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Abstract
In this work we consider a non-local magnetic system with a Stein–Weiss convolu-
tion potential. Using variational methods, we study the existence of solutions for the
weighted non-local magnetic system and we establish the existence of solutions in
the case of large perturbations of the linear absorption term. In addition, we provide
new variants of the Brézis–Lieb lemma (Proc Am Math Soc 88:486–490, 1983) with
a Stein–Weiss convolution reaction for the non-local magnetic system.

Keywords Nonlinear Stein–Weiss type convolution system · Magnetic field ·
Variational methods
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1 Introduction

The linear Schrödinger equation is a basic tool of quantummechanics, which provides
a description of particle dynamics in a non-relativistic environment. The nonlinear
Schrödinger equation appears in different physical theories, for example, see Meystre
[22] and Mills [23]. In particular, we are interested in the interaction between the
particles, and so we study in this paper the following weighted non-local magnetic
system

⎧
⎨

⎩

−(∇ + i A)2u + (λV (x) + 1)u = 1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α
)

|u|p−2u, in RN ,

u ∈ H1(RN ,C),

(Pλ)
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where N ≥ 2, λ > 0 is a real parameter, μ ∈ (0, N ), α ≥ 0, 2α + μ ≤ N ,

p ∈
(
2N − μ − 2α

N
,
2N − μ − 2α

N − 2

)

if N > 2, p ∈
(
4 − μ − 2α

2
,+∞

)

if N = 2,

i is the imaginary unit. The magnetic potential A : RN �→ R
N is in L2

loc(R
N ) and the

scalar potential V : RN �→ R is a nonnegative continuous function which can vanish
somewhere.

We now assume that Z : RN �→ R is a continuous function which satisfies the
following hypotheses:

• there exist two positive constants m0 and m1 such that

λV (x) + Z(x) ≥ m0 and |Z(x)| ≤ m1 for all x ∈ R
N , λ > 0.

In problem (Pλ), if we replace λV (x)+1with λV (x)+ Z(x) and adjust the workspace
accordingly, our method is still valid.

Our purpose is to qualitatively analyze the solutions of the weighted non-local
magnetic systems with a Stein–Weiss convolution term in whole space. Because of
the appearance of magnetic field A, problem (Pλ) cannot be transformed into a pure
real-valued problem, sowe should dealwith a complex-valued problemdirectly, which
brings more new difficulties to our problem by using variational method. On the other
hand, the interaction between the Stein–Weiss convolution term and the magnetic
field potential makes it necessary to apply or establish new estimates to overcome new
interesting challenges.

In the physical case N = 3, A = 0, V = 0, α = 0, μ = 1 and p = 2, problem
(Pλ) reduces to the following Choquard-Pekar equation

−�u + u =
(∫

R3

|u(y)|2
|x − y|dy

)

u in R3, (1)

which goes back to the description of a polaron at rest in Quantum Field Theory by
Pekar [26] in 1954 and was used to describe an electron trapped in its own hole, as
a certain approximation to Hartree-Fock Theory of one component plasma (see Lieb
[18]). Eq. (1) was also proposed by Penrose (see [27]) in his discussion on the self-
gravitational collapse of a quantum mechanical wave-function. In this context it is
also known as the nonlinear Schrödinger–Newton equation.

In addition, from a mathematical point of view, Eq. (1) and its generalizations have
been extensively studied. In his paper [18], Lieb studied the existence and uniqueness,
up to translations, of the ground state to Eq. (1). Via the critical point theory, in [20]
Lions proved the existence of a sequence of radially symmetric solutions. Since the
non-local term in (1) is invariant under translation, we are able to get easily the exis-
tence result by using the Mountain Pass Theorem; see Ackermann [1] for example.
For a general case, Ackermann in [1] applied a new method to obtain the existence
of infinitely many geometrically distinct weak solutions. For the recent relevant con-
tributions included in the papers are by Alves and Yang [2], Ding et al.[10], Du and
Yang [11], Ghimenti and Van Schaftingen [15], Ma and Zhao [21], Moroz and Van
Schaftingen [24,25], Wei and Winter [29], and their references. In all the papers men-
tioned above, the authors proved the existence of solutions by variational method. This
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method works well due to a Hardy–Littlewood–Sobolev-type inequality in Lieb and
Loss [19].

Many authors have studied the problems involving deepening potential well and no
magnetic field (i.e., A = 0). In [9] Ding and Tanaka considered the local Schrödinger
equations with deepening potential well

−�u + (λV (x) + Z(x))u = u p, u > 0 in RN , (2)

where λ > 0, V , Z are suitable continuous functions satisfying some conditions,

1 < p <
N + 2

N − 2
if N > 2 and 1 < p < +∞ if N = 1, 2. For λ > 0 sufficiently

large, the authors proved the existence of multi-bump solutions. For the critical growth
case, in [3] Alves et al. introduced some new parameter in (2) and then they established
the existence andmultiplicity of positive solutionswhen N ≥ 3.Very recently,Alves et
al. in [5] investigated the existence of multibump solutions for the following non-local
equation

−�u + (λV (x) + 1)u =
(∫

R3

|u(y)|p

|x − y|μ dy

)

|u|p−2u in R3,

here μ ∈ (0, 3), 2 < p < 6 − μ and the nonnegative continuous function V has a
potential well set. Here we would like to mention the recent work of Filippucci and
Ghergu, in [14] they obtained the existence and the asymptotic profile of singular
solutions for coercive quasilinear elliptic inequalities with nonlocal terms. Therefore,
one of the motivations of this paper is derived from the above results.

Another motivation of this paper comes from several works on magnetic Laplace
equations in recent years. For example, in [6] Arioli and Szulkin considered the exis-
tence of solutions of the semilinear stationary Schrödinger equation in the presence
of a magnetic field:

(−i∇ + A)2u + V (x)u = g(x, |u|)u in RN ,

where u : R
N �→ C, N ≥ 2, V : R

N �→ R is a scalar (or electric) potential,
A : RN �→ R

N is a vector (or magnetic) potential and g is a nonlinear local term. To
prove Theorem 1.3 of [6], they imposed more assumptions on the potentials V , A and
the nonlinearity g. For the reader’s convenience, we list some of these hypotheses:

(H1) V ∈ L∞(RN ,R), g ∈ C(RN × R
+,R) and A ∈ L2

loc(R
N ,RN );

(H2) V , g and curl A (in the sense of distributions) are 1-periodic in x j , j =
1, 2, . . . , N ;

(H3) 0 /∈ σ(−�A + V ), where �A = −(−i∇ + A)2.

