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Abstract
We show that if Y j ⊂ C

n j is a bounded strongly convex domain with C3-boundary
for j = 1, . . . , q, and X j ⊂ C

m j is a bounded convex domain for j = 1, . . . , p,
then the product domain

∏p
j=1 X j ⊂ C

m cannot be isometrically embedded into
∏q

j=1 Y j ⊂ C
n under the Kobayashi distance, if p > q. This result generalises

Poincaré’s theorem which says that there is no biholomorphic map from the polydisc
onto the Euclidean ball inCn for n ≥ 2. The method of proof only relies on the metric
geometry of the spaces and will be derived from a more general result for products of
proper geodesicmetric spaces with the sup-metric. In fact, themain goal of the paper is
to establish a general criterion, in terms of certain asymptotic geometric properties of
the individual metric spaces, that yields an obstruction for the existence of an isometric
embedding between product metric spaces.

Keywords Product metric spaces · Product domains · Kobayashi distance · Isometric
embeddings · Metric compactification · Busemann points · Detour distance

Mathematics Subject Classification Primary 32F45 · Secondary 51F99

1 Introduction

Numerous theorems in several complex variables are instances of results in metric
geometry. In this paper, we shall see that a classic theorem due to Poincaré [22],
which says that there is no biholomorphic map from the polydisc �n onto the (open)
Euclidean ball Bn inCn if n ≥ 2, is a case in point. In fact, it is known [19, 29, 30] that
there exists no surjective Kobayashi distance isometry of �n onto Bn if n ≥ 2. More
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generally, onemaywonderwhen it is possible to isometrically embed a product domain∏p
j=1 X j ⊂ C

m into another product domain
∏q

j=1 Y j ⊂ C
n under the Kobayashi

distance. In this paper, we show, among other results, the following theorem.

Theorem 1.1 Suppose that X j ⊂ C
m j is a bounded convex domain for j = 1, . . . , p,

and Y j ⊂ C
n j is a bounded strongly convex domain with C3-boundary for j =

1, . . . , q.. If p > q, then there is no isometric embedding of
∏p

j=1 X j into
∏q

j=1 Y j

under the Kobayashi distance.

Note that Poincaré’s theorem is a special case where p = n ≥ 2 and q = 1, as
the boundary of the Euclidean ball is smooth. The case where

∑
j m j = ∑

j n j and
the isometry is surjective was analysed by Zwonek [29, Theorem 2.2.5] who used
different methods.

A key property of the Kobayashi distance is the product property, see [13, Theorem
3.1.9]. Indeed, if X j ⊂ C

m j is a bounded convex domain for j = 1, . . . , p, then the
Kobayashi distance, kX , on the product domain X := ∏p

j=1 X j satisfies

kX (w, z) = max
j=1,...,p

kX j (w j , z j ) for all w = (w1, . . . , wp), z = (z1, . . . , z p) ∈ X .

In view of the product property, it is natural to consider product metric spaces with
the sup-metric. Given metric spaces (Mj , d j ), j = 1, . . . , p, the product metric space
(
∏p

j=1 Mj , d∞) is given by

d∞(x, y) := max
j

d j (x j , y j ) for x = (x1, . . . , xp), y = (y1, . . . , yp) ∈
p∏

j=1

Mj .

In this general context, it is interesting to understandwhen one can isometrically embed
a product metric space into another one. The main goal of this paper is to establish a
general criterion, in terms of certain asymptotic geometric properties of the individual
metric spaces, that yields an obstruction for the existence of an isometric embedding
between product metric spaces, and to show how this criterion can be used to derive
Theorem 1.1.

The key concepts from metric geometry involved are as follows: the horofunction
boundary of proper geodesic metric spaces, almost geodesics, Busemann points, the
detour distance, and the parts of the horofunction boundary, which will all be recalled
in the next section. Our main result is the following.

Theorem 1.2 Suppose that (Mj , d j ) is a proper geodesic metric space containing an
almost geodesic sequence for j = 1, . . . , p, and (N j , ρ j ) is a proper geodesic metric
space such that all its horofunctions are Busemann points, and δ(h j , h′

j ) = ∞ for all
h j �= h′

j Busemann points of (N j , ρ j ), for j = 1, . . . , q. If p > q, then there exists

no isometric embedding of (
∏p

j=1 Mj , d∞) into (
∏q

j=1 N j , d∞).

The assumption that each horofunction is a Busemann point and that any two distinct
Busemann points lie at infinite detour distance from each other is a type of regularity
condition on the asymptotic geometry of the space, which is satisfied by numerous
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metric spaces, such as finite dimensional normed spaces with smooth norms [24],
Hilbert geometries on bounded strictly convex domains with C1-boundary [25], and,
as we shall see in Lemma 3.3, Kobayashi metric spaces (D, kD), where D ⊂ C

n is a
bounded strongly convex domain with C3-boundary.

It turns out that the parts of the horofunction boundary and the detour distance
in product metric spaces have a special structure that is closely linked to a quotient
space of (Rn, 2‖ · ‖∞), where ‖x‖∞ = max j |x j |. More precisely, if we let Sp(1) :=
{λ(1, . . . , 1) ∈ R

n : λ ∈ R}, then the quotient space Rn/Sp(1) with respect to 2‖ · ‖∞
has the variation norm as the quotient norm, which is given by

‖x‖var := max
j

x j + max
j

(−x j ) for x ∈ R
n/Sp(1), (1.1)

see [17, Sect. 4]. It is known, e.g. [14, Proposition 2.2.4], that (Rn/Sp(1), ‖ · ‖var) is
isometric to the Hilbert metric space on the open (n − 1)-dimensional simplex.

We show in Theorem 2.8 that if, for j = 1, . . . , q, we have that (N j , ρ j ) is a
proper geodesic metric space such that all its horofunctions are Busemann points,
and δ(h j , h′

j ) = ∞ for all h j �= h′
j Busemann points of (N j , ρ j ), then each part of

(
∏q

j=1 N j , d∞) is isometric to (Rn/Sp(1), ‖ · ‖var) for some 1 ≤ n ≤ q.
The horofunctions for the product of two metric spaces have been considered by

Walsh [26, Sect. 8]. Some of our results are extensions of his work to arbitrary finite
products, and the ideas of some of the proofs are quite similar. For the reader’s con-
venience, we give full proofs and provide comments on the relation with the work in
[26] where relevant.

