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Abstract
We study the blow-up analysis and qualitative behavior for a sequence of harmonic
maps with free boundary from degenerating bordered Riemann surfaces with uni-
formly bounded energy. With the help of Pohozaev type constants associated to
harmonic maps defined on degenerating collars, including vertical boundary collars
and horizontal boundary collars, we establish a generalized energy identity.
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1 Introduction

Let (�, c) be a compact bordered Riemann surface with smooth boundary ∂� and
with complex structure c. Let (N , g) be a compact Riemannian manifold. Let K ⊂ N
be a k-dimensional closed submanifold with 1 ≤ k ≤ n and denote

C(K ) =
{
u ∈ C2(�, N ); u(∂�) ⊂ K

}
.

Let h be a Riemannian metric on � which is compatible with the complex structure
c. A critical point of the energy functional

E(u) =
∫

�

|∇u|2dvolh (1.1)

over the space C(K ) is called a harmonic map with free boundary on K .
ByNash’s embedding theorem,we embed (N , g) isometrically into someEuclidean

space RN . Then the Euler–Lagrange equation of the functional (1.1) is

�hu = A(u)(∇u,∇u),

where A is the second fundamental form of N ⊂ R
N and �h is the Laplace–Beltrami

operator on M which is defined as follows

�h := − 1√
h

∂

∂xβ

(√
hhαβ ∂

∂xα

)
.

Moreover, for 1 ≤ k ≤ n−1, u has free boundary u(∂�) on K , namely, the following
holds

u(x) ∈ K , du(x)(−→n ) ⊥ Tu(x)K , ∀ x ∈ ∂�, (1.2)

where−→n is the outward unit normal vector on ∂� and⊥means orthogonal. For k = n,
u satisfies a homogeneous Neumann boundary condition on K , that is

u(x) ∈ K , du(x)(−→n ) = 0, ∀ x ∈ ∂�. (1.3)

The tension field τ(u) of a map u is defined by

τ(u) = −�hu + A(u)(∇u,∇u). (1.4)

Thus, if u : (�, h) → (N , g) is a harmonic map with free boundary on K then it
satisfies the Euler–Lagrangian equation

{
τ(u) = 0 in �;
du(n) ⊥ TuK on ∂�,

(1.5)
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Harmonic Maps with Free Boundary Page 3 of 21 49

where τ(u) is the tension field of u. It is well known that both the energy functional
(1.1) and the harmonic map system (1.5) are conformally invariant, hence they are
independent of the choice of the metric h in the same conformal class c = [h].

Now suppose (�n, cn) is a sequence of bordered Riemann surface of the same
topological type (g, k) such that

g̃ = 2g + k − 1 > 1, (1.6)

here g is the genus of �n , k is the number of components of ∂�n and g̃ is the genus
of the complex double �c

n of �n (see Sect. 2). Let un : �n → N be a sequence
of harmonic maps with free boundary on the submanifold K ⊂ N , whose energy is
uniformly bounded

E(un) ≤ � < ∞.

When the domain surface is fixed, namely �n = �, it was shown in [10] that the
sequence un converges to a limit harmonic map modulo finitely many bubbles, i.e.
harmonic spheres or harmonic disks with free boundary on K . Moreover, the energy
identity and the no neck property hold, extending the classical case of a closed domain
surface developed in [4,8,17,19] etc. and the case of harmonic functions [13].

If we allow the conformal structure cn on the domain surface to vary. Then, the
conformal structure might degenerate and in such a case, the limit surface is a nodal
bordered Riemann surface. When the Riemann surface (�n, cn) is closed, by the
uniformization theorem, there is a hyperbolic metric hn in this conformal class cn . It
is well-known that the degeneration of conformal structures (�n, hn, cn) is obtained
by shrinking finitely many simple closed geodesics γn (for simplicity of notation,
we assume there is only one such geodesic) to a point, which is known as the node.
Moreover, there is a collar area near γn which is conformal to a long standard cylinder

Pn = [−Tn, Tn] × S1.

In [23,25], the asymptotic behaviour of the maps in the limit process was successfully
characterized by associating to each Pn a quantity, called Pohozaev type constant,
defined by the Hopf differential of the map. More precisely, by integrating the Hopf
differential on a slice of Pn , one gets a constant

αn :=
∫

{t}×S1

(
|∂t un|2 − |∂θun|2

)
dθ, for Pn,

then the limit energy and length ofun on Pn can be expressed in terms ofαn and Tn . This
result can be considered as a 2nd order extension of Gromov’s compactness theorem
for J-holomorphic curves [5]. Inspired by ideas from [23,25] (which was extended to
the case of Dirac-harmonic maps in [24]), the notion of Pohozaev type constant were
also introduced in other types of two-dimensional geometric variational problems, for
instance, super-Liouville type equations on surfaces with conical singularities [9,11].
Such kind of quantity on one hand measures the extent to which the Pohozaev type
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identity fails over a punctured disc and on the other hand provides a characterization
of the singular behavior of a solution at an isolated singularity.

In the present paper, we shall investigate the situation that the underlying Riemann
surface (�n, cn) is bordered and in particular, the degeneration of (�n, cn) occurs at the
boundary. In fact, for each (�n, cn), we can construct a double cover (�̃n, c̃n), which
is closed. Then the degeneration of (�̃n, c̃n) is exactly the same as in the closed case
described above. We will see that, if the degeneration happens at the boundary, then
there is a collar area which is conformal to the following two types of half cylinders:
Type I: a vertical half cylinder

Q+
n = [−Tn, Tn] × [0, π ],

Type II: a horizontal half cylinder

P+
n = [0, Tn] × S1,

to which we can associate a similar quantity defined in terms of the Hopf differential
of the map.