In general A is not periodic, therefore the operator ∇A = ∇ + i A is not transla-
tion invariant. However, from hypotheses (H1) and (H2), we can define a different
“translation” to guarantee some invariants, for instance, see Arioli and Szulkin [6] and
Zhang et al. [33]. More recently, in [8] Cingolani et al. studied the following nonlinear
magnetic Choquard equation
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(−i∇ + A)2u + V (x)u =
(∫

RN

|u(y)|p

|x − y|μ dy

)

|u|p−2u in RN ,

where A : R
N �→ R is a C1-vector potential, V : R

N �→ R is a bounded
continuous scalar potential with infRN V > 0 with N ≥ 3, μ ∈ (0, N ) and

p ∈
(

2 − μ

N
,
2N − μ

N − 2

)

. In order to overcome the lack of compactness, they assumed

that both A and V scalar potential have certain symmetries. More precisely,

A(gx) = g A(x) and V (gx) = V (x) for all g ∈ G, x ∈ R
N , (3)

whereG is a closed subgroup of the group O(N ) of linear isometries ofRN . Therefore,
(3) plays an important role in the proofs of [8]. Regarding other related results, we
refer to Alves et al. [4], Esteban and Lions [13], Ji and Rădulescu [16,17] and the
references therein.

To the best of our knowledge, the first results dealing with the semilinear elliptic
equation with Stein–Weiss convolution appear in [12], in which subcritical case and
critical cases were studied. Moreover, a system of Schrödinger equations with Stein–
Weiss type convolution part was considered in [32], there the authors studied the
regularity and symmetry of the nontrivial solutions.

According to the comments above, it is quite natural to consider problem (Pλ).
In the present paper, we are interested in studying the existence of the solutions for
problem (Pλ). Henceforth, we show that if the parameter λ > 0 is sufficiently large,
problem (Pλ) has a nontrivial solution under suitable assumptions on V . Precisely, we
require that

(V1) V ∈ C(RN ,R) with V (x) ≥ 0;
(V2) there exists M0 > 0 such that meas

({
x ∈ R

N : V (x) ≤ M0
})

< +∞, where
“meas" denotes the Lebesgue’s measure;

(V3) � := int V −1(0) is a non-empty set.

In the present work our main result is

Theorem 1 Let N ≥ 2, α ≥ 0, 2α+μ ≤ N , p ∈
(
2N − μ − 2α

N
,
2N − μ − 2α

N − 2

)

if

N > 2 and p ∈
(
4 − μ − 2α

2
,+∞

)

if N = 2. Assume that (V1)–(V3) are retained.

Then there exists λ∗ > 0 such that, for any λ ≥ λ∗ problem (Pλ) admits a nontrivial
solution.

As far as we know, this paper is the first attempt to study the non-local magnetic
problem including the Stein–Weiss convolution term.

Since we do not assume that both A and V have some periodicities or symmetries,
we are unable to draw a similar conclusion with [6] and [8] directly. In addition, even if
both A and V have these properties, due to the appearance of the non-local Stein-Weiss
convolution term, we cannot directly obtain the existence of ground state solutions of
problem (Pλ) by using Mountain Pass Theorem and Lions’ vanishing-nonvanishing
arguments. Therefore, the main difficulty in this paper lies in the lack of compactness.
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Theorem 1 will be proved by adopting variational methods and making full use of
some estimates. On the other hand, as we will see later, it is worth mentioning that,
because we are dealing with different problems, in which the functions are complex-
valued and the nonlinearity is a non-local Stein-Weiss convolution term, it is necessary
to carefully analyze some estimates.

Notations

• Br (x) denotes the open ball or open disk centered at x ∈ R
N (N ≥ 2) with radius

r > 0 and Bc
r (x) denotes the complement of Br (x) in RN .

• The usual norm of Lq(RN ,R) is denoted by | · |q , q ≥ 1.

2 Variational Setting and Preliminary Results

In order to obtain the existence of solutions to problem (Pλ) by using variational
method,we outline the variational framework in this section and give some preliminary
results.

For u : RN �→ C, by ∇A we denote

∇Au := (∇ + i A)u.

Also, we introduce the following Hilbert space

H1
A(RN ,C) :=

{
u ∈ L2(RN ,C) : |∇Au| ∈ L2(RN ,R)

}

equipped with the scalar product

〈u, ϕ〉 := Re
∫

RN

(∇Au∇Aϕ + uϕ
)
dx for all u, ϕ ∈ H1

A(RN ,C),

where “Re" and the bar represent the real part of a complex number and the complex
conjugation, respectively. By ‖ ·‖A we denote the norm induced by this inner product.

Let U ⊆ R
N be an open set. Now, we define

H1
A(U ,C) :=

{
u ∈ L2(U ,C) : |∇Au| ∈ L2(U ,R)

}

and

‖u‖H1
A(U ) =

(∫

U

(
|∇Au|2 + |u|2

)
dx

) 1
2

.

Moreover, for any fixed λ ≥ 0, let us define the following Hilbert space

Xλ :=
{

u ∈ H1
A(RN ,C) :

∫

RN
λV (x)|u|2dx < +∞

}

,
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with the norm

‖u‖λ =
(∫

RN

(
|∇Au|2 + (λV (x) + 1)|u|2

)
dx

) 1
2

.

So, we can easily see that Xλ ⊆ H1
A(RN ,C) for any λ ≥ 0. In our argument, it is

necessary for the norm ‖ ·‖λ to depend on λ. Hence, we mainly use ‖ ·‖λ in the sequel.
It is worth pointing out that the following well-known diamagnetic inequality (see

Lieb and Loss [19, Theorem 7.21]):

|∇|u(x)|| ≤ |∇Au(x)| for all u ∈ H1
A(RN ,C) and for a.e. x ∈ R

N . (4)

Thus, from relation (4), we know that, for any λ ≥ 0,

if u ∈ Xλ �⇒ |u| ∈ H1(RN ,R),

⇒ Xλ is continuously embedded in Lq(RN ,C) for all

q ∈
[

2,
2N

N − 2

]

, N > 2 (resp. q ∈ [2,+∞), N = 2),

and compactly embedded in Lq
loc(R

N ,C) for all

q ∈
[

1,
2N

N − 2

)

, N > 2 (resp. q ∈ [1,+∞), N = 2).

Next, we give the Stein–Weiss inequality [28] which plays an important role in the
present work.

Proposition 2 Let 1 < r , s < +∞, 0 < μ < N , α + β ≥ 0, 0 < α + β + μ ≤ N ,

f ∈ Lr (RN ,R) and g ∈ Ls(RN ,R). Then there exists a sharp constant C(r ,s,α,β,μ)

such that
∣
∣
∣
∣

∫

RN

∫

RN

f (x)g(y)

|x |α|x − y|μ|y|β dxdy

∣
∣
∣
∣ ≤ C(r ,s,α,β,μ)| f |r |g|s,

where

1

r
+ 1

s
+ α + β + μ

N
= 2

and

1 − 1

r
− μ

N
<

α

N
< 1 − 1

r
,

and C(r ,s,α,β,μ) is independent of f and g. In addition, for all g ∈ Ls(RN ,R), it
holds

∣
∣
∣
∣

∫

RN

g(y)

|x |α|x − y|μ|y|β dy

∣
∣
∣
∣
t
≤ C(t,μ,α,β)|g|s,
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where t verifies

1 + 1

t
= 1

s
+ α + β + μ

N
and

α

N
<

1

t
<

α + μ

N
.

