let c(t) and X(t) be the liftings of c(t) and X(t) respectively, asmentioned
above. Suppose ċ(t) is nowhere-vanishing, then

�L
T M (�T M

L (Dċ(t)X(t))) = Dċ(t)X(t), (3.12)

in which D and D are the linearly covariant derivatives for (M,G) and (M,G).
That means, for the smooth vector field Dċ(t)X(t) along c(t), �T M

L (Dċ(t)X(t)) is its
lifting along c(t) in L. In particular, X(t) is linearly parallel along c(t) if and only if
�T M

L (Dċ(t)X(t)) = 0.

Proof Firstly, we prove (3.12). It is easy to see the following facts:

1. both sides of (3.12) are R-linear;
2. for any smooth real function f (t), the lifting of f (t)X(t) inL along c(t) coincides

with f (t)X(t);
3. the Lebniz Rule provides Dċ(t)( f (t)X(t)) = ( d

dt f (t))X(t) + f (t)DċX(t) and

�L
T M (�T M

L (Dċ(t)( f (t)X(t)))) = ( d
dt f (t))X(t) + f (t)�L

T M (�T M
L (Dċ(t)X(t))).

So when we replace X(t)with f (t)X(t), the same extra term appears in both sides
of (3.12).

To summarize, we only need to prove (3.12) for X(t) = ∂xi , and without loss of
generality, we may assume X(t) = ∂x1 .

Locally we denote c(t) = x(t) = (xi (t)) and c(t) = (x(t), z(t)) = (xi (t), zα(t)),
with żα(t) = lα(x(t), z(t), ẋ(t)) for all α. Then X(t) = ∂x1 + ∂

∂ y1
lα(x(t), z(t))∂ zα .

Direct calculation shows

Dċ(t)X(t) = N j
1(x(t), ẋ(t))∂x j |c(t), (3.13)

and

Dċ(t)X(t) (3.14)

= (N
j
1(c(t), ċ(t))∂x j + N

β

1 (c(t), ċ(t))∂ zβ + d
dt (

∂
∂ y1

lα(x(t), z(t)))∂ zα

+ ∂
∂ y1

lα(x(t), z(t))N
j
α(c(t), ċ(t))∂x j + ∂

∂ y1
lα(x(t), z(t))N

β

α(c(t), ċ(t))∂ zβ )|c(t)
= (N

j
1(c(t), ċ(t)) + ∂

∂ y1
lα(x(t), z(t))N

j
α(c(t), ċ(t)))∂x j |c(t)

(mod ∂ zα ,∀α). (3.15)
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Apply (2) in Lemma 3.1 at (c(t), ċ(t)) = (x(t), z(t), ẋ(t), l(x(t), z(t), ẋ(t))) ∈ L\0,
we see from (3.15) that

Dċ(t)X(t) = N j
1(x(t), ẋ(t))∂x j |c(t), (mod ∂ zα ,∀α). (3.16)

Comparing (3.13) and (3.16), we get (3.12) for X = ∂x1 . Previous observations
end the proof of (3.12) for other X .

The second statement in Lemma 3.5 is just an interpretation for (3.12).
The third statement follows from the first one immediately, because at each point

(x, z) ∈ M , �L
T M induces a linear isomorphism from L(x,z) to TxM . �

Finally, we consider lifting˜ċ(t)
H
to L.

Suppose c(t) is a lifting of c(t) tangent to L, with t ∈ (a, b). Without loss
of generality, we may assume the interval (a, b) is sufficiently small and ċ(t) is
nowhere-vanishing. Then N = ∪t∈(a,b)(Tc(t)M\{0}), N = ∪t∈(a,b)(Tc(t)M\{0}) and
NL = ∪t∈(a,b)(L(c(t),ċ(t))\{0}) are imbedded submanifolds in T M\0, T M\0 and N

respectively, and �
NL
N = �

L\0
T M\0|NL : NL → N is a diffeomorphism.

If we locally denote c(t) = x(t) = (xi (t)), then the horizonal lifting

˜ċ(t)
H = ẋ i (t)δxi = ẋ i (t)(∂xi − N j

i (x(t), y)∂y j )

at any (x(t), y) ∈ Tc(t)M\{0} is a smooth tangent vector field on N . We call the

smooth tangent vector field ((�
NL
N )−1)∗(˜ċ(t)

H
) on NL a lifting of˜ċ(t)

H
to L.

Meanwhile, if we denote c(t) = (x(t), z(t)) = (xi (t), zα(t)), then the horizonal

lifting˜ċ(t)
H
is a smooth tangent vector field on N , determined by

˜ċ(t)
H

= ẋ i (t)δxi + żα(t)δzα

= ẋ i (t)(∂xi − N
j
i (c(t), y, w)∂ y j − N

β

i (c(t), y, w)∂wβ )

+żα(t)(∂ zα − N
j
α(c(t), y, w)∂ y j − N

β

α(c(t), y, w)∂wβ )

at each p = (c(t), y, w) ∈ Tc(t)M\{0}.
The relation between a lifting of˜ċ(t)

H
to L and˜ċ(t)

H
is revealed by the following

lemma.

Lemma 3.6 �
T (T M)|L
TL (˜ċ(t)

H
|NL) = ((�

NL
N )−1)∗(˜ċ(t)

H
).

Proof Since c(t) = (x(t), z(t)) = (xi (t), zα(t)) is a lifting of c(t) = x(t) = (xi (t)),
which is tangent to L, we have żα(t) = lα(x(t), z(t), ẋ(t)) = ẋ i (t) ∂

∂ yi
lα(x(t), z(t)).

So

ċ(t) = ẋ i (t)∂xi + żα(t)∂ zα = ẋ i (t)(∂xi + ∂
∂ yi

lα(x(t), z(t))∂ zα )
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at each c(t), and

˜ċ(t)
H

= ẋ i (t)(δxi + ∂
∂ yi

lα(x(t), z(t))δzα )

at each p = (c(t), y, w) ∈ Tc(t)M\{0}. When p = (x(t), z(t), y, l(x(t), z(t), y)) ∈
NL, TpNL is linearly spanned by �

T (T M)|L
TL (ẋ i (t)(∂xi + ∂

∂ yi
lα(x(t), z(t))∂ zα )) and

�
T (T M)|L
TL (∂ y j ) for all j . So the first statement in (2) of Lemma 3.4 indicates that

�
T (T M)
TL (˜ċ(t)

H
|NL) is tangent to NL. Then the second statement in (2) of Lemma 3.4

indicates it coincides with the lifting of˜ċ(t)
H
to L. �

3.5 Riemann Curvature Formula for a Submersion

Lemma3.5 andLemma3.6 provide the submersion techniques for parallel translations.
Now we consider the submersion technique for the Riemann curvature.

DenoteK the linear sub-bundle of T (T M) such that each point p = (x, z, y, w) ∈
T M , its fiber Kp is the kernel of (π∗)∗ : T (T M) → T (T M), i.e., we have Kp =
span{∂ zα , ∂wα ,∀α}.

The tangent bundle T (L\{0}) has two linear sub-bundles,H′ andK′. At each point
p = (x, z, y, l(x, z, y)) ∈ L\0, the fiber H′

p consists of the �
T (T M)|L
TL -images of the

H-horizonal liftings of all vectors in L(x,z), i.e., it is linearly spanned by

�
T (T M)|L
TL (δxi + ∂

∂ yi
lα(x, z, y)δzα ), ∀i,

and the fiber K′
p is Tp(L\0) ∩ Kp = �

T (T M)|L
TL (Kp), i.e., it is linearly spanned by

∂ zα + ∂
∂zα l

β(x, z, y)∂wβ , ∀α.

The following lemma interprets the Riemann curvature of (M,G) by the submer-
sion (π,L).

Lemma 3.7 Let X be a smooth section of H′, which is defined around

p = (x, z, y, l(x, z, y)) in L\0 and satisfies X(p) = �
T (T M)|L
L (ai (δxi +

∂
∂ yi

lα(x, z, y)δzα )), then we have

[G|L\0, X ]|p = aiRk
i (x, y)∂ yk (mod H′ ⊕ K′). (3.17)

Proof Firstly, we prove (3.17) for X = �
T (T M)|L
TL (δxi + ∂

∂ yi
lα(x, z, y)δzα ). By

(2) in Lemma 3.4, (�
L\0
T M\0)∗(X) = δxi = ∂xi − N j

i ∂y j . By (1) in Lemma 3.4,

(�
L\0
T M\0)∗(G|L\0) = G. Using the property of tangent map and Lemma 2.1, we

get at any p = (x, z, y, l(x, z, y)) ∈ L\0 that
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(�
L\0
T M\0)∗([G|L\0, X ]|p) = [(�L\0

T M\0)∗(G|L\0), (�L\0
T M\0)∗(X)]|(x,y)

= [G, δxi ]|(x,y) = Rk
i (x, y)∂yk (mod H). (3.18)

Then (3.18) implies (3.17) for that special X , using the following observations:

1. by (2) in Lemma 3.4, (�L\0
T M\0)∗ maps each fiber of H′ isomorphically to that of

H = span{δxi ,∀i};
2. (�

L\0
T M\0)∗ maps each fiber of K′ to 0;

3. At p = (x, z, y, l(x, z, y)) ∈ L\0, any vector in Tp(L\0)/(H′
p ⊕ Kp) can be

uniquely represented by a vector in the subspace

span{∂ yi + ∂
∂ yi

lβ(x, z)∂wβ ,∀i} ⊂ Tp(L\0).