More precisely, in this paper, we shall define the Pohozaev type constant associated
to un over the above two types of half cylinders (see Lemma 3.1) by

αn :=

⎧⎪⎪⎨
⎪⎪⎩

∫

{t}×[0,π ]

(
|∂t un|2 − |∂θun|2

)
dθ, for Q+

n ;
∫

{t}×S1

(
|∂t un|2 − |∂θun|2

)
dθ, for P+

n .

Combined with the case of interior degeneration studied in [25], now we state the
following:

Theorem 1.1 Let un : (�n, hn, cn) → (N , g) be a sequence of harmonic maps with
free boundary and with uniformly bounded energy E(un, �n) ≤ � < ∞, where
(�n, hn, cn) is a sequence of compact hyperbolic Riemann surfaces with smooth
boundary ∂�n and of genus g̃ > 1 (see (1.6)), degenerating to a hyperbolic Rie-
mann surface (�, h, c) by the following three ways:

• interior degeneration: collapsing finitely many pairwise-disjoint interior simple

closed geodesics
{
γ

j
1n, j = 1, . . . , p1

}
⊂ �n \ ∂�n;

• Type I boundary degeneration: collapsing finitely many pairwise-disjoint simple
geodesics{
γ

j
2n, j = 1, . . . , p2

}
, where each geodesic γ

j
2n, connects two points on the bound-

ary ∂�n;
• Type II boundary degeneration: collapsing finitely many pairwise-disjoint bound-

ary simple closed geodesics
{
γ

j
3n, j = 1, . . . , p3

}
⊂ ∂�n.
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For each j = 1, 2, . . . , pi , i = 1, 2, 3, the geodesic γ
j
in degenerates into a pair of

punctures (ε
j,1
i , ε

j,2
i ). Here we use the convention that pi = 0 for some i = 1, 2, 3

means that such type of degeneration does not occur.
Denote the hn-length of γ

j
in by l jin . Then, after passing to a subsequence, there

exist finitely many blow-up points {x1, . . . , xI } which are away from the punctures
(ε

j,1
i , ε

j,2
i ), i = 1, 2, 3; j = 1, . . . , pi , and finitely many harmonic maps:

• u : (�, c) → N with free boundary u(∂�) on K ,where (�, c) is the normalization
of (�, c);1

• ṽlm : S2 → N, l = 0, 1, 2, . . . , L̃m, near the blow-up point xm, m = 1, 2, . . . , I ;
• w̃k

m : D1(0) → N with free boundary w̃k
m(∂D1(0)) on K , k = 0, 1, 2, . . . , K̃m,

near the blow-up point xm, m = 1, 2, . . . , I ;
• L̃m + K̃m ≥ 1, m = 1, 2, . . . , I ;
• v

j,l
i : S2 → N, l = 0, 1, 2, . . . , L j

i , near the puncture (ε
j,1
i , ε

j,2
i ), i =

1, 2, 3; j = 1, . . . , pi ;
• w

j,k
i : D1(0) → N with free boundary w

j,k
i (∂D1(0)) on K , k = 0, 1, 2, . . . , K j

i ,

near the puncture (ε
j,1
i , ε

j,2
i ), i = 2, 3; j = 1, . . . , pi ;

such that, pulling back the hyperbolic metrics hn and the compatible complex struc-
tures cn by suitable diffeomorphisms � → �n \ ∪3

i=1 ∪pi
j=1 γ

j
in , passing to a

subsequence, un converges to u in C∞
loc(� \ {x1, . . . , xI }) and the following gen-

eralized energy identity holds

lim
n→∞ E(un) = E(u) +

I∑
m=1

L̃m∑
l=0

E
(
ṽlm

)
+

I∑
m=1

K̃m∑
k=0

E
(
w̃k
m

)

+
3∑

i=1

pi∑
j=1

L j
i∑

l=0

E
(
v
j,l
i

)
+

3∑
i=2

pi∑
j=1

K j
i∑

k=0

E
(
w

j,k
i

)

+
p1∑
j=1

lim
n→∞

2π2

l j1n
α
j
1n +

3∑
i=2

pi∑
j=1

lim
n→∞

π2

l jin
α
j
in,

whereα
j
in is the Pohozaev type constant defined on the collar area near γ

j
in , i = 1, 2, 3,

j = 1, 2, . . . , pi .

To prove Theorem 1.1, we shall first study the boundary degeneration of bordered
Riemann surfaces. We will describe the two types of boundary degeneration both in
the language of algebraic geometry and hyperbolic geometry, see Sect. 2. Secondly,
we shall study the asymptotic behavior for a sequence of harmonic maps from two
kinds of long half cylinders corresponding to two kinds of boundary degenerations.
The analysis on the half long cylinder of type I boundary degeneration is similar to
the interior degeneration [2,23,25] and the classical blow-up theory of harmonic maps
near an interior energy concentration point [4,19], near a boundary (free boundary)

1 Here, the normalization means adding some points to the nodes.
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energy concentration point [10]. In this paper, we shall focus on the type II boundary
degeneration. The idea is to extend the maps across the boundary, which are in general
no longer harmonicmaps. However, combining the structure of extendedmaps’s equa-
tions with the Pohozaev type constant, we can still estimate the energy concentration
on the cylinder.

Remark 1.2 Theorem 1.1 can be compared with the compactness results of (twisted)
holomorphic curves with Lagrangian boundary conditions (cf. [15,22]), which can
be viewed as a 1st order analog of the case of harmonic maps with free boundary
investigated in this paper.

Finally, we remark that in the case of g̃ = 1, namely the cylinder case, one can
apply the arguments in Sect. 3 to conclude that similar results as in Theorem 1.1 hold.

The rest of the paper is organized as follows. In Sect. 2, we describe the geometric
structure of nodal bordered Riemann surface and the two types of boundary nodes.
In Sect. 3, we develop some analytic properties of harmonic maps from two types of
long half cylinders and then prove our main Theorem 1.1.