Clearly, problem (Pλ) possesses a variational structure: for

p ∈
(
2N − μ − 2α

N
,
2N − μ − 2α

N − 2

)

(N ≥ 3, α ≥ 0)

and

p ∈
(
4 − μ − 2α

2
,+∞

)

(N = 2, α ≥ 0),

the critical points of the functional Eλ ∈ C1(Xλ,R) defined for all u ∈ Xλ by

Eλ(u) : = 1

2

∫

RN

(
|∇Au|2 + (λV (x) + 1)|u|2

)
dx

− 1

2p

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|pdx

are weak solutions of problem (Pλ). By Proposition 2 and the Sobolev embeddings,
we see that the functional Eλ is well-defined and it holds

E ′
λ(u)ϕ = Re

∫

RN

(∇Au∇Aϕ + (λV (x) + 1)uϕ
)
dx

− Re
∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|p−2uϕdx

for all u, ϕ ∈ Xλ.
Before the end of this section, we shall prove the following useful result, which

will be used frequently in the sequel.

Lemma 3 Let p > 1 and define A : C
N �→ C

N by A(z) := |z|p−2z, z :=
(z1, z2, . . . , zN ) ∈ C

N . Then

(i) if p ≥ 2, for each fixed ε > 0, there exists some Cε > 0 such that

|A(a + b) − A(a)| ≤ ε|a|p−1 + Cε|b|p−1 for all a, b ∈ C
N ;

(ii) if 1 < p < 2, it holds


 := sup
a, b ∈CN , b �=0

|A(a + b) − A(a)|
|b|p−1 < +∞.
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Proof (i) We first consider the case p = 2. In this case, we can easily see that for any
ε > 0, there exists Cε = 1 > 0 such that

|A(a + b) − A(a)| = |b| ≤ ε|a| + |b| for all a, b ∈ C
N .

Next, we show the case p > 2. Let us define the following functions:

A j (z) := |z|p−2z j , z ∈ C
N , z j ∈ C, j = 1, 2, . . . , N

and

g j (t) := A j (a + tb), a, b ∈ C
N , t ∈ R, j = 1, 2, . . . , N .

So, we have, for each fixed j ( j = 1, 2, . . . , N ) and for all a, b ∈ C
N ,

|A j (a + b) − A j (a)|
= |g j (1) − g j (0)|
= |g′

j (θ)| for some θ ∈ (0, 1)

= |(p − 2)|a + θb|p−4 Re
(
b(a + θb)

)
(a j + b j ) + |a + θb|p−2b j |

≤ (p − 2)|a + θb|p−4|a + θb||b||a j + θb j | + |a + θb|p−2|b j |
≤ (p − 1)(|a| + |b|)p−2|b|
≤ (p − 1)2p−2|a|p−2|b| + (p − 1)2p−2|b|p−1 (since p > 2)

≤ 1

N
ε|a|p−1 + Ĉε|b|p−1 (use Young inequality),

where

Ĉε = 2p−2
(
1

N
ε

)2−p

2(p−2)2(p − 2)p−2 + (p − 1)2p−2, p > 2.

Combining the cases p = 2 and p > 2, we infer that, for all p ≥ 2, for each fixed
ε > 0, there exists some Cε > 0 such that

|A(a + b) − A(a)| ≤ ε|a|p−1 + Cε|b|p−1 for all a, b ∈ C
N ,

where

Cε =
{

NĈε, if p > 2,

1 if p = 2.

(ii) Now, we deal with the case 1 < p < 2. To this end, we define the function
G : CN × C

N �→ R as follows

G(a, b) := |A(a + b) − A(a)|
|b|p−1 for all a, b ∈ C

N .
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Clearly, G(a, tb) = G
(a

t
, b

)
for all t ∈ R \ {0}. Thus, we have


 = sup
a ∈CN , |b|=1

G(a, b).

We observe that


1 := sup
|a|≤2, |b|=1

G(a, b) < +∞ (by the continuity).

It remains to prove that


2 := sup
|a|>2, |b|=1

G(a, b) < +∞.

Suppose that |b| = 1, |a| > 2 and t ∈ [0, 1]. Then, we see that

|a + tb| ≥ |a| − |b| > 1.

So, we have, for any fixed j ( j = 1, 2, . . . , N ),

∣
∣
∣|a + b|p−2(a j + b j ) − |a|p−2a j

∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

(
(p − 2)|a + tb|p−4 Re (a + tb)b(a j + tb j ) + |a + tb|p−2b j

)
dt

∣
∣
∣
∣

≤
∫ 1

0
(2 − p)|a + tb|p−2|b|dt +

∫ 1

0
|a + tb|p−2|b|dt

≤ 3 − p,

which implies that 
2 ≤ (3 − p)N < +∞.
Hence, we have 
 < +∞. This proof is now complete. ��

3 The (PS)c Condition for the Functional E�

In this section, working with the (P S)cλ sequence of the functional Eλ, we will show
that, for given d > 0 independent of λ and then for λ > 0 sufficiently large, the (P S)cλ

sequence of the energy (Euler) functional Eλ satisfy the (P S)cλ condition at the level
0 ≤ cλ < d, where cλ and d will be defined later.

Now, we prove that the energy (Euler) functional Eλ verifies the Mountain Pass
Geometry (see Willem [30]).

Lemma 4 For each fixed λ > 0, the functional Eλ has the following properties:
(a) there are � > 0, ρ > 0 such that Eλ(u) ≥ � with ‖u‖λ = ρ;
(b) there is some element e ∈ Xλ with ‖e‖λ > ρ such that Eλ(e) < 0.
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Proof (a) Notice that p ∈
(
2N − μ − 2α

N
,
2N − μ − 2α

N − 2

)

(N ≥ 3, α ≥ 0) and

p ∈
(
4 − μ − 2α

2
,+∞

)

(N = 2, α ≥ 0). From Proposition 2 and the Sobolev

embedding inequalities, it follows that

∣
∣
∣
∣
1

2p

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|pdx

∣
∣
∣
∣ ≤ Ĉ‖u‖2p

λ ,

where Ĉ := Ĉ(p,α,μ) is some positive constant.
By using the inequality above and reviewing the definition of the functional Eλ, we

get

Eλ(u) ≥ 1

2
‖u‖2λ − Ĉ‖u‖2p

λ

= 1

2
‖u‖2λ

(
1 − 2Ĉ‖u‖2p−2

λ

)
.

Set ρ := 2
2

2−2p (Ĉ)
1

2−2p > 0. Then we have

Eλ(u) ≥ 1

2
ρ2

(
1 − 2Ĉρ2p−2

)

= 1

4
ρ2 =: � > 0 for all ‖u‖λ = ρ.

This proves (a).
(b) Choose ϕ ∈ C∞

0 (RN ,R) \ {0} with supp (ϕ) ⊂ �. We observe that

Eλ(tϕ) = t2

2
‖ϕ‖2λ − t2p

2p

∫

RN

1

|x |α
(∫

RN

|ϕ(y)|p

|x − y|μ|y|α dy

)

|ϕ|pdx

= t2

2
‖ϕ‖2

H1
A(supp (ϕ))

− t2p

2p

∫

supp (ϕ)

1

|x |α
(∫

supp (ϕ)

|ϕ(y)|p

|x − y|μ|y|α dy

)

|ϕ|pdx

→ −∞ as t → −∞, since 2p > 2.