The work in this paper has links to work by Bracci and Gaussier [7] who studied
the interaction between topological properties and the metric geometry of hyperbolic
complex spaces. It is also worth mentioning that various other aspects of the metric
geometry of product metric spaces have been studied in context of Teichmüller space
in [9, 20].

2 TheMetric Compactification of Product Spaces

In our set-up, wewill follow the terminology in [12], which contains further references
and background on the metric compactification.

Let (M, d) be a metric space, and let RM be the space of all real functions on M
equipped with the topology of pointwise convergence. Fix b ∈ M , which is called the
basepoint. Let Lip1b(M) denote the set of all functions h ∈ R

M such that h(b) = 0
and h is 1-Lipschitz, i.e. |h(x) − h(y)| ≤ d(x, y) for all x, y ∈ M . Then Lip1b(M) is
a closed subset of RM . Moreover, as

|h(x)| = |h(x) − h(b)| ≤ d(x, b)

for all h ∈ Lip1b(M) and x ∈ M , we get that Lip1b(M) ⊆ [−d(x, b), d(x, b)]M , which
is compact by Tychonoff’s theorem. Thus, Lip1b(M) is a compact subset of RM .
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Now for y ∈ M consider the real-valued function

hy(z) := d(z, y) − d(b, y)with z ∈ M .

Then hy(b) = 0 and |hy(z) − hy(w)| = |d(z, y) − d(w, y)| ≤ d(z, w). Thus,
hy ∈ Lip1b(M) for all y ∈ M . The closure of {hy : y ∈ M} is called the metric

compactification of M and is denoted M
h
. The boundary ∂M

h := M
h \ {hy : y ∈ M}

is called the horofunction boundary of M , and its elements are called horofunctions.
Given a horofunction h and r ∈ R, the set H(h, r) := {x ∈ M : h(x) < r} is a called
a horoball.

We will assume that the metric space (M, d) is proper, meaning that all closed balls
are compact. Such metric spaces are separable, since every compact metric space is
separable. It is known that if (M, d) is separable, then the topology of pointwise
convergence on Lip1b(M) is metrizable, and hence each horofunction is the limit of
a sequence of functions (hyn ) with yn ∈ M for all n ≥ 1. In general, however,
horofunctions are limits of nets.

A curve γ : I → (M, d), where I is a possibly unbounded interval in R, is called
a geodesic path if

d(γ (s), γ (t)) = |s − t | for all s, t ∈ I .

The metric space (M, d) is said to be a geodesic space if for each x, y ∈ M there
exists a geodesic path γ : [a, b] → M with γ (a) = x and γ (b) = y. A proof of the
following well-known fact can be found in [16, Lemma 2.1].

Lemma 2.1 If (M, d) is a proper geodesic metric space, then h ∈ ∂M
h
if and only if

there exists a sequence (yn) in M such that hyn → h and d(yn, b) → ∞ as n → ∞.

It should be noted that in the previous lemma, it is necessary to assume that the
metric space is proper. Indeed, consider the star graph with centre vertex b and edges
En = {b, vn} of length n for n ∈ N. Then the sequence (vn) in the resulting path
metric space, with basepoint b, satisfies

lim
n→∞ hvn (x) = lim

n→∞ d(x, vn) − d(b, vn) = d(x, b) = hb(x)

for all x , and hence does not yield a horofunction.
A sequence (yn) in (M, d) is called an almost geodesic sequence if d(yn, y0) → ∞

as n → ∞, and for each ε > 0, there exists N ≥ 0 such that

d(ym, yk) + d(yk, y0) − d(ym, y0) < ε for all m ≥ k ≥ N .

The notion of an almost geodesic sequence goes back to Rieffel [23] and was further
developed in [5, 15, 24, 27]. In particular, any almost geodesic sequence yields a
horofunction, see [23, Lemma 4.5].
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Lemma 2.2 Let (M, d) be a proper geodesicmetric space. If (yn) is an almost geodesic
sequence in M, then

h(x) = lim
n→∞ d(x, yn) − d(b, yn)

exists for all x ∈ M and, moreover, h ∈ ∂M
h
.

Given a proper geodesic metric space (M, d), a horofunction h ∈ M
h
is called a

Busemann point if there exists an almost geodesic sequence (yn) in M such that
h(x) = limn→∞ d(x, yn) − d(b, yn) for all x ∈ M . We denote the collection of all
Busemann points by BM .

It is known that a product metric space (
∏p

j=1 Mj , d∞), where

d∞(x, y) = max
j

d j (x j , y j ) for x = (x1, . . . , xp), y = (y1, . . . , yp) ∈
p∏

j=1

Mj ,

is a proper geodesic metric space, if each (Mj , d j ) is a proper geodesic metric space,
see for instance [21, Proposition 2.6.6].

The horofunctions of a product proper geodesic metric spaces have a special form,
as the following theorem shows. This theorem is an extension of [26, Proposition 8.1],
and the basic idea of the proof is the same.

Theorem 2.3 For j = 1, . . . , p let (Mj , d j ) be proper geodesic metric spaces. Sup-
pose that h is a horofunction of (

∏p
j=1 Mj , d∞) with basepoint b = (b1, . . . , bp).

If (yn) is a sequence in
∏p

j=1 Mj converging to h, then there exist J ⊆ {1, . . . , p}
non-empty, horofunctions h j in M j

h
with basepoint b j for j ∈ J , α ∈ R

J with
min j∈J α j = 0, and a subsequence (ynk ) such that

(1) d∞(b, ynk ) − dk(b j , y
nk
j ) → α j for all j ∈ J ,

(2) d∞(b, ynk ) − dk(bi , y
nk
i ) → ∞ for all i /∈ J ,

(3) hy
nk
j

→ h j for all j ∈ J .

Moreover, h is of the form,

h(x) = max
j∈J

h j (x j ) − α j for x = (x1, . . . , xp) ∈
p∏

j=1

Mj . (2.1)

Proof Let (yn) be a sequence in
∏p

j=1 Mj such that (hyn ) converges to a horo-

function h. So h(x) = limn→∞ d∞(x, yn) − d∞(b, yn) for all x ∈ ∏p
j=1 Mj .