2 Geometric Structure of Nodal Bordered Riemann Surface

In this section, we collect some facts about nodal bordered Riemann surfaces and the
two types of boundary nodes as well as the corresponding two types of boundary collar
regions. For more details, we refer to e.g. [12,15].

2.1 Bordered Riemann Surface

A smooth bordered Riemann surface� is said to be of type (g, k) if� is topologically
a sphere attached with g handles and k disks removed. It is topologically equivalent
to a compact surface of genus g with k punctures.

For any bordered Riemann surface �, there exists a compact double cover surface
�c with an anti-holomorphic involution map σ : �c → �c such that � = �c/σ ,
and ∂� is just the fixed point set of σ . Given a type (g, k) smooth bordered Riemann
surface �, the genus of its complex double �c is g̃ = 2g + k − 1. In fact, we have

Theorem 2.1 Let � be a bordered Riemann surface. There exists a double cover π :
�c → � of � by a compact Riemann surface �c and an anti-holomorphic involution
σ : �c → �c such that π ◦ σ = π . There is a holomorphic embedding ι : � → �c

such that π ◦ ι is the identity map. The triple (�c, π, σ ) is unique up to isomorphism.

Proof See [1, Theorem 1.6.1] and also [21]. ��
Actually, the double cover �c is decided only by the differentiable structure of �,

which can be constructed as follows. First, take a maximal atlas U = {Ui | i ∈ I } of
�, such that any compatible atlas of � is contained in U . Then, the coordinate charts
in U can be divided into two classes according to the orientation. Now let S = �i∈IUi

be the disjoint union. For each point inUi ∩Uj , we identify the corresponding points
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in Ui and Uj if their transition map is orientation-preserving. In this way, we obtain
the orientable covering �o.

If ∂� �= ∅, then for all p ∈ ∂�, we identify the corresponding two points in �o

to get the complex double �c, which is closed. The covering π : �o → � induces
a mapping π : �c → � which is a ramified double covering of �. It is a local
homeomorphism at all points p ∈ �c for which π(p) /∈ ∂�. At points lying over the
boundary of �, the projection is a folding similar to the mapping x + iy → x + i |y|
at the real axis.

If � is orientable, then �o is a trivial double covering of �, which is disconnected
and consists of two copies of � with opposite orientations. Then, �c is obtained by
simply gluing the boundary of the two components.

2.2 Nodes

A nodal bordered Riemann surface is of type (g, k) if it is a degeneration of a smooth
bordered Riemann surface of the same type.

Let � be a (smooth) bordered Riemann surface of type (g, k), then the following
are equivalent:

• � is stable, i.e., Aut(�) is finite
• Its complex double �c is stable
• The genus g̃ = 2g + k − 1 of �c is greater than one
• The Euler characteristic χ(�) = 2 − 2g − k is negative

There are three types of nodes for a nodal bordered Riemann surface. Let (z, w) be
the coordinate on C2 and σ(z, w) = (z̄, w̄) be the complex conjugation. A node on a
bordered Riemann surface is a singularity which is locally isomorphic to one of the
following:

(a) Interior node: (0, 0) ∈ {zw = 0}
(b) Type I boundary node: (0, 0) ∈ {z2 − w2 = 0}/σ
(c) Type II boundary node: (0, 0) ∈ {z2 + w2 = 0}/σ

2.3 Interior Nodes

LetU be a neighborhood of (0, 0) ∈ C
2 and � = {(z, w) ∈ U |zw = 0}. Then, � has

two components �1 = {(z, w) ∈ U |z = 0} and �2 = {(z, w) ∈ U |w = 0}, which
are attached at the nodal point �1 ∩ �2 = {(0, 0)}. Note that the metric near the node
on each component is flat.

2.4 Type I Boundary Nodes

Let � = {(z, w) ∈ U |z2 − w2 = 0}. Then � has two components �1 = {(z, w) ∈
U |z = w} and�2 = {(z, w) ∈ U |z = −w}, which are attached at the point�1∩�2 =
{(0, 0)}. The map σ gives an involution (σ 2 = id) on each component �i . The fixed
point set of σ is F = {(z, w) ∈ C

2|Im(z) = Im(w) = 0}. The boundary of �1/σ is
just the fixed point set of the involution in �1, i.e. γ1 = F ∩ �1 = {z = w ∈ R

1},
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49 Page 8 of 21 L. Liu et al.

which is a 1-dimensional curve. Similarly, the boundary of �2/σ is the curve γ2 =
F ∩�2 = {z = −w ∈ R

1}. Thus the boundary curves γ1 and γ2 intersects at the node
(0, 0).

By sending (z, w) to (z−w, z+w), it is clear that the surface� here is isomorphic
to the one in the interior node case. Indeed, � is the complex double of �/σ . Thus by
using the involutionmap σ , the picture of Type 1 boundary node is actually a (vertical)
half of the interior node case.

2.5 Type II Boundary Nodes

Let � = {(z, w) ∈ U |z2 + w2 = 0}. Then, � has two components �1 = {(z, w) ∈
U |z = iw} and �2 = {(z, w) ∈ U |z = −iw}, which are attached at the point
�1 ∩ �2 = {(0, 0)}. The map σ gives an anti-holomorphic ivolution between �1 and
�2. The only fixed point of σ on � is the node (0, 0). Thus the boundary of �/σ is
simply the node itself.

By sending (z, w) to (z − iw, z + iw), it is clear that the surface � here is also
isomorphic to the one in the interior node case. Indeed, � is the complex double of
�/σ . Thus by using the symmetry map σ , the picture of Type 2 boundary node is
actually a (horizontal) half of the interior node case.