The proof is now complete. ��
Let us define

cλ := inf
γ∈�

max
t∈[0,1] Eλ(γ (t))

and

� := {γ ∈ C([0, 1], Xλ) : γ (0) = 0, γ (1) = e} ,

where e is given in Lemma 4.
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Since supp (ϕ) ⊂ �, we can easily see that there exists some constant d > 0,
independent of λ > 0, such that maxt>0 Eλ(tϕ) < d. So, we deduce that cλ < d for
all λ > 0.

Lemma 5 Assume that {un}n∈N ⊆ Xλ is a (P S)c sequence of the functional Eλ at the
level c. Then the sequence {un}n∈N ⊆ Xλ is bounded, and moreover c ≥ 0.

Proof Let {un}n∈N ⊆ Xλ be a (P S)c sequence, that is,

Eλ(un) → c and E ′
λ(un) → 0 as n → ∞.

Therefore, for n sufficiently large, it follows that

c + 1 + ‖un‖λ ≥ Eλ(un) − 1

2p
E ′

λ(un)un

=
(
1

2
− 1

2p

)

‖un‖2λ,

which yields the boundedness of {un}n∈N ⊆ Xλ, and so c ≥ 0. Thus, we complete the
proof of the lemma. ��
Corollary 6 Assume that {un}n∈N ⊆ Xλ is a (P S)0 sequence of the functional Eλ at
the level 0. Then un → 0 in Xλ as n → ∞.

The next three lemmas are variants of the Brézis–Lieb Lemma [7] for the Stein–
Weiss type convolution term, which seem to be new and of independent interest. The
results we get here will be useful to everyone working in this direction.

Lemma 7 Assume that N ≥ 2, α ≥ 0, 0 < μ < N , 2α + μ ≤ N and 1 ≤ p ≤
2N − μ − 2α

N − 2
if N ≥ 3 (resp. 1 ≤ p < +∞ if N = 2) are fulfilled. If {un}n∈N ⊆

L
2N p

2N−μ−2α (RN ,C) is a bounded sequence with un(x) → u(x) a.e. in R
N as n → ∞,

then we have the following property:
∫

RN

1

|x |α
(∫

RN

|un(y)|p

|x − y|μ|y|α dy

)

|un |pdx −
∫

RN

1

|x |α
(∫

RN

|vn(y)|p

|x − y|μ|y|α dy

)

|vn |pdx

→
∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|pdx,

as n → ∞, where vn := un − u.

Proof Since the sequence {un}n∈N ⊆ L
2N p

2N−μ−2α (RN ,C) is bounded and un(x) →
u(x) a.e. in RN as n → ∞, from Proposition 5.4.7. of Willem [31], it follows that

|vn|p w−→ 0 in L
2N

2N−μ−2α (RN ,R) as n → ∞.

123



102 Page 12 of 27 Y. Zhang et al.

On the one hand, arguing as in the proof of the Brézis-Lieb Lemma [7], we can
deduce that

|un|p − |vn|p − |u|p → 0 in L
2N

2N−μ−2α (RN ,R) as n → ∞. (5)

In addition, we can use relation (5) and Proposition 2 to infer that

∫

RN

|un(y)|p

|x |α|x − y|μ|y|α dy −
∫

RN

|vn(y)|p

|x |α|x − y|μ|y|α dy →
∫

RN

|u(y)|p

|x |α|x − y|μ|y|α dy

in L
2N

2α+μ (RN ,R) as n → ∞. (6)

Note that

∫

RN

1

|x |α
(∫

RN

|un(y)|p

|x − y|μ|y|α dy

)

|un |pdx −
∫

RN

1

|x |α
(∫

RN

|vn(y)|p

|x − y|μ|y|α dy

)

|vn |pdx

=
∫

RN

1

|x |α
(∫

RN

|un(y)|p − |vn(y)|p

|x − y|μ|y|α dy

)
(|un |p − |vn |p) dx

+ 2
∫

RN

1

|x |α
(∫

RN

|un(y)|p − |vn(y)|p

|x − y|μ|y|α dy

)

|vn |pdx .

Using the above information, we can easily get the desired result. This proof is now
complete. ��
Lemma 8 Assume that N ≥ 2, α ≥ 0, 0 < μ < N , 2α + μ ≤ N, p > 1 and
2N − μ − 2α

N
≤ p <

2N − μ − 2α

N − 2
if N ≥ 3

(

resp.
4 − μ − 2α

2
≤ p < +∞ if N

= 2

)

are fulfilled. Let {un}n∈N ⊆ Xλ be such that un
w−→ u in Xλ as n → ∞. Set

vn := un − vn . Then, passing to a subsequence, for any ϕ ∈ Xλ such that ‖ϕ‖λ ≤ 1
it holds

sup
‖ϕ‖λ≤1

∣
∣(�′(un) − �′(vn) − �′(u))ϕ

∣
∣ = on(1), as n → ∞,

that is,

�′(un) − �′(vn) − �′(u) = on(1) in X∗
λ as n → ∞,

where

�(u) := 1

2p

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|pdx

and

�′(u)ϕ := Re
∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|p−2uϕdx .
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Proof To prove Lemma 8, we will discuss the following four cases respectively:

(i) if 2α + μ ≤ min{N , 4} and 2α + μ < N ,

⇒ 2N − μ − 2α

N
≤ p <

2N − μ − 2α

N − 2
(resp. + ∞, N = 2);

(ii) if 2α + μ = N ≤ 4,

⇒ 1 < p <
2N − μ − 2α

N − 2
(resp. + ∞, N = 2);

(iii) if 4 < 2α + μ < N ,

⇒ 2N − μ − 2α

N
≤ p <

2N − μ − 2α

N − 2
< 2;

(iv) if 4 < 2α + μ = N ,

⇒ 1 < p <
2N − μ − 2α

N − 2
< 2.

Next, we only consider the case (i) and leave the other cases to the reader. In the
sequel, we show the following limit:

lim
n→∞

∫

RN

∣
∣
∣|un|p−2un − |vn|p−2vn − |u|p−2u

∣
∣
∣

2N p
(2N−μ−2α)(p−1)

dx = 0. (7)

Firstly, we deal with the situation

2 ≤ p <
2N − μ − 2α

N − 2
(resp. + ∞, N = 2).

Applying (i) of Lemma 3, we know that for each fixed ε > 0, there is some positive
constant Cε > 0 such that

∣
∣
∣|un|p−2un − |vn|p−2vn|

∣
∣
∣ ≤ ε|vn|p−1 + Cε|u|p−1.