As the product metric space is a proper geodesic metric space, it follows from
Lemma 2.1 that d∞(b, yn) → ∞ as n → ∞. Write yn := (yn1 , . . . , ynp) and let
αn
j := d∞(b, yn) − d j (b j , ynj ) ≥ 0 for all j = 1, . . . , p and n ≥ 0.
We may assume, after taking a subsequence, that hynj

(·) := d j (·, ynj ) − d j (b j , ynj )

converges to h j ∈ Mj
h
and αn

j → α j ∈ [0,∞] for all j ∈ {1, . . . , p}, and αn
j0

= 0
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for all n ≥ 0 for some fixed j0 ∈ {1, . . . , p}. Let J := { j : α j < ∞} and note that
j0 ∈ J . So,

h(x) = lim
n→∞ d∞(x, yn) − d∞(b, yn) = lim

n→∞max
j

(d j (x j , y
n
j ) − d j (b j , y

n
j ) − αn

j )

= max
j∈J

h j (x j ) − α j .

To complete the proof note that α j < ∞ implies that d j (b j , ynj ) → ∞, and hence by
Lemma 2.1, we find that h j is a horofunction of (Mj , d j ) for j ∈ J . �

The following notion will be useful in the sequel. A path γ : [0,∞) → (M, d) is
called an almost geodesic ray if d(γ (t), γ (0)) → ∞, and for each ε > 0, there exists
T ≥ 0 such that

d(γ (t), γ (s)) + d(γ (s), γ (0)) − d(γ (t), γ (0)) < ε for all t ≥ s ≥ T .

Let (yn) be an almost geodesic sequence in a geodesicmetric space (M, d) and assume
that

d(yn, y0) < d(yn+1, y0) for all n ≥ 0. (2.2)

For simplicity, we write �n := d(yn, y0) and we let γn : [0, d(yn+1, yn)] → (M, d)

be a geodesic path connecting yn and yn+1, i.e. γn(0) = yn and γn(d(yn+1, yn)) =
yn+1. for all n ≥ 0.

Wewrite In := [�n,�n+1] and let γ̄n : In → (M, d)be the affine reparametrisation
of γn given by

γ̄n(t) := γn

(
d(yn+1, yn)

�n+1 − �n
(t − �n)

)

for all t ∈ In .

We call the path γ̄ : [0,∞) → (M, d) given by

γ̄ (t) := γ̄n(t) for t ∈ In

a ray induced by (yn). Note that γ̄ is well defined for all t ≥ 0 by (2.2).

Lemma 2.4 If (yn) is an almost geodesic sequence in a geodesic metric space (M, d)

converging to a horofunction h and satisfying (2.2), then each ray, γ̄ , induced by (yn)
satisfies:

(i) γ̄ is an almost geodesic ray and hγ̄ (t) → h as t → ∞,
(ii) the map t �→ d(γ̄ (t), γ̄ (0)) is continuous on [0,∞).

Proof We first show that for each ε > 0, there exists T ≥ 0 such that

d(γ̄ (t), yn) + d(yn, y0) − d(γ̄ (t), y0) < ε for all t ≥ T and n ≥ 0 wi th t ∈ In .

(2.3)
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To get this inequality, just note that there exists N ≥ 0 such that

d(γ̄ (t), yn) + d(yn, y0) − d(γ̄ (t), y0) = d(yn+1, γ̄ (t)) + d(γ̄ (t), yn) + d(yn, y0)

−d(γ̄ (t), y0) − d(yn+1, γ̄ (t))

≤ d(yn+1, yn)+d(yn, y0)−d(yn+1, y0)<ε,

for all t ∈ In and n ≥ N , as (yn) is an almost geodesic sequence. So to get (2.3), we
can take T = �N .

To prove that γ̄ is an almost geodesic ray, we need to show that for each ε > 0,
there exists S ≥ 0 such that

d(γ̄ (t), γ̄ (s)) + d(γ̄ (s), γ̄ (0)) − d(γ̄ (t), γ̄ (0)) < ε for all t ≥ s ≥ S.

Suppose that t > s are such that t ∈ In and s ∈ Ik with n > k. Then by using (2.3),
we know that for all n and k large,

d(γ̄ (t), γ̄ (s)) + d(γ̄ (s), γ̄ (0)) − d(γ̄ (t), γ̄ (0)) ≤ d(γ̄ (t), γ̄ (s)) + d(γ̄ (s), yk) + d(yk , y0)

−d(γ̄ (t), y0)

≤ d(γ̄ (t), yn) + d(yn, γ̄ (s)) + d(γ̄ (s), yk)

+d(yk , y0) − d(γ̄ (t), y0)

< −d(yn, y0) + d(yn, γ̄ (s)) + d(γ̄ (s), yk)

+d(yk , y0) + ε

≤ −d(yn, y0) + d(yn, yk+1) + d(yk+1, γ̄ (s))

+d(γ̄ (s), yk) + d(yk , y0) + ε

= −d(yn, y0) + d(yn, yk+1) + d(yk+1, yk)

+d(yk , y0) + ε

< −d(yn, y0) + d(yn, yk+1)

+d(yk+1, y0) + 2ε < 3ε.

Finally suppose that t ≥ s are such that t, s ∈ In . Then for all n ≥ 0 large we have
that

d(γ̄ (t), γ̄ (s)) + d(γ̄ (s), γ̄ (0)) − d(γ̄ (t), γ̄ (0)) = d(γ̄ (t), yn) − d(yn, γ̄ (s)) + d(γ̄ (s), γ̄ (0))

−d(γ̄ (t), γ̄ (0))

≤ d(γ̄ (t), yn) + d(yn, y0) − d(γ̄ (t), y0) < ε.

As γ̄ is an almost geodesic ray, we know by [23, Lemma 4.5] that hγ̄ (t) → h′,
where h′ is a horofunction. As γ̄ (�n) = yn for all n, we get that h′ = h.