Nextly, we consider any smooth section X , which is a C∞-linear combination of

the sections �
T (T M)|L
L (δxi + ∂

∂ yi
lα(x, z, y)δzα ) of H′. Since (3.17) is mod H′ ⊕ K′,

its validity is not affected by the smooth coefficients. �

4 Left Invariant Spray Geometry

In this section, we recall the technique of global invariant frames on a Lie group and
collect some known results for a left invariant spray structure from [39, 40].

4.1 Invariant Frames on a Lie Group and Its Tangent Bundle

Let G be a Lie group. Denote Lg(g′) = gg′ and Rg(g′) = g′g for all g, g′ ∈ G the
left and right translations. Let g = TeG be the Lie algebra of G, with the bracket
[·, ·]g. Notice that in this paper, we reserve the more usual notation [·, ·] for the Lie
bracket between smooth vector fields. We fix a basis {e1, · · · , em} of g and denote cki j
the corresponding Lie bracket coefficients in [ei , e j ]g = cki j ek .

For each i ∈ {1, · · · ,m}, there exists a left invariant vector field Ui , and a right
invariant vector field Vi , such that Ui (e) = Vi (e) = ei . Then any left (or right)
invariant vector field on G is a R-linear combination ofUi ’s (or Vi ’s respctively). Left
and right invariant vector fields generate right and left translations respectively on the
Lie group.

We call {Ui ,∀i} a left invariant frame on G. We expand it to a left invariant frame
on TG as following. Let ˜Ui be the complete lifting of Ui (see (4.1) and (4.2) for its
standard local coordinate representation). Any y ∈ TgG can be uniquely presented
as y = uiUi (g). So we have the frame {∂ui ,∀i} in TgG corresponding to this linear
coordinate. With g exhausting all points of G, each ∂ui is then a smooth tangent vector
field on TG. Since all ˜Ui ’s and ∂u j ’s are invariant with respect to the action of ((Lg)∗)∗
for all g ∈ G, we call {˜Ui , ∂ui ,∀i} a left invariant frame on TG. Similarly, using Vi
and ∂vi for y = vi Vi (g) ∈ TgG, we have a right invariant frame {˜Vi , ∂vi ,∀i} on TG.
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Let {∂xi , ∂yi ,∀i} be the frame for a standard local coordinate (xi , y j ) on G. Then
the transformation between {Ui , ∂ui ,∀i} and {∂xi , ∂yi ,∀i} is the following [40],

Ui = A j
i ∂xi , ui = y j Bi

j and ∂ui = A j
i ∂ui , (4.1)

˜Ui = A j
i ∂xi + y j ∂

∂x j A
k
i ∂yi , (4.2)

where (A j
i ) = (A j

i (x)) and (B j
i ) = (B j

i (x)) = (A j
i (x))

−1 (i.e., A j
i B

k
j = B j

i A
k
j = δki )

are matrix valued functions which only depend on the x-entry. Notice that ∂xi ’s in
(4.1) and (4.2) are local tangent vector fields on G and their complete lifting to TG
respectively.

The invariancy of {˜Ui , ∂ui ,∀i} and {˜Vi , ∂vi ,∀i} implies the following obvious facts
for every i and j (see (8) in [39])

[Ui ,Uj ] = cki jUk, [Vi , Vj ] = −cki j Vk, [Ui , Vj ] = 0,

[˜Ui , ˜Uj ] = cki j ˜Uk, [˜Vi , ˜Vj ] = −cki j ˜Vk, [˜Ui , ˜Vj ] = 0,

˜Uiv
j = 0, [˜Ui , ∂v j ] = 0, ˜Viu

j = 0, [˜Vi , ∂u j ] = 0. (4.3)

To provide more relations between the left and right invariant frames on TG, we
need to introduce the functions φ

j
i and ψ

j
i on G such that Ad(g)ei = φ

j
i (g)e j and

Ad(g−1)ei = ψ
j
i (g)e j . Then we have

Ui = φ
j
i V j , ui = ψ i

jv
j , ∂ui = φ

j
i ∂v j , (4.4)

and (see (9) and Lemma 3.1 in [39])

Lemma 4.1 Keep above notations, then at each point of G, we have the following

(1) φ
j
l V jφ

k
i = c jliφ

k
j , (2) ˜Ui = φ

j
i
˜Vj + cqpi u

p∂uq , (3) ˜Uiu
j = c jli u

l , (4) [˜Ui , ∂ul ]
= cpil∂u p .

4.2 Left Invariant Spray Structure on a Lie Group

A spray structure G on the Lie group G is called left invariant (or right invariant),
if for each g ∈ G, ((Lg)∗)∗G = G (or ((Lg)∗)∗G = G respectively). It is called
bi-invariant if it is both left and right invariant.

There exists a canonical affine bi-invariant spray structure G0 on G (see Theorem
A in [39]).

Theorem 4.2 On any Lie group G, G0 = ui ˜Ui = vi ˜Vi is an affine bi-invariant spray
structure.

Using G0 as the origin, any left invariant spray structure G on G can be presented
as G = G0 − H. Here H = Hi∂ui is a smooth vector field on TG\0, tangent to each
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TgG, in which each Hi = Hi (x, y) is positively 2-homogeneous for its y-entry. The
restriction η = H|TeG\{0} is called the spray vector field for G. We sometimes view η

as a positively 2-homogeneous smooth map from g\{0} to g, i.e., η(y) = Hi (e, y)ei ,
∀y ∈ g\{0}. Obviously, the correspondence between the set of all left invariant spray
structures onG and the set of all positive 2-homogeneous smoothmaps η : g\{0} → g,
mapping each G to its spray vector field, is one-to-one.

Based on the spray vector field η : g\{0} → g, we further define the connec-
tion operator N : g\{0} × g → g by N (y, v) = 1

2Dη(y, v) − 1
2 [y, v]g, in which

Dη(y, v) = d
dt |t=0η(y + tv).

Using left translations, the geometry of a left invariant spray structure G can be
described by its spray vector field and connection operator. The following results are
already known (see Theorem D in [39], and Theorem 1.1, Theorem 1.4 and Lemma
3.2 in [40]).

Theorem 4.3 Let G be a left invariant spray structure on a Lie group G with the
spray vector field η. Then for any open interval (a, b) ⊂ R containing 0, there is a
one-to-one correspondence between the following two sets:

1. the set of all c(t) with t ∈ (a, b) and c(0) = e, which are geodesics for G;
2. the set of all y(t) with t ∈ (a, b), which are integral curves of −η.

The correspondence is from a geodesic c(t) on (G,G) to the curve y(t) = (Lc(t)−1)∗
(ċ(t)) on g\{0}.
Theorem 4.4 Let G = G0 − H be a left invariant spray structure on a Lie group G
with the connection operator N, c(t) a smooth curve on G with nowhere-vanishing
ċ(t), and W (t) a smooth vector field along c(t). Denote y(t) = (Lc(t)−1)∗(ċ(t)) =
ui (t)ei ∈ g\{0} and w(t) = (Lc(t)−1)∗(W (t)) ∈ g. Then

Dċ(t)W (t) = ( d
dt w

l(t) + 1
2w

j (t) ∂
∂u j H

l(c(t), ċ(t)) + 1
2w

j (t)uk(t)clk j )Ul(c(t)).

In particular, W (t) is linearly parallel along c(t) if and only if

d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]g = 0

is satisfied everywhere.

Remark 4.5 Theorem 4.4 is a summarization for Theorem 1.1 and Lemma 3.1 in [40].

Theorem 4.6 LetG = G0−H be a left invariant spray structure on a Lie group G with
the connection operator N, c(t) a smooth curve on G and Y (t) a nowhere-vanishing
vector field along c(t). Denote w(t) = (Lc(t)−1)∗(ċ(t)) and y(t) = (Lc(t)−1)∗(Y (t)).
Then Y (t) is nonlinearly parallel along c(t) if and only if

d
dt y(t) + N (y(t), w(t)) = 0

is satisfied everywere.
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Theorem 4.6 is based on the following calculation results which are useful in later
discussion (see Lemma 3.2 in [39] and Lemma 4.2 in [40]).

Lemma 4.7 (1) The horizonal lifting of Uq is ˜UH
q = ˜Uq − ( 12

∂
∂uq H

i − 1
2u

j ciq j )∂ui .
(2) Denote S = ∪t (Tc(t)G\{0}) a submanifold of TG\0 in which c(t) is a smooth

curve in G with nowhere-vanishing ċ(t) = wi (t)Ui (c(t)), and {∂t , ∂ui , · · · , ∂um } the
global frame corresponding to the coordinate (t, u1, · · · , um) on S. Then we have

˜ċ(t)
H = ∂t + (− 1

2w
i (t) ∂

∂ui
H j + 1

2w
i (t)u pc jpi )∂u j ,

at each (c(t), y) ∈ S with y = uiUi (c(t)) ∈ Tc(t)G\{0}.
Using the left invariant frame {˜Ui , ∂ui ,∀i} on TG, we calculate the S-curvature and

Riemann curvature for a left invariant spray structure (see Theorem B and Theorem
C in [39]), which can be translated to the following (see Corollary 4.1 in [39])

Theorem 4.8 Let G be a left invariant spray structure on the Lie group G with the
spray vector field η : g\{0} → g and the connection operator N : g\{0} × g → g,
then its S-curvature for a left invariant smooth measure and its Riemann curvature
satisfy

S(e, y) = TrR(N (y, ·) + ad(y)), and

Ry(v) = DN (y, v, η(y)) − N (y, N (y, v)) + N (y, [y, v]g) − [y, N (y, v)]g,

respectively, for any y ∈ g\{0} and v ∈ g. Here DN (y, v, η(y)) = d
dt |t=0N (y +

tη(y), v).

In next two sections, wewill generalize above theorems for any homogeneous spray
manifold.