Now, we introduce the function Hε,n : RN �→ R
+ defined by

Hε,n(x) := max

{ ∣
∣
∣|un(x)|p−2un(x) − |vn(x)|p−2vn(x) − |u(x)|p−2u(x)

∣
∣
∣

−ε|vn(x)|p−1, 0

}

.
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Obviously, Hε,n(x) → 0 a.e. RN as n → ∞ (up to a subsequence) and

0 ≤ Hε,n ≤ Ĉ |u|p−1 ∈ L
2N p

(2N−μ−2α)(p−1) (RN ,R),

where Ĉ > 0 is some constant. Therefore, we use the Dominated Convergence The-
orem to derive that

lim
n→∞

∫

RN
H

2N p
(2N−μ−2α)(p−1)
ε,n dx = 0.

In addition, according to the definition of Hε,n , we have

∣
∣
∣|un(x)|p−2un(x) − |vn(x)|p−2vn(x) − |u(x)|p−2u(x)

∣
∣
∣ ≤ Hε,n + ε|vn(x)|p−1,

hence, we conclude that

∣
∣
∣|un|p−2un − |vn|p−2vn − |u|p−2u

∣
∣
∣

2N p
(2N−μ−2α)(p−1)

≤ C̃

(

H
2N p

(2N−μ−2α)(p−1)
ε,n + ε

2N p
(2N−μ−2α)(p−1) |vn| 2N p

2N−μ−2α

)

,

where C̃ is a positive constant. So, we obtain

lim sup
n→∞

∫

RN

∣
∣
∣|un|p−2un − |vn|p−2vn − |u|p−2u

∣
∣
∣

2N p
(2N−μ−2α)(p−1)

dx

≤ C̃ε
2N p

(2N−μ−2α)(p−1) |vn|
2N p

2N−μ−2α
2N p

2N−μ−2α

≤ Cε
2N p

(2N−μ−2α)(p−1) ,

where C is a positive constant. Using the arbitrariness of ε > 0, we see that

lim sup
n→∞

∫

RN

∣
∣
∣|un|p−2un − |vn|p−2vn − |u|p−2u

∣
∣
∣

2N p
(2N−μ−2α)(p−1)

dx ≤ 0.

In this case the proof of relation (7) is now complete.
Now, assume that

p > 1 and
2N − μ − 2α

N
≤ p < 2 <

2N − μ − 2α

N − 2
(resp. + ∞, N = 2).

From (ii) of Lemma 3, it follows that

sup
x ∈RN , u(x) �=0

∣
∣
∣
∣
|un(x)|p−2un(x) − |vn(x)|p−2vn(x)

|u(x)|p−1

∣
∣
∣
∣ < +∞.
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Using the Dominated Convergence Theorem, we can finish the proof of relation (7)
under this situation.

Combining the above two situations, we now complete the proof of relation (7). As
with the above-mentioned proof, we can also show the other situations, so we omit
the details.

Since un
w−→ u in Xλ as n → ∞, we see that the set {un, vn, u}n∈N ⊆ Xλ is

bounded, that is, there is some constant C1 > 0 such that

‖un‖λ, ‖vn‖λ, ‖u‖λ ≤ C1 for all n ∈ N. (8)

So, we have

∫

RN

∣
∣
∣|un|p−2un − |vn|p−2vn

∣
∣
∣

2N
2N−μ−2α |ϕ| 2N

2N−μ−2α dx

≤ 2
2α+μ

2N−μ−2α

∫

RN

(

|un|
2N (p−1)
2N−μ−2α + |vn| 2N (p−1)

2N−μ−2α

)

|ϕ| 2N
2N−μ−2α dx

(

since
2N

2N − μ − 2α
> 1

)

≤ 2
2α+μ

2N−μ−2α

(

|un|
2N (p−1)
2N−μ−2α

2N p
2N−μ−2α

+ |vn|
2N (p−1)
2N−μ−2α

2N p
2N−μ−2α

)

|ϕ|
2N

2N−μ−2α
2N p

2N−μ−2α

(use the Hölder inequality)

≤ C2‖ϕ‖
2N

2N−μ−2α
λ (recall that the Sobolev embedding and use (8))

for some constant C2 > 0. (9)

In the same fashion as in the proof of relation (9), we obtain

∫

RN

∣
∣
∣|vn|p−2vnϕ

∣
∣
∣

2N
2N−μ−2α

dx,

∫

RN

∣
∣
∣|u|p−2uϕ

∣
∣
∣

2N
2N−μ−2α

dx ≤ C3‖ϕ‖
2N

2N−μ−2α
λ

for some constant C3 > 0. (10)

Now, we define the following notations:

I 1n :=
∫

RN

1

|x |α
(∫

RN

|un(y)|p − |vn(y)|p

|x − y|μ|y|α dy

) (
|un|p−2un − |vn|p−2vn

)
ϕdx

−
∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|u|p−2uϕdx

I 2n :=
∫

RN

1

|x |α
(∫

RN

|un(y)|p − |vn(y)|p

|x − y|μ|y|α dy

)

|vn|p−2vnϕdx

I 3n :=
∫

RN

1

|x |α
(∫

RN

|vn(y)|p

|x − y|μ|y|α dy

) (
|un|p−2un − |vn|p−2vn

)
ϕdx .
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So, for n ∈ N large enough, we deduce that

|I 1n | ≤
∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|un(y)|p − |vn(y)|p − |u(y)|p

|x − y|μ|y|α dy

)

× (|un|p−2un − |vn|p−2vn
)
ϕdx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)
(|un|p−2un − |vn|p−2vn − |u|p−2u

)
ϕdx

∣
∣
∣
∣

≤
∫

RN

1

|x |α
(∫

RN

||un(y)|p − |vn(y)|p − |u(y)|p|
|x − y|μ|y|α dy

)

× ∣
∣
(|un|p−2un − |vn|p−2vn

)
ϕ
∣
∣ dx

+
∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)
∣
∣
(|un|p−2un − |vn|p−2vn − |u|p−2u

)
ϕ
∣
∣ dx

≤
(∫

RN

(∫

RN

||un(y)|p − |vn(y)|p − |u(y)|p|
|x |α|x − y|μ|y|α dy

) 2N
2α+μ

dx

) 2α+μ
2N

×
(∫

RN

∣
∣
(|un|p−2un − |vn|p−2vn

)
ϕ
∣
∣

2N
2N−μ−2α dx

) 2N−μ−2α
2N

(use the Hölder inequality)

+ |u|p
2N p

2N−μ−2α

(∫

RN

∣
∣
(|un|p−2un − |vn|p−2vn − |u|p−2u

)
ϕ
∣
∣

2N
2N−μ−2α dx

) 2N−μ−2α
2N

(invoke Proposition 2)

≤ C
2N−μ−2α

2N
2 ε‖ϕ‖λ (by (6), (9))

+ C4

(∫

RN

∣
∣|un|p−2un − |vn|p−2vn − |u|p−2u

∣
∣

2N p
(2N−μ−2α)(p−1) dx

) (2N−μ−2α)(p−1)
2N p

× ‖ϕ‖λ for some constant C4 > 0 (by the Hölder inequality, the Sobolev

embedding, (8))

≤ C5ε‖ϕ‖λ ( by (7)). (11)

Concerning u ∈ Xλ, together with Proposition 2 and the Sobolev embedding, we
see that

∫

RN

∣
∣
∣
∣

∫

RN

|u(y)|p

|x |α|x − y|μ|y|α dy

∣
∣
∣
∣

2N
2α+μ

dx < +∞

and

∫

RN
|u| 2N p

2N−μ−2α dx < +∞.