To prove the second assertion, we note that the affine map

t �→ d(yn+1, yn)

�n+1 − �n
(t − �n)
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160 Page 8 of 20 B. Lemmens

is a continuousmap from In onto [0, d(yn1 , yn)], and themap γn : [0, d(yn+1, yn)] →
(M, d) is continuous, as γn is a geodesic. Thus, the map t �→ d(γ̄ (t), γ̄ (0)) is contin-
uous on the interior of the interval In for all n ≥ 0. To get continuity at the endpoints,
we simply note that for all n ≥ 0,

lim
t→�−

n

d(γ̄ (t), γ̄ (0)) = d(yn, γ̄ (0)) = lim
t→�+

n

d(γ̄ (t), γ̄ (0)),

which completes the proof. �
Lemma 2.5 If (yn) is an almost geodesic sequence in a geodesic metric space (M, d)

satisfying (2.2) and γ̄ is a ray induced by (yn), then for each sequence (βn) in [0,∞)

with βn+1 > βn for all n ≥ 0, there exists sequence (tn) in [0,∞) with tn+1 > tn for
all n ≥ 0 such that d(γ̄ (tn), γ̄ (0)) = βn for all n ≥ 0.

Proof Note that as γ : [0,∞) → M is an almost geodesic by Lemma 2.4(i), we
know that d(γ (t), γ (0)) → ∞ as t → ∞. From Lemma 2.4(ii) we know that γ is
continuous on [0,∞), so there exists tn0 ≥ 0 such that d(γ (tn0 ), γ (0)) = βn . Now if
we let tn := inf{t ≥ 0 : d(γ (t), γ (0)) = βn}, then by continuity of γ we have that
d(γ (tn), γ (0)) = βn and tn+1 > tn for all n ≥ 0. �

2.1 Detour Distance

Suppose that (M, d) is a proper geodesic metric space. Given two Busemann points

h1, h2 ∈ ∂M
h
, the detour cost is given by

H(h1, h2) := inf
(zn)

lim inf
n
d(b, zn) + h2(z

n), (2.4)

where the infimum is taken over all sequences (zn) such that hzn converges to h1. It is
known, see [15, Lemma 3.1], that if (zn) is an almost geodesic sequence converging
to h1 and (wm) converges to h2, then

H(h1, h2) = lim
n→∞

(
d(b, zn) + lim

m→∞ d(zn, wm) − d(b, wm)
)

= lim
n→∞ d(b, zn) + h2(z

n).

The detour distance is given by

δ(h1, h2) := H(h1, h2) + H(h2, h1).

Note that for all m, n ≥ 0, we have that

d(b, zn) + d(zn, wm) − d(b, wm) ≥ 0,

so that H(h1, h2) ≥ 0 for all h1, h2 ∈ ∂M
h
. It is, however, possible for H(h1, h2) to

be infinite. It can be shown, see [15, Sect. 3] or [27, Sect. 2], that the detour distance
is independent of the basepoint.
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The detour distance was introduced in [5] and has been exploited and further devel-
oped in [15, 27]. It is known, see for instance [15, Sect. 3] or [27, Sect. 2], that on

BM ⊆ ∂M
h
, the detour distance is symmetric, satisfies the triangle inequality, and

δ(h1, h2) = 0 if and only if h1 = h2. This yields a partition of BM into equivalence
classes, where h1 and h2 are said to be equivalent if δ(h1, h2) < ∞. The equivalence
class of h will be denoted by P(h). Thus, the set of Busemann points, BM , is the
disjoint union of metric spaces under the detour distance, which are called parts of
BM .

Isometric embeddings between proper geodesic metric spaces can be extended to
the parts of the metric spaces as detour distance isometries. Indeed, suppose that
ϕ : (M, d) → (N , ρ) is an isometric embedding, i.e. ρ(ϕ(x), ϕ(y)) = d(x, y) for all
x, y ∈ M . (Note that ϕ need not be onto.) If h is a Busemann point of (M, d) with
basepoint b and (zn) is an almost geodesic sequence such that (hzn ) converges to h,
then (un), with un := ϕ(zn) for n ≥ 0, is an almost geodesic sequence in (N , ρ), and
hence (hun ) converges to a Busemann point, say ϕ(h), of (N , ρ) with basepoint ϕ(b).

We note that ϕ(h) is independent of the almost geodesic sequence (zn). To see this,
let (wn) be another almost geodesic such that (hwn ) converges to h.Write vn := ϕ(wn)

for n ≥ 0 and let ϕ(h)′ be the limit of (hvn ). Then

H(h, h) = lim
n→∞ d(wn, b) + lim

m→∞ d(wn, zm) − d(b, zm)

= lim
n→∞ ρ(vn, ϕ(b)) + lim

m→∞ ρ(vn, um) − ρ(ϕ(b), um)

= H(ϕ(h)′, ϕ(h)).

Likewise, H(ϕ(h), ϕ(h)′) = H(h, h), and we deduce that δ(ϕ(h)′, ϕ(h)) =
H(ϕ(h)′, ϕ(h)) + H(ϕ(h), ϕ(h)′) = δ(h, h) = 0, which shows that ϕ(h)′ = ϕ(h),
as ϕ(h)′ and ϕ(h) are Busemann points. Thus, there exists a well-defined map
� : BM → BN given by �(h) := ϕ(h).

Lemma 2.6 If ϕ : (M, d) → (N , ρ) is an isometric embedding, then �(P(h)) ⊆
P(ϕ(h)) for all Busemann points h of (M, d) and

δ(h′, h) = δ(�(h′),�(h)) for all h, h′ ∈ BM .

Proof Let (zn) and (wn) be almost geodesic sequences such that (hzn ) converges to h
and (hwn ) converges to h′ in (M, d) with basepoint b. Then

H(h′, h) = lim
n→∞ d(wn, b) + lim

m→∞ d(wn, zm) − d(b, zm)

= lim
n→∞ ρ(vn, ϕ(b)) + lim

m→∞ ρ(vn, um) − ρ(ϕ(b), um)

= H(ϕ(h)′, ϕ(h)).

Likewise, H(h, h′) = H(ϕ(h), ϕ(h)′), so that δ(h′, h) = δ(�(h′),�(h)), which
completes the proof. �

It could happen that all parts consist of a single Busemann point, but there are also
natural instances where there are nontrivial parts. In case of products of metric spaces
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160 Page 10 of 20 B. Lemmens

coming from proper geodesic metric spaces, it turns out that the parts and the detour
distance have a special structure that is linked to the quotient space, (Rn/Sp(1), ‖·‖var)
given in (1.1), as shown by the following proposition.