2.6 Hyperbolic Geometry Picture Near Nodes

Suppose � is a bordered surface of general type (g, k). Let (�̃, π, σ ) be the corre-
sponding complex double which is a closed surface with genus g̃ = 2g + k − 1 > 1.
Then by uniformization theorem, for each complex structure c on �, there exists a
(unique) hyperbolic metric h on �. It is easy to see that h and c can be extended to
its complex double �̃ such that h̃ and c̃ is symmetric w.r.t. the (anti-holomorphic)
involution σ . It follows that the boundary components are geodesics in this metric.
See for example [16] for a proof of the uniformization theorem of bordered surfaces
and a construction of the hyperbolic metric by a flow method.

Now suppose �n = (�, hn, cn) is a sequence of degenerating hyperbolic surfaces
which converges to a hyperbolic surface �∞ = (�∞, h, c), with finitely many nodes
{y1, . . . , ym; z1, . . . , zl} where yi ’s are on the boundary and z j ’s are interior nodes.
Then the complex double (�̃, h̃, c̃) converges to the complex double �̃∞ of�∞, with
nodes {y1, . . . , ym; z1, . . . , zl , z′1, . . . , z′l} where z′j = σ(z j ) ∈ �′∞. By classical

results e.g. [3], �̃∞ is obtained by pinching m + 2l pairwise-disjoint Jordan curves to
the nodes.

For simplicity, we first assume there is only one node z. If z is an interior nodes,
i.e. z /∈ ∂�∞ = �σ∞, then there exists a collar area An ⊂ �n near a closed geodesic
γn ⊂ �n , which is isomorphic to a hyperbolic cylinder Pn = [−Tn, Tn] × S1 with
Tn → ∞ with metric (cf. [18,25])
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ds2 =
⎛
⎝ ln

2π cos
(
ln t
2π

)
⎞
⎠

2

(dt2 + dθ2),

where ln is the length of γn satisfying

Tn = 2π

ln

(
π

2
− arctan

(
sinh

(
ln
2

)))
.

Moreover,�n \ An converges to�∞ \{z} smoothly. The local geometry near the node
z on each component of �∞ is a standard hyperbolic cusp with metric (

|dz|
|z| ln |z| )

2.

If y ∈ ∂�∞ is a boundary node, then there also exists a collar area Ãn ⊂ �̃n

which lies in the complex double, near a closed geodesic γ̃n ⊂ �̃n and isomorphic
to a hyperbolic cylinder P̃n = [−Tn, Tn] × S1. Note that the cylinder P̃n is the δ-
thin part of �̃n , and hence is symmetric w.r.t. the involution σ , i.e. σ ∗ds2 = ds2.
However, there are only two possible involutions on the hyperbolic cylinder P̃n which
is anti-holomorphic as follows. (The antipodal map θ → π + θ is holomorphic.)

The first one corresponds to the symmetry of P̃n w.r.t. the horizontal lines

ξn = {(t, θ) | θ = 0, π} ⊂ P̃n .

Namely, the involution σ : P̃n → P̃n maps (t, θ) to (t, 2π − θ). In this case, ξn lies
in the boundary ∂�n . Let Q+

n = [−Tn, Tn] × [0, π ] be the vertical half of P̃n in �n .
Then, �n \ Q+

n converges to �∞ \ {y} smoothly. In hyperbolic geometry, the node is
obtained by shrinking a geodesic γ +

n = {0} × [0, π ] which connects two points at the
boundary. This is exactly the type I node described in the algebraic language above.

The second one corresponds to the symmetry of P̃n w.r.t. the vertical middle circle

γ̃n = {(t, θ) | t = 0} ⊂ P̃n .

geodesic γn

Σ∞

interior node

collar area Pn

Σn

Fig. 1 Interior node (closed surface with g = 2)

geodesic γn

collar area Qn

Σn

Type I node

Σ∞

Fig. 2 Type I node (bordered surface with g = 2 and k = 1)
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49 Page 10 of 21 L. Liu et al.

Σn Σ∞

Type II node
geodesic γn

collar area P+
n

Fig. 3 Type II node (bordered surface with g = 1 and k = 1)

Namely, the involution σ : P̃n → P̃n maps (t, θ) to (−t, θ). In this case, γ̃n is fixed by
σ and hence belongs to the boundary ∂�n . Let P+

n = [0, Tn] × S1 be the horizontal
half of P̃n in �n . Then, �n \ P+

n converges to �∞ \ {y} smoothly. In hyperbolic
geometry, the node is obtained by shrinking a boundary curve γn = γ̃n (also a closed
geodesic). This is exactly the type II node described in the algebraic language.

See Figs. 1, 2, and 3 for a simple illustration of the different types of nodes.

3 Harmonic Maps fromHalf Cylinders and Proof of Theorem 1.1

In this section, we develop the blow-up analysis for harmonic maps from long half
cylinders and then complete the proof of Theorem 1.1.

Let un be a sequence of harmonic maps defined on the vertical half cylinder

Q+
n = [−Tn, Tn] × [0, π ]

with free boundary un([−Tn, Tn]× {0, π}) on K and with uniformly bounded energy

E
(
un, Q

+
n

) ≤ �

or defined on the horizontal half cylinder

P+
n = [0, Tn] × S1

with free boundary un({0} × S1) on K and with uniformly bounded energy

E
(
un, P

+
n

) ≤ �,

where

[ − Tn, Tn] × {0, π} = [−Tn, Tn] × {0} ∪ [ − Tn, Tn] × {π}.
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For a harmonic map u from a cylinder [−T , T ] × S1, using the fact that the Hopf
differential φ(u)(dt + idθ)2 is holomorphic, where

φ(u) = |∂t u|2 − |∂θu|2 − 2i∂t u · ∂θu,

it was observed in [25] that the integration

∫

{t}×S1
φ(u)dθ

is independent of t , which is a complex constant. Here, for harmonic maps from half
cylinders, by integrating by parts, we can also define a quantity independent of t ,
which plays an important role to characterize the asymptotic properties of the maps
in the limit process.