5 Homogeneous Spray Structure and Submersion

In this section, we define the spray vector field and the connection operator and
construct the submersion for a homogeneous spray structure.

5.1 Homogeneous Spray and Finsler Geometries

Let G be a spray structure on the smooth manifold Mn . We call G a homogeneous
spray structure on M , or call (M,G) a homogeneous spray manifold, if M admits
the transitive smooth action of the Lie group G, such that (g∗)∗G = G, ∀g ∈ G, or
equivalently, the action of every g ∈ G on M maps geodesics to geodesics.

Practically, we may identify the homogeneous spray manifold M with a smooth
coset space G/H , in which H is the isotropy subgroup at the origin o = eH . Now
suppose that (G/H ,G) is equipped with a linear decomposition g = h+m. Then the
subspace m is identified with To(G/H). When this decomposition is reductive, i.e., it
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is Ad(H)-invariant, the Ad(H)-action on m coincides with the isotropic H -action on
To(G/H).

For any vector v ∈ g, we denote vh = prh(v) and vm = prm(v), inwhich prh : g →
h and prm : g → m are the linear projections according to the given decomposition,
and we have the operations [·, ·]h = prh ◦ [·, ·]g and [·, ·]m = prm ◦ [·, ·]g.

A Finsler metric F on a smooth manifold M is called homogeneous if its isometry
group I (M, F) acts transitively on M [6].We also call (M, F) a homogeneous Finsler
manifold. Notice that I (M, F) is a Lie transformation group [7]. The geodesic spray
G of a homogeneous Finsler metric F is also homogeneous. So homogeneous Finsler
geometry is a special case of homogeneous spray geometry.

LetG be any closed Lie subgroup of I (M, F), which acts transitively on the homo-
geneous Finsler manifold (M, F). Then we have the representation M = G/H . A
reductive decomposition g = h + h can be easily observed as following. Because G
is closed in I (M, F), the isotropy subgroup H is compact, so there exists an Ad(H)-
invariant inner product on g. Then the orthogonal decomposition g = h + m with
respect to this inner product is reductive. Generally speaking, the reductive decompo-
sition for a homogeneous Finsler manifold (G/H , F) is not unique. The assumption
that G is closed in I (M, F) is not essential, but it helps us skip some minor technical
chores without loss of many generalities.

On a smooth coset space G/H with a reductive decomposition g = h + m, the
homogeneous Finslermetric F is one-to-one determined by its restriction to To(G/H),
which is an arbitrary Ad(H)-invariant Minkowski norm on m. For simplicity, we use
the same F to denote this Minkowski norm.

In [11], L. Huang defined the spray vector field η : m\{0} → m and the connection
operator N : m\0 × m → m for a homogeneous Finsler manifold (G/H , F) with a
reductive decomposition g = h + m by the following equalities,

gy(η(y), u) = gy(y, [u, y]m), ∀y ∈ m\{0}, u ∈ m, and

2gy(N (y, v), u) = gy([u, v]m, y) + gy([u, y]m, v) + gy([v, y]m, y)

−2Cy(u, v, η(y)), ∀y ∈ m\{0}, u, v ∈ m.

Using these notions, L. Huang presented beautiful homogeneous curvature formu-
lae. For example, his homogeneous S-curvature, Landsberg curvature and Riemann
curvatures are the following (see Proposition 4.6, Theorem 4.8 in [11] and Remark
6.11),

S(o, y) = TrR(N (y, ·) + adm(y)),

Ly(v, v, v) = 3Cy(v, v, [v, y]m − N (y, v)) − Cy(v, v, v, η(y)),

Ry(v) = [y, [v, y]h]m + DN (η, y, v) − N (y, N (y, v)) + N (y, [y, v]m)

−[y, N (y, v)]m.

At the end of this subsection, we remark that a left invariant spray structure G or a
left invariant Finsler metric F on a Lie group G is automatically homogeneous, with
G identified with G/H = G/{e}, which is equipped with the unique decomposition

123



Submersion and Homogeneous Spray Geometry Page 25 of 43 172

g = h + m = 0 + g. This decomposition is obviously reductive. See [12] for the
curvature properties of a left invariant Finsler metric on a Lie group.

5.2 Spray Vector Field and Connection Operator

The following lemma is crucial for later discussion.

Lemma 5.1 Let G/H be a smooth coset space with a linear decomposition g = h+m.
Suppose that c(t) is a smooth curve on G/H which is defined for t ∈ (a, b) with
a < 0 < b, satisfying c(0) = g · o for some g ∈ G and ċ(t) �= 0 everywhere. Then
there exists a unique smooth curve c(t) on G, which is defined around t = 0, and
satisfies

c(0) = g, c(t) = c(t) · o and (Lc(t)−1)∗(ċ(t)) = (c(t)−1)∗(ċ(t)) ∈ m\0 (5.1)

everywhere. Furthermore, c(t) can also be defined for t ∈ (a, b) if one of the following
is satisfied:

1. the decomposition g = h + m is reductive;
2. the subgroup H is compact.

The equality (Lc(t)−1)∗(ċ(t)) = (c(t)−1)∗(ċ(t)) in (5.1) is because our convention
identifies To(G/H) with m, and then identifies Tc(t)(G/H) = (c(t))∗(To(G/H)) for
c(t) = c(t) · o with (Lc(t))∗(m) ⊂ Tc(t)G naturally. See also Fact 2 in Sect. 6.1.

Proof Firstly, we prove the unique existence of c(t) for t close to 0.
There exists a smooth curve g(t) with t ∈ (a, b) on G, satisfying g(0) = g and

c(t) = g(t) · o everywhere. Then the curve c(t) indicated in Lemma 5.1, if it exists,
must be of the form c = g(t)h(t), in which h(t) is a smooth curve in H with h(0) = e,
for the first two requirements in (5.1), i.e., c(0) = g and c(t) = c(t) ·o, to be satisfied.
By the calculation

(Lc(t)−1)∗(ċ(t)) = (Lc(t)−1)∗((Lg(t))∗(ḣ(t)) + (Rh(t))∗(ġ(t)))
= (Lc(t)−1)∗((Lg(t))∗(ḣ(t)) + (Lc(t)−1)∗((Rh(t))∗(ġ(t)))
= (Lh(t)−1)∗(ḣ(t)) + Ad(h(t)−1)((Lg(t)−1)∗(ġ(t)),

we see that the third condition in (5.1), i.e., (Lc(t)−1)∗(ċ(t)) ∈ m\{0}, is satisfied if
and only if h(t) ∈ H is a solution of the ODE

ḣ(t) + (Lh(t))∗((Ad(h(t)−1)((Lg(t)−1)∗(ġ(t))))h) = 0. (5.2)

The solution h(t) of (5.2) satisfying h(0) = e exists uniquely for t sufficiently close
to 0. So the smooth curve c(t) on G which satisfies (5.1) exists uniquely around t = 0.

Nextly, we prove the existence of c(t) for t ∈ (a, b) when the decomposition
g = h + m is reductive. In this case, (5.2) can be simplified as ḣ(t) = (Rh(t))∗(y(t)),
in which y(t) = ((Lg(t)−1)∗(ġ(t)))h for t ∈ (a, b) is a given smooth curve in h. The
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existence of the solution h(t) for t ∈ (a, b), satisfying h(0) = e, can be similarly
proved by the argument proving Theorem D in [39]. Then the existence of c(t) for
t ∈ (a, b) follows immediately.

Finally, we prove the the existence of c(t) for t ∈ (a, b) when H is compact. Let
ε be a positive number, which is arbitrarily close to 0. The compactness implies the
existence of δ > 0, such that for any t0 ∈ [a + ε, b − ε] and any h ∈ H , there exists
a unique solution h(t) of (5.2) for t ∈ (t0 − δ, t0 + δ) satisfying h(t0) = h. Then
the solution h(t) of (5.2) with h(0) = e can be extended to [a + ε, b − ε] for any
sufficiently small ε > 0, by gluing it with other solutions of (5.2). So we have the
existence of h(t), as well as the existence of c(t), for t ∈ (a, b). �

Let (G/H ,G) be a homogeneous spray manifold with a linear decomposition
g = h + m. Suppose that cy(t) is the geodesic on (G/H ,G) with c(0) = o and
ċ(0) = y ∈ To(G/H)\{0} = m\{0}. Denote cy(t) the smooth curve on G provided
by Lemma 5.1, satisfying cy(0) = e, cy(t) = cy(t) ·o and y(t) = (Lcy(t)−1)∗(cy(t)) ∈
m\{0} for t close to 0. Since y(t) is a smooth curve inm\{0}, we can define the spray
vector field η : m\{0} → m by η(y) = − d

dt |t=0y(t).

Lemma 5.2 The spray vector field η is a positively 2-homogeneous smooth map.

Proof By the property of exponential map, wherever t is close to 0 and y �= 0,
c(t, y) = cy(t) is smooth for both t and y. By the theory of ODE, c(t, y) = cy(t) is
also smooth for both t and y. So η(y) = − d

dt |t=0(Lcy(t)−1)∗(ċy(t)) depends smoothly
on y ∈ m\{0}.

For any constant λ > 0, cλy(t) = c(λt) and ċλy(t) = λċ(λt) when t is close to 0.
So we have

η(λy) = − d
dt |t=0(Lcλy(t)−1)∗(ċλy(t)) = −λ d

dt |t=0(Lcy(λt))∗(ċy(λt)) = λ2η(y),

which proves the positive 2-homogeneity of η. �

The smoothness of the spray vector field η enable us to define the connection
operator N : m\{0} × m → m by N (y, v) = 1

2Dη(y, v) − 1
2 [y, v]m, in which

Dη(y, v) = d
dt |t=0η(y + tv).