Proposition 2.7 If, for j = 1, . . . , p, (Mj , d j ) is a proper geodesic metric space with
almost geodesic sequence (ynj ) and corresponding Busemann point h j with basepoint

y0j , and J ⊆ {1, . . . , p} is non-empty, then the following assertions hold:

(i) For α ∈ R
J with min j∈J α j = 0 the function h : (

∏p
j=1 Mj , d∞) → R given by,

h(x) = max
j∈J

h j (x j ) − α j , for x ∈
p∏

j=1

Mj , (2.5)

is a Busemann point with basepoint y0 = (y01 , . . . , y
0
p). Moreover, there exists an

almost geodesic sequence (zn) converging to h, where (znj ) is an almost geodesic

converging to h j for j ∈ J such that for all n ≥ 1, we have that d∞(zn, y0) −
d j (znj , y

0
j ) = α j for j ∈ J , and di (zni , y

0
i ) = 0 for all i /∈ J .

(ii) If β ∈ R
J with min j∈J β j = 0 and h′ is a Busemann point with basepoint y0 of

the form,

h′(x) = max
j∈J

h j (x j ) − β j , for x ∈
p∏

j=1

Mj ,

then δ(h, h′) = ‖α − β‖var.
(iii) For h as in (2.5) the part (P(h), δ) contains an isometric copy of (RJ /Sp(1), ‖ ·

‖var).
Proof We know there exists an almost geodesic sequence (ynj ) in (Mj , d j ) such that
hynj

→ h j for each j ∈ J . As d j (ynj , b j ) → ∞, we can take a subsequence and

assume that d j (y
n+1
j , y0j ) > d j (ynj , y

0
j ) > α j for all n ≥ 1. Let γ̄ j be a ray induced

by (ynj ).

For j ∈ J we get from Lemma 2.5 a sequence (tnj ) in [0,∞) with t0j = 0 and

d j (γ̄ j (t
n
j ), y

0
j ) = (max

i∈J
di (y

n
i , y0i )) − α j ≥ 0 for all n ≥ 1.

Let z0 := (y01 , . . . , y
0
p) and for n ≥ 1 define zn = (zn1, . . . , z

n
p) ∈ ∏p

j=1 Mj by

znj := γ̄ j (tnj ) if j ∈ J , and znj := y0j otherwise.
As min j∈J α j = 0, we get by construction that

d∞(zn, z0) = max
i∈J

di (y
n
i , y0i ) = d j (z

n
j , z

0
j ) + α j for all n ≥ 1 and j ∈ J .

Moreover, it follows from Lemma 2.4 that (znj ) is an almost geodesic converging to
h j for j ∈ J .
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We claim that (zn) is an almost geodesic sequence in (
∏p

j=1 Mj , d∞). Indeed, note
that for n ≥ k ≥ 0, we have that

d∞(zn, zk) + d∞(zk, z0) − d∞(zn, z0) = d j (z
n
j , z

k
j ) + d∞(zk, z0) − d∞(zn, z0)

for some j = j(n, k) ∈ J , as d j (znj , z
k
j ) = 0 for all j /∈ J . As J is non-empty, we

find for all n ≥ k large that

d∞(zn, zk) + d∞(zk , z0) − d∞(zn, z0) = d j (z
n
j , z

k
j ) + d j (z

k
j , z

0
j ) + α j − d j (z

n
j , z

0
j ) − α j < ε.

Also for n ≥ 0 large and x ∈ ∏p
j=1 Mj , we have that

hzn (x) = max
j∈J

(d j (x j , z
n
j ) − d∞(zn, z0)) = max

j∈J
(d j (x j , z

n
j ) − d j (z

n
j , z

0
j ) − α j ).

Letting n → ∞ gives

h(x) = max
j∈J

h j (x j ) − α j for all x ∈
p∏

j=1

Mj

and shows that h is a Busemann point with basepoint y0 = (y01 , . . . , y
0
p). This com-

pletes the proof of assertion (i).
To prove the second assertion, we know from the first assertion that there exists an

almost geodesic sequence (wn) converging to h′, where (wn
j ) is an almost geodesic

converging to h j and d∞(wn, y0) − d j (w
n
j , y

0
j ) = β j for j ∈ J . So, we get that

max
j∈J

(β j − α j ) = max
j∈J

(H(h j , h j ) + β j − α j )

= max
j∈J

( lim
n→∞ d j (w

n
j , y

0
j ) + β j + h j (w

n
j ) − α j )

= max
j∈J

( lim
n→∞ d∞(wn, y0) + h j (w

n
j ) − α j )

= lim
n→∞max

j∈J
(d∞(wn, y0) + h j (w

n
j ) − α j )

= lim
n→∞ d∞(wn, y0) + h(wn).

Interchanging the roles of h and h′, we find that

δ(h′, h) = H(h′, h) + H(h, h′) = max
j∈J

(β j − α j ) + max
j∈J

(α j − β j ) = ‖α − β‖var.

The final assertion is a direct consequence of the previous two, as (S, ‖ · ‖var) with
S := {α ∈ R

J : min j∈J α j = 0} is isometric to (RJ /Sp(1), ‖ · ‖var). �
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Proposition 2.7 is related to [26, Propositions 8.3 and 8.4], where the Busemann points
for the product of twometric spaces are characterised and the detour cost is determined.

It is interesting to understand when a part (P(h), δ) is isometric to (RJ /Sp(1), ‖ ·
‖var).
Theorem 2.8 If, for j = 1, . . . , q, (N j , ρ j ) is a proper geodesicmetric space such that
all horofunctions are Busemann points, and δ(h j , h′

j ) = ∞ for all h j �= h′
j Busemann

points of (N j , ρ j ), then every horofunction h of (
∏q

j=1 N j , d∞) is a Busemann point,

and (P(h), δ) is isometric to (RJ /Sp(1), ‖ · ‖var) for some J ⊆ {1, . . . , q}.

Proof Let h be a horofunction of (
∏q

j=1 N j , d∞) with respect to basepoint b =
(b1, . . . , bq). By Theorem 2.3 we know that h is of the form

h(x) = max
j∈J

h j (x j ) − α j for x ∈
q∏

j=1

N j ,

and h j is a horofunction of (N j , ρ j ) with respect to basepoint b j for each j ∈ J . As
each horofunction of (N j , ρ j ), is a Busemann point, there exists an almost geodesic
sequence (ynj ) such that (hynj

) converges to h j with basepoint b j .

For j /∈ J let y0j = b j and define y0 := (y01 , . . . , y
0
q ). Let h

∗
j be the Busemann

point obtained by changing the basepoint of h j to y0j , so h
∗
j (x j ) := h j (x j ) − h j (y0j ).