Lemma 3.1 If u is a harmonic map defined on Q+
n with free boundary u([−Tn, Tn] ×

{0, π}) on K , then

∫

{t}×[0,π ]

(
|∂t u|2 − |∂θu|2

)
dθ

is independent of t , where ∂t u = ∂u
∂t and ∂θu = ∂u

∂θ
.

If u is a harmonic map defined on P+
n with free boundary un({0}× S1) on K , then

∫

{t}×S1

(
|∂t u|2 − |∂θu|2

)
dθ

is independent of t .

Proof We shall only prove for first case, since the second case is similar and easier.
Since u is a harmonic map defined on Qn , denoting Qt1t2 = [t1, t2] × [0, π ], then

we have

0 =
∫

Qt1 t2

�u · ∂t udθdt

=
∫

Qt1 t2

(
∂2t u + ∂2θ u

)
· ∂t udθdt

= 1

2

∫

Qt1 t2

∂

∂t

(
|∂t u|2 − |∂θu|2

)
dθdt +

∫ t2

t1
∂t u · ∂θu|π0 dt

= 1

2

(∫

{t2}×[0,π ]

(
|∂t u|2 − |∂θu|2

)
dθ −

∫

{t1}×[0,π ]
(|∂t u|2 − |∂θu|2)dθ

)
,

where we used the free boundary condition, i.e.

∂t u · ∂θu|[−Tn ,Tn ]×{0,π} = 0.
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Then, the conclusions of lemma follow immediately. ��
By above lemma, we shall give the following definition of Pohozaev-type constant:

Definition 3.1 The constant

αn :=
∫

{t}×[0,π ]

(
|∂t un|2 − |∂θun|2

)
dθ for Q+

n (3.1)

or

αn :=
∫

{t}×S1

(
|∂t un|2 − |∂θun|2

)
dθ for P+

n (3.2)

is called the Pohozaev-type constant for un on Q+
n or P+

n , respectively.

In this paper, we want to study the energy concentration of un on Q+
n and P+

n . First,
by the classical blow-up theory of harmonicmaps near an interior energy concentration
point [4], near a (free) boundary energy concentration point [10] and near the interior
degenerating area [25], it is not hard to prove the following:

Theorem 3.2 un : P+
n → N be a sequence of harmonic maps with free boundary

un({0} × S1) on K and with uniformly bounded energy

E
(
un; P+

n

) ≤ �,

where P+
n is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞ as

n → ∞.
Then, there exist a finite harmonic spheres vi : S2 → N , i = 1, . . . , I and

harmonic disks w j : D1(0) → N , j = 1, . . . , J with free boundary w j (∂D1(0)) on
K such that, after passing to a subsequence, there holds

lim
n→∞ E

(
un, P

+
n

) =
I∑

i=1

E(vi ) +
J∑

j=1

E(w j ) + lim
n→∞ 2αnTn,

where αn is defined by (3.2).

Proof With the help of [4,10], one can refer to a similar proof in [2,25]. We omit the
details here. ��

Next, we will focus on the case of Q+
n . We first consider a simpler case by assuming

that there is no energy concentration points in Q+
n , i.e.

lim
n→∞ sup

−Tn≤t≤Tn−1
E(un, [t, t + 1] × [0, π ]) = 0. (3.3)

By the small energy regularity theory of harmonic maps in the interior case [19]
and the free boundary case [10], we have
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Lemma 3.3 Let un : Q+
n → N be a sequence of harmonic maps with free boundary

un([−Tn, Tn] × {0, π}) on K . Assuming (3.3) holds, then for any ε > 0, there hold

sup
−Tn+1≤t≤Tn−1

‖∇un‖W 1,2([t− 1
2 ,t+ 1

2 ]×[0,π]) ≤ C(K , N ) sup
−Tn+1≤t≤Tn−1

‖∇un‖L2([t−1,t+1]×[0,π])

(3.4)

and

sup
−Tn+1≤t≤Tn−1

‖un‖Osc([t− 1
2 ,t+ 1

2 ]×[0,π ]) ≤ C(K , N )

sup
−Tn+1≤t≤Tn−1

‖∇un‖L2([t−1,t+1]×[0,π ]) ≤ C(K , N )ε (3.5)

when n is big enough, where

‖un‖Osc(�) := sup
x,y∈�

|un(x) − un(y)|.

In particular, the free boundary condition tells us that the image of un is contained
in a small tubular neighborhood of K in N, i.e.

un([−Tn + 1, Tn − 1] × [0, π ]) ⊂ KC(N )ε,

where KC(N )ε denotes the C(N )ε-tubular neighborhood of K in N.

Denote by Kδ0 the δ0-tubular neighborhood of K in N . Taking δ0 > 0 small
enough, then for any y ∈ Kδ0 , there exists a unique projection y′ ∈ K . Set y =
expy′ {−exp−1

y′ y}. Thus, we may define an involution σ , i .e. σ 2 = I d as in [6,7,20]
by

σ(y) = y f or y ∈ Kδ0 .