Whenwe view η as a smooth tangent vector field on themanifoldm\{0}, we can get
the following correspondence between geodesics on (G/H ,G) and integral curves of
−η on m\{0}.

Theorem 5.3 Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h + m and η the spray vector field. Then we have a one-to-one
correspondence between the following two sets:

1. the set of all geodesics c(t) on (G/H ,G), which is defined for t sufficiently close
to 0 and satisfies c(0) = o;

2. the set of all integral curves y(t) of−η onm\{0}, which is defined for t sufficiently
close 0.
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The correspondence is from c(t) to y(t) = (Lc(t)−1)∗(ċ(t)), in which c(t) is the smooth
curve on G satisfying c(0) = e, c(t) = c(t) · o and (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for all
possible values of t . The range for the parameter t in this correspondence can be
changed to an arbitrary interval (a, b) with a < 0 < b when g = h + m is reductive
or H is compact.

Proof Firstly, we prove the correspondence from (1) to (2) around t = 0.
We consider a geodesic c(t) with c(0) = o on (G/H ,G). Let c(t) be the smooth

curve on G provided by Lemma 5.1 for c(t), satisfying c(0) = e, c(t) = c(t) · o and
(Lc(t)−1)∗(ċ(t)) ∈ m\{0}, for all possible values of t . Then y(t) = (Lc(t)−1)∗(ċ(t)) is
a smooth curve in m\{0} defined around t = 0.

Denote ct0(t) = c(t0)−1 · c(t + t0) for any t0 where c(t) is defined. By the left
invariancy of G, ct0(t) is a geodesic on (G/H ,G) satisfying ct0(0) = o. Meanwhile,
ct0(t) = c(t0)−1 · c(t + t0) satisfies

ct0(0) = e, ct0(t) = ct0(t) · o and (Lct0 (t)−1)∗(ċt0(t)) ∈ m

for t close to 0, i.e., it is the smooth curve on G provided by Lemma 5.1 for ct0(t). It
is easy to see that

yt0(t) = (Lct0 (t)−1)∗(ċt0(t)) = (Lc(t+t0)−1)∗(ċ(t + t0)) = y(t + t0),

and in particular yt0(0) = y(t0). So by definition, we get

η(y(t0)) = − d
dt |t=0yt0(t) = − d

dt |t=0y(t + t0) = − d
dt y(t0)

for each t0, i.e., y(t) is an integral curve of −η. The correspondence from (1) to (2) is
proved.

Nextly, we prove the backward correspondence around t = 0.
We consider an integral curve y(t) of −η, which is defined for t close to 0. Then

we have a smooth curve c′(t) on G satisfying

c′(0) = e and ċ′(t) = (Lc′(t))∗(y(t)) (5.3)

which is defined around t = 0. Let c(t) be the geodesic on (G/H ,G) satisfying
c(0) = o and ċ(0) = y(0) ∈ m\{0}, and c(t) the smooth curve on G provided by
Lemma 5.1 for c(t), satisfying c(0) = e, c(t) = c(t) · o and (Lc(t)−1)∗(ċ(t)) ∈ m
around t = 0. We have proved the correspondence from (1) to (2), which guarantees
that c(t) is also a solution of (5.3). By the uniqueness for the solution of (5.3), c(t)
coincides with c′(t) for t around 0, i.e., c(t) = c(t) ·o = c′(t) ·o = c′(t) is a geodesic
for t around 0. The correspondence from (2) to (1) is proved.

Finally, we prove for any interval (a, b) with a < 0 < b, the one-to-one
correspondence between

1. the set of geodesics c(t) with t ∈ (a, b) on (G/H ,G), satisfying c(0) = o, and
2. the set of integral curve y(t) with t ∈ (a, b) of −η on m\{0},
when the decomposition g = h + m is reductive or H is compact.
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From (1) to (2), when the geodesic c(t) is defined for t ∈ (a, b), the smooth curve
c(t) on G, provided by Lemma 5.1 for c(t), satisfying c(0) = e, c(t) = c(t) · o and
y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m, is also defined for t ∈ (a, b). So the previous argument
shows that y(t) is an integral curve of −η on m\{0}, which is defined for t ∈ (a, b).

From (2) to (1), for the integral curve y(t) of −η, which is defined for t ∈ (a, b),
the smooth curve c′(t) satisfying (5.3) is also defined for t ∈ (a, b). The argument is
similar to that proving TheoremD in [39]. Denote c(t) = c′(t) ·o. For each t0 ∈ (a, b),
similar argument as above can show that c(t0)−1 · c(t + t0) = c(t0)−1c(t) · o is a
geodesic around t = 0. Using the G-invariancy of G, c(t) for t ∈ (a, b) is a geodesic
on (G/H ,G).

To summarize, the range of t in the correspondence in Theorem 5.3 can be an
arbitrary interval (a, b) with a < 0 < b. This ends the proof. �

Comparing Theorem 5.3 with Theorem 4.3, we see immediately that the definitions
of spray vector field and connection operator in Sect. 5.2 are compatible with those
in Sect. 4.2 or [39], for a left invariant spray structure. They are also compatible with
those defined by L. Huang [11] (see (5.4) and (5.5)), which will be proved in Sect. 5.3
(see Theorem 5.6).

5.3 Construction of the Submersion for a Homogeneous Spray Structure

Let η : m\{0} → m be the spray vector field of the homogeneous spray manifold
(G/H ,G) with a linear decomposition g = h + m. Using some cut-off function
technique, we can extend η to a positively 2-homogeneous smoothmap η : g\{0} → g.
Then there exists a left invariant spray structureG on G, such that η is its spray vector
field.

The following theorem claims a submersion between (G,G) and (G/H ,G).

Theorem 5.4 Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h + m and η : m\{0} → m the spray vector field. Let G be a left
invariant spray structure on G such that its spray vector field η : g\{0} → g satisfies
η = η|m\{0}. Denote π : G → G/H the smooth map π(g) = g · o for all g ∈ G, and
L = ∪g∈G(Lg)∗(m) a distribution on G. Then (π,L) is a submersion from (G,G) to
(G/H ,G).

Proof Let c(t) be any geodesic on (G,G), satisfying ċ(0) ∈ Lc(0) = (Lc(0))∗(m).
By the left invariancy of G, Theorem 4.3 implies that y(t) = (Lc(t)−1)∗(ċ(t)) is an
integral curve of −η. Since the smooth tangent vector field η is tangent to m\{0} and
y(0) = (Lc(0)−1)∗(ċ(0)) ∈ m\{0}, we have y(t) ∈ m\{0}, i.e., ċ(t) ∈ (Lc(t))∗(m\{0}),
∀t . This argument proves that G is tangent to L ⊂ T (TG\0).

Meanwhile, we see that y(t) is also an integral curve of −η. While proving
Theorem 5.3, we have showed that c(t) = c(t) · o = π(c(t)) is a geodesic on
(G/H ,G).

To summarize, we see by definition that (π,L) is a submersion between the spray
structures G and G. This ends the proof. �

Theorem 5.4 permits the submersion technique in homogeneous spray geometry.
Practically, we use a special G in Theorem 5.4 for the convenience in calculation.
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For example, in the proof of Theorem 5.6 below, we choose the left invariant spray
structureG induced by a canonical construction for Minkowski norms. In Sect. 6, we
choose another G such that its spray vector field η satisfies η(y) = η(ym) in a conic
open neighborhood of m\{0}. Then a lot of calculation can be simplified.

In the rest of this section, we use the submersion technique to prove two theorems.
One theorem is for an explicit correspondence between a homogenous spray struc-

ture and its spray vector field, with respect to a reductive decomposition g = h + m
for G/H .

Theorem 5.5 For a smooth coset space G/H with a reductive decomposition g =
h + m, there is a one-to-one correspondence between the following two sets:

1. the set of all G-invariant spray structures G on G/H;
2. the set of all Ad(H)-invariant smooth maps η : m\{0} → m.

The correspondence is from G to its spray vector field with respect to the given
decomposition.

Proof Firstly, we consider the correspondence from (1) to (2). We only need to prove
for any homogeneous spray structureG onG/H , its spray vector field η : m\{0} → m
is Ad(H)-invariancy, i.e., η(Ad(g)y) = Ad(g)η(y), ∀g ∈ H , y ∈ m\{0}.