Now note that if we change the basepoint for h to y0, we get the Busemann point

h∗(x) := h(x) − h(y0)

= max
j∈J

(h j (x j ) − α j ) − max
i∈J

(hi (y
0
i ) − αi )

= max
j∈J

(h∗
j (x j ) + h j (y

0
j ) − α j − max

i∈J
(hi (y

0
i ) − αi ))

= max
j∈J

h∗
j (x j ) − γ j ,

where γ j := maxi∈J (hi (y0i )−αi )−(h j (y0j )−α j ) ≥ 0 for j ∈ J and min j∈J γ j = 0.

It now follows from Proposition 2.7(i) that h∗ is a Busemann point of (
∏q

j=1 N j , d∞)

with respect to basepoint y0, and hence h is a Busemann point (
∏q

j=1 N j , d∞) with
respect to basepoint b. Moreover, there exists an almost geodesic sequence (zm) con-
verging to h∗, where (zmj ) is an almost geodesic converging to h∗

j for j ∈ J , and for

all m ≥ 1 we have that d∞(zm, y0) − d j (zmj , y0j ) = γ j for j ∈ J , and di (zmi , y0i ) = 0
for all i /∈ J .

To prove the second assertion we note that (P(h), δ) is isometric to (P(h∗), δ),
since δ is independent of the basepoint. Let h′ is a Busemann point of (

∏q
j=1 N j , d∞)

with respect to basepoint y0 and (wn) be an almost geodesic converging to h′. Then
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by Theorem 2.3, we know h′ is of the form

h′(x) = max
j∈J ′ h

′
j (x j ) − β j , for x ∈

q∏

j=1

N j , (2.6)

and, after taking a subsequence, we may assume that d∞(wn
j , y

0)−dk(wn
j , y

0
j ) → β j

for all j ∈ J ′, d∞(wn, y0) − di (wn
i , y

0
i ) → ∞ for all i /∈ J ′, and hwn

j
→ h′

j ∈ ∂N j
h

for all j ∈ J ′.
We claim that if J �= J ′, or, J = J ′ and hk �= h′

k for some k ∈ J , then δ(h∗, h′) =
∞. Suppose that J �= J ′ and k ∈ J , but k /∈ J ′. Then

lim
m→∞ d∞(wn, zm) − d∞(y0, zm) = lim

m→∞ d∞(wn, zm) − dk(y
0
k , z

m
k ) − γk

≥ lim
m→∞ dk(w

n
k , z

m
k ) − dk(y

0
k , z

m
k ) − γk

≥ −dk(w
n
k , y

0
k ) − γk,

so that

lim
n→∞

(
d∞(wn, y0) + lim

m→∞ d∞(wn, zm) − d∞(y0, zm)
)

≥ lim
n→∞ d∞(wn, y0) − dk(w

n
k , y

0
k ) − γk = ∞.

Thus, H(h′, h∗) = ∞ and hence δ(h∗, h′) = ∞. The case where k ∈ J ′ and k /∈ J
can be shown in the same way.

Now suppose that h∗
k �= h′

k for some k ∈ J ∩ J ′. By assumption we know that
δ(h∗

k , h
′
k) = ∞. Note that

lim
n→∞ d∞(wn, y0) + h∗(wn) = lim

n→∞ d∞(wn, y0) + max
j∈J

h∗
j (w

n
j ) − γ j

≥ lim inf
n→∞ dk(w

n
k , y

0
k ) + h∗

k(w
n
k ) − γk .

It now follows from (2.4) that H(h′, h∗) ≥ H(h′
k, h

∗
k) − γk . Interchanging the roles

of h∗ and h′, we also get that H(h∗, h′) ≥ H(h∗
k , h

′
k) − βk , and hence δ(h∗, h′) ≥

δ(h∗
k , h

′
k) − (γk + βk) = ∞.

On the other hand, if J = J ′ and h∗
j = h′

j for all j ∈ J , then it follows from
Proposition 2.7(ii) that δ(h∗, h′) = ‖α −β‖var. Moreover, it follows from that Propo-
sition 2.7(i) that for each β ∈ R

J with min j∈J β j = 0, there exists a Busemann point
in the part of h∗ of the form (2.6), and hence P(h∗) consists of all h′ of the form
(2.6), where min j∈J β j = 0. So if we let S := {β ∈ R

J : min j∈J β j = 0}, then
(P(h∗), δ) is isometric to (S, ‖ · ‖var), which in turn is isometric to the quotient space
(RJ /Sp(1), ‖ · ‖var). �

An elementary example is the product space (Rn, d∞) where d∞(x, y) =
max j |x j − y j |. It is easy to verify that (R, | · |) with basepoint 0 has only two horo-
functions, namely h+ : x �→ x and h− : x �→ −x , both of which are Busemann points
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and δ(h+, h−) = ∞. So, in this case, we see that the horofunctions h of (Rn, d∞) are
all Busemann points and of the form,

h(x) = max
j∈J

±x j − α j ,

for some J ⊆ {1, . . . , n} non-empty and α ∈ R
J with min j∈J α j = 0, where the sign

is fixed for each j ∈ J , see also [10, Theorem 5.2]. Moreover, (P(h), δ) is isometric
to (RJ /Sp(1), ‖ · ‖var).

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2 As each (Mj , d j ) contains an almost geodesic sequence (ynj ),
it has a Busemann point, say h j . We know from Proposition 2.7(i) that the function
h of the form, h(x) = max j=1,...,p h j (x j ), is a Busemann point of (

∏p
j=1 Mj , d∞).

Moreover, it follows from the third part of the same proposition that (P(h), δ) contains
an isometric copy of (Rp/Sp(1), ‖ · ‖var).