Then, it is easy to check that the linear operator Dσ : T N |Kδ0
→ T N |Kδ0

satisfies

Dσ(V ) = V for V ∈ T K and Dσ(ξ) = −ξ for ξ ∈ T⊥K .
By Lemma 3.3, we can define an extension of un to Qn := [−Tn + 1, Tn − 1]× S1

that

ûn(t, θ) =
{
un(t, θ), i f (t, θ) ∈ [−Tn + 1, Tn − 1] × [0, π ];
σ(un(ρ(t, θ))), i f (t, θ) ∈ [−Tn + 1, Tn − 1] × [π, 2π ], (3.6)

where ρ(t, θ) := (t, 2π − θ).
Now, we derive the equation for the extended map ûn . One can see that it is no

longer a harmonic map, but it satisfies the following property. See also Proposition
3.3 in [10].
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Proposition 3.4 Let u ∈ W 2,p([T1, T2] × [0, π ], N ), 1 ≤ p ≤ ∞, be a map with free
boundary u([T1, T2]×{0, π}) on K . Let u([T1, T2]×[0, π ]) ⊂ Kδ0 , then the extended
map û defined by 3.6 satisfying û ∈ W 2,p([T1, T2] × S1) and

�û + ϒû(∇û,∇û) = 0 in [T1, T2] × S1, (3.7)

where ϒû(·, ·) is a bounded bilinear form defined by

ϒû(·, ·) =
{
A(̂u)(·, ·) in [T1, T2] × (0, π),

A(̂u)(·, ·) − D2σ |σ (̂u)(Dσ |̂u ◦ · , Dσ |̂u ◦ ·) in [T1, T2] × (π, 2π);

satisfying

|ϒû(∇û,∇û)| ≤ C(K , N )|∇û|2.

Proof According to the properties of Dσ , it is easy to see that û ∈ W 2,p([T1, T2]×S1)
since u ∈ W 2,p([T1, T2] × [0, π ], N ) and satisfies free boundary condition. Next, we
derive the equation for û.

Firstly, for (t, θ) ∈ (T1, T2) × (π, 2π), we have

�û + A(̂u)(∇û,∇û) = ∇ û∗T N
dû(eβ)(dû(eβ)),

where ∇ û∗T N is the covariant derivative on the pull back bundle.
Computing directly in local normal coordinates { ∂

∂ yi
}ni=1 of target manifold N , we

get

∇ û∗T N
dû(eβ)(dû(eβ)) = ∇ û∗T N

dû(eβ)

(
∂σ j

∂ yi
dui ◦ dρ(eβ)

∂

∂ y j

)

= ∂2σ j

∂ yk∂ yi
dui ◦ dρ(eβ)duk ◦ dρ(eβ)

∂

∂ y j
+ ∂σ j

∂ yi
�ui

∂

∂ y j

= ∂2σ j

∂ yk∂ yi
dui ◦ dρ(eβ)duk ◦ dρ(eβ)

∂

∂ y j

= D2σ |σ (̂u)(Dσ |̂u ◦ ∇û, Dσ |̂u ◦ ∇û),

where the last second equality follows from the fact that u is a harmonic map which
is equivalent to say that �ui = 0, i = 1, . . . , n in local normal coordinate system
{ ∂
∂ yi

}ni=1.
Combining this with the fact that û is a harmonic map in [T1, T2] × [0, π ], the

conclusions of the proposition follows immediately. ��

Now, we estimate the energy of un on Q+
n when there is no energy concentration.

We have
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Theorem 3.5 Let N be a compact Riemannian manifold and K ⊂ N is a smooth
submanifold. Let un : Q+

n → N be a sequence of harmonic maps with free boundary
un([−Tn, Tn] × {0, π}) on K and with uniformly bounded energy

E
(
un; Q+

n

) ≤ �,

where Q+
n is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞ as

n → ∞.
Suppose there is no energy concentration for un, i.e. (3.3) holds, then we have

lim
n→∞ E(un; Q+

n ) = lim
n→∞ 2Tnαn,

where αn is defined by (3.1).

Proof Since (3.3) holds, by Lemma 3.3, we know that for any ε > 0, there holds

un([−Tn + 1, Tn − 1] × [0, π ]) ⊂ KC(N )ε,

when n is big enough. Taking ε > 0 small such that C(N )ε ≤ δ0, then we can use the
definition (3.6) to extend un to ûn , which is defined on [−Tn + 1, Tn − 1] × S1 and
satisfies Eq. (3.7).

Setting

û∗
n(t) := 1

2π

∫ 2π

0
ûn(t, θ)dθ, t ∈ [−Tn + 1, Tn − 1],

then, by (3.3) and Lemma 3.3, we have

‖ûn − û∗
n‖L∞([−Tn+1,Tn−1]×S1) ≤ sup

t∈[−Tn+1,Tn−1]
‖ûn‖Osc({t}×S1)

≤ C(K , N ) sup
t∈[−Tn+1,Tn−1]

‖un‖Osc({t}×[0,π ])

≤ C(K , N )ε, (3.8)

when n is big enough.
Multiplying the Eq. (3.7) by ûn − û∗

n and integrating by parts, we get

∫

[−Tn+1,Tn−1]×S1
ϒûn (∇ûn,∇ûn)(̂un − û∗

n)dtdθ

=
∫

[−Tn+1,Tn−1]×S1
−�ûn (̂un − ûn

∗)dtdθ

=
∫

[−Tn+1,Tn−1]×S1
∇ûn∇ (̂un − û∗

n)dtdθ −
∫

{Tn−1}×S1

∂ ûn
∂t

(̂un − u∗
n)dθ

+
∫

{−Tn+1}×S1

∂ ûn
∂t

(̂un − u∗
n)dθ. (3.9)
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Using Hölder’s inequality, we have
∫

[−Tn+1,Tn−1]×S1
∇ûn∇ (̂un − û∗

n)dtdθ

=
∫

[−Tn+1,Tn−1]×S1

(
|∇ûn |2 − ∂ ûn

∂t

∂ û∗
n

∂t

)
dtdθ

≥
∫

[−Tn+1,Tn−1]×S1
|∇ûn |2dtdθ −

(∫

[−Tn+1,Tn−1]×S1
|∂ ûn

∂t
|2dtdθ

) 1
2

×
(∫

[−Tn+1,Tn−1]×S1
|∂ û

∗
n

∂t
|2dtdθ

) 1
2 ≥

∫

[−Tn+1,Tn−1]×S1

(
|∇ûn |2 − |∂ ûn

∂t
|2

)
dtdθ,

(3.10)

where the last inequality follows from the fact that

(∫

[−Tn+1,Tn−1]×S1
|∂ û

∗
n

∂t
|2dtdθ

) 1
2 =

⎛
⎝

∫

[−Tn+1,Tn−1]×S1

∣∣∣∣∣
1

2π

∫ 2π

0

∂ ûn
∂t

dθ

∣∣∣∣∣
2

dtdθ

⎞
⎠

1
2

≤
(∫

[−Tn+1,Tn−1]×S1

1

2π

∫ 2π

0
|∂ ûn

∂t
|2dθdtdθ

) 1
2

=
(∫

[−Tn+1,Tn−1]×S1
|∂ ûn

∂t
|2dtdθ

) 1
2

.