Let c(t) be the geodesic on (G/H ,G)with c(0) = o and ċ(0) = y ∈ m\{0}. Denote
c(t) the smooth curve on G provided by Lemma 5.1 for c(t), satisfying c(0) = e,
c(t) = c(t) · o and (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for all t close to 0. Then for any g ∈ H ,
c′(t) = g · c(t) is also a geodesic with c(0) = o and it satisfies ċ′(0) = Ad(g)(y).
More over, c′(t) = gc(t)g−1 is the smooth curve satisfying c′(0) = e, c′(t) = c′(t) ·o
and (Lc′(t)−1)∗(ċ′(t)) = Ad(g)((Lc(t)−1)∗(ċ(t))) ∈ m\{0} (the reductive property is
needed here) for t close to 0. So we have by definition

η(Ad(g)y) = − d
dt |t=0((Lc′(t)−1)∗(ċ′(t)))

= − d
dt |t=0(Ad(g)((Lc(t)−1)∗(ċ(t))))

= Ad(g)(η(y)),

which proves the Ad(H)-invariancy for η.
Nextly, we sketch the correspondence from (2) to (1) with some tedious chores

skipped.
Let η be any Ad(H)-invariant smooth map from m\{0} → m. We extend it to a

positively 2-homogeneous smoothmap η : g\{0} → g. Then there exits a left invariant
spray structure G on G, such that η is the spray structure of G. Theorem 4.3 implies
that G is tangent to L = ∪g∈G(Lg)∗(m). Since the decomposition g = h + m is
reductive and η is Ad(H)-invariant, both L and G|L\0 are right H -invariant. Then
G = (π∗)∗(G|L\0) is a well defined smooth tangent vector field on T (G/H)\0. More
over,G is a spray structure on G/H , and the pair (π,L) is a submersion from (G,G)

to (G/H ,G). Applying Theorem 4.3 and Theorem 5.3 to any geodesic c(t) on (G,G)

tangent to L and the geodesic c(t) = c(t) · o on (G/H ,G), we see immediately that
the spray vector field of G coincides with η|m\{0} = η.
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To summarize, this argument provides the correspondence from (2) to (1). Then
the proof ends. �

Denote G0 the homogeneous spray structure on G/H with a reductive decompo-
sition g = h + m, such that its spray vector field η is constantly 0. Then the pair
π(g) = g · o and L = ∪g∈G(Lg)∗(m) is a submersion from the canonical bi-invariant
spray structure G0 (see Theorem 4.2) on G to G0 = (π∗)∗(G0|L\0). Notice that the
geodesics for G0 coincide with those for the Nomizu connection (see Corollary 2.5
in Chapter 10 of [22]), so we may call G0 the canonical spray structure or the spray
structure for the Nomizu connection. However, it should be notified that the covariant
derivative of G0 corresponds to a torsion free connection (for example, the Levi-
Civita connection in Riemannian geometry), which is not the Nomizu connection (see
Theorem 2.6 in Chapter 10 of [22]).

For any homogeneous spray structure G on G/H with a reductive decomposition,
we can present the corresponding G in the proof of Theorem 5.5 as G = G0 − H.
Then H = (π∗)∗(H) is a well defined G-invariant smooth tangent vector fields
on T (G/H)\0, which is tangent to each Tx (G/H)\{0} and H|To(G/H) = η. To
summarize, we have

G = (π∗)∗(G) = G0 − H,

which generalizes the representation for a left invariant spray structure in [39, 40].
It should be notified that when the decomposition g = h + m is not reductive, the

relation between G and η, and the calculation for η may be much more complicated.
The other theorem is for the compatibility between the definitions of spray vec-

tor field and connection operator in homogeneous spray geometry and those in
homogeneous Finsler geometry (see [11] or (5.4) and (5.5) in Sect. 5.1).

Theorem 5.6 Let F be a homogeneous Finsler metric on M = G/H, in which G is
a closed subgroup of I (M, F), and g = h + m a reductive decomposition. Then the
spray vector field η and the connection operator N for the geodesic spray G of F
satisfies

gy(η(y), u) = gy(y, [u, y]m), ∀y ∈ m\{0}, u ∈ m, and (5.4)

2gy(N (y, v), u) = gy([u, v]m, y) + gy([u, y]m, v) + gy([v, y]m, y)

−2Cy(u, v, η(y)), ∀y ∈ m\{0}, u, v ∈ m, (5.5)

in which the inner product gy(·, ·) and the Cartan tensor Cy(·, ·, ·) are for the
Minkowski norm F = F(o, ·) on m.

Proof Firstly, we prove the statement for η.
Since G is a closed subgroup of I (M, F), its isotropy subgroup H is compact. So

we can find an Ad(H)-invariant inner product 〈·, ·〉bi on h. Using similar argument as
in the proof of Lemma 3.4 in [46], we can construct an Ad(H)-invariant Minkowski
norm F on g, such that

F(y) =
√

〈yh, yh〉bi + F(ym)2 (5.6)
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in a conic open neighborhood of m\{0} in g\{0}. Using left translations, F induces
a Finsler metric on G, which is both left G-invariant and right H -invariant. For sim-
plicity, we denote this metric as the same F . Then Lemma 3.3 and Lemma 3.4 in [46]
implies thatπ : (G, F) → (G/H , F) is a Finsler submersion, which horizonal bundle
coincides with L = ∪g∈G(Lg)∗(m). By the geodesic property of Finsler submersion
(see Theorem 3.1 in [31]), (π,L) is a submersion between the geodesic sprayG of F
and the geodesic spray G of F .

Theorem 3.1 in [42] provides the following representation for G,

G = vi ˜Vi − 1
2g

ilckl j [F2]vkv j∂vi . (5.7)

Notice that the right invariant frame {Vi ,∀i} on (G, F) is a Killing frame [41],
and [Vi , Vj ] = −cki j Vk (see the first line in (4.3)) results in a sign difference. By
Theorem 4.2,

1
2g

ilckl j [F2]vkv j∂vi = G0 − G (5.8)

is left invariant, in whichG0 = ui ˜Ui = vi ˜Vi is the canonical affine bi-invariant spray
structure on G. When restricted to TeG\{0}, {ui , ∂ui ,∀i} coincides with {vi , ∂vi ,∀i},
so the restriction of (5.8) to TeG\{0}, i.e., the spray vector field η : g\{0} → g for G
satisfies

gy(η(y), u) = gy(y, [u, y]g), ∀y ∈ g\{0}, u ∈ g,

in which gy(·, ·) is for the Minkowski norm F on g. Using (5.6), we see that for each
y in a conic open neighborhood of m\{0} in g\{0} that

gy(u, v) = gym(um, vm) + 〈uh, vh〉bi.

By the reductive property of g = h+m and the Ad(H)-invariancy of the Minkowski
norm F onm, we have gy(y, [u, y]) = 0, ∀y ∈ m\{0}, u ∈ h. Then it is easy to check
that η maps m\{0} to m and

gy(η(y), u) = gy(y, [u, y]m), ∀y ∈ m\{0}, u ∈ m. (5.9)

Let η : m\{0} → m the spray vector field for G. For any y ∈ m\{0}, let c(t)
be the geodesic on (G/H , F) which is defined around t = 0 and satisfies c(0) = o
and ċ(0) = y. Let c(t) be the smooth curve on G provided by Lemma 5.1 for c(t),
satisfying c(0) = e, c(t) = c(t) · o and y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\0 everywhere.
Since c(t) is a lifting of the geodesic c(t) which is tangent to L, we see that c(t) is a
geodesic on (G,G). Then by Theorem 5.3 and Theorem 4.3, y(t) is an integral curve
of −η, as well as that of −η. So we have η(y(t)) = η(y(t)), ∀t . In particular, when
t = 0, η(y) = η(y) for any y ∈ m\0. By (5.9), the statement for η in Theorem 5.6 is
proved.
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Nextly, we prove the statement for N . L. Huang pointed out (see (4) in [13]) that his
definition (5.5) for N satisfies N (y, v) = 1

2Dη(y, v)− 1
2 [y, v]m, in which η is the one

in (5.4). So the statement for N in Theorem 5.6 follows after that for η immediately.
�

Remark 5.7 The assumption that the subgroupG is closed in I (M, F) is not necessary
for Theorem 5.6. We add it to avoid some minor chores.

6 Parallel Translation and Curvature for a Homogeneous Spray
Structure

In this section, we use the submersion theory in Section 3 to study the geometry of a
homogeneous spray structure.

6.1 Some Notations and Facts

The following assumptions and notations are automatically applied through out this
section.

Let M = G be an m-dimensional Lie group, H ⊂ G an (m − n)-dimensional
closed subgroup, and M = G/H the n-dimensional smooth coset space. We choose
a linear decomposition g = h + m for G/H , and fix a basis {e1, · · · , em} of g, such
that ei ∈ m for 1 ≤ i ≤ n and eα ∈ h for n + 1 ≤ α ≤ m. We apply the convention
(3.2) for indices, i.e. 1 ≤ i, j, k, l, p, q, r ≤ n and n + 1 ≤ α, β, γ ≤ m. So we have
the Lie bracket coefficients in

[ei , e j ]g = cki j ek + cα
i j eα, · · · , [eα, eβ ]g = ciαβei + cγ

αβeγ .

Notice that every ciαβ vanishes because h is a Lie subalgebra, and every cβ
αi = −cβ

iα
vanishes when the chosen decomposition is reductive. The corresponding left and
right invariant frames are {Ui ,∀i;Uα,∀α}, {Vi ,∀i; Vα,∀α} on G, in which Ui (e) =
Vi (e) = ei , Uα(e) = Vα(e) = eα , for each i and α, and {˜Ui , ∂ui ,∀i; ˜Uα, , ∂uα ,∀α},
{˜Vi , ∂ui ,∀i; ˜Vα, ∂uα ,∀α} on TG, respectively.

Let G be a homogeneous spray structure on G/H , with the spray vector field
η : m\{0} → m and the connection operator N (y, w) = 1

2Dη(y, w) − 1
2 [y, w]m,

∀y ∈ m\{0}. Let G be a left invariant spray structure on G, such that its spray vector
field η : g\{0} → g satisfies η(y) = η(ym) in a conic open neighborhood of m\{0}
in g\{0}. Then Theorem 5.4 indicates that the pair (π,L), in which the smooth map
π : G → G/H is π(g) = g · o and the distribution L is L = ∪g∈G(Lg)∗(m), is a
submersion between (G,G) and (G/H ,G).

Here we summarize some obvious facts.

Fact 1 The distribution L can be characterized by uα = 0, ∀α, i.e., any vector in
TgG belongs to Lg if and only if it is of the form uiUi (g). At each g ∈ G, the kernel

of π∗ : TgG → Tg·o(G/H) is (Lg)∗(h). So for �T M
L (see Sect. 3.3 for its definition,

same below for other bundle maps), we have
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�T M
L ((Lg)∗(y)) = (Lg)∗(ym), ∀g ∈ G, y ∈ g = TgG.