123



Large Perturbations of a Magnetic System Page 17 of 27 102

From the above inequalities, we can deduce that, for any ε > 0, there exists R :=
R(ε) > 0 such that

(∫

Bc
R(0)

∣
∣
∣
∣

∫

RN

|u(y)|p

|x |α|x − y|μ|y|α dy

∣
∣
∣
∣

2N
2α+μ

dx

) 2α+μ
2N

< −
(∫

Bc
R(0)

|u| 2N p
2N−μ−2α dx

) (2N−μ−2α)(p−1)
2N p

+ ε. (12)

Moreover, using Proposition 2 and (8), we conclude that

∫

RN

∣
∣
∣
∣

∫

RN

|u(y)|p

|x |α|x − y|μ|y|α dy

∣
∣
∣
∣

2N
2α+μ

dx,

∫

RN

∣
∣
∣
∣

∫

RN

|vn(y)|p

|x |α|x − y|μ|y|α dy

∣
∣
∣
∣

2N
2α+μ

dx < C6

(13)

for some positive constant C6 > 0.
Then, for n ∈ N large enough, we have

∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|vn|p−2vnϕdx

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

Bc
R(0)

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|vn|p−2vnϕdx

∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

BR(0)

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|vn|p−2vnϕdx

∣
∣
∣
∣

≤
(∫

Bc
R(0)

∣
∣
∣
∣

∫

RN

|u(y)|p

|x |α|x − y|μ|y|α dy

∣
∣
∣
∣

2N
2α+μ

dx

) 2α+μ
2N

×
(∫

RN

∣
∣
∣|vn|p−2vnϕ

∣
∣
∣

2N
2N−μ−2α

dx

) 2N−μ−2α
2N

+
(∫

RN

∣
∣
∣
∣

∫

RN

|u(y)|p

|x |α|x − y|μ|y|α dy

∣
∣
∣
∣

2N
2α+μ

dx

) 2α+μ
2N

×
(∫

BR(0)

∣
∣
∣|vn|p−2vnϕ

∣
∣
∣

2N
2N−μ−2α

dx

) 2N−μ−2α
2N

(by the Hölder inequality)

≤ C
2N−μ−2α

2N
3 ε‖ϕ‖λ

+ C6

(∫

BR(0)
|vn|

2N p
2N−μ−2α dx

) (2N−μ−2α)(p−1)
2N p |ϕ| 2N p

2N−μ−2α
(see (10), (12), (13))
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≤ C
2N−μ−2α

2N
3 ε‖ϕ‖λ + C7ε‖ϕ‖λ for some constant C7 > 0

(by the local Sobolev compact embedding and the Sobolev continuous embedding).
(14)

From relation (14), we infer that

lim sup
n→∞

∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|vn|p−2vnϕdx

∣
∣
∣
∣ ≤ Ĉ7ε‖ϕ‖λ. (15)

Next, we show that the following inequality

lim sup
n→∞

∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|vn(y)|p

|x − y|μ|y|α dy

)

|u|p−2uϕdx

∣
∣
∣
∣ ≤ C8‖ϕ‖λ (16)

holds true for some constant C8 > 0.
In fact, for any ε > 0, we can find some K1 > 0 and R0 := R0(ε) > max{1, R}

[see (12)] such that

lim sup
n→∞

∫

BR0 (0)
|vn|p

(∫

BR0 (0)

|u(x)|p−1|ϕ|
|x |α|x − y|μ|y|α dx

)

dy ≤ K1ε‖ϕ‖λ, (17)

lim sup
n→∞

∫

RN
|vn|p

(∫

RN \BR0 (0)

|u(x)|p−1|ϕ|
|x |α|x − y|μ|y|α dx

)

dy ≤ K1ε‖ϕ‖λ. (18)

In order to prove relation (16), it remains to consider the following term:

Jn :=
∫

RN \BR0 (0)
|vn|p

(∫

BR0 (0)

|u(x)|p−1|ϕ(x)|
|x |α|x − y|μ|y|α dx

)

dy.

For this reason, we will discuss it in two parts.
(∗) If |u(x)|p−1|ϕ(x)| = 0 a.e. on BR0(0). Consequently, for any ε > 0, we obtain

Jn ≤ K2ε‖ϕ‖λ for some constant K2 > 0.

(∗∗) If meas
({

x ∈ BR0(0) : |u(x)|p−1|ϕ(x)| > 0
})

> 0. So, we have

∫

BR0 (0)

∣
∣
∣|u|p−1|ϕ|

∣
∣
∣

6N
6N−μ−2α

dx > 0.

Moreover, we have

∫

BR0 (0)

∣
∣
∣|u|p−1|ϕ|

∣
∣
∣

6N
6N−μ−2α

dx ≤ K3‖ϕ‖
6N

6N−μ−2α
λ meas (BR0(0))

2μ+4α
6N−μ−2α .
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Set

dε :=
⎛

⎝

∣
∣|u|p−1|ϕ|∣∣L6N/(6N−μ−2α)(BR0 (0))

ε‖ϕ‖λ

⎞

⎠

3
μ

and

R̂0 := R0 + ε
− 3

μ K
6N−μ−2α

2Nμ

3 meas (BR0(0))
6μ+12α

(6N−μ−2α)μ

In the case (∗∗), we can use the above relations, Proposition 2 and the local Sobolev
compactness and the continuous embedding to conclude that, for n ∈ N sufficiently
large,

Jn =
∫

BR0 (0)
|u|p−1|ϕ|

(∫

RN \BR0 (0)

|vn(y)|p

|x |α|x − y|μ|y|α dy

)

dx

=
∫

BR0 (0)
|u|p−1|ϕ|

(∫

RN \BR0+dε (0)

|vn(y)|p

|x |α|x − y|μ|y|α dy

)

dx

+
∫

BR0 (0)
|u|p−1|ϕ|

(∫

BR0+dε (0)\BR0 (0)

|vn(y)|p

|x |α|x − y|μ|y|α dy

)

dx

≤ 1

R
2α
3
0

ε‖ϕ‖λ
∣
∣|u|p−1|ϕ|∣∣L6N/(6N−μ−2α)(BR0 (0))

×
∫

BR0 (0)
|u|p−1|ϕ|

(∫

RN \BR0+dε (0)

|vn(y)|p

|x |α|x − y|2μ/3|y|α/3 dy

)

dx

+
∫

BR0 (0)
|u|p−1|ϕ|

(∫

BR0+dε (0)\BR0 (0)

|vn(y)|p

|x |α|x − y|μ|y|α dy

)

dx

≤ 1

R
2α
3
0

ε‖ϕ‖λ
∣
∣|u|p−1|ϕ|∣∣L6N/(6N−μ−2α)(BR0 (0))