Now suppose, for the sake of contradiction, that there exists an isometric embedding
ϕ : (

∏p
j=1 Mj , d∞) → (

∏q
j=1 N j , d∞). Then it follows from Lemma 2.6 that the

restriction of� toP(h)yields an isometric embedding of (P(h), δ) into (P(�(h)), δ′),
where δ′ is the detour distance on P(�(h)). It now follows from Theorem 2.8 that
(P(�(h)), δ′) is isometric to (Rn/Sp(1), ‖ · ‖var) for some n ∈ {1, . . . , q}. So, �

yields an isometric embedding of (Rp/Sp(1), ‖ · ‖var) into (Rn/Sp(1), ‖ · ‖var) with
n < p, which contradicts Brouwer’s invariance of domains theorem [8]. �

3 Product Domains inC
n

Before we show how we can use Theorem 1.2 to derive Theorem 1.1, we first recall
some basic facts concerning the Kobayashi distance, see [13, Chapter 4] for more
details. On the disc, � := {z ∈ C : |z| < 1}, the hyperbolic distance is given by

ρ(z, w) := log
1 +

∣
∣
∣ w−z
1−z̄w

∣
∣
∣

1 −
∣
∣
∣ w−z
1−z̄w

∣
∣
∣
=2 tanh−1

(

1 − (1 − |w|2)(1 − |z|2)
|1 − wz̄|2

)1/2

for z, w∈�.

Given a convex domain D ⊆ C
n , the Kobayashi distance is given by

kD(z, w) := inf{ρ(ζ, η) : ∃ f : � → D holomorphic with f (ζ ) = z and f (η) = w}

for all z, w ∈ D. It was shown by Lempert [18] that on bounded convex domains, the
Kobayashi distance coincides with the Caratheodory distance, which is given by

cD(z, w) := sup
f

ρ( f (z), f (w)) for all z, w ∈ D,

where the sup is taken over all holomorphic maps f : D → �.
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It is known, see [2, Proposition 2.3.10], that if D ⊂ C
n is bounded convex domain,

then (D, kD) is a proper metric space, whose topology coincides with the usual topol-
ogy on C

n . Moreover, (D, kD) is a geodesic metric space containing geodesics rays,
see [2, Theorem 2.6.19] or [13, Theorem 4.8.6].

In the case of the Euclidean ball Bn := {(z1, . . . , zn) ∈ C
n : ‖z‖2 < 1}, where

‖z‖2 = ∑
i |zi |2, the Kobayashi distance has an explicit formula:

kBn (z, w) = 2 tanh−1
(

1 − (1 − ‖w‖2)(1 − ‖z‖2)
|1 − 〈z, w〉|2

)1/2

for all z, w ∈ Bn , see [2, Chapters 2.2 and 2.3].
On the other hand, on the polydisc �n := {(z1, . . . , zn) ∈ C

n : maxi |zi | < 1}, the
Kobayashi distance satisfies

k�n (z, w) = max
i

ρ(zi , wi ) for all w = (w1, . . . , wn), z = (z1, . . . , zn) ∈ �n,

by the product property, see [13, Theorem 3.1.9].
To determine the horofunctions of (Bn, kBn ), with basepoint b = 0, it suffices to

consider limits of sequences (hwn ), where wn → ξ ∈ ∂Bn in norm. As

kBn (z, wn) = log

(|1 − 〈z, wn〉| + (|1 − 〈z, wn〉|2 − (1 − ‖z‖2)(1 − ‖wn‖2))1/2
)2

(1 − ‖z‖2)(1 − ‖wn‖2) ,

and

kBn (0, wn) = log
(1 + ‖wn‖)2
1 − ‖wn‖2 ,

it follows that

h(z) = lim
n→∞ kBn (z, wn) − kBn (0, wn)

= log
(|1 − 〈z, ξ 〉| + |1 − 〈z, ξ 〉|)2

(1 − ‖z‖2)(1 + ‖ξ‖)2

= log
|1 − 〈z, ξ 〉|2
1 − ‖z‖2 .

for all z ∈ Bn . Thus, if we write

hξ (z) := log
|1 − 〈z, ξ 〉|2
1 − ‖z‖2 for all z ∈ Bn, (3.1)

then we obtain ∂Bnh = {hξ : ξ ∈ ∂Bn}, see also [3, Lemma 2.28] and [11, Remark
3.1]. Moreover, each hξ is a Busemann point, as it is the limit induced by the geodesic

ray t �→ et−1
et+1ξ , for 0 ≤ t < ∞.
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Corollary 3.1 If hξ and hη are distinct horofunctions of (Bn, kBn ), then δ(hξ , hη) =
∞.

Proof If ξ �= η in ∂Bn , then

lim
z→η

kBn (z, 0) + hξ (z) = lim
z→η

log
1 + ‖z‖
1 − ‖z‖ + log

|1 − 〈z, ξ 〉|2
1 − ‖z‖2 = ∞,

which implies that δ(hξ , hη) = ∞. �
Note that if n = 1, we recover the well-known expression for the horofunctions of the
hyperbolic distance on �:

hξ (z) = log
|1 − zξ |2
1 − |z|2 = log

|ξ − z|2
1 − |z|2 for all z ∈ �.

Combining (3.1) with Theorem 2.3 and Proposition 2.7, we get the following.

Corollary 3.2 For Bn1 × · · · × Bnq , the Kobayashi distance horofunctions with base-
point b = 0 are precisely the functions of the form,

h(z) = max
j∈J

(

log
|1 − 〈z j , ξ j 〉|2
1 − ‖z j‖2 − α j

)

,

where J ⊆ {1, . . . , q} non-empty, ξ j ∈ ∂Bn j for j ∈ J , and min j∈J α j = 0.
Moreover, each horofunction is a Busemann point, and (P(h), δ) is isometric to
(RJ /Sp(1), ‖ · ‖var).
Corollary 3.2 should be compared with [2, Proposition 2.4.12].

A similar result holds formoregeneral product domains.Weknowfrom[2,Theorem
2.6.45] that for each ξ ∈ ∂D, there exists a unique geodesic ray γξ : [0,∞) → D such
that γξ (0) = b and limt→∞ γξ (t) = ξ , if D ⊂ C is bounded strongly convex domain
withC3-boundary.Wewill denote the correspondingBusemann point by hξ : D → R,
so

hξ (z) = lim
t→∞ kD(z, γξ (t)) − kD(b, γξ (t)).