Fact 2 Any vector y ∈ m ⊂ g = TeG is identified as a tangent vector in To(G/H),
which is its �L

T M -image. By the left invariancy of �L
T M , we have

�L
T M ((Lg)∗(v)) = g∗(v), ∀g ∈ G, v ∈ m.

Here v in the left side is viewed as a vector in m ⊂ g = TeG, and v in the right side
is viewed as a vector in m = To(G/H).

Fact 3 Obviously each ∂ui is tangent to L. By the observation ˜Viu j = ˜Vαu j = 0
for all i, j, α (see the third line in (4.3)), all ˜Vi ’s and ˜Vα’s are tangent to L as well.
Counting the dimension, we see that at each p ∈ L\0,

∂ui ,
˜Vi , ∀i, and ˜Vα, ∀α, provide a basis for Tp(TL\0).

The tangent map π∗ : TgG → Tg·o(G/H) maps to (Lg)∗(h) to 0, so (π∗)∗ maps
each ∂uα to 0. To summarize, at any p ∈ L,

�
T (T M)
TL maps every ∂uα to 0, and fixes each ∂ui ,

˜Vi and ˜Vα.

Fact 4 For the linear sub-bundleH′ of T (L\0) (see Sect. 3.5, same below forK),

its fiberH′
p at each p ∈ Lg\0 consists �

T (T M)
TL (̃vH) for all v ∈ Lg . So Fact 1 implies

that at each p ∈ L\0,

�
T (T M)
TL (˜UH

i ) for all i provides a basis forH′
p.

Fact 5 For the linear sub-bundle K of T (TG), its fiber Kp at each p ∈ TG is
ker(π∗)∗, which can be presented as span{∂ zα , ∂wα ,∀α} in a standard local coordinate
(xi , zα, y j , wβ) for π (see Sect. 3.2).

From Fact 3, we have already seen that span{∂uα |p,∀α} = span{∂wβ ,∀β} ⊂ Kp.
Since z = (zα) is the local coordinate on every gH , each Uα is a C∞-linear combi-
nation of ∂ zα ’s. Then its complete lifting ˜Uα is a C∞-linear combination of ∂ zα ’s and
∂wβ ’s. Counting the dimension, we see that at each p ∈ L\0,

∂uα and ˜Uα for all α provide a basis of Kp.

Fact 6 G can be presented as G = G0 − H, in which G0 = ui ˜Ui + uα
˜Uα =

vi ˜Vi +vα
˜Vα is the canonical bi-invariant affine spray structure onG, andH = H

i
∂ui +

H
α
∂uα with η = H|TeG\{0} and η = H|Le\{0}. Since η(y) = η(ym) in a conic open

neighborhood of m\0 in g\0, we see that, there exists an open neighborhood of L\0
in TG\0, where

H
α ≡ 0, ∀α, and ∂

∂uα H
i ≡ 0, ∀i, α.
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6.2 Description for Parallel Translations

Let (G/H ,G) be a homogeneous spray manifold with the linear decomposition g =
h + m, η the spray vector field and N the connection operator.

Firstly, we consider the linearly parallel translation along a smooth curve c(t)
on G/H with c(0) = o and nowhere-vanishing ċ(t). Let c(t) be the smooth curve
on G provided by Lemma 5.1 for c(t), satisfying c(0) = e, c(t) = c(t) · o and
(Lc(t)−1)∗(ċ(t)) ∈ m everywhere. The range of the parameter t is a suitable open
interval (a, b) with a < 0 < b, such that both c(t) and c(t) are defined.

The following theorem provide the ODE on m describing the linearly parallel
translation along c(t).

Theorem 6.1 Let (G/H ,G) be a homogeneous spraymanifoldwith a linear decompo-
sition g = h+m, c(t) any smooth curve onG/H with c(0) = o and nowhere-vanishing
ċ(t), and c(t) the smooth curve on G satisfying c(0) = e, c(t) = c(t) · o and
y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for each t. Then for any smooth vector field
W (t) = (c(t))∗(w(t)) along c(t), we have

Dċ(t)W (t) = (c(t))∗( d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m).

In particular, W (t) is linearly parallel along c(t) if and only if w(t) satisfies

d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m = 0

everywhere.

Proof By Fact 2, the lifting of W (t) = (c(t))∗(w(t)) along c(t) in L is

W (t) = (Lc(t))∗(w(t)) = wi (t)Ui (c(t)).

For the same reason, we can present ċ(t) as

ċ(t) = (Lc(t))∗(y(t)) = ui (t)Ui (c(t)).

Denote D the linearly covariant derivative on (G,G). Then using the first statement
in Theorem 4.4, we get

Dċ(t)W (t) = ( d
dt w

l(t) + 1
2w

j (t) ∂
∂u j H

l
(c(t), ċ(t)) + 1

2w
j (t)uk(t)clk j )Ul(c(t))

+( 12w
j (t) ∂

∂u j H
α
(c(t), ċ(t)) + 1

2w
j (t)uk(t)cα

k j )Uα(c(t))

= ( d
dt w

l(t) + 1
2w

j (t) ∂
∂u j H

l
(c(t), ċ(t)) + 1

2w
j (t)uk(t)clk j )Ul(c(t))

+ 1
2w

j (t)uk(t)cα
k jUα(c(t)), (6.1)

in which we have used Fact 6 for the second equality, i.e., H
α
vanishes around

(c(t), ċ(t)) ∈ L\{0}. Using the connection operator and Lie bracket of g, (6.1) can be
translated to
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Dċ(t)W (t) = (Lc(t))∗( d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m + 1

2 [y(t), w(t)]h),

Using Fact 1, we get

�T M
L (Dċ(t)W (t)) = (Lc(t))∗( d

dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m). (6.2)

By Lemma 3.5, �L
T M (�T M

L (Dċ(t)W (t))) = Dċ(t)W (t). Using Fact 2, we see from
(6.2) that

Dċ(t)W (t) = (c(t))∗( d
dt w(t) + N (y(t), w(t)) + [y(t), w(t)]m),

which proves the first statement in Theorem 6.1.
The second statement of Theorem 6.1 follows from the first one immediately. �

Some applications of Theorem 6.1 will be discussed in Sects. 6.3 and 6.4 (see
Theorem 6.5, Theorem 6.6 and Corollary 6.10).

Nextly, we keep all assumptions and notations for c(t) and c(t), and consider the
nonlinearly parallel translation. The following theorem provide the wanted ODE on
m\0.
Theorem 6.2 Let (G/H ,G) be a homogeneous spraymanifoldwith a linear decompo-
sition g = h+m, c(t) any smooth curve onG/H with c(0) = o and nowhere-vanishing
ċ(t), and c(t) the smooth curve on G satisfying c(0) = e, c(t) = c(t) · o and
w(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0} for each t. Suppose Y (t) = (c(t))∗(y(t)) is a
nowhere-vanishing smooth vector field along c(t). Then Y (t) is nonlinearly parallel
along c(t) if and only if y(t) ∈ m\{0} satisfies

d
dt y(t) + N (y(t), w(t)) = 0

everywhere.

Proof On the submanifold N = ∪t (Tc(t)G\{0}), we have the global coordinate
(t, u1, · · · , um) for y = uiUi (c(t)) + uαUα(c(t)) ∈ Tc(t)G\{0}. The submanifold
NL = ∪t (Lc(t)\{0}) ⊂ N corresponds to uα = 0, ∀α.

On N , we have the global frame {∂t , ∂u1 , · · · , ∂um }. At each point y ∈ NL ∩
Tc(t)G\{0}, ∂t and all ∂ui ’s are tangent to NL, and each ∂uα is contained in ker(π∗) ∩
Tc(t)G. So �

T (T M)|L
TL fixes ∂t and each ∂ui , and by Fact 3, it maps each ∂uα to 0.

Denote w(t) = wi (t)ei (t), then we have ċ(t) = (Lc(t))∗(w(t)) =
(Lc(t))∗(wi (t)ei ). Using (2) in Lemma 4.7, at each (c(t), y) ∈ NL with y =
uiUi (c(t)), we can get

�
T (T M)|L
TL (˜ċ(t)

H
|L)

= �
T (T M)|L
TL (∂t + (− 1

2w
i (t) ∂

∂ui
H

j
(c(t), y) + 1

2w
i (t)u p(t)c jpi )∂u j

+(− 1
2w

i (t) ∂
∂ui

H
α
(c(t), y) + 1

2w
i (t)u pcα

pi )∂uα )

= ∂t + (− 1
2w

i (t) ∂
∂ui

H
j
(c(t), y) + 1

2w
i (t)u p(t)c jpi )∂u j . (6.3)
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Now we prove the equivalence in Theorem 6.2.
Suppose that Y (t) = (c(t))∗(y(t)) with y(t) = ui (t)ei is a nonlinearly parallel

vector field along c(t). Denote Y (t) = (�
NL
N )−1(Y (t)). Since �

NL
L = �

L\0
T M\0|NL ,

Y (t) is the lifting of Y (t) in L along c(t). Then Fact 2 provides Y (t) = (Lc(t))∗(y(t))
= (Lc(t))∗(ui (t)ei ). If Y (t) and Y (t) are viewed as curves on the manifolds N =
∪t (Tc(t)(G/H)\{0}) and NL = ∪t (Lc(t)\{0}) respectively, Y (t) is an integral curve

of˜ċ(t)
H
, and by Lemma 3.6, Y (t) = (t, u1(t), · · · , un(t), 0, · · · , 0) is an integral

curve of the smooth vector field in (6.3). Then we see the ODE

d
dt u

i (t) = − 1
2w

i (t) ∂
∂ui

H
j
(c(t), y) + 1

2w
i (t)u p(t)c jpi , ∀i,

which can be translated to

d
dt y(t) = − 1

2Dη(y(t), w(t)) + 1
2 [y(t), w(t)]m = −N (y(t), w(t)),

using the connection operator and Lie bracket of g.
To summarize, above argument proves one side of the equivalence, and the other

side can be proved similarly. �
In the special case that w(t) ≡ w ∈ m\{0}, the smooth tangent vector field

−N (·, w) onm\0 generates a one-parameter subgroup of diffeomorphisms ρt . Apply-
ing Theorem 6.2, ρt can be explained by the nonlinearly parallel translation along
c(t) = (exp tw) ·o (notice that the corresponding c(t) = exp tw is defined for t ∈ R),
i.e.,

Corollary 6.3 Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h+m, and N the connection operator. Then for any fixedw ∈ m\{0}, the
one-parameter subgroup ρt generated by the smooth tangent vector field N (·, w) on
m\0 can be presented as ρt = (exp(−tw))∗ ◦ Pnlc;0,t , in which Pnlc;0,t is the nonlinearly
parallel translation along c(t) = (exp tw) · o from c(0) = o to c(t).