Combining (3.9) and (3.10), we arrived

∫

[−Tn+1,Tn−1]×S1

(
|∇ûn|2 − |∂ ûn

∂t
|2

)
dtdθ

≤
∫

[−Tn+1,Tn−1]×S1
�ûn (∇ûn,∇ûn)(̂un − û∗

n)dtdθ

+
∫

{Tn−1}×S1

∂ ûn
∂t

(̂un − u∗
n)dθ −

∫

{−Tn+1}×S1

∂ ûn
∂t

(̂un − u∗
n)dθ. (3.11)

A direct computation yields that

∫ Tn−1

−Tn+1

∫ 2π

π

(
|∇ûn|2 − |∂ ûn

∂t
|2

)
dtdθ

=
∫ Tn−1

−Tn+1

∫ π

0

(
|Dσ(un) · ∇un|2 − |Dσ(un) · ∂un

∂t
|2

)
dtdθ. (3.12)

Note that

|Dσ(un) · ∇un|2 = 〈Dσ · ∇un, Dσ · ∇un〉
= 〈(Dσ)∗ · Dσ · ∇un,∇un〉
=

〈(
(Dσ)∗ · Dσ − I d

)
· ∇un,∇un

〉
+ |∇un|2,
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where (Dσ)∗ is the adjoint operator of linear operator Dσ : T N |Kδ0
→ T N |Kδ0

.
Similarly,

∣∣∣∣Dσ · ∂un
∂t

∣∣∣∣
2

=
〈(

(Dσ)∗ · Dσ − I d

)
· ∂un

∂t
,
∂un
∂t

〉
+

∣∣∣∣
∂un
∂t

∣∣∣∣
2

.

Noting that (Dσ)∗ · Dσ |K = I d, by the continuity of eigenvalues of (Dσ)∗ · Dσ ,
we have that for any δ′ > 0, there exists a constant δ1 = δ1(δ

′, K , N ), such that for
any y ∈ Kδ1 and ξ ∈ T N |Kδ1

, there holds

〈(Dσ)∗|y · Dσ |y · ξ, ξ 〉 ≤ (1 + δ′)|ξ |2.

By Lemma 3.3, for any ε > 0, when n is big enough, there holds

‖dist(un, K )‖L∞([−Tn+1,Tn−1]×S1) ≤ Cε.

Thus,

〈(
(Dσ)∗|un(t,θ) · Dσ |un(t,θ) − I d

)
· ξ, ξ

〉
≤ Cε|ξ |2, (t, θ) ∈ [−Tn + 1, Tn − 1] × S1,

implies that

∫ Tn−1

−Tn+1

∫ 2π

π

(
|∇ûn|2 − |∂ ûn

∂t
|2

)
dtdθ ≥

∫ Tn−1

−Tn+1

∫ π

0

(
|∇un|2 − |∂un

∂t
|2

)
dtdθ

− Cε

∫ Tn−1

−Tn+1

∫ π

0
|∇un|2dtdθ.

Therefore, we have

∫

[−Tn+1,Tn−1]×S1

(
|∇ûn|2 − |∂ ûn

∂t
|2

)
dtdθ

=
∫ Tn−1

−Tn+1

∫ π

0

(
|∇un|2 − |∂un

∂t
|2

)
dtdθ +

∫ Tn−1

−Tn+1

∫ 2π

π

(
|∇ûn|2 − |∂ ûn

∂t
|2

)
dtdθ

≥ 2
∫ Tn−1

−Tn+1

∫ π

0

(
|∇un|2 − |∂un

∂t
|2

)
dtdθ − Cε

∫ Tn−1

−Tn+1

∫ π

0
|∇un|2dtdθ.

Combining this with (3.11), (3.8) and Lemma 3.3, it yields

2
∫ Tn−1

−Tn+1

∫ π

0

(
|∇un|2 − |∂un

∂t
|2

)
dtdθ

≤
∫

[−Tn+1,Tn−1]×S1
�ûn (∇ûn,∇ûn)(̂un − û∗

n)dtdθ + Cε

∫ Tn−1

−Tn+1

∫ π

0
|∇un|2dtdθ
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+
∫

{Tn−1}×S1

∂ ûn
∂t

(̂un − û∗
n)dθ −

∫

{−Tn+1}×S1

∂ ûn
∂t

(̂un − û∗
n)dθ

≤ Cε

∫ Tn−1

−Tn+1

∫ π

0
|∇un|2dtdθ +

∫

{Tn−1}×S1

∂ ûn
∂t

(̂un − û∗
n)dθ

−
∫

{−Tn+1}×S1

∂ ûn
∂t

(̂un − û∗
n)dθ. (3.13)

For the boundary terms, by trace theory and Lemma 3.3, we have

∣∣∣∣
∫

{Tn−1}×S1

∂ ûn
∂t

(̂un − û∗
n)dθ

∣∣∣∣ ≤ ‖ûn − û∗
n‖L∞({Tn−1}×S1)

∫

{Tn−1}×S1
|∂ ûn

∂t
|dθ

≤ C‖ûn‖Osc({Tn−1}×S1)