×
∫

BR0 (0)
|u|p−1|ϕ|

(∫

RN

|vn(y)|p

|x |α|x − y|2μ/3|y|α/3 dy

)

dx

+
∫

BR0 (0)
|u|p−1|ϕ|

(∫

BR0+dε (0)\BR0 (0)

|vn(y)|p

|x |α|x − y|μ|y|α dy

)

dx

≤ K4

R
2α
3
0

ε‖ϕ‖λ
∣
∣|u|p−1|ϕ|∣∣L6N/(6N−μ−2α)(BR0 (0))

∣
∣
∣|u|p−1|ϕ|

∣
∣
∣
L6N/(6N−μ−2α)(BR0 (0))

+
∫

BR0 (0)
|u|p−1|ϕ|

(∫

BR̂0
(0)\BR0 (0)

|vn(y)|p

|x |α|x − y|μ|y|α dy

)

dx

≤ C8ε‖ϕ‖λ for some positive constant K4 > 0. (19)
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Combining (17), (18), (19) and (∗), we can easily complete the proof of relation
(16).

Now, we estimate |I 2n | and |I 3n |.
We first have, for n ∈ N large enough,

|I 2n | ≤
∫

RN

(∫

RN

||un(y)|p − |vn(y)|p − |u(y)|p|
|x |α|x − y|μ|y|α dy

) ∣
∣
∣|vn|p−2vnϕ

∣
∣
∣ dx

+
∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|u(y)|p

|x − y|μ|y|α dy

)

|vn|p−2vnϕdx

∣
∣
∣
∣

≤ C9
∣
∣|un(y)|p − |vn(y)|p − |u(y)|p

∣
∣ 2N
2N−μ−2α

∣
∣
∣|vn|p−2vnϕ

∣
∣
∣ 2N
2N−μ−2α

+ Ĉ7ε‖ϕ‖λ for some constant C9 > 0 (by Proposition 2 and (15))

≤
(

C9C
2N−μ−2α

2N
3 + Ĉ7

)

ε‖ϕ‖λ (see (5) and (10)). (20)

Also, we have

|I 3n | ≤
∫

RN

(∫

RN

|vn|p

|x |α|x − y|μ|y|α dy

) ∣
∣
∣

(
|un|p−2un − |vn|p−2vn − |u|p−2u

)
ϕ

∣
∣
∣ dx

+
∣
∣
∣
∣

∫

RN

1

|x |α
(∫

RN

|vn(y)|p

|x − y|μ|y|α dy

)

|u|p−2uϕdx

∣
∣
∣
∣

≤ C10

(∫

RN

∣
∣
∣|un|p−2un − |vn|p−2vn − |u|p−2u

∣
∣
∣

2N p
(2N−μ−2)(p−1)

dx

) (2N−μ−2α)(p−1)
2N p

× ‖ϕ‖λ + C8ε‖ϕ‖λ for some constant C10 > 0,

(by Proposition 2, the Sobolev embedding, the Hölder inequality, (8) and (16))

≤ (C8 + C10) ε‖ϕ‖λ (see (7)) for n ∈ N large enough. (21)

Note that

�′(un)ϕ − �′(vn)ϕ − �′(u)ϕ = Re
(

I 2n + I 2n + I 3n
)
for all n ∈ N.

Using the last equality and relations (11), (20) and (21), for n ∈ N large enough we
conclude that

∣
∣�′(un)ϕ − �′(vn)ϕ − �′(u)ϕ

∣
∣ =

∣
∣
∣Re

(
I 2n + I 2n + I 3n

)∣
∣
∣

≤ C11ε‖ϕ‖λ

for some constant C11 > 0,

which implies that

lim sup
n→∞

sup
‖ϕ‖λ≤1

∣
∣(�′(un) − �′(vn) − �′(u))ϕ

∣
∣ ≤ 0 (by the arbitrariness of ε),
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that is,

�′(un) − �′(vn) − �′(u) = on(1) in X∗
λ as n → ∞.

This proof is now complete. ��

Lemma 9 Let N ≥ 2, α ≥ 0, 0 < μ < N , 2α + μ ≤ N and
2N − μ − 2α

N
<

p <
2N − μ − 2α

N − 2
(resp. + ∞, N = 2). Assume that {un}n∈N ⊆ Xλ is a (P S)c

sequence of the functional Eλ at the level c ≥ 0. Up to a subsequence, there exists
some u ∈ Xλ such that un

w−→ u in Xλ and have the following relations

Eλ(vn) − Eλ(un) + Eλ(u) = on(1) in Xλ as n → ∞, (22)

E ′
λ(vn) − E ′

λ(un) + E ′
λ(u) = on(1) in X∗

λ as n → ∞, (23)

where vn := un − u. Moreover, the sequence {vn}n∈N is a (P S)c−Eλ(u) sequence.

Proof By Lemma 5, we know that the sequence {un} is bounded in Xλ. So, passing to
a subsequence, we may assume that un

w−→ u in Xλ, ∇Aun
w−→ ∇Au in L2(RN ,C)N

and un(x) → u(x) in RN as n → ∞.
Since Xλ is a Hilbert space, together with the fact that un

w−→ u in Xλ as n → ∞,
we see that

‖un‖2λ − ‖vn‖2λ − ‖u‖2λ = on(1) as n → ∞. (24)

Next, we can argue as in the proof of relation (7) to infer that

∫

RN
(λV (x) + 1) |un − vn − u|2 dx = on(1) as n → ∞. (25)

Finally, we show that

∫

RN
|∇Aun − ∇Avn − ∇Au|2 dx = on(1) as n → ∞. (26)

For this purpose, we first prove that

∇Aun(x) → ∇Au(x) a.e. in RN as n → ∞. (27)

Fix R > 0 andψ ∈ C∞
0 (RN ,R)withψ(x) = 1 for x ∈ BR(0). Since {un, u}n∈N ⊆

Xλ is bounded and E ′
λ(un) → 0 in X∗

λ as n → ∞, we know that

E ′
λ(un)(unψ) = on(1) and E ′

λ(un)(uψ) = on(1) as n → ∞.
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Then, we conclude that

∫

BR(0)
|∇A(un − u)|2dx

≤
∫

RN
|∇A(un − u)|2ψdx

= E ′
λ(un)(unψ) − E ′

λ(un)(uψ) − Re
∫

RN
∇Au(∇Aun − ∇Au)ψdx

− Re
∫

RN
(un − u)∇Aun∇ψdx − Re

∫

RN
(λV (x) + 1)un(un − u)ψdx

− Re
∫

RN

1

|x |α
( |un(y)|p

|x − y|α|y|α dy

)

|un|p−2un(un − u)ψdx .

Using the above all information, we can infer that

∫

BR(0)
|∇A(un − u)|2dx → 0 as n → ∞.