Lemma 3.3 If D ⊂ C
n is a bounded strongly convex domain with C3-boundary, then

each horofunction of (D, kD) is a Busemann point and of the form hξ for some ξ ∈ ∂D.
Moreover, δ(hξ , hη) = ∞ if ξ �= η. If D = ∏r

i=1 Di , where each Di is a bounded
strongly convex domain with C3-boundary, then the horofunctions h of (D, kD) are
Busemann points and precisely the functions of the form,

h(z) = max
j∈J

hξ j (z j ) − α j ,

where J ⊆ {1, . . . , r} non-empty, ξ j ∈ ∂Dj for j ∈ J , and min j∈J α j = 0.
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Proof To prove the first assertion let h �= h′ be horofunctions of (D, kD). As (D, kD)

is a proper geodesic metric space, we know there exist sequences (wn) and (zn) in D
such that hwn → h and hzn → h′. After taking subsequences, we may assume that
wn → ξ ∈ ∂D and zn → η ∈ ∂D, since D has a compact norm closure and h and h′
are horofunctions.

We claim that ξ �= η. To prove this, we need the assumption that D ⊂ C is
a bounded strongly convex domain with C3-boundary and use results by Abate [1]
concerning the so-called small and large horospheres. These are defined as follows:
for R > 0, the small horosphere with centre ζ ∈ ∂D (and basepoint b ∈ D) is given
by

E(ζ, R) :=
{

x ∈ D : lim sup
z→ζ

kD(x, z) − kD(b, z) <
1

2
log R

}

and the large horosphere with centre ζ ∈ ∂D (and basepoint b ∈ D) is given by

F(ζ, R) :=
{

x ∈ D : lim inf
z→ζ

kD(x, z) − kD(b, z) <
1

2
log R

}

.

We note that the horoballs

H(h,
1

2
log R) =

{

x ∈ D : lim
n→∞ kD(x, wn) − kD(b, wn) <

1

2
log R

}

and

H(h′, 1
2
log R) =

{

x ∈ D : lim
n→∞ kD(x, zn) − kD(b, zn) <

1

2
log R

}

satisfy

E(ξ, R) ⊆ H(h,
1

2
log R) ⊆ F(ξ, R)and E(η, R) ⊆ H(h′, 1

2
log R) ⊆ F(η, R).

It follows from [2, Theorem 2.6.47] (see also [1]) that E(ξ, R) = H(h, 1
2 log R) =

F(ξ, R) and E(η, R) = H(h′, 1
2 log R) = F(η, R), as D is strongly convex and has

C3-boundary. Thus, if ξ = η, then h = h′, since the horoballs, H(h, r) and H(h′, r)
for r ∈ R, completely determine the horofunctions. This shows that ξ �= η. It follows
that each horofunction is of the form hξ , with ξ ∈ ∂D, and hence a Busemann point.

Now suppose that h1 and h2 are horofunctions, with (z1n) converging to h1 and (z2n)
converging to h2. After taking a subsequence, we may assume that z1n → ξ1 ∈ ∂D and
z2n → ξ2 ∈ ∂D. We now show that if ξ1 �= ξ2, then h1 �= h2. This implies that there
is a one-to-one correspondence between the horofunctions of (D, kD) and ξ ∈ ∂D.

To prove this, we note that as D is strongly convex, D is strictly convex, i.e. for
each ν �= μ in ∂D, the open straight-line segment (ν, μ) ⊂ D. By [1, Theorem
1.7], we know that ∂D ∩ cl(F(h1, R)) = {ξ1} and ∂D ∩ cl(F(h2, R)) = {ξ2} for
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all R > 0. This implies that ∂D ∩ cl(H(h1, r)) = {ξ1} and ∂D ∩ cl(H(h2, r)) =
{ξ2} for all r ∈ R. Moreover, from [4, Lemma 5], we know that the straight-line
segment [b, ξ1] ⊂ cl(H(h1, 0)). There exists a neighbourhood W ⊂ C

n of ξ1 such
thatW ∩cl(H(h2, 0)) = ∅. If we letw ∈ [b, ξ1)∩W , then h1(w) ≤ 0, but h2(w) > 0,
and hence h1 �= h2.

Now suppose that ξ �= η in ∂D. We know that ∂D ∩ cl(H(hη, 0)) = {η} and
γξ (t) /∈ cl(H(hη, 0)) for all t > 0 large. So,

H(hξ , hη) = lim
t→∞ kD(γξ (t), b) + hη(γξ (t)) ≥ lim inf

t→∞ kD(γξ (t), b) = ∞,

since hη(γξ (t)) ≥ 0 for all t large. This implies that δ(hξ , hη) = ∞.
The final part follows directly from Theorem 2.3 and Proposition 2.7. �
The proof of Theorem 1.1 is now elementary.

Proof of Theorem 1.1 If X j ⊂ C
m j is a bounded convex domain, then (X j , kX j ) is

proper geodesic metric space which contains a geodesic ray by [2, Theorem 2.6.19].
Moreover, if Y j ⊂ C

n j is a bounded strongly convex domain with C3-boundary, then
by Lemma 3.3, all the horofunctions of (Y j , kY j ) are Busemann points and any two
distinct Busemann points have infinite detour distance. So, Theorem 1.2 applies and
gives the desired result. �
Remark 3.4 I am grateful to Andrew Zimmer for sharing the following observations
with me. In the case where q = 1, Theorem 1.1 can be strengthened and shown
in a variety of other ways. Indeed, it was shown by Balogh and Bonk [6] that the
Kobayashi distance is Gromov hyperbolic on a strongly pseudo-convex domain with
C2-boundary, but the Kobayashi distance on a product domain is clearly not Gromov
hyperbolic. This immediately implies Theorem 1.1 for q = 1 in the more general case
where the image domain is strongly pseudo-convex and has C2-boundary.

In fact, if q = 1 there exists a further strengthening of Theorem 1.1 which only
requires the image domain to be strictly convex by using a local argument. The iso-
metric embedding is a locally Lipschitz map with respect to the Euclidean norm, and
hence differentiable almost everywhere by Rademacher’s theorem. This implies that
the embedding is also an isometric embedding under the Kobayashi infinitesimal met-
ric. On strictly convex domains, the unit balls in the tangent spaces are strictly convex
and in product domains, they are not, which yields a contradiction.

Finally, for holomorphic isometric embeddings and q = 1, Theorem 1.1 can be
extended to the case where the image domain is convex with C1,α-boundary, see
[28, Theorem 2.22].

Looking at the conditions required in Theorem 1.2, it seems likely the regularity
conditions on the domainsY j in Theorem1.1 can be relaxed considerably. In particular,
one may speculate that it suffices to assume that each domain Y j is strictly convex and
has a C1-boundary.
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