∫

{Tn−1}×[0,π ]
|∂un

∂t
|dθ

≤ C‖un‖Osc({Tn−1}×[0,π ])
(
‖∇2un‖L2([Tn− 3

2 ,Tn− 1
2 ]×[0,π ])

+‖∇un‖L2([Tn− 3
2 ,Tn− 1

2 ]×[0,π ])
)

≤ C‖un‖Osc({Tn−1}×[0,π ])‖∇un‖L2([Tn−2,Tn ]×[0,π ])
≤ C‖∇un‖2L2([Tn−2,Tn ]×[0,π ]) ≤ Cε,

where the last inequality follows from (3.3).
Similarly,

∣∣∣∣
∫

{−Tn+1}×S1

∂ ûn
∂t

(̂un − û∗
n)dθ

∣∣∣∣ ≤ C‖∇un‖2L2([−Tn ,−Tn+2]×[0,π ]) ≤ Cε.

Then by (3.13) and Lemma 3.1, we have

Cε ≥ 2
∫ Tn−1

−Tn+1

∫ π

0

(
|∇un|2 − |∂un

∂t
|2

)
dtdθ

=
∣∣∣∣
∫ Tn−1

−Tn+1

∫ π

0
|∇un|2dtdθ −

∫ Tn−1

−Tn+1

∫ π

0

(
|∂un

∂t
|2 − |∂un

∂θ
|2

)
dtdθ

∣∣∣∣

=
∣∣∣∣
∫ Tn−1

−Tn+1

∫ π

0
|∇un|2dtdθ − 2(Tn − 1)αn

∣∣∣∣ ,

which implies

lim
n→∞ E(un; [−Tn + 1, Tn − 1] × [0, π ]) = lim

n→∞ 2Tnαn .

We finished the proof of theorem. ��
Next, wewill consider themore general case of allowing the phenomenon of energy

concentration, i.e. (3.3) does not hold. Combining Theorem 3.5 with [4,10,25], we can
prove the following theorem.
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Theorem 3.6 Let N be a compact Riemannian manifold and K ⊂ N is a smooth
submanifold. Let un : Q+

n → N be a sequence of harmonic maps with free boundary
un([−Tn, Tn] × {0, π}) on K and with uniformly bounded energy

E
(
un; Q+

n

) ≤ �,

where Q+
n is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞ as

n → ∞.
Then there exist a finite harmonic spheres vi : S2 → N , i = 1, . . . , I and

harmonic disks w j : D1(0) → N , j = 1, . . . , J with free boundary w j (∂D1(0)) on
K such that, after passing to a subsequence, there holds

lim
n→∞ E(un, Q

+
n ) =

I∑
i=1

E(vi ) +
J∑

j=1

E(w j ) + lim
n→∞ 2αnTn,

where αn is defined by (3.1).

Proof Based on the neck analysis scheme in [4], Zhu [25] gives a refined “bubble
domain and neck domain" decomposition for a sequence of harmonic maps from a
long cylinder. Here, Combining [25] with the blow-up theory for a blow-up sequence
of harmonic maps near a (free) boundary point [10], it is not hard to see this kind
of decomposition also holds for a sequence of harmonic maps un from a long half
cylinder Q+

n with free boundary un([−Tn, Tn] × {0, π}) on K . We leave the detailed
proof to interested readers.

Precisely, we can show that there exists a constant L > 0 independent of n and 2L
sequences {a1n}, {b1n}, {a2n}, {b2n},…, {aLn }, {bLn }, such that

−Tn ≤ a1n � b1n ≤ a2n � b2n ≤ . . . ≤ aLn � bLn ≤ Tn (ain � bin means lim
n→∞ bin − ain = ∞)

and (bin − ain) � Tn , i.e.

lim
n→∞

bin − ain
Tn

= 0, i = 1, . . . , L.

Denote

J j
n := [a j

n , b
j
n ] × S1, j = 1, . . . , L,

I 0n := [−Tn, a
1
n] × S1, I Ln := [bLn , Tn] × S1,

I in := [bin, ai+1
n ] × S1, i = 1, . . . , L − 1.

Then, after passing to a subsequence, which we still denote by {un}, there hold
(1) ∀i = 0, 1, . . . , L ,

lim
n→∞ sup

t∈I in

∫

[t,t+1]×S1
|∇un|2 = 0.
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Themaps φn on I in are necks corresponding to collapsing homotopically nontrivial
curves.

(2) ∀ j = 1, . . . , L , there are finitely many harmonic maps v j,l : S2 → N , l =
1, . . . , l j , and finitely harmonic maps w j,m : D1(0) → N , m = 1, . . . ,m j with
free boundary w j,m(∂D1(0)) on K , such that

lim
n→∞ E(un, J

j
n ) =

l j∑
l=1

E(v j,l) +
m j∑
m=1

E(w j,m). (3.14)

By Theorem 3.5, we have

lim
n→∞

L∑
i=0

E(un; I in) = lim
n→∞ αn

(
a1n − (−Tn) + Tn − bLn +

L−1∑
i=1

(ai+1
n − bin)

)

= lim
n→∞ αn

(
2Tn −

L∑
i=1

(bin − ain)

)

= lim
n→∞ 2αnTn

(
1 −

L∑
i=1

bin − ain
2Tn

)
= lim

n→∞ 2αnTn .

Combining this with (3.14), we proved the conclusion of the theorem. ��
At the end of this section, we give the proof of our main Theorem 1.1.

Proof of Theorem 1.1 With the help of the blow-up analysis for a sequence of harmonic
maps near an interior blow-up point [4], near a free boundary point [10], and the
asymptotic behaviour near an interior node [25], it is easy to see that the conclusions
of Theorem 1.1 follow immediately from Theorems 3.6 and 3.2. ��
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