Remark 6.4 Theorem 6.2 and Corollary 6.3 suggest we study the Lie algebra H gen-
erated by N (·, w) for all w ∈ m, using the Lie bracket between smooth tangent vector
fields. It seems interesting to explore the relation between H and the restricted holon-
omy of (G/H ,G) and look for homogeneous spray structuresG which are not affine,
and have finite dimensional H. That may shed light on the Landsberg problem for
homogeneous Finsler manifolds [28, 45]. See also Sect. 4.2 in [40], where similar
observations are made for a left invariant spray structure.

6.3 Homogeneous S-Curvature and Landsberg Curvature Formulae

Firstly, we use linearly parallel translation to generalize L. Huang’s homogeneous
S-curvature formula (see Proposition 4.6 in [11]).

Let (G/H ,G) be a homogeneous spray structure with a linear decomposition g =
h + m. We further assume that the Ad(H)-action on g/h is unimodular, i.e., for each
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g ∈ H , the determinant of Ad(g) : g/h → g/h is ±1. Then there exists a G-invariant
smooth measure dμ on G/H which is unique up to a scalar. The S-curvature for G
and dμ is given by the following theorem.

Theorem 6.5 Let (G/H ,G) be a homogeneous spray structure with a linear decom-
position g = h + m. Suppose that the Ad(H)-action on g/h is unimodular. Then for
G and any G-invariant smooth measure dμ on G/H, the S-curvature satisfies

S(o, y) = TrR(N (y, ·) + adm(y)),

for any y ∈ m\{0} = To(G/H)\{0}. Here adm(y) : m → m is the linear map
w 	→ [y, w]m.

Proof Let c(t) be the geodesic on (G/H ,G)with c(0) = o and ċ(0) = y ∈ m\{0}, and
c(t) the smooth curve onG provided byLemma 5.1, satisfying c(0) = e, c(t) = c(t)·o
and (Lc(t)−1)∗(ċ(t)) ∈ m\{0} around t = 0. Denote Ei (t) = (c(t))∗(ei ), ∀1 ≤ i ≤ n.
Then {E1(t), · · · , En(t)} is a smooth frame along c(t). By the G-invariancy of dμ,
dμ(E1(t), · · · , En(t)) is a nonzero constant function. By Lemma 2.2, S(o, y) is the
real trace for linear map A(w) = − d

dt |t=0w(t), in which the smooth curve w(t) in
m is determined by the linearly parallel vector field W (t) = (c(t))∗(w(t)) along c(t)
with W (0) = w. By the second statement in Theorem 6.1, we have − d

dt |t=0w(t) =
N (y, w) + [y, w]m, so S(o, y) = TrR(N (y, ·) + adm(y)), which ends the proof. �

Nextly, we use the linearly parallel translation to re-prove L. Huang’s Landsberg
curvature formula curvature formula for a homogeneous Finsler manifold.

Theorem 6.6 Let (G/H , F) be a homogeneous Finsler manifold with a linear decom-
position g = h + m. Then for any y ∈ m\{0} = To(G/H)\{0} and w ∈ m =
To(G/H), the Landsberg curvature of (G/H , F) satisfies

Ly(w,w,w) = 3Cy(w,w, [w, y]m − N (y, w)) − Cy(w,w,w, η(y)). (6.4)

Here the Cartan tensor Cy(·, ·, ·) and the Cartan tensor Cy(·, ·, ·, ·) with a higher
order are defined for the Minkowski norm F = F(o, ·) on m = To(G/H). In
particular, we have

Cy(w1, w2, w3, w4) = d
dt |t=0Cy+tw4(w1, w2, w3), ∀w1, w2, w3, w4 ∈ m.

Proof Let η and N be the spray vector field and connection operator for the geodesic
spray of (G/H , F). Notice that the given decomposition g = h + m may not be
reductive, so η and N may not be those in (5.4) and (5.5) respectively.

Let c(t) be a geodesic on (G/H , F)with c(0) = o and ċ(0) = y ∈ m\{0}, and c(t)
the smooth curve on G provided by Lemma 5.1, satisfying c(0) = e, c(t) = c(t) · o
and y(t) = (Lc(t)−1)∗(ċ(t)) = (c(t)−1)∗(ċ(t)) ∈ m\{0} around t = 0. Let W (t) =
(c(t))∗(w(t)) be the linearly parallel vector field along c(t) with W (0) = w(0) = w.
Using the formula (2.7) for Landsberg curvature and the G-invariancy of F , we get
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Ly(w,w,w)

= d
dt |t=0Cċ(t)(W (t),W (t),W (t))

= d
dt |t=0C(c(t)−1)∗(ċ(t))((c(t)

−1)∗(W (t)), (c(t)−1)∗(W (t)), (c(t)−1)∗(W (t)))

= d
dt |t=0Cy(t)(w(t), w(t), w(t)). (6.5)

ByTheorem5.3 and the second statement in Theorem6.1, we have d
dt y(t) = −η(y(t))

and d
dt w(t) = −N (y(t), w(t)) − [y(t), w(t)]m. So the calculation (6.5) can be

continued as

Ly(w,w,w) = d
dt |t=0Cy(t)(w(t), w(t), w(t))

= 3Cy(w,w, d
dt |t=0w(t)) + Cy(w,w,w, d

dt |t=0y(t))

= 3Cy(w,w,w, [w, y]m − N (y, w)) − Cy(w,w,w, η(y)),

which ends the proof. �
Though the formula (6.4) in Theorem 6.6 looks the same as the one in Proposition

4.6 of [11], there is still a slight refinement because we do not need the reductive
property here.

6.4 Homogeneous Riemann Curvature Formula

Now we use the submersion technique to calculate the Riemann curvature of
(G/H ,G). As a preparation, we need the following lemma.

Lemma 6.7 At each point of L\0, we have

�
T (T M)|L
TL (˜UH

q ) = ˜Uq − ( 12
∂

∂uq H
j − 1

2u
kc jqk)∂u j − cα

iqu
i∂uα .

Proof Firstly, we use (1) in Lemma 4.7 to get

˜UH
q = ˜Uq − ( 12

∂
∂uq H

j − 1
2u

kc jqk)∂u j + 1
2u

j cα
q j∂uα ,

at any p = (g, y) ∈ L\0 with y = uiUi (g). Here we have used uα = 0 for all α at p,
and Fact 6, i.e, H

α ≡ 0 around p. Nextly, we use (2) in Lemma 4.1 and get

˜Uq = φi
q
˜Vi + φα

q
˜Vα + c jiqu

i∂u j + cα
iqu

i∂uα

at p. Finally, Fact 3 provides

�
T (T M)|TL
L (˜UH

q ) = �
T (T M)|TL
L (˜Uq) − ( 12

∂
∂uq H

j − 1
2u

kc jqk)∂u j

= ˜Uq − cα
iqu

i∂uα − ( 12
∂

∂uq H
j − 1

2u
kc jqk)∂u j ,

which ends the proof. �

123



Submersion and Homogeneous Spray Geometry Page 39 of 43 172

The following theorem provides the Riemann curvature formula for (G/H ,G).

Theorem 6.8 Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h+m. Then for any y ∈ m\{0} = To(G/H)\{0}, the Riemann curvature
Ry : m → m satisfies

Ry(w) = [y, [w, y]h]m + DN (η(y), y, w) − N (y, N (y, w))

+N (y, [y, w]m) − [y, N (y, w)]m, (6.6)

in which DN (η(y), y, w) = d
dt |t=0N (y + tη(y), w).

Proof When the spray vector field η : m\{0} → m is viewed as the smooth vector

field H|m\{0} = H
i
(e, ·)∂ui , the connection operator N (y, w) with y = ui ei ∈ m\{0}

and w = wi ei ∈ m is then identified with

1
2w

i ∂
∂ui

H
j
(e, y)∂u j − 1

2w
i u j ckji∂uk .