Since R is arbitrary, we deduce that (27) holds true.
Applying (27) and proceeding as in the proof of relation (7), we can derive that

(26) is true.
Therefore, from Lemmas 7 and 8, together with relations (24)–(26), we can get the

desired results. This proof is now finished. ��

Lemma 10 Let N ≥ 2, α ≥ 0, 0 < μ < N , 2α + μ ≤ N and
2N − μ − 2α

N
<

p <
2N − μ − 2α

N − 2
(resp. + ∞, N = 2). Assume that {un}n∈N ⊆ Xλ is a (P S)c

sequence of the functional Eλ at the level c ≥ 0. Then c = 0, or there exists d∗ > 0,
independent of λ, such that c ≥ d∗ for any λ > 0.

Proof Assume that c > 0. On account of the fact that

2N − μ − 2α

N
< p <

2N − μ − 2α

N − 2
(resp. + ∞, N = 2),

then we can employ Proposition 2 and the Sobolev embedding to conclude that there
exists σ0 > 0 such that

E ′
λ(un)un ≥ 1

4
‖un‖2λ, for ‖un‖λ < σ0.

In addition, since {un}n∈N is a (P S)c sequence of the functional Eλ at the level
c > 0, it is easy to check that

lim sup
n→∞

‖un‖λ ≤
√

2pc

p − 1
.
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So, if c ∈
(

0,
(p − 1)σ 2

0

2p

)

, for n ∈ N large enough it follows that

‖un‖λ < σ0.

Then we can deduce that

lim
n→∞ ‖un‖λ = 0,

⇒ 0 < c = lim
n→∞ Eλ(un) = Eλ(0) = 0,

a contradiction. Thus, c ≥ (p − 1)σ 2
0

2p
:= d∗ > 0. The proof is now complete. ��

Lemma 11 Assume that {un}n∈N ⊆ Xλ is a (P S)c sequence of the functional Eλ at
the level c ≥ 0. Then there is a positive number σ1 > 0 independent of λ > 0, such
that

lim inf
n→∞ |un|2p

2N p
2N−μ−2α

≥ cσ1.

Proof Since {un}n∈N ⊆ Xλ is a (P S)c sequence of the functional Eλ at the level c ≥ 0,
we can use Proposition 2 and the Sobolev embedding to infer that

cσ1 := c
2p

p − 1
C0 ≤ lim inf

n→∞ |un|2p
2N p

2N−μ−2α

for some constant C0 > 0, where C0 does not depend on λ.
This proves the lemma. ��

Lemma 12 Let d > 0 be a real number independent of λ, and assume that {un}n∈N ⊆
Xλ is a (P S)c sequence of the functional Eλ at the level c ∈ [0, d]. For any ε > 0,
there are some positive constants � = �(ε) and R = R(d, ε) such that

lim sup
n→∞

|un|2p

L
2N p

2N−μ−2α (Bc
R(0))

< ε for all λ ≥ �.

Proof For any fixed R > 0, we introduce the following sets:

A(R) :=
{

x ∈ R
N : |x | > R, V (x) > M0

}

and

B(R) :=
{

x ∈ R
N : |x | > R, V (x) ≤ M0

}
.
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So, for n ∈ N large enough we have

∫

A(R)

|un|2dx ≤ 1

λM0 + 1

∫

A(R)

(λV (x) + 1)|un|2dx

≤ 1

λM0 + 1
‖un‖2λ

≤ 1

λM0 + 1

(
2pc

p − 1
+ on(1)

)

≤ 1

λM0 + 1

(
2pd

p − 1
+ on(1)

)

,

where d is independent of λ. (28)

Then we deduce form relation (28) that there is � > 0 such that, for all λ ≥ �,

lim sup
n→∞

∫

A(R)

|un|2dx <
ε

2
. (29)

From the Hölder inequality and the Sobolev embedding, we can find some constant
K > 0 (which is independent of λ) such that

∫

B(R)

|un|2dx ≤
(
2pK d

p − 1
+ on(1)

)

meas (B(R))
1
r ′

(

where 1 ≤ r ≤ N

N − 2
(N ≥ 3) and r > 1 (N = 2), r ′ = r

r − 1

)

,

⇒ lim sup
n→∞

∫

B(R)

|un|2dx <
ε

2
for some R large enough (recall that hypothesis V ).

(30)

Combining (29) with (30), we have

lim sup
n→∞

∫

RN \BR(0)
|un|2dx < ε for some R large enough.

Finally, we can use the above inequality and the interpolation inequality to conclude
the desired result. ��
Proposition 13 Let d > 0 be a real number independent of λ. Then there is a � =
�(d) > 0 such that, for all λ ≥ � the functional Eλ satisfies the (P S)cλ condition for
all cλ ∈ [0, d].
Proof Suppose that {un}n∈N ⊆ Xλ is a (P S)cλ sequence. Going to a subsequence if
necessary, we may assume that un → u ∈ Xλ, un(x) → u(x) a.e. inRN (N ≥ 2) and

un → u in Lq
loc(R

N ,C) for all 1 ≤ q <
2N

N − 2
(resp. +∞, if N = 2) as n → ∞.

Following the standard density arguments, we observe that E ′
λ(u) = 0 and Eλ(u) ≥ 0.
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Let vn = un − u. Then we use Lemma 9 to obtain that {vn}n∈n ⊆ Xλ is a
(P S)cλ−Eλ(u) sequence. Moreover, 0 ≤ cλ − Eλ(u) ≤ cλ < d.

Now, we prove that cλ = Eλ(u) if λ > 0 large enough. Arguing by contradiction,
we may assume that Eλ(u) < cλ for some λ > 0 large enough. From Lemmas 10 and
11, we see that there exists d∗ > 0 (which is independent of λ) such that

cλ − Eλ(u) ≥ d∗ and lim inf
n→∞ |vn|2p

2N p
2N−μ−2α

≥ σ1d∗ > 0. (31)

In Lemma 12 we choose ε = σ1d∗
2

> 0 and then we know that there are � > 0,

R > 0 such that, for some λ ≥ �,

lim sup
n→∞

|vn|2p

L
2N p

2N−μ−2α (Bc
R(0))

<
σ1d∗
2

(32)

So, we infer from relations (31) and (32) that

lim inf
n→∞ |vn|2p

L
2N p

2N−μ−2α (BR(0))
>

σ1d∗
2

> 0.

This is impossible. In fact, since vn
w−→ 0 in Xλ as n → ∞, then we can use the

compact Sobolev embedding Xλ ↪→ L
2N p

2N−μ−2α (BR(0)) to obtain

lim inf
n→∞ |vn|2p

L
2N p

2N−μ−2α (BR(0))
= 0.

Therefore, we arrive at the conclusion that 0 >
σ1d∗
2

> 0 is a contradiction.

So, for λ > 0 large enough we deduce that cλ = Eλ(u) and {vn}n∈N ⊆ Xλ is a
(P S)0 sequence. Thus, it follows from Corollary 6 that, for λ > 0 sufficiently large,
vn → 0 in Xλ as n → ∞. We now complete the proof of the proposition. ��

Proof of Theorem 1 Using Lemma 4 and Proposition 13, we can complete the proof
of Theorem 1. This proves Theorem 1. ��
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