So we can use the G-invariancy of G to translate (6.6) to

Ry(w) = wq(cα
q j u

i u j ckiα + 3
4c

r
pqu

p ∂
∂ur H

i + 1
2c

i
q jH

j + 1
2H

p ∂2

∂u p∂uq H
i

− 1
4

∂
∂uq H

p ∂
∂u pH

i + 1
4c

i
pr u

r ∂
∂uq H

p − 1
4c

p
q j c

i
pr u

j ur )g∗(ei ) (6.7)

where y = ui g∗(ei ), w = wi g∗(ei ) ∈ Tg·o(G/H) and y �= 0.
By (4.1), Lemma 3.7, Fact 4 and Fact 5, (6.7) is equivalent to

[G|L\0,�T (T M)|L
L (˜UH

q )]
= (cα

q j u
i u j ckiα + 3

4c
r
pqu

p ∂
∂ur H

i + 1
2c

i
q jH

j + 1
2H

p ∂2

∂u p∂uq H
i

− 1
4

∂
∂uq H

p ∂
∂u pH

i + 1
4c

i
pr u

r ∂
∂uq H

p − 1
4c

p
q j c

i
pr u

j ur )∂ui

(mod ˜UH
i , ˜Uα, ∂uβ ,∀i, α, β). (6.8)

for each q. By Lemma 6.7, �
T (T M)|L
L (˜UH

q ) can be smoothly extended to TG\0. So
when we calculate the left side of (6.8), we may first do it in the neighborhood of L\0
where Fact 6 is valid, i.e., H

α
and ∂

∂uα H
i
vanish, and then restrict the result to L\0,

where uα vanishes.
According to Lemma 6.7, we denote �

T (T M)|L
L (˜UH

q ) = X1 + X2, in which X1 =
−cα

iqu
i∂uα and X2 = ˜Uq − ( 12

∂
∂uq H

j − 1
2u

i c jqi )∂u j , at each (g, y) ∈ L\0 with y =
uiUi (g).

Firstly, we calculate [G|L\0, X1] and get

[G|L\0, X1] = [ui ˜Ui + uα
˜Uα − H

i
∂ui ,−cα

jqu
j∂uα ]

= −cα
jqu

i u j [˜Ui , ∂uα ] (mod ˜Uα, ∂uβ ,∀α, β)

= cα
q j u

i u j ckiα∂uk (mod ˜Uα, ∂uβ ,∀α, β), (6.9)
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in which the last equality needs (4) of Lemma 4.1.
Nextly, we calculate [G, X2]. The calculation is almost the same as that proving

Theorem C in [39].
To be precise, we have

[−H
i
∂ui ,

˜Uq − ( 12
∂

∂uq H
j
∂u j − 1

2u
kc jqk∂u j )]

= ˜UqH
i
∂ui + H

i [˜Uq , ∂ui ] + 1
2 [H

i
∂ui ,

∂
∂uq H

j
∂u j ] − 1

2c
j
qk[H

i
∂ui , u

k∂u j ]
= crpqu

p ∂
∂ur H

i
∂ui + ciqpH

p
∂ui + 1

2H
p ∂2

∂u p∂uq H
i
∂ui − 1

2
∂

∂uq H
p ∂

∂u pHi∂ui

− 1
2c

i
q jH

j
∂ui + 1

2c
p
q j u

j ∂
∂u pH

i
∂ui (mod ∂uα ,∀α)

= 1
2c

r
pqu

p ∂
∂ur H

i
∂ui + 1

2c
i
q jH

j
∂ui + 1

2H
p ∂2

∂u p∂uq H
i
∂ui

− 1
2

∂
∂uq H

p ∂
∂u pH

i
∂ui (mod ∂uα ,∀α), (6.10)

where Fact 6, the left invariancy of H
i
and Lemma 4.1 have been applied.

Using Lemma 4.1, we also have

[G0, ˜Uq − ( 12
∂

∂uq H
i − 1

2c
i
q j )∂ui ]

= [G0, ˜Uq ] − 1
2 (

∂
∂uq H

i − 1
2c

i
q j u

j )[G0, ∂ui ] − 1
2G0(

∂
∂uq H

i − ciq j u
j )∂ui

= − 1
2 (

∂
∂uq H

i − 1
2c

i
q j u

j )[G0, ∂ui ] = − 1
2 (

∂
∂uq H

i − 1
2c

i
q j u

j )[u p
˜Up, ∂ui ]

= 1
2 (

∂
∂uq H

p − cpq j u
j )˜Up − 1

2u
p( ∂

∂uq H
i − ciq j u

j )[˜Up, ∂ui ]
= 1

2 (
∂

∂uq H
p − cpq j u

j )(˜UH + 1
2 (

∂
∂u pH

i

−cipr u
r )∂ui ) − 1

2u
p( ∂

∂uq H
r − crq j u

j )cipr∂ui (mod ∂uα ,∀α)

= 1
4 (

∂
∂uq H

p − cpq j u
j )( ∂

∂u pH
i − cipr u

r )∂ui − 1
2u

p( ∂
∂uq H

r − crq j u
j )cipr∂ui

(mod ˜UH
i , ∂uα ,∀i, α)

= 1
4

∂
∂uq H

p ∂
∂u pH

i
∂ui − 1

4c
p
q j u

j ∂
∂u pH

i
∂ui + 1

4c
i
pr u

r ∂
∂uq H

p
∂ui

− 1
4c

p
q j c

i
pr u

j ur∂ui (mod ˜UH
i , ∂uα ,∀i, α), (6.11)

where the first summand in the second line vanishes because G0 = vi ˜Vi + vα
˜Vα

is right invariant, and the third summand in the second line vanishes because H
i
’s,

ui ’s and ∂ui ’s are left invariant, i.e., ˜VjH
i = ˜VαH

i = 0, ˜Vjui = ˜Vαui = 0, and
[˜Vj , ∂ui ] = [˜Vα, ∂ui ] = 0, ∀i, j, α.

Adding (6.9), (6.10) and (6.11), we get (6.8), which prove Theorem 6.8. �

Remark 6.9 Though (6.6) is not explicit given in [11] for a homogeneous Finslermetric
and a reductive decomposition, L. Huang showed in a private communication that it
can be easily deduced from Proposition 3.3, (26) and (30) in [11].
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The thought in Theorem 1.2 of [40] provides a new interpretation for the
homogeneous Riemann curvature formula (6.6).

Corollary 6.10 Let (G/H ,G) be a homogeneous spray manifold with a linear decom-
position g = h + m. Let c(t) be a geodesic on (G/H ,G), which is defined around
t = 0 and satisfies c(0) = o, c(t) the smooth curve on G provided by Lemma 5.1
for c(t), satisfying c(0) = e, c(t) = c(t) · o and y(t) = (Lc(t)−1)∗(ċ(t)) ∈ m\{0}
everywhere, and W (t) = (c(t))∗(w(t)) a linearly parallel vector field along c(t),
where w(t) = wi (t)ei is viewed as a smooth vector field along the smooth curve y(t)
in m\{0}. Then N (t) = N (y(t), w(t)) and R(t) = Ry(t)(w(t)) satisfy

N (t) = [w(t), η] and R(t) = [y(t), [w(t), y(t)]h]m + [η, N (t)]

when they are viewed as smooth vector fields along y(t).

Remark 6.11 Here we apply the same convention as in [40], i.e., brackets without
subscripts are indeed Lie derivatives. They can be calculated like brackets between
smooth vector fields as following. Let X be a smooth vector field on M and Y (t) a
smooth vector field along an integral curve c(t) for X , then [X ,Y (t)] = −[Y (t), X ]
is a well defined smooth vector field along c(t). When c(t) is not constant, we may
locally extend Y (t) to a smooth vector field Z on M , then [X ,Y (t)] = [X , Z ]|c(t) is
independent of the extension. Using local coordinate, the bracket between X = Xi∂xi

and Y (t) = Y i (t)∂xi |c(t) can be presented as

[X ,Y (t)] = ( d
dt Y

i (t)∂xi − Y i (t) ∂
∂xi

X j∂x j )|c(t). (6.12)

Notice that when c(t) is constant, (6.12) can still be used to defined [X ,Y (t)] along
c(t), which is independent of the choice of local coordinate.

The proof of Corollary 6.10 is very similar to that for Theorem 1.2 in [40].

Proof of Corollary 6.10 By Theorem 5.3, y(t) = (Lc(t)−1)∗(ċ(t)) for the geodesic c(t)
is an integral curve of −η. We view w(t) = (c(t)−1)∗(W (t)) as a smooth vector field
along y(t), so the bracket [−η,w(t)] is a well defined smooth vector field along y(t)
by Remark 6.11. Using (6.12), we get

[−η,w(t)] = d
dt w(t) + Dη(y(t), w(t)) = d

dt w(t) + 2N (y(t), w(t))

+[y(t), w(t)]m.

By Theorem 6.1, we have d
dt w(t)+N (y(t), w(t))+[y(t), w(t)]m = 0 for the linearly

parallel vector field W (t) = (c(t))∗(w(t)) along c(t), so N (t) = N (y(t), w(t)) =
[−η,w(t)] = [w(t), η].

Using the fact d
dt y(t) = −η(y(t)) from Theorem 5.3 and the linearity of N (·, ·) for

the second entry, we have
d
dt N (y(t), w(t)) = DN (−η, y(t), w(t)) + N (y(t), d

dt w(t))

= −DN (η, y(t), w(t)) + N (y(t),−N (y(t), w(t))

−[y(t), w(t)]m)
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= −DN (η, y(t), w(t)) − N (y(t), N (y(t), w(t)))

−N (y(t), [y(t), w(t)]m), (6.13)

in which DN (η, y(t), w(t)) = d
ds |s=0N (y(t) + sη(y(t)), w(t)). So (6.12) and (6.13)

imply

[η, N (t)] = − d
dt N (y(t), w(t)) − Dη(y(t), N (y(t), w(t)))

= DN (η, y(t), w(t)) + N (y(t), N (y(t), w(t))) + N (y(t), [y(t), w(t)]m)

−(2N (y(t), N (y(t), w(t))) + [y(t), N (y(t), w(t))]m)

= DN (η, y(t), w(t)) − N (y(t), N (y(t), w(t))) + N (y(t), [y(t), w(t)]m)

−[y(t), N (y(t), w(t))]m
= Ry(t)(w(t)) − [y(t), [w(t), y(t)]h]m = R(t) − [y(t), [w(t), y(t)]h]m.

This ends the proof